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Parametric time-coherent states for the hydrogen atom
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We obtained coherent states for the hydrogen atom by transforming the problem into four oscillators in the
parametric time at a classical level, and quantizing these oscillators by using path integration over their
holomorphic coordinates. We showed that for the negatipesitive) energy coherent states the mean values
of the physical position of the electron satisfy the Keplerian elligbgperbolag and that their dispersions
oscillate(increase in parametric time.
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[. INTRODUCTION holomorphic coordinates. We also study coherent states for
positive energies, using an analytical continuation of the ker-
In 1926 Schrdinger constructed the coherent states fornel from negative energies to positive energies.
the one-dimensional oscillatdil], and also addressed the  The classical Kepler problem has six conserved variables:
problem of constructing localized and nonspreading wavengular momentum and Runge-Lenz vectors. The corre-
packets for electrons in a Coulomb potential, which travelsponding dynamical symmetry is $4). To represent this
along the Keplerian ellipses. Recently, ten Wokteal. ob- ~ dynamical symmetry as the geometric symmetry of a new
served a radially localized electron wave padkgt system, we extend the configuration space of the electron by
Since there exist coherent states for the harmonic oscillaadding a new free-particle degree of freedom. In Sec. I, to
tor, it is the natural way to obtain coherent states for a Keplefind the appropriate classical system, we first add a free-
problem by mapping it onto a system of harmonic oscilla-particle Lagrangian to the Lagrangian of the electron without
tors. In 1978, Nieto and Simmons developed a general forchanging its dynamics. Second, we define a new time param-
malism to construct coherent states for the different poteneter. Thus the physical time becomes as a new dynamical
tials [3,4]. In 1986, Bhaumiket al. constructed coherent degree of freedom for the electron. By the Kustaanheimo-
states for the Kepler problefB], and showed that these Stiefel transformation the four-dimensional part of the prob-
states disperse. Even in classical mechanics we cannot elem becomes one of four harmonic oscillators with the same
press orbits as explicit functions of physical tifigd. For this ~ frequency; then we write the four oscillators in terms of the
reason, Gerry later discussed the same problem with the evéur holomorphic coordinates. In Sec. Ill, we quantize this
lution of coherent states in parametric tifid, which was  (4+ 1)-dimensional system by using path integrals, and this
used previously for a path-integral quantization of the hydro-method gives us normalized eigenfunctions and eigenvalues
gen atom by Duru and Kleinef8]; this corresponded to an of lowering operators and their parametric time evolutions.
eccentric anomaly in the Kepler problef@]. Recently, In Sec. IV, we derive mean values of the space coordi-
Toyoda and Wakayama also discussed the same problem Ipates of the electron, and their dispersions. We show that
using the SU(2X SU(2) symmetry of the oscillatorf9].  they oscillate at twice the frequency of the eigenvalues, and
These authors did not discuss the contribution of two doubléhat the mean values travel along the Keplerian ellipses. In
valuedness of the transformation and the dispersions of thgec. V we discuss the analytic continuation of these states
wave packets. In these papers the stationary states of th@to positive-energy states and evaluate the mean values of
hydrogen atom were mepped onto the four harmonic oscillathe physical coordinates and their dispersions. Sec. VI cer-
tors by using the Kustaanheimo-Stiefel transformafib. tains conclusions, and in the Appendix we discuss the rela-
The complex form of this transformation was given by Cor-tion between the kernel evaluated in this paper and the one
nish[11]. obtained in Ref[8], and derive coherent states in spherical
The aim of this paper is to derive coherent states for eoordinates for completeness.
hydrogen atom in parametric time by using path integrals.
Path integrals are the most convenient way to discuss state Il. CLASSICAL HYDROGEN ATOM

functions and their evolution, and give the normalization of

the states. In this approach we first transform the classical The action is given as

Kepler problem onto four oscillators for the negative ener-

gies. Since the holomorphic coordinates are classical analogs dx 1. k

of the raising and lowering operators of the oscillators, we f dt| p- Tt (ﬁ 2 F” (1)

. N . . a

write the action of the oscillator system in terms of the ho-

lomorphic coordinates. Then we derive coherent-state wave

functions and their evolution and normalization by using thewheret is the physical timex andp are the canonical con-
jugate coordinates and the momenta of the eleckerg? (e
is the electron chargeandr=|x|. To use the SO(4) dy-

*Email address: nunal@pascal.sci.akdeniz.edu.tr namical symmetry of the Kepler problem, we transform it to
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a four-dimensional problem by choosing an extra space co-
ordinatex, and adding a free-particle action to Ed). Then

1
Py=""=(Px,~1Px,)-
Eqg. (1) becomes \/E & B

b dx, 1 k This is a double-valued transformation, and the paths,in
A= f dt pAF —(ﬁpApA— F) } (2 space are mapped into two different classes of paths i the
a plane: those which go from(a) to x(b) are mapped into
- > those going fromé(a) to £(b) and[ — &(b)].
Whe_re xA=(x,x4)_ and pa=(p,ps). Although the_ free- We define the complex spinotsand ¢ as
particle Lagrangian does not change the dynamics of the
electron, it changes the classical trajectories and the transi- IN
tion amplitudes. For this reason we eliminate this degree of §=( ) (8)
freedom after the quantization. 43
We choose a parametric time with the nonholonomic and
relation,
T (ex *
L W ite th tion in Eq4
and transform the action in Eq2) by the Lagrange multi- e rewrite the action in Eqd) as
plier pg: . Abd det dt
. i L A(fb,tb,gayta)—f}\a A pgTﬁ+(_po)a_H ,
A(Xa(\p);Xa(Na))= f}\a d\ PA g %pApAr_k) (10

dt whereH is the Hamiltonian of the four oscillators in terms of
+(_p°)<ﬁ_r) ] (4) complex spinors and &7, and is given by

L ) H=w[p:ps+ £ E]-K, (11
In Eq. (4), the Lagrange multiplier is choosen in such a way
thatt is a new coordinate, angbg) is the conjugate momen- where the frequency of the oscillatorsds= \(— p/2m).

tum in the region—c <py<+o. Thus Eq.(4) describes a We define the holomorphic coordinatasnda’ as
(4+1)-dimensional system in non-Cartesian coordinates
which moves under the potentig(—pg)r —k]. We intro- a,
duce complex dimensionless coordinafgsand &g and com- 1 [ &+ip b
plex conjugategx and&g by using the complex form of the a=— _ ol (12
Kustaanheimo-Stifel transformation, V21 Etipg a_
b_
dXx & &n | [dé
_ —112
dY) (m|pol) (gA e\ ag, (5 and
1 . .
whereX and are a=l(e=ipgn. (¢~ ipp)=(a} bY a® bY).
X=(x;+ix2)/\2, (13
Y=(xa+ix4)/2. Then Eq.(10) can be written as
+
Thenr is Ty _ (Mo L9 _;da
A(a,, tp; a,, ta)—ﬁ\a )\[Zi d)\a a ax
r=(2m|po|) YA EL éat EE ER). (6)
B dt_ fak
The momenta are transformed as * pO)d)\ (0a’a=k)|,
(14
(px) (mlpo|) 2 (5; fA) Pex @
= , — -r _ . . . .
Py (|§A|2+|§B|2) & &g P, whereH=(wa'a—Kk) is a Hamiltonian or energy functional

of the electron in parametric time, which is constant, and the
value of this constant is zerbl=0 gives the physical energy

of the particle ap,= —2mk?(a'a) 2. The initial conditions

in Egs.(10) and(14) are different; for this reason their values
differ by a constant. To derive the coherent states we use the
action in Eq.(14).

wherepy andpy are

1 _
pfﬁ(pxl—lpxz),
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ll. QUANTIZATION to x, are mapped into two different classes of pathsuin

Feynman's formulation of path integrals gives us the tran-Space: the paths frora, to aj and the paths frona, to
sition amplitudes or matrix elements of the evolution opera-—a, . Since the hydrogen atom is spinless, the physical tran-
tor of the system between eigenstates of the position operatsttlon amplitude is the symmetric sum of the amplitudes

X. They give us the evolution of the position eigenstatesKo(an:aa) andK,(—ag;a,):
Here we are interested in the evolution of the eigenstates of o ] "
the lowering operators of the harmonic oscillators, and these Kw S(ab ’aa)_[Kw(ab 18a) T K (—8p;85)]
correspond to time-dependent coherent states of the system.
For this reason we define the kernel of the four-oscillator
system in terms of the four-dimensional holomorphic coor- +e_agexp[_iw(>\b_xa)]aa]
dinatesag anda, andt, andt,. This gives us the matrix ’
elements of the evolution operator between the eigenstates Then the kernel in Eq(15) is
the lowering operators of the oscillatdis,) and|ab> The
basic difference between these two kernels is that the eigen- *
values of the position operator are real, but the eigenvalues KP" S(ab th;8a,ta) = f dx f
of the lowering operator are complex. In the Appendix we
derive the transition amplitudes betwegp,t, and X, ,t,
which correspond to Feynman'’s kernel.

We define the kernel of the hydrogen atom in the holo-

— e i(20- k)(xb—xa)[eagexp[—iw(xb—xa)]aa

(20

d(— po)

x el [k=20](\p=Xa) +i(—Po)(th—ta)

X [ €2%ePl- 100w~ Na)lag

morphic coordinates as +e—aﬂexp[—iw(xb—>\a)laa]. 21)
K(a),ty;a,,t0)= f f D“[DZ( ]p") We parametrize the spinors in Eq42) and (13) as
R Aya
x el N POEIIVK (af a,), (15) bia
A= (22
whereh =1, ande(ag,aa) is the kernel of the four oscil- a-a
lators in parametric tima, defined as b_,
K - f Da'Da _f)\bd)\ da’ ,da and
J(ah:a exp i =|—=—a—a
brTa [2mi] A dx dx al=(a*,, b*,, a*,, b*,). (23)
+ Then the power-series expansion of the exponential func-
—w(@at2)t+k (16 tions in Eq.(21) gives

In Eq. (16) the (2) term comes from the ordering of the  kphvsa! 1, ;a, ,t,)= J“d(Po) e Poltb-td) S
operatorsa’ anda. The operatora’ anda satisfy the com- 2 ning,

mutation relation N3:ng=0
[é,éT]:l. (17) X[1+(_1)n1+n2+n3+n4]XJ d)\b
)\a
We perform the path integration oveandp, easily. It gives % @l (\p=Na)[k=(ng+ny+ng+n,+2)]
DtD(—po) .ka dt (a*pa, )™ (b* b, )"
f 2 &A1), MRy gl !
+ed(—po) (a*pa_n)"s (b* b_,)M
—f SR e —ipg(ty-t)]. (19 x 22 A (29
Y ng! n,!

Up to Sec. V we assume thpy<0, andw is real. Then we Since the value of the parametric energy is zero, we perform
also perform a path integration ovaf anda in the same @ \p integration and obtain

way as discussed in Rdfl12]. The result is K
R w= , (25
Kw(ag;aa):e_i(2‘0_k)()‘b_)‘a)+abeXp[_iw()‘b_)‘a)]aa_ (19) Ny+ny+ng+ng+2
o with the condition
The Kohn-Sham transformation is double valued for the
hydrogen atom problem, and all paths in thepace fronx, ny+n,+ns+n,=2n. (26)

052105-3



NURI UNAL PHYSICAL REVIEW A 63 052105

Thus the physical energy is and in this section we use this method by expressing the
initial conditionp,(\,,) in terms ofa; anda, . The condition
m_ K Pa(Mp) =0 gives
Po==%5 — 75" (27)
(I’H‘l) 2 2 2 2
|ayp|*+[byp|—la_p|*=[b_p[*=0. (28)

There are two methods to eliminate the fourth coordimxate

In the global formulation of the quantum mechanics we in-We also express the same condition as

tegrate over all values of,, as in Ref[8], and in the same

way we use this method in the Appendix. In the local for- n;+n,—n;—n,=0. (29
mulation we choose eigenfunctions that have zero eigenval-

ues forp,(\p) or are independent of,y,, as in Refs[5,7,9,  Then the physical kernel

<d(— py) © nj+ng "
Kphys(ag,tb;aa,ta)=j 2:0 el (—Po) (th—ta) ¢ E E d)\bei()\b—)\a)[k—z(ni-#né+1)w]
0

’ r_ _ ’ ’ A
ny,ny=0 m=—(n;+ny) a

(P’E Pa)(n1+n2)(0'; Ua)(nl_nz)( 5; 6a)2m

: (30

Z
IT raa+n)
=1

where the new quantum number§, n;, andm are defined bolic coordinates. Three new complex parameters,, and

as 6 are defined as
ny=n;+m, p=(a,b,a_b_)?
1/2
n,=n,—m, (31) - a.b_
a b, ’
ny=ny+m,
5 a,a \#
ng=n;—m. “lb.b

These are quantum numbers of the hydrogen atom in para- We can decompose the kernel in E§0) as

’ ’
n1+ n2

wd(_ ) ~ o] .
Kphys(ag-tmaa,ta):f . Po S D dh el (POt ta)
0 m nj.ny=0 m=—(n;+ny) 7*a
X(n1,nz,mlap)*(ng,n;,mU(\p—N\g)[a,), (32

where(n;,n;,m|a) is the projection of the final coherent states into the energy eigenstated);angd,m/U (A, —\,)|a,) is
the projection of the time evolution of the initial coherent state into the energy eigenstates. They are

o (pp) ("1 "2 (0y) M2 (5) 2™
(n1,ny,mlay)= [ Z 2 ) (33

Il raa+n)
i=1

( )(ni+né) o )(ni—né) 5)2m
Pa (o 1/(2 a . (34)

(ni,né ,m| U(\p— )\a)laa>: ei[k—2(ni+né+1)w]()\b—)\a)

P
[l raa+ny)
i=1
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Thus the coherent states are defined as

» ny+ny ( (n1+n5)¢ +\(n1—n5) ¢ §y2m
P (@)D
lan)y= > > T eMkm2rnathelln nongny), (35
ny.ny=0 m=—(nj+ny) ﬁ T(n+1) 2
n.
=1 !

where|n,n,n3zn,) is the state of four oscillators, arads the y

eigenvalue of the lowering operator)at 0. The parametric (F}z Lm[lJrecos AwA—A)]
time evolution of the the eigenvalweis given by (2m[po|)
—_ —iw\ 3
a(h)=ae % (36) P snaer-a, (40)

o (2m|po|)*?
Thus the coherent state is given by Eg85), and there the

initial state is described by the three complex parameters

where the vectorsr and 8 are given in terms of the unit
o, andé.

vectorse,;, €,, ande; as

IV. EXPECTATION VALUES OF THE PHYSICAL

VARIABLES AND THEIR UNCERTAINTIES a=ey([a.|/b;|+[a_|[b-|+[a-b.[+]a;b-|)

The expectation values af , X,, X3, andr can be evalu- % 2 2
ated by using the transformation in Eq%) and (6). The * 2 [(a+l+la-)*=(b+|+]b-)]
physical trajectories depend dip,), and we choos€p,)
=0 as the initial condition. By using the parametrization in B2 b |—la_b
Eq (22), we write ﬂ eZ[|a+ 7| |a7 +|]1
o n At A At a cr o and the eccentricite is
(2&g€)=(aM)|[(al +a ) (al +a_)= (bl +b,)

(BT +B_)][a(n)) e=2(|la,a_)+(|byb_|)/|al. (42)
=[(a" +a;)(al +a_ )= (b* +b,)(b* +b,)] With the initial condition Eq(28), (r), describes an ellipse
37) with a semimajor axisr and a semiminor axig:
-, (2m|pg|)~ 12
and a=|a|=-==5—{[a.[*+]b.[*+]a_|*+]b_[?]
(BExHE)=Han[{[(@ +a )@l +a ) =@ +a,) (42
x(al +a =1 2 2 L (2mlpo|) =12
(ai+a-)lHan))=3{[la.[*+|a| ,8=|,8|=+[|a+b,|2—|a,b+|2].
+a_a,+a*a* +1]=[|b_|?+|b,|?
+b_b, +b*b* +1]} (38) The expectation values @i, * andr are found as
_ *b* :

In Egs.(37) and (38) we do not write the explicit para- (pely=— 2[(|lay |2+ [b. |2+ [b_|?+|a_|>+2)/2]?
metric time dependence of the eigenvalues and b-. , Po )= mk2 ’
which is given by Eq(36). In Eq. (38), the term 1 comes (43)
from the ordering o™ anda. Thus the expectation value of
r includes a quantum ordering contribution. We choase 1 5 ) 5 ) 5
andb. , without losing generality, as <r>)\=m([(|a+| +lby|[*+|a_[*+[b_|*+2)/2]

a.=la.|e N4 X[1+ecosAwh— )], (44)
b.=|b.|e tertia, (39)  respectively, and these give the valueaofs

where A is the argument of the complex numbexrs and

1
. . > . V= —] 2+ 2+ 2+ 2+ 2.
b . Then the expectation value of the position veatas @ mk[(|a+| by |*+la_[*+[b_|*+2)/2] (45)
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The difference between and@ in the Eqs.(42) and (45) (Ax;)%2=(AX%,)?=0
comes from the quantum ordering contributions. We calcu-
late the dispersions of;, X, X3, andr in the same way. The and

result is
a5

, , @ a (Axg)?=(Ar)?=7.

(Axl))\=(sz))\=\/ﬁ([1+ecoszw)\—5)]—ﬂ, | | | |
(46)  We derive Kepler's third law. The physical period of the
orbit T is defined as
Pl P
AXa)2=(Ar)2=——J1+ A=08)]— —. 2720 2720
(Axg)i=(ANX \/ﬂ[ ecosqwh =)ok Tzf dx(r}sz' d\a[1+ecosAwh—8)].
0 0

The ground state is obtained by substitutiag |=|a_| _ _ _
—|b,|=|b_|=0 in Egs.(43) and(44). Then there exist only 1he result gives the third law of Kepler:
the quantum ordering contributions, and the corresponding

: ; ; i i ; agm m
_orb|t_becomes a circle with a Bohr radiag. The dispersions T=20"_ 2mmia((—2mpy) 1Y 2= 27532 \/:
in this state are ® k

V. CONTINUUM STATES
To obtain positive-energy states, we rewrite the kernel as

o — iz
K(aJr ty,as,t ):f —d( Po) ei(_po)(tb—ta)f dz _e_w el (A=A lk—2w(z+1)]
brtb-Fastal 0 2q c 2isinmz

(pr)cpa)z(o:’bc O.a)(nl—nz)(gg 5a)2m
z+2 ’ (47
— +e4(N;—n5) +e,m

x 2

(niiné)'m HS]_: - 1,+ 152: _11‘*'11_‘

where the contou€ in the complexz plane comes from+-—ie, runs along the axis to the left, passes bound-state poles
n=(n;+ny)=0,1,2 ..., andreturns again to+«+ie above the real axis. Whepy>0, w=—i|w|, the functione'“*
behaves as

lim,_..e 220 for —m/2(argz(m/2. (48

Then the contouC can be opened up to run along the imaginary axis, and the kernel becomes

=>d(pg) - +ie dze ™
t _ 0 Ipo(tb—ta)f i(\p—\g)[k—2|w|Z]
K@t 3, ta) fo 2 € o Sinhﬂ'ze

(pEpa) > Hof o) M5 5,)%"

X - )
(n,E,) m iz+1 , , (49)
S | PO . L T+81(n1_nz)+82m
For positive energies the coherent states become
© o 7z iz—1__(n;—n’) s2m
|a()\)>:f _d(pO) eipotJJrI _d?e eiMk—2[0|Z] E p U LYo . (50
o 2 _iw 1 SiNh7z iz+1

(M=n-m ——+e&1(nj—ny)+e,m

——1+1e,=—1420 2

The expectation values of the physical variables and their dispersions show that the trigopnometric functior(4d) Bl
(46) become hyperbolic functions, and the dispersions increase for the positive-energy coherent states of the hydrogen atom.
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VI. CONCLUSION

KPS & & &L 60 =

2 1
In the paper we discussed the long-standing problem of 2i Sinw/\) cos{i sinwA
guantum mechanics, and derived coherent states for the
negative energies of the hydrogen atom. We also showed ><(§E,§a+ g;gb)}ex;{
that the centers of the wave packets travel along the Keple-
rian ellipse for negative energies. We evaluated the semima-
jor axis @ and the eccentricitg of the ellipse, and showed X(§g§b+ glga)}, (A3)
that T, the physical period of the orbit, satisfies Kepler's
third law. We expressed classical trajectories in terms of the _ . . .
. o . . WhereA =\,—\,. We decomposé into real and imaginary
time parametern, which is proportional to an eccentric

anomaly[6]. We showed that mean values of the physicalparts as

cosw A
i sSinwA

positions of the particles,, x,, X3, andr, and their disper- Uy +iuy
sions, oscillate with the same frequency 2n parametric = - (A4)
time \, and that dispersions have maximuypr minimum Ustiuz
values at the farthegbr nearestpoints of the orbit. - : :
We also derived coherent states for the positive energietshen the substitution of EqA4) into Eq. (A3) gives
and showed that in this case the centers of the wave packets 2
travel along the hyperbolas. We showed that dispersions are K(’f,hys(ub ,ua)=<2. - A) 005{. - Augua
at a minimum at the nearest point of the orbit, and that they Isine 'sine
increase as hyperbolic functions of the parametric time. This coswA ;
approach may be applied to other problems which can be e F{m(ubuﬁ UaUa) |- (A5)

transformed to oscillators.

This is the expression of the kernel which is given in Ref.
ACKNOWLEDGMENT [8]. Instead of the Eq(A5) we can continue from EqA3).

) , ) By using the transformation in Ed7), we write KPS in
This work was partly supported by the Akdeniz Umver-t e o5 d obtain th " i
sity (99.01.0105.08 erms ofr,, andr, and obtain the configuration-space ex-

pression of the kernel for the hydrogen atom as discussed in
Ref.[8]. The integrations ovex,, and the time parametar,
from A, to ® give the kerneK(ry,tyir,,t,) as an integral
over po.

In this paper we derived a kernel between coherent states. To derive coherent states in the spherical coordinates we
The relation between this kernel and the one defined betwegrarametrize, we rewrit§, and &g explicitly as
the points of the complex configuration space is

APPENDIX: DERIVATION OF THE KERNEL AND THE
COHERENT STATES IN CONFIGURATION SPACE

6 .
gA: | §|00$8(|/2)(¢_'}’),

dagdabf dalda,

K Phy T' : ;, )=

0
— i —(i12)(e+
*aTa *aTa i gB_|§|SIn§e (I )((p 7)
Xe " T a<§b1§b|ab>

X KPY ag ra)(ag| £ &) We _substltutgA ar!d & |n('icg)Eq. (AZZ,(Sgpand the exponen-
tial into power series 0&'""“” ande ¥, and perform an
(A1)  integration over the angle from O to 2. The angley

) : " corresponds to the coordinaig. Then the coherent state
The matrix elementéa| £',¢) and(¢', £|a) can be calculated pecomes

by using the representation af anda in terms of¢", ¢ and

Pst, Pe in EQs.(11) and(12). These are (1€],6,¢]a)
_ g2 At
(&', €la)=exd — (ExEnt &5 Ea) +V2(a. Ex+ b, Enta £ =4mexd—|d-aallo
Tb g)—i(a,a +b,b )] x[2y2a'al¢?(1—cos0)], (A6)
where co® anda'a are
and
~~ 1 la,a —b,b. a;b_
a|&h&)* = (¢, ¢a), (A2) COS®=a-nE—( ,— :
wherea, ,b, ,a_, andb_ are eigenvalues of the coherent b inoei® singe ¢
states|a). We substitute(¢T,£|a) into Eq. (A1), and inte- & *) -(cosa, sinve ,sm € ,
grate overag ,ap and a;,aa. The result is \/5 \/5 \/5
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a,a_+a,a_

Ta—
a'a=s
2

Then we writel o[ 2\/2a'a|£]?(1—cos®)] as infinite series of. X and P,(cos®) by writing 1[2\2aTa|£[?(1—cos®)] in
terms ofl,[ 2\2a"a|£[?] X cos®:

_ata)k kK [1+(- 1)k+'](2|+1>zr[
D P(cos®). (A7)

(1¢l.0.¢la) =273, 2 rnrken® Tlar@n =

+1

F(I+k+2)l“[

Equation(A7) is the expression of the coherent states for the hydrogen atom in spherical coordinates.
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