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Parametric time-coherent states for the hydrogen atom

Nuri Unal*
Physics Department, Akdeniz University, P. K. 510, Antalya, 07058 Turkey

~Received 31 July 2000; published 16 April 2001!

We obtained coherent states for the hydrogen atom by transforming the problem into four oscillators in the
parametric time at a classical level, and quantizing these oscillators by using path integration over their
holomorphic coordinates. We showed that for the negative-~positive-! energy coherent states the mean values
of the physical position of the electron satisfy the Keplerian ellipses~hyperbolas! and that their dispersions
oscillate~increase! in parametric time.
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I. INTRODUCTION

In 1926 Schro¨dinger constructed the coherent states
the one-dimensional oscillator@1#, and also addressed th
problem of constructing localized and nonspreading w
packets for electrons in a Coulomb potential, which tra
along the Keplerian ellipses. Recently, ten Woldeet al. ob-
served a radially localized electron wave packet@2#.

Since there exist coherent states for the harmonic osc
tor, it is the natural way to obtain coherent states for a Kep
problem by mapping it onto a system of harmonic oscil
tors. In 1978, Nieto and Simmons developed a general
malism to construct coherent states for the different pot
tials @3,4#. In 1986, Bhaumiket al. constructed coheren
states for the Kepler problem@5#, and showed that thes
states disperse. Even in classical mechanics we canno
press orbits as explicit functions of physical time@6#. For this
reason, Gerry later discussed the same problem with the
lution of coherent states in parametric time@7#, which was
used previously for a path-integral quantization of the hyd
gen atom by Duru and Kleinert@8#; this corresponded to a
eccentric anomaly in the Kepler problem@6#. Recently,
Toyoda and Wakayama also discussed the same proble
using the SU(2)3SU(2) symmetry of the oscillators@9#.
These authors did not discuss the contribution of two dou
valuedness of the transformation and the dispersions of
wave packets. In these papers the stationary states o
hydrogen atom were mepped onto the four harmonic osc
tors by using the Kustaanheimo-Stiefel transformation@10#.
The complex form of this transformation was given by Co
nish @11#.

The aim of this paper is to derive coherent states fo
hydrogen atom in parametric time by using path integra
Path integrals are the most convenient way to discuss s
functions and their evolution, and give the normalization
the states. In this approach we first transform the class
Kepler problem onto four oscillators for the negative en
gies. Since the holomorphic coordinates are classical ana
of the raising and lowering operators of the oscillators,
write the action of the oscillator system in terms of the h
lomorphic coordinates. Then we derive coherent-state w
functions and their evolution and normalization by using
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holomorphic coordinates. We also study coherent states
positive energies, using an analytical continuation of the k
nel from negative energies to positive energies.

The classical Kepler problem has six conserved variab
angular momentum and Runge-Lenz vectors. The co
sponding dynamical symmetry is SO~4!. To represent this
dynamical symmetry as the geometric symmetry of a n
system, we extend the configuration space of the electron
adding a new free-particle degree of freedom. In Sec. II
find the appropriate classical system, we first add a fr
particle Lagrangian to the Lagrangian of the electron with
changing its dynamics. Second, we define a new time par
eter. Thus the physical time becomes as a new dynam
degree of freedom for the electron. By the Kustaanheim
Stiefel transformation the four-dimensional part of the pro
lem becomes one of four harmonic oscillators with the sa
frequency; then we write the four oscillators in terms of t
four holomorphic coordinates. In Sec. III, we quantize th
(411)-dimensional system by using path integrals, and t
method gives us normalized eigenfunctions and eigenva
of lowering operators and their parametric time evolution

In Sec. IV, we derive mean values of the space coo
nates of the electron, and their dispersions. We show
they oscillate at twice the frequency of the eigenvalues,
that the mean values travel along the Keplerian ellipses
Sec. V we discuss the analytic continuation of these sta
into positive-energy states and evaluate the mean value
the physical coordinates and their dispersions. Sec. VI
tains conclusions, and in the Appendix we discuss the r
tion between the kernel evaluated in this paper and the
obtained in Ref.@8#, and derive coherent states in spheric
coordinates for completeness.

II. CLASSICAL HYDROGEN ATOM

The action is given as

A5E
a

b

dtFpW •
dxW

dt
2S 1

2m
pW 22

k

r D G , ~1!

wheret is the physical time,xW andpW are the canonical con
jugate coordinates and the momenta of the electron,k5e2 (e
is the electron charge!, and r 5uxW u. To use the SO(4) dy-
namical symmetry of the Kepler problem, we transform it
©2001 The American Physical Society05-1
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NURI UNAL PHYSICAL REVIEW A 63 052105
a four-dimensional problem by choosing an extra space
ordinatex4 and adding a free-particle action to Eq.~1!. Then
Eq. ~1! becomes

A5E
a

b

dtFpA

dxA

dt
2S 1

2m
pApA2

k

r D G , ~2!

where xA5(xW ,x4) and pA5(pW ,p4). Although the free-
particle Lagrangian does not change the dynamics of
electron, it changes the classical trajectories and the tra
tion amplitudes. For this reason we eliminate this degree
freedom after the quantization.

We choose a parametric timel with the nonholonomic
relation,

dt5r ~l!dl ~3!

and transform the action in Eq.~2! by the Lagrange multi-
plier p0:

A„xA~lb!;xA~la!…5E
la

lb
dlFpA

dxA

dl
2S 1

2m
pApAr 2kD

1~2p0!S dt

dl
2r D G . ~4!

In Eq. ~4!, the Lagrange multiplier is choosen in such a w
that t is a new coordinate, and (p0) is the conjugate momen
tum in the region2`,p0,1`. Thus Eq.~4! describes a
(411)-dimensional system in non-Cartesian coordina
which moves under the potential@(2p0)r 2k#. We intro-
duce complex dimensionless coordinatesjA andjB and com-
plex conjugatesjA* andjB* by using the complex form of the
Kustaanheimo-Stifel transformation,

S dX

dYD 5~mup0u!21/2S jB jA*

jA 2jB*
D S djA*

djB
D ~5!

whereX andY are

X5~x11 ix2!/A2,

Y5~x31 ix4!/A2.

Then r is

r 5~2mup0u!21/2~jA* jA1jB* jB!. ~6!

The momenta are transformed as

S pX

pY
D 5

~mup0u!1/2

~ ujAu21ujBu2!
S jB* jA

jA* jB
D S pz

A*

pzB

D , ~7!

wherepX andpY are

pX5
1

A2
~px1

2 ipx2
!,
05210
o-

e
si-
of

s

pY5
1

A2
~px3

2 ipx4
!.

This is a double-valued transformation, and the paths inxA
space are mapped into two different classes of paths in thj
plane: those which go fromx(a) to x(b) are mapped into
those going fromj(a) to j(b) and @2j(b)#.

We define the complex spinorsj andj† as

j5S jA

jB
D ~8!

and

j†5~jA* ,jB* !. ~9!

We rewrite the action in Eq.~4! as

A~jb
† ,tb ;ja ,ta!5E

la

lb
dlFpj†

dj†

dl
1~2p0!

dt

dl
2HG ,

~10!

whereH is the Hamiltonian of the four oscillators in terms o
complex spinorsj andj†, and is given by

H5v@pjpj†1j†j#2k, ~11!

where the frequency of the oscillators isv5A(2p0/2m).
We define the holomorphic coordinatesa anda† as

a5
1

A2
S j†1 ipj

j1 ipj†
D 5S a1

b1

a2

b2

D ~12!

and

a†5
1

A2
@~j2 ipj†!,~j†2 ipj!#5~a1* b1* a2* b2* !.

~13!

Then Eq.~10! can be written as

A~ab
† , tb ; aa , ta!5E

la

lb
dlF 1

2i S da†

dl
a2a†

da

dl D
1~2p0!

dt

dl
2~va†a2k!G ,

~14!

whereH5(va†a2k) is a Hamiltonian or energy functiona
of the electron in parametric time, which is constant, and
value of this constant is zero.H50 gives the physical energ
of the particle asp0522mk2(a†a)22. The initial conditions
in Eqs.~10! and~14! are different; for this reason their value
differ by a constant. To derive the coherent states we use
action in Eq.~14!.
5-2
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PARAMETRIC TIME-COHERENT STATES FOR THE . . . PHYSICAL REVIEW A 63 052105
III. QUANTIZATION

Feynman’s formulation of path integrals gives us the tr
sition amplitudes or matrix elements of the evolution ope
tor of the system between eigenstates of the position ope
xW . They give us the evolution of the position eigenstat
Here we are interested in the evolution of the eigenstate
the lowering operators of the harmonic oscillators, and th
correspond to time-dependent coherent states of the sys
For this reason we define the kernel of the four-oscilla
system in terms of the four-dimensional holomorphic co
dinatesab

† and aa and tb and tb . This gives us the matrix
elements of the evolution operator between the eigenstate
the lowering operators of the oscillatorsuaa& and uab&. The
basic difference between these two kernels is that the ei
values of the position operator are real, but the eigenva
of the lowering operator are complex. In the Appendix w
derive the transition amplitudes betweenxWb ,tb and xWa ,ta
which correspond to Feynman’s kernel.

We define the kernel of the hydrogen atom in the ho
morphic coordinates as

K~ab
† ,tb ;aa ,ta!5E

la

`

dlbE DtD~2po!

@2p#

3ei *
la

lbdl(2p0)(dt/dl)Kv~ab
† ,aa!, ~15!

where\51, andKv(ab
† ,aa) is the kernel of the four oscil-

lators in parametric timel, defined as

Kv~ab
† ;aa!5E Da†Da

@2p i #4
expH i E

la

lb
dlF 1

2i S da†

dl
a2a†

da

dl D
2v~a†a12!1kG J . ~16!

In Eq. ~16! the (2v) term comes from the ordering of th
operatorsâ† and â. The operatorsâ† and â satisfy the com-
mutation relation

@ â,â†#51. ~17!

We perform the path integration overt andp0 easily. It gives

E Dt D~2po!

@2p#
expF i E

la

lb
dl~2po!

dt

dlG
5E

2`

1`d~2po!

2p
exp@2 ipo~ tb2ta!#. ~18!

Up to Sec. V we assume thatpo,0, andv is real. Then we
also perform a path integration overa† and a in the same
way as discussed in Ref.@12#. The result is

Kv~ab
† ;aa!5e2 i (2v2k)(lb2la)1ab

†exp[2 iv(lb2la)]aa. ~19!

The Kohn-Sham transformation is double valued for
hydrogen atom problem, and all paths in thex space fromxa
05210
-
-
tor
.
of
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m.
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to xb are mapped into two different classes of paths inu
space: the paths fromaa to ab

† and the paths fromaa to
2ab

† . Since the hydrogen atom is spinless, the physical tr
sition amplitude is the symmetric sum of the amplitud
Kv(ab

† ;aa) andKv(2ab
† ;aa):

Kv
phys~ab

† ;aa!5@Kv~ab
† ;aa!1Kv~2ab

† ;aa!#

5e2 i (2v2k)(lb2la)@eab
†exp[2 iv(lb2la)]aa

1e2ab
†exp[2 iv(lb2la)]aa#. ~20!

Then the kernel in Eq.~15! is

Kphys~ab
† ,tb ;aa ,ta!5E

la

`

dlbE
0

`d~2p0!

2p

3ei [k22v](lb2la)1 i (2p0)(tb2ta)

3@eab
†exp[2 iv(lb2la)]aa

1e2ab
†exp[2 iv(lb2la)]aa#. ~21!

We parametrize the spinors in Eqs.~12! and ~13! as

aa5S a1a

b1a

a2a

b2a

D ~22!

and

ab
†5~a1b* , b1b* , a2b* , b2b* !. ~23!

Then the power-series expansion of the exponential fu
tions in Eq.~21! gives

Kphys~ab
† ,tb ;aa ,ta!5E

0

`d~p0!

2p
e2 ip0(tb2ta) (

n1 ,n2 ,
n3 ,n450

`

3@11~21!n11n21n31n4#3E
la

`

dlb

3ei (lb2la)[k2v(n11n21n31n412)]

3
~a1b* a1a!n1

n1!

~b1b* b1a!n2

n2!

3
~a2b* a2a!n3

n3!

~b2b* b2a!n4

n4!
. ~24!

Since the value of the parametric energy is zero, we perfo
a lb integration and obtain

v5
k

n11n21n31n412
, ~25!

with the condition

n11n21n31n452n. ~26!
5-3
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Thus the physical energy is

p052
m

2

k2

~n11!2
. ~27!

There are two methods to eliminate the fourth coordinatex4:
In the global formulation of the quantum mechanics we
tegrate over all values ofx4b as in Ref.@8#, and in the same
way we use this method in the Appendix. In the local fo
mulation we choose eigenfunctions that have zero eigen
ues forp4(lb) or are independent ofx4b , as in Refs.@5,7,9#,
ar

05210
-

-
l-

and in this section we use this method by expressing
initial conditionp4(lb) in terms ofab

† andab . The condition
p4(lb)50 gives

ua1bu21ub1bu22ua2bu22ub2bu250. ~28!

We also express the same condition as

n11n22n32n450. ~29!

Then the physical kernel
Kphys~ab
† ,tb ;aa ,ta!5E

0

`d~2p0!

2p
ei (2p0)(tb2ta)3 (

n18 ,n2850

`

(
m52(n181n28)

n181n28 E
la

`

dlbei (lb2la)[k22(n181n2811)v]

3
~rb* ra!(n181n28)~sb* sa!(n182n28)~db* da!2m

F)
i 51

4

G~11ni !G , ~30!
where the new quantum numbersn18 , n28 , andm are defined
as

n15n181m,

n25n282m, ~31!

n35n281m,

n45n182m.

These are quantum numbers of the hydrogen atom in p
 a-

bolic coordinates. Three new complex parametersr, s, and
d are defined as

r5~a1b1a2b2!1/2,

s5S a1b2

a2b1
D 1/2

,

d5S a1a2

b1b2
D 1/2

.

We can decompose the kernel in Eq.~30! as
Kphys~ab
† ,tb ;aa ,ta!5E

0

`d~2p0!

2p (
n18 ,n2850

`

(
m52(n181n28)

n181n28 E
la

`

dlbei (2p0)(tb2ta)

3^n18 ,n28 ,muab&* ^n18 ,n28 ,muU~lb2la!uaa&, ~32!

where^n18 ,n28 ,muab& is the projection of the final coherent states into the energy eigenstates, and^n18 ,n28 ,muU(lb2la)uaa& is
the projection of the time evolution of the initial coherent state into the energy eigenstates. They are

^n18 ,n28 ,muab&5
~rb!(n181n28)~sb!(n182n28)~db!2m

F)
i 51

4

G~11ni !G1/2 , ~33!

^n18 ,n28 ,muU~lb2la!uaa&5ei [k22(n181n2811)v](lb2la)
~ra!(n181n28)~sa!(n182n28)~da!2m

F)
i 51

4

G~11ni !G1/2 . ~34!
5-4
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Thus the coherent states are defined as

ua~l!&5 (
n18 ,n2850

`

(
m52(n181n28)

n181n28 ~r!(n181n28)~s!(n182n28)~d!2m

F)
i 51

4

G~ni11!G
1
2

eil[k22(n181n2811)v] un1n2n3n4&, ~35!
s

in

-

f

t

whereun1n2n3n4& is the state of four oscillators, anda is the
eigenvalue of the lowering operator atl50. The parametric
time evolution of the the eigenvaluea is given by

a~l!5ae2 ivl. ~36!

Thus the coherent state is given by Eq.~35!, and there the
initial state is described by the three complex parameterr,
s, andd.

IV. EXPECTATION VALUES OF THE PHYSICAL
VARIABLES AND THEIR UNCERTAINTIES

The expectation values ofx1 , x2 , x3, andr can be evalu-
ated by using the transformation in Eqs.~5! and ~6!. The
physical trajectories depend on^p4&, and we choosêp4&
50 as the initial condition. By using the parametrization
Eq. ~22!, we write

^2ĵBĵA&5^a~l!u@~ â2
† 1â1!~ â1

† 1â2!6~ b̂2
† 1b̂1!

3~ b̂1
† 1b̂2!#ua~l!&

5@~a2
† 1a1!~a1

† 1a2!6~b2* 1b1!~b2* 1b1!#

~37!

and

^ĵA* ĵA6 ĵB* ĵ
B
&5 1

2 ^a~l!u$@~ â2
† 1â1!~ â1

† 1â2!6~ â2
† 1â1!

3~ â1
† 1â2!#%ua~l!&5 1

2 $@ ua1u21ua2u2

1a2a11a2* a1* 11#6@ ub2u21ub1u2

1b2b11b2* b1* 11#%. ~38!

In Eqs. ~37! and ~38! we do not write the explicit para
metric time dependence of the eigenvaluesa6 and b6 ,
which is given by Eq.~36!. In Eq. ~38!, the term 1 comes
from the ordering ofâ† andâ. Thus the expectation value o
r includes a quantum ordering contribution. We choosea6

andb6 , without losing generality, as

a65ua6ue2 ivl1 iD,

b65ub6ue2 ivl1 iD, ~39!

whereD is the argument of the complex numbersa6 and
b6 . Then the expectation value of the position vectorrW is
05210
^rW&5
aW

~2mup0u!1/2
@11e cos 2~v l2D!#

1
bW

~2mup0u!1/2
sin 2~v l2D!, ~40!

where the vectorsaW and bW are given in terms of the uni
vectorsê1 , ê2, andê3 as

aW 5ê1~ ua1uub1u1ua2uub2u1ua2b1u1ua1b2u!

1
ê3

2
@~ ua1u1ua2u!22~ ub1u1ub2u!2#

bW 5ê2@ ua1b2u2ua2b1u#,

and the eccentricitye is

e52~ ua1a2u!1~ ub1b2u!/uaW u. ~41!

With the initial condition Eq.~28!, ^rW&l describes an ellipse
with a semimajor axisa and a semiminor axisb:

a5uaW u5
~2mup0u!21/2

2
@ ua1u21ub1u21ua2u21ub2u2#,

~42!

b5ubW u5
~2mup0u!21/2

2
@ ua1b2u22ua2b1u2#.

The expectation values ofp0
21 and r are found as

^p0
21&52

2@~ ua1u21ub1u21ub2u21ua2u212!/2#2

mk2
,

~43!

^r &l5
1

mk
@~ ua1u21ub1u21ua2u21ub2u212!/2#2

3@11e cos 2~vl2d!#, ~44!

respectively, and these give the value ofã as

ã5
1

mk
@~ ua1u21ub1u21ua2u21ub2u212!/2#2. ~45!
5-5
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The difference betweena and ã in the Eqs.~42! and ~45!
comes from the quantum ordering contributions. We cal
late the dispersions ofx1 , x2 , x3, andr in the same way. The
result is

~Dx1!l
25~Dx2!l

25
ã3/2

Amk
@11e cos 2~vl2d!#2

ã

mk
,

~46!

~Dx3!l
25~Dr !l

25
ã3/2

Amk
@11e cos 2~vl2d!#2

ã

2mk
.

The ground state is obtained by substitutingua1u5ua2u
5ub1u5ub2u50 in Eqs.~43! and~44!. Then there exist only
the quantum ordering contributions, and the correspond
orbit becomes a circle with a Bohr radiusa0. The dispersions
in this state are
05210
-

g

~Dx1!25~Dx2!250

and

~Dx3!25~Dr !25
a0

2

2
.

We derive Kepler’s third law. The physical period of th
orbit T is defined as

T5E
0

2p/2v

dl^r &l5E
0

2p/2v

dlã@11e cos 2~vl2d!#.

The result gives the third law of Kepler:

T5
a0p

v
52pmã^~22mp0!21&1/252pã3/2Am

k
.

oles

en atom.
V. CONTINUUM STATES

To obtain positive-energy states, we rewrite the kernel as

K~ab
† ,tb ,aa ,ta!5E

0

`d~2p0!

2p
ei (2p0)(tb2ta)E

C
dz

eipz

2i sinpz
ei (lb2la)[k22v(z11)]

3 (
(n182n28),m

~rb* ra!z~sb* sa!(n182n28)~db* da!2m

P«1521,11«2521,11GS z12

2
1«1~n182n28!1«2mD , ~47!

where the contourC in the complexz plane comes from1`2 i«, runs along the axis to the left, passes bound-state p
n5(n181n28)50,1,2, . . . , andreturns again to1`1 i« above the real axis. Whenp0.0, v52 i uvu, the functioneivz

behaves as

limuzu→`e22uvuz→0 for 2p/2^argz^p/2. ~48!

Then the contourC can be opened up to run along the imaginary axis, and the kernel becomes

K~ab
† ,tb ,aa ,ta!5E

0

`d~p0!

2p
eip0(tb2ta)E

2 i`

1 i` dze2pz

i sinhpz
ei (lb2la)[k22uvuz]

3 (
(n182n28),m

~rb* ra! iz21~sb* sa!(n182n28)~db* da!2m

P«1521,11«2521,11GS iz11

2
1«1~n182n28!1«2mD . ~49!

For positive energies the coherent states become

ua~l!&5E
0

`d~p0!

2p
eipotE

2 i`

1 i` dze2pz

i sinhpz
eil[k22uvuz] (

(n182n28),m

r iz21s (n182n28)d2m

P«1521,11«2521,11GS iz11

2
1«1~n182n28!1«2mD . ~50!

The expectation values of the physical variables and their dispersions show that the trigonometric function in Eqs.~44! and
~46! become hyperbolic functions, and the dispersions increase for the positive-energy coherent states of the hydrog
5-6
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VI. CONCLUSION

In the paper we discussed the long-standing problem
quantum mechanics, and derived coherent states for
negative energies of the hydrogen atom. We also sho
that the centers of the wave packets travel along the Ke
rian ellipse for negative energies. We evaluated the semi
jor axis a and the eccentricitye of the ellipse, and showed
that T, the physical period of the orbit, satisfies Keple
third law. We expressed classical trajectories in terms of
time parameterl, which is proportional to an eccentri
anomaly@6#. We showed that mean values of the physi
positions of the particlesx1 , x2 , x3, andr, and their disper-
sions, oscillate with the same frequency 2v in parametric
time l, and that dispersions have maximum~or minimum!
values at the farthest~or nearest! points of the orbit.

We also derived coherent states for the positive ener
and showed that in this case the centers of the wave pac
travel along the hyperbolas. We showed that dispersions
at a minimum at the nearest point of the orbit, and that th
increase as hyperbolic functions of the parametric time. T
approach may be applied to other problems which can
transformed to oscillators.
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APPENDIX: DERIVATION OF THE KERNEL AND THE
COHERENT STATES IN CONFIGURATION SPACE

In this paper we derived a kernel between coherent sta
The relation between this kernel and the one defined betw
the points of the complex configuration space is

Kv
phys~jb

† ,jb ;ja
† ,ja!5E dab

†dab

~2p i !4 E daa
†daa

~2p i !4

3e2ab
†ab2aa

†aa^jb
† ,jbuab&

3Kv
phys~ab

† ;aa!^aauja
† ,ja&.

~A1!

The matrix elementŝauj†,j& and^j†,jua& can be calculated
by using the representation ofa† anda in terms ofj†, j and
pj†, pj in Eqs.~11! and ~12!. These are

^j†,jua&5exp@2~jA* jA1jB* jB!1A2~a1jA1b1jB1a2jA*

1b2jB* !2 1
2 ~a1a21b1b2!#

and

^auj†,j&* 5^j†,jua&, ~A2!

wherea1 ,b1 ,a2 , andb2 are eigenvalues of the cohere
statesua&. We substitutê j†,jua& into Eq. ~A1!, and inte-
grate overab

† ,ab andaa
† ,aa . The result is
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of
he
ed
e-
a-

e

l

es
ets
re
y
is
e

s.
en

Kv
phys~jb

† ,jb ,ja
† ,ja!5S 1

2i sinvL D 2

cosF 1

i sinvL

3~jb
†ja1ja

†jb!GexpF cosv L

i sinvL

3~jb
†jb1ja

†ja!G , ~A3!

whereL5lb2la . We decomposej into real and imaginary
parts as

j5S u11 iu4

u31 iu2
D ; ~A4!

then the substitution of Eq.~A4! into Eq. ~A3! gives

Kv
phys~ub ,ua!5S 1

2i sinvL D 2

cosF 2

i sinvL
ub

†uaG
3expF cosvL

i sinvL
~ub

†ub1ua
†ua!G . ~A5!

This is the expression of the kernel which is given in R
@8#. Instead of the Eq.~A5! we can continue from Eq.~A3!.
By using the transformation in Eq.~7!, we write Kv

phys in

terms of rWb , and rWa and obtain the configuration-space e
pression of the kernel for the hydrogen atom as discusse
Ref. @8#. The integrations overx4b and the time parameterlb

from la to ` give the kernelK(rWb ,tb ;rWa ,ta) as an integral
over p0.

To derive coherent states in the spherical coordinates
parametrize, we rewritejA andjB explicitly as

jA5ujucos
u

2
e( i /2)(w2g),

jB5ujusin
u

2
e2( i /2)(w1g).

We substitutejA andjB into Eq. ~A2!, expand the exponen
tial into power series ofe( i /2)g ande2( i /2)g, and perform an
integration over the angleg from 0 to 2p. The angleg
corresponds to the coordinatex4. Then the coherent stat
becomes

^uju,u,wua&

54p exp@2uju22a†a#I 0

3@2A2a†auju2~12cosQ!#, ~A6!

where cosQ anda†a are

cosQ5â•n̂[
1

a†a
S a1a22b1b2

2
,2

a1b2

A2
,

2
a2b1

A2
D •S cosu,

sinueiw

A2
,
sinue2 iw

A2
D ,
5-7
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a†a[
a1a21a1a2

2
.

Then we writeI 0@2A2a†auju2(12cosQ)# as infinite series ofLn
k and Pl(cosQ) by writing I 0@2A2a†auju2(12cosQ)# in

terms ofI k@2A2a†auju2#3coskQ:

^uju,u,wua&52p(
k50

`

(
n50

`
~2a†a!n1k

G~n1k11!
e2uju2uju2kLn

k~2uju2!(
l 50

k @11~21!k1 l #~2l 11!2lGF ~ l 1k!

2
11G

G~ l 1k12!GF ~k2 l !

2
11G Pl~cosQ!. ~A7!

Equation~A7! is the expression of the coherent states for the hydrogen atom in spherical coordinates.
n
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