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Characteristics of quantum-classical correspondence for two interacting spins

J. Emerson and L.E. Ballentine
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 7 November 2000; published 13 April 2001!

The conditions of quantum-classical correspondence for a system of two interacting spins are investigated.
Differences between quantum expectation values and classical Liouville averages are examined for both
regular and chaotic dynamics well beyond the short-time regime of narrow states. We find that quantum-
classical differences initially grow exponentially with a characteristic exponent consistently larger than the
largest Lyapunov exponent. We provide numerical evidence that the time of the break between the quantum
and classical predictions scales as log(J/\), whereJ is a characteristic system action. However, this loga-
rithmic break-time rule applies only while the quantum-classical deviations are smaller thanO(\). We find
that the quantum observables remain well approximated by classical Liouville averages over long times even
for the chaotic motions of a few degree-of-freedom system. To obtain this correspondence it is not necessary
to introduce the decoherence effects of a many degree-of-freedom environment.
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I. INTRODUCTION

There is considerable interest in the interface betw
quantum and classical mechanics and the conditions that
to the emergence of classical behavior. In order to charac
ize these conditions, it is important to differentiate two d
namical regimes of quantum-classical correspondence@1#: ~i!
Ehrenfest correspondence, in which the centroid of the w
packet approximately follows a classical trajectory; and~ii !
Liouville correspondence, in which the quantum probabil
distributions are in approximate agreement with those of
appropriately constructed classical ensemble satisfying L
ville’s equation.

Regime~i! is relevant only when the width of the quan
tum state is small compared to the dimensions of the sys
if the initial state is not narrow, this regime may be abse
Regime~ii !, which generally includes~i!, applies to a much
broader class of states, and this regime of correspond
may persist well after the Ehrenfest correspondence has
ken down. The distinction between regimes~i! and ~ii ! has
not always been made clear in the literature, though the c
ditions that delimit these two regimes, and in particular th
scaling with system parameters, may be quite different.

The theoretical study of quantum chaos has raised
question of whether the quantum-classical break occurs
ferently in chaotic states, in states of regular motion, and
mixed phase-space systems. This is well understood on
the case of regime~i!. There it is well known@2–4# that the
time for a minimum-uncertainty wave packet to expa
beyond the Ehrenfest regime scales as log(J/\) for chaotic
states, and as a power ofJ/\ for regular states, whereJ
denotes a characteristic system action.

The breakdown of quantum-classical correspondence
the case of regime~ii !, is less well understood, though it ha
been argued that this regime may also be delimited b
log(J/\) break time in classically chaotic states@5,6#. Some
numerical evidence in support of this conjecture has b
reported in a study of the kicked rotor in theanomolous
diffusion regime @7#. ~On the other hand, in the regime o
quantum localization, the break time for the kicked roto
1050-2947/2001/63~5!/052103~16!/$20.00 63 0521
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seems to scale as (J/\)2 @8#.! Since the log(J/\) time scale
is rather short, it has been suggested that certain macrosc
objects would be predicted to exhibit nonclassical behav
on observable time scales@9,10#. These results highlight the
importance of investigating the characteristics of quantu
classical correspondence in more detail.

In this paper we study the classical and quantum dyna
ics of two interacting spins. This model is convenie
because the Hilbert space of the quantum system is fi
dimensional, and hence tractable for computations. S
models have been useful in the past for exploring class
and quantum chaos@3,11–15# and our model belongs to
class of spin models that shows promise of experime
realization in the near future@16#. The classical limit is
approached by taking the magnitude of both spins to be v
large relative to\, while keeping their ratio fixed. For ou
model a characteristic system action is given byJ.\ l ,
wherel is a quantum number, and the classical limit is si
ply the limit of large quantum numbers, i.e., the lim
l→`.

In the case of the chaotic dynamics for our model, we fi
show that the widths of both the quantum and classical st
grow exponentially at a rate given approximately by the la
est Lyapunov exponent~until saturation at the system dimen
sion!. We then show that the initially small quantum
classical differences also grow at an exponential rate, with
exponentlqc that is independent of the quantum numbe
and at least twice as large as the largest Lyapunov expon
We demonstrate how this exponential growth of differenc
leads to a logarithmic break-time rule,tb.lqc

21 ln(lp/\),
delimiting the regime of Liouville correspondence. Th
factorp is some preset tolerance that defines abreakbetween
the quantum and classical expectation values. However,
also show that this logarithmic rule holdsonly if the toler-
ancep for quantum-classical differences is chosen extrem
small, in particular p,O(\). For larger values of the
tolerance, the break time does not occur on this logarith
time scale and may not occur until the recurrence time.
this sense, logarithmic break-time rules describing Liouv
correspondence are not robust. These results demons
that, for chaotic states in the classical limit, quantum obse
©2001 The American Physical Society03-1
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J. EMERSON AND L. E. BALLENTINE PHYSICAL REVIEW A63 052103
ables are described approximately by Liouville ensemble
erages well beyond the Ehrenfest time scale, after which b
quantum and classical states relax towards equilibrium
tributions. This demonstration of correspondence is obtai
for a few degree-of-freedom quantum system of coup
spins that is described by a pure state and subject onl
unitary evolution.

This paper is organized as follows. In Sec. II we descr
the quantum and classical versions of our model. We ex
ine the behaviors of the classical dynamics in some detai
Sec. III we define the initial quantum states, which are SU~2!
coherent states, and then define a corresponding clas
density on the two-sphere which is a good analog for th
states. We show in the Appendix that a perfect match
impossible: no distribution onS 2 can reproduce the
moments of the SU~2! coherent states exactly. In Sec. IV w
describe our numerical techniques. In Sec. V we examine
quantum dynamics in regimes of classically chaotic a
regular behavior and demonstrate the close quantitative
respondence with the Liouville dynamics that persists w
after the Ehrenfest break time. In Sec. VI we characterize
growth of quantum-classical differences in the time doma
In Sec. VII we characterize the scaling of the break time
small quantum-classical differences and also examine
scaling of the maximum quantum-classical differences in
classical limit.

II. THE MODEL

We consider the quantum and classical dynamics ge
ated by a nonintegrable model of two interacting spins,

H5a~Sz1Lz!1cSxLx (
n52`

`

d~ t2n!, ~1!

where S5(Sx ,Sy ,Sz) and L5(Lx ,Ly ,Lz). The first two
terms in Eq.~1! correspond to a simple rotation of both spi
about thez axis. The sum over the coupling terms describ
an infinite sequence ofd-function interactions at timest5n
for integern. Each interaction term corresponds to an imp
sive rotation of each spin about thex axis by an angle pro-
portional to thex component of the other spin.

A. The quantum dynamics

To obtain the quantum dynamics we interpret the Ca
sian components of the spins as operators satisfying the u
angular-momentum commutation relations,

@Si ,Sj #5 i e i jkSk ,

@Li ,L j #5 i e i jkLk ,

@Ji ,Jj #5 i e i jkJk .

In the above we have set\51 and introduced the tota
angular momentum vectorJ5S1L .

The Hamiltonian~1! possesses kinematic constants of
motion,@S2,H#50 and@L2,H#50, and the total state vecto
uc& can be represented in a finite Hilbert space of dimens
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(2s11)3(2l 11). This space is spanned by the orthono
mal vectors us,ms& ^ u l ,ml&, where msP$s,s21, . . . ,2s%
and mlP$ l ,l 21, . . . ,2 l %. These are the joint eigenvecto
of the four spin operators

S2us,l ,ms ,ml&5s~s11!us,l ,ms ,ml&,

Szus,l ,ms ,ml&5msus,l ,ms ,ml&, ~2!

L2us,l ,ms ,ml&5 l ~ l 11!us,l ,ms ,ml&,

Lzus,l ,ms ,ml&5ml us,l ,ms ,ml&.

The periodic sequence of interactions introduced by thd
function produces a quantum mapping. The time evolut
for a single iteration, from just before a kick to just befo
the next, is produced by the unitary transformation

uc~n11!&5F uc~n!&, ~3!

whereF is the single-step Floquet operator,

F5exp@2 ia~Sz1Lz!#exp@2 icSxLx#. ~4!

Sincea is a rotation its range is 2p radians. The quantum
dynamics are thus specified by two parameters,a andc, and
two quantum numbers,s and l.

An explicit representation of the single-step Floqu
operator can be obtained in the basis~2! by first reexpressing
the interaction operator in Eq.~4! in terms of rotation opera-
tors,

exp@2 icSx^ Lx#5@R(s)~u,f! ^ R( l )~u,f!#exp@2 icSz^ Lz#

3@R(s)~u,f! ^ R( l )~u,f!#21, ~5!

using polar angleu5p/2 and azimuthal anglef50. Then
the only nondiagonal terms arise in the expressions for
rotation matrices, which take the form,

^ j ,m8uR( j )~u,f!u j ,m&5exp~2 im8f!dm8,m
( j )

~u!. ~6!

The matrix elements,

dm8,m
( j )

~u!5^ j ,m8uexp~2 iuJy!u j ,m& ~7!

are given explicitly by Wigner’s formula@19#.
We are interested in studying the different time-doma

characteristics of quantum observables when the corresp
ing classical system exhibits either regular or chaotic dyna
ics. In order to compare quantum systems with differe
quantum numbers it is convenient to normalize subsys
observables by the subsystem magnitudeA^L2&5Al ( l 11).
We denote such normalized observables with a tilde, wh

^L̃z~n!&5
^c~n!uLzuc~n!&

Al ~ l 11!
~8!

and the normalized variance at timen is defined as

DL̃2~n!5
^L2&2^L ~n!&2

l ~ l 11!
. ~9!
3-2
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CHARACTERISTICS OF QUANTUM-CLASSICAL . . . PHYSICAL REVIEW A 63 052103
We are also interested in evaluating the properties of
quantum probability distributions. The probability distrib
tion corresponding to the observableLz is given by the trace

Pz~ml !5Tr@r ( l )~n!u l ,ml&^ l ,ml u#5^ l ,ml ur ( l )~n!u l ,ml&,
~10!

where r ( l )(n)5Tr(s)@ uc(n)&^c(n)u us,ms&^s,msu] is the
reduced state operator for the spinL at time n and Tr(s)

denotes a trace over the factor space corresponding to
spin S.

B. Classical map

For the Hamiltonian~1! the corresponding classical equ
tions of motion are obtained by interpreting the angul
momentum components as dynamical variables, satisfyin

$Si ,Sj%5e i jkSk ,

$Li ,L j%5e i jkLk ,

$Ji ,Jj%5e i jkJk ,

with $•,•% denoting the Poisson bracket. The periodicd
function in the coupling term can be used to define surfa
at t5n, for integern, on which the time evolution reduces t
a stroboscopic mapping,

S̃x
n115S̃x

n cos~a!2@S̃y
n cos~grL̃ x

n!2S̃z
n sin~grL̃ x

n!#sin~a!,

S̃y
n115@S̃y

n cos~grL̃ x
n!2S̃z

n sin~grL̃ x
n!#cos~a!1S̃x

n sin~a!,

S̃z
n115S̃z

n cos~grL̃ x
n!1S̃y

n sin~grL̃ x
n!, ~11!

L̃x
n115L̃x

n cos~a!2@ L̃y
n cos~gS̃x

n!2L̃z
n sin~gS̃x

n!#sin~a!,

L̃y
n115@ L̃y

n cos~gS̃x
n!2L̃z

n sin~gS̃x
n!#cos~a!1L̃x

n sin~a!,

L̃z
n115L̃z

n cos~gS̃x
n!1L̃y

n sin~gS̃x
n!,

where L̃5L /uL u, S̃5S/uSu and we have introduced th
parametersg5cuSu and r 5uL u/uSu. The mapping equation
~11! describe the time-evolution of Eq.~1! from just before
one kick to just before the next.

Since the magnitudes of both spins are conserv
$S2,H%5$L2,H%50, the motion is actually confined to th
four-dimensional manifoldP5S 23S 2, which corresponds
to the surfaces of two spheres. This is manifest when
mapping ~11! is expressed in terms of the fourcanonical
coordinatesx5(Sz ,fs ,Lz ,f l), wherefs5tan(Sy /Sx) and
f l5tan(Ly /Lx). We will refer to the mapping~11! in
canonical form using the shorthand notationxn115F(xn). It
is also useful to introduce a complete set of spherical co
dinates uW 5(us ,fs ,u l ,f l), where us5cos21(Sz/uSu) and
u l5cos21(Lz/uL u).

The classical flow~11! on the reduced surfaceP still has
a rather large parameter space; the dynamics are determ
from three independent dimensionless paramet
05210
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aP@0,2p), gP(2`,`), and r>1. The first of these,a,
controls the angle of free-field rotation about thez axis. The
parameterg5cuSu is a dimensionless coupling strength a
r 5uL u/uSu corresponds to the relative magnitude of the tw
spins.

We are particularly interested in the effect of increasi
the coupling strengthg for different fixed values ofr. In Fig.
1 we plot the dependence of the classical behavior on th
two parameters for the casea55, which produces typica
results. The data in this figure were generated by rando
sampling initial conditions onP, using the canonical invari-
ant measure

dm~x!5dS̃z dfs dL̃z df l , ~12!

and then calculating the largest Lyapunov exponent ass
ated with each trajectory. Open circles correspond to regim
where at least 99% of the initial conditions were found
exhibit regular behavior and crosses correspond to regi
where at least 99% of these randomly sampled initial con
tions were found to exhibit chaotic behavior. Circles wi
crosses through them~the superposition of both symbols!
correspond to regimes with a mixed phase space. For
casea55 and with r held constant, the scaled couplin
strengthg plays the role of a perturbation parameter: t
classical behavior varies from regular, to mixed, to predo
nantly chaotic asugu is increased from zero.

The fixed points of the classical map~11! provide useful
information about the parameter dependence of the clas
behavior and, more importantly, in the case of mix
regimes, help locate the zones of regular behavior in
four-dimensional phase space. We find it sufficient to co
sider only the four trivial ~parameter-independent! fixed
points that lie at the poles along thez axis: two of these
points correspond to parallel spins, (Sz ,Lz)56(uSu,uL u),

FIG. 1. Behavior of the classical mapping for different values
r 5uL u/uSu andg5cuSu with a55. Circles correspond to paramete
values for which at least 99% of the surface areaP produces regular
dynamics and crosses correspond to parameter values for whic
dynamics are at least 99% chaotic. Superpositions of circles
crosses correspond to parameter values that produce a mixed
space. We investigate quantum-classical correspondence fo
parameter valuesg51.215 ~mixed regime! and g52.835 ~global
chaos!, with r 51.1, which are indicated by filled circles.
3-3
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J. EMERSON AND L. E. BALLENTINE PHYSICAL REVIEW A63 052103
and the remaining two points correspond to antipara
spins, (Sz ,Lz)5(6uSu,7uL u).

The stability around these fixed points can be determi
from the eigenvalues of the tangent map matrix,M
5]F/]x, where all derivatives are evaluated at the fix
point of interest.~It is easiest to deriveM using the sixnon-
canonicalmapping equations~11! since the tangent map fo
the canonicalmapping equations exhibits a coordinate s
tem singularity at these fixed points.! The eigenvalues corre
sponding to the four trivial fixed points are obtained from t
characteristic equation,

@j222j cosa11#26j2g2r sin2a50, ~13!

with the minus ~plus! sign corresponding to the paralle
~antiparallel! cases, and we have suppressed the trivial fa
(12j)2 that arises since the six equations~11! are not inde-
pendent. For the parallel fixed points we have the four eig
values are

j1,2
P 5cosa6

1

2
Arg2 sin2a

1
1

2
A64 cosaAg2r sin2a2~sin2a!~42g2r !,

~14!

j3,4
P 5cosa6

1

2
Arg2 sin2a

2
1

2
A64 cosaAg2r sin2a2~sin2a!~42g2r !,

and the eigenvalues for the antiparallel cases,jAP, are ob-
tained from Eqs.~14! through the substitutionr→2r . A
fixed point becomes unstable if and only ifuju.1 for at least
one of the four eigenvalues.

1. Mixed phase space:gÄ1.215

We are particularly interested in the behavior of th
model when the two spins are comparable in magnitu
Choosing the valuer 51.1 ~with a55 as before!, we deter-
mined by numerical evaluation that the antiparallel fix
points are unstable forugu.0. In the case of the paralle
fixed points, all four eigenvalues remain on the unit circ
ujPu51, for ugu,1.42. This stability condition guarantee
the presence of regular islands about the parallel fixed po
@20#. In Fig. 2 we plot the trajectory corresponding to t
parametersa55, r 51.1, g51.215 and with initial condi-
tion uW (0)5(5°,5°,5°,5°) which locates the trajectory near
stable fixed point of a mixed phase space~see Fig. 1.! This
trajectory clearly exhibits a periodic pattern that we ha
confirmed to be regular by computing the associa
Lyapunov exponent (lL50). In contrast, the trajectory plot
ted in Fig. 3 is launched with the same parameters but w
initial condition uW (0)5(20°,40°,160°,130°), which is clos
to one of the unstable antiparallel fixed points. This traj
tory explores a much larger portion of the surface of the t
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spheres in a seemingly random manner. As expected, a c
putation of the largest associated Lyapunov exponent yie
a positive number (lL50.04).

2. Global chaos:gÄ2.835

If we increase the coupling strength to the valueg
52.835, witha55 andr 51.1 as before, then all four trivia
fixed points become unstable. By randomly samplingP with
33104 initial conditions we find that less than 0.1% of th
kinematically accessible surfaceP is covered with regular
islands~see Fig. 1!. This set of parameters produces a co
nected chaotic zone with largest Lyapunov exponentlL
50.45. We will refer to this type of regime as one of ‘‘glo
bal chaos’’ although the reader should note that our usag
this expression differs slightly from that in Ref.@20#.

3. The limit rš1

Another interesting limit of our model arises when one
the spins is much larger than the other,r @1. We expect that
in this limit the larger spin (L ) will act as a source of essen
tially external ‘‘driving’’ for the smaller spin (S). Referring
to the coupling terms in the mapping~11!, the driving
strength, or perturbation uponS from L , is determined from
the productgr 5cuL u, which can be quite large, whereas th
‘‘back-reaction’’ strength, or perturbation uponL from S, is
governed only by the scaled coupling strengthg5cuSu,
which can be quite small. It is interesting to examine whet
a dynamical regime exists where the larger system m
approach regular behavior while the smaller ‘‘driven’’ sy
tem is still subject to chaotic motion.

FIG. 2. Stroboscopic trajectories on the unit sphere launc
from a regular zone of the mixed regime withg51.215, r 51.1,

a55, anduW (0)5(5°,5°,5°,5°).

FIG. 3. Same parameters as Fig. 2, but the trajectory is launc
from a chaotic zone of the mixed regime with the initial conditio

uW (0)5(20°,40°,160°,130°).
3-4
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In Fig. 4 we plot a chaotic trajectory forr 5100 with
initial condition uW (0)5(27°,27°,27°,27°), which is locate
in a chaotic zone (lL50.026) of a mixed phase space~with
a55 and g50.06). Although the small spin wande
chaotically over a large portion of its kinematically acce
sible shellS 2, the motion of the large spin remains confin
to a ‘‘narrow’’ band. Although the band is narrow relative
the large spin’s length, it is not small relative to the smal
spin’s length. The trajectories are both plotted on the u
sphere, so the effective area explored by the large spin~rela-
tive to the effective area covered by the small spin! scales in
proportion tor 2.

C. The Liouville dynamics

We are interested in comparing the quantum dynam
generated by Eq.~3! with the corresponding Liouville
dynamics of a classical distribution. The time evolution o
Liouville density is generated by the partial-differenti
equation

]rc~x,t !

]t
52$rc ,H%, ~15!

where H stands for the Hamiltonian ~1! and x
5(Sz ,fs ,Lz ,f l).

The solution to Eq.~15! can be expressed in the compa
form

rc~x,t !5E
P
dm~y!d„x2x~ t,y!…rc~y,0!, ~16!

with measuredm(y) given by Eq. ~12! and each time-
dependent functionx(t,y)PP is a solution of the equation
of motion for Eq. ~1! with an initial conditionyPP. This
integral solution~16! simply expresses that Liouville’s equa
tion ~15! describes the dynamics of a classical dens
rc(x,t) of points evolving in phase space under the Ham
tonian flow. We exploit this fact to numerically solve E
~15! by randomly generating initial conditions consiste
with an initial phase-space distributionrc(x,0) and then time
evolving each of these initial conditions using the equatio
of motion ~11!. We then calculate the ensemble averages
dynamical variables

FIG. 4. A chaotic trajectory for mixed regime parametersg

50.06, r 5100, and a55 with uW (0)5(27°,27°,27°,27°). The
motion of the larger spin appears to remain confined to a nar
band on the surface of the sphere.
05210
-

r
it

s

t

y
-

t

s
f

^L̃z~n!&c5E
P
dm~x!

Lz

uL u
rc~x,n! ~17!

by summing over this distribution of trajectories at each tim
step.

D. Correspondence between quantum and classical models

For a quantum system specified by the four numb
$a,c,s,l %, the corresponding classical parameters$a,g,r %
are determined if we associate the magnitudes of the cla
cal angular momenta with the quantum spin magnitudes

uSuc5As~s11!,
~18!

uL uc5Al ~ l 11!.

This prescription produces the classical parameters,

r 5A l ~ l 11!

s~s11!
,

~19!
g5cAs~s11!,

with a the same number for both models.
We are interested in determining the behavior of t

quantum dynamics in the limits→` and l→`. This is a
ccomplished by studying sequences of quantum models
s andl increasing though chosen such that the classicalr and
g are held fixed. Sinces and l are restricted to integer~or
half-integer! values, the corresponding classicalr will actu-
ally vary slightly for each member of this sequence~although
g can be matched exactly by varying the quantum param
c). In the limit s→` and l→` this variation becomes
increasingly small sincer 5Al ( l 11)/s(s11)→ l /s. For
convenience, the classicalr corresponding to each membe
of the sequence of quantum models is identified by its va
in this limit. We have examined the effect of the small var
tions in the value ofr on the classical behavior and found th
variation to be negligible.

III. INITIAL STATES

A. Initial quantum state

We considerinitial quantum states which are pure an
separable,

uc~0!&5ucs~0!& ^ uc l~0!&. ~20!

For the initial state of each subsystem we use one of
directed angular-momentum states,

uu,f&5R( j )~u,f!u j , j &, ~21!

which corresponds to states of maximum polarization in
direction (u,f). It has the properties

^u,fuJzuu,f&5 j cosu,
~22!

^u,fuJx6 iJyuu,f&5 je6 if sinu,

w

3-5
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wherej in this section refers to eitherl or s.
The states~21! are the SU~2! coherent states, which, lik

their counterparts in the Euclidean phase space, are m
mum uncertainty states@21#; the normalized variance of th
quadratic operator,

D J̃25
^u,fuJ2uu,f&2^u,fuJuu,f&2

j ~ j 11!
5

1

~ j 11!
, ~23!

is minimized for givenj and vanishes in the limitj→`. The
coherent statesu j , j & and u j ,2 j &, polarized along thez axis,
also saturate the inequality of the uncertainty relation,

^Jx
2&^Jy

2&>
^Jz&

2

4
, ~24!

although this inequality is not saturated for coherent sta
polarized along other axes.

B. Initial classical state and correspondence
in the macroscopic limit

We compare the quantum dynamics with that of a cla
cal Liouville density which is chosen to match the initi
probability distributions of the quantum coherent state. F
quantum systems with a Euclidean phase space it is alw
possible to construct a classical density with marginal pr
ability distributions that match exactly the correspondi
moments of the quantum coherent state. This follows fr
the fact that the marginal distributions for a coherent state
positive definite Gaussians, and therefore all of the mome
can be matchedexactly by choosing a Gaussian classic
density. For the SU~2! coherent state, however, we show
the Appendix that no classical density has marginal distri
tions that can reproduce even the low-order moments of
quantum probability distributions~except in the limit of
infinite j ). Thus from the outset it is clear that any choice
an initial classical state will exhibit residual discrepancy
matching some of the initial quantum moments.

We have examined the initial state and dynami
quantum-classical correspondence using several diffe
classical distributions. These included the vector mo
distribution described in the Appendix and the Gaussian
tribution used by Fox and Elston in correspondence stu
of the kicked top@22#. For a state polarized along thez axis
we chose the density

rc~u,f!sinu du df5C expF 2

2 sin2S u

2D
s2

G sinu du df

5C expF2
~12 J̃z!

s2 GdJ̃z df, ~25!

with C5$2ps2@12exp(22s22)#%21, instead of those previ
ously considered, because it is periodic under 2p rotation.
An initial state directed along (uo ,fo) is then produced by a
rigid body rotation of Eq.~25! by an angleuo about they
axis followed by rotation with anglefo about thez axis.
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The variances2 and the magnitudeuJuc are free param-
eters of the classical distribution that should be chosen to
the quantum probabilities as well as possible. It is shown
the Appendix that no classical density has marginal distri
tions that can match all of the quantum moments, so
concentrate only on matching the lowest-order mome
Since the magnitude of the spin is a kinematic constant, b
classically and quantum mechanically, we choose
squared length of the classical spin to have the correct qu
tum value,

uJuc
25^Jx

2&c1^Jy
2&c1^Jz

2&c5 j ~ j 11!. ~26!

For a state polarized along thez axis, we have^Jx&
5^Jy&50 and^Jy

2&5^Jx
2& for both distributions as a conse

quence of the axial symmetry. Furthermore, as a con
quence of Eq.~26!, we will automatically satisfy the condi
tion

2^Jx
2&c1^Jz

2&c5 j ~ j 11!. ~27!

Therefore we only need to consider the classical momen

^Jz&c5uJuG~s2!, ~28!

^Jx
2&c5uJu2s2G~s2!, ~29!

calculated from the density~25! in terms of the remaining
free parameters2, where

G~s2!5F11exp~22s22!

12exp~22s22!
G2s2. ~30!

We would like to match both of these classical mome
with the corresponding quantum values,

^Jz&5 j , ~31!

^Jx
2&5 j /2, ~32!

calculated for the coherent state~21!. However, no choice of
s2 will satisfy both constraints.

If we chooses2 to satisfy Eq.~31! exactly then we would
obtain

s25
1

2 j
2

3

8 j 2
1O~ j 23!. ~33!

If we chooses2 to satisfy~32! exactly then we would obtain

s25
1

2 j
1

1

4 j 2
1O~ j 23!. ~34!

@These expansions are most easily derived from the appr
mation G(s2).12s2, which has an exponentially sma
error for largej.#

We have chosen to compromise between these value
fixing s2 so that the ratiô Jz&c /^Jx

2&c has the correct quan
tum value. This leads to the choice
3-6
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s25
1

2Aj ~ j 11!
5

1

2 j
2

1

4 j 2
1O~ j 23!. ~35!

These unavoidable initial differences between the cla
cal and quantum moments will vanish in the ‘‘classica
limit. To see this explicitly it is convenient to introduce
measure of the quantum-classical differences,

dJz~n!5u^Jz~n!&2^Jz~n!&cu, ~36!

defined at timen. For an initial state polarized in directio
(u,f), the choice~35! produces the initial difference,

dJz~0!5
cos~u!

8 j
1O~ j 22!, ~37!

which vanishes asj→`.

IV. NUMERICAL METHODS

We have chosen to study the time-periodic spin Ham
tonian ~1! because the time dependence is then reduced
simple mapping and the quantum state vector is confined
finite-dimensional Hilbert space. Consequently we can so
the exact time-evolution equations~3! numerically without
introducing any artificial truncation of the Hilbert space. T
principal source of numerical inaccuracy arises from
numerical evaluation of the matrix elements of the rotat
operator^ j ,m8uR(u,f)u j ,m&5exp(2ifm8)dm8m

(j) (u). The ro-
tation operator is required both for the calculation of t
initial quantum coherent state,uu,f&5R(u,f)u j ,m5 j &, and
for the evaluation of the unitary Floquet operator. In order
maximize the precision of our results we calculated
matrix elementsdm8m

( j ) (u)5^ j ,m8uexp(2iuJy)uj,m& using the
recursion algorithm of Ref.@23# and then tested the accurac
of our results by introducing controlled numerical errors. F
small quantum numbers (j ,50) we are able to confirm th
correctness of our coded algorithm by comparing th
results with those obtained by direct evaluation of Wigne
formula for the matrix elementsdm8m

( j ) (u).
The time evolution of the Liouville density was simulate

by numerically evaluating between 108 and 109 classical
trajectories with randomly selected initial condition
weighted according to the initial distribution~25!. Such a
large number of trajectories was required in order to ke
Monte Carlo errors small enough to resolve the initial n
malized quantum-classical differences, which scale as 1/j 2,
over the range ofj values we have examined.

We identified initial conditions of the classical map
chaotic by numerically calculating the largest Lyapun
exponentlL using the formula

lL5
1

N (
n51

N

ln d~n!, ~38!

where d(n)5( i udxi(n)u, with d(0)51. The differential
dx(n) is a difference vector between adjacent trajector
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and thus evolves under the action of the tangent m
dx(n11)5M•dx(n), where M is evaluated along som
fiducial trajectory@20#.

Since we are interested in studying quantum states and
corresponding classical distributions that have nonzero s
port on the sphere, it is also important to get an idea of
size of these regular and chaotic zones. By comparing
size of a given regular or chaotic zone to the variance of
initial state located within it, we can determine whether m
of the state is contained within this zone. However, we c
not perform this comparison by direct visual inspection sin
the relevant phase space is four dimensional. One stra
that we used to overcome this difficulty was to calculate
Lyapunov exponent for a large number of randomly samp
initial conditions and then project only those points whi
are regular ~or chaotic! onto the plane spanned byS̃z

5cosus andL̃z5cosul . If the variance of the initial quantum
state is located within, and several times smaller than,
dimensions of a zone devoid of any of these points, then
state in question can be safely identified as chaotic~or regu-
lar!.

V. CHARACTERISTICS OF THE QUANTUM AND
LIOUVILLE DYNAMICS

A. Mixed phase space

We consider the time development of initial quantu
coherent states~21! evolved according to the mapping~3!
using quantum numberss5140 andl 5154 and associated
classical parametersg51.215,r .1.1, anda55, which pro-
duce a mixed phase space~see Fig. 1!. The classical results
are generated by evolving the initial ensemble~25! using the
mapping~11!. In Fig. 5 we compare the time dependence
the normalized quantum variance,DL̃25@^L2&2^L &2#/
l ( l 11), with its classical counterpart,DL̃ c

25@^L2&c

2^L &c
2#/uL u2. Squares~diamonds! correspond to the dynam

ics of an initial quantum ~classical! state centered a

FIG. 5. Growth of normalized quantum and classical varian
in a chaotic zone~a! and a regular zone~b! of the mixed phase-
space regimeg51.215 andr .1.1 with l 5154. Quantum and clas
sical results are nearly indistinguishable on this scale. In the cha
case, the approximate exponential growth of both variances is g
erned by a much larger rate,lw50.13 ~solid line!, than that pre-
dicted from the largest Lyapunov exponent,lL50.04 ~dotted line!.
3-7
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J. EMERSON AND L. E. BALLENTINE PHYSICAL REVIEW A63 052103
uW (0)5(20°,40°,160°,130°), which is located in the co
nected chaotic zone near one of the unstable fixed point
the classical map. Crosses~plus signs! correspond to an ini-
tial quantum~classical! state centered on the initial conditio
uW (0)5(5°,5°,5°,5°), which is located in the regular zon
near one of the stable fixed points. For both initial conditio
the quantum and classical results are nearly indistinguish
on the scale of the figure. In the case of the regular ini
condition, the quantum variance remains narrow over lo
times and, like its classical counterpart, exhibits a regu
oscillation. In the case of the chaotic initial condition th
quantum variance also exhibits a periodic oscillation but t
oscillation is superposed on a very rapid, approximat
exponential, growth rate. This exponential growth pers
until the variance approaches the system size, that is, w
DL̃2.1. The initial exponential growth of the quantum va
ance in classically chaotic regimes has been observed p
ously in several models and appears to be a generic fea
of the quantum dynamics; this behavior of the quantum v
ance is mimicked very accurately by the variance of an
tially well-matched classical distribution@17,22,24#.

For well-localized states, in the classical case, the ex
nential growth of the distribution variance in chaotic zones
certainly related to the exponential divergence of the und
lying trajectories, a property that characterizes class
chaos. To examine this connection we compare the obse
exponential rate of growth of the widths of the classical~and
quantum! state with the exponential rate predicted from t
classical Lyapunov exponent. For the coherent states the
tial variance can be calculated exactly,DL̃2(0)51/(l 11).
Then, assuming exponential growth of this initial varian
we get

DL̃2~n!.
1

l
exp~2lwn! for n,tsat , ~39!

where a factor of 2 is included in the exponent becauseDL̃2

corresponds to a squared length. The dotted line in Fig
corresponds to the prediction~39! with lw5lL50.04, the
value of the largest classical Lyapunov exponent. As can
seen from the figure, the actual growth rate of the class
~and quantum! variance of the chaotic initial state is signifi
cantly larger than that predicted using the largest Lyapu
exponent. For comparison purposes we also plot a solid
in Fig. 5 corresponding to Eq.~39! using lw50.13, which
provides a much closer approximation to the actual gro
rate. We find, for a variety of initial conditions in the chaot
zone of this mixed regime, that the actual classical~and
quantum! variance growth rate is consistently larger than
simple prediction~39! using lL for the growth rate. This
systematic bias requires some explanation.

As pointed out in@22#, the presence of some discrepan
betweenlw and lL can be expected from the fact that th
Lyapunov exponent is defined as a geometric mean of
tangent map eigenvalues sampled over the entire conne
chaotic zone~corresponding to the infinite time limitn
→`), whereas theactualgrowth rate of a given distribution
over a small number of time steps will be determined larg
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by a few eigenvalues of the local tangent map. In mix
regimes these local eigenvalues will vary considerably o
the phase-space manifold and the product of a few of th
eigenvalues can be quite different from the geometric m
over the entire connected zone.

However, we find that the actual growth rate is cons
tently larger than the Lyapunov exponent prediction. It
well known that in mixed regimes the remnant KAM tori ca
be ‘‘sticky’’; these sticky regions can have a significa
decreasing effect on a calculation of the Lyapunov expon
In order to identify an initial condition as chaotic, we sp
cifically choose initial states that are concentrated away fr
these KAM surfaces~regular islands!. Such initial states will
then be exposed mainly to the larger local expansion ra
found away from these surfaces. This explanation is s
ported by our observations that, when we choose initial c
ditions closer to these remnant tori, we find that the grow
rate of the variance is significantly reduced. These varia
growth rates are still slightly larger than the Lyapunov ra
but this is not surprising since our initial distributions a
concentrated over a significant fraction of the phase sp
and the growth of the distribution is probably more sensit
to contributions from those trajectories subject to lar
eigenvalues away from the KAM boundary than those stu
near the boundary. These explanations are further suppo
by the results of the following section, where we examine
phase-space regime that is nearly devoid of regular isla
In these regimes we find that the Lyapunov exponent se
as a much better approximation to the variance growth r

B. Regime of global chaos

If we increase the dimensionless coupling strength tog
52.835, witha55 andr .1.1 as before, then the classic
flow is predominantly chaotic on the surfaceP ~see Fig. 1!.
Under these conditions we expect that generic initial cla
cal distributions~with nonzero support! will spread to cover
the full surfaceP and then quickly relax close to microca
nonical equilibrium. We find that the initially localized quan
tum states also exhibit these generic features when the q
tum map is governed by parameters that produce th
conditions classically.

For the nonautonomous Hamiltonian system~11! the total
energy is not conserved, but the two invariants of motion,L2

andS2, confine the dynamics to the four-dimensional ma
fold P5S 23S 2, which is the surface of two spheres. Th
corresponding microcanonical distribution is a constant
this surface, with measure~12!, and zero elsewhere. From
this distribution we can calculate microcanonical equilibriu
values for low-order moments, where, for example,$Lz%
5(4p)22*PLz dm50 and $DL2%5$L2%2$L%25uL u2. The
symbols$•% denote a microcanonical average.

To give a sense of the accuracy of the corresponde
between the classical ensemble and the quantum dynami
Fig. 6, we show a direct comparison of the dynamics of
quantum expectation valuêL̃z& with l 5154 and the classi-
cal distribution averagêL̃z&c for an initial coherent state an
corresponding classical distribution centered atuW
5(45°,70°,135°,70°). To guide the eye in this figure w
3-8
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CHARACTERISTICS OF QUANTUM-CLASSICAL . . . PHYSICAL REVIEW A 63 052103
have drawn lines connecting the stroboscopic points of
mapping equations. The quantum expectation value exh
essentially the same dynamics as the classical Liouv
average, not only at early times, that is, in the initial Ehre
fest regime@1,25#, but for times well into the equilibrium
regime where the classical moment^Lz& has relaxed close to
the microcanonical equilibrium value$Lz%50. We have also
provided results for a single trajectory launched from
same initial condition in order to emphasize the qualitativ
distinct behavior it exhibits.

In Fig. 7 we show the exponential growth of the norm
ized quantum and classical variances on a semilogarith
plot for the same set of parameters and quantum numb
Numerical data for~a! correspond to initial conditionuW (0)
5(20°,40°,160°,130°) and those for~b! correspond to
uW (0)5(45°,70°,135°,70°). As in the mixed regime case, t
quantum-classical differences are nearly imperceptible on

FIG. 6. Comparison of the quantum expectation value and
responding classical average^Lz&c in the regime of global chaos

g52.835 andr .1.1 with l 5154 and the initial conditionuW o

5(45°,70°,135°,70°). The points of the stroboscopic map are c
nected with lines to guide the eye. The quantum expectation v
and the Liouville average exhibit esentially the same rate of re
ation to microcanonical equilibrium, a behavior which is quali
tively distinct from that of the single trajectory.

FIG. 7. Growth of normalized quantum and classical varian
in the regime of global chaos,g52.835 andr .1.1 with l 5154, for
the two initial conditions cited in the text. Quantum-classical d
ferences are nearly imperceptible on this scale. In this regime
largest Lyapunov exponentlL50.45 provides a much better est
mate of the initial variance growth rate.
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scale of the figure, and the differences between the quan
and classical variance growth rates are many orders of m
nitude smaller than the small differences in the growth r
arising from the different initial conditions.

In contrast with the mixed regime case, in this regime
global chaos the prediction~39! with lw5lL50.45 now
serves as a much better approximation to the expone
growth rate of the quantum variance and associated re
ation rate of the quantum and classical states. In this reg
the exponentlw is also much larger than in the mixe
regime case due to the stronger degree of classical chao
a result, the initially localized quantum and classical dis
butions saturate at system size much sooner.

It is useful to apply Eq.~39! to estimate the time scale a
which the quantum~and classical! distributions saturate a
system size. From the conditionDL̃2(tsat).1 and using Eq.
~39! we obtain

tsat.~2lw!21 ln~ l !, ~40!

which serves as an estimate of this characteristic time sc
In the regimes for which the full surfaceP is predominately
chaotic, we find that the actual exponential growth rate of
width of the quantum state,lw , is well approximated by the
largest Lyapunov exponentlL . For a55 and r 51.1, the
approximationlw.lL holds for coupling strengthsg.2,
for which more than 99% of the surfaceP is covered by one
connected chaotic zone~see Fig. 1!.

By comparing the quantum probability distribution to i
classical counterpart, we can learn much more about
relaxation properties of the quantum dynamics. In order
compare eachml value of the quantum distributionPz(ml)
with a corresponding piece of the continuous classical m
ginal probability distribution,

Pc~Lz!5E E E dS̃z dfs df l rc~us ,fs ,u l ,f l !, ~41!

we discretize the latter into 2j 11 bins of width\51. This
procedure produces a discrete classical probability distr
tion Pz

c(ml) that prescribes the probability of finding the sp
componentLz in the interval@ml11/2,ml21/2# along thez
axis.

To illustrate the time development of these distributio
we compare the quantum and classical probability distri
tions for three successive values of the kick numbern, using
the same quantum numbers and initial condition as in Fig
In Fig. 8 the initial quantum and classical states are both w
localized and nearly indistinguishable on the scale of
figure. At time n56.tsat , shown in Fig. 9, both distribu-
tions have grown to fill the accessible phase space. It i
this time that the most significant quantum-classical discr
ancies appear.

For times greater thantsat , however, these emergen
quantum-classical discrepencies do not continue to gr
since both distributions begin relaxing towards equilibriu
distributions. Since the dynamics are confined to acompact
phase space, and in this parameter regime the remnant K
tori fill a negligibly small fraction of the kinematicaly acces
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J. EMERSON AND L. E. BALLENTINE PHYSICAL REVIEW A63 052103
sible phase space, we might expect the classical equilibr
distribution to be very close to the microcanonical distrib
tion. Indeed such relaxation close to microcanonical equi
rium is apparent for both the quantum and the classical
tribution at very early times, as demonstrated in Fig.
corresponding ton515.

Thus the signature of a classically hyperbolic flo
namely, the exponential relaxation of an arbitrary distrib
tion ~with nonzero measure! to microcanonical equilibrium
@26#, holds to good approximation in this model in a regim
of global chaos. More suprisingly, this classical signature
manifest also in the dynamics of the quantum distribution
the quantum case, however, as can be seen in Fig. 10
probability distribution is subject to small irreducible tim
dependent fluctuations about the classical equilibrium.
examine these quantum fluctuations in detail elsewhere@27#.

FIG. 8. Initial probability distributions for Lz for uW (0)
5(45°,70°,135°,70°) withl 5154. The quantum and classical di
tributions are indistinguishable on the scale of the figure.

FIG. 9. Same as Fig. 8, but the states have evolved ton56 in
the regime of global chaosg52.835 andr .1.1. Both the quantum
and classical distribution have spread to the system dimension
exhibit their largest differences on this saturation time scale.
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VI. TIME-DOMAIN CHARACTERISTICS
OF QUANTUM-CLASSICAL DIFFERENCES

We consider the time dependence of quantum-class
differences defined along thez axis of the spinL ,

dLz~n!5u^Lz~n!&2^Lz~n!&cu, ~42!

at the stroboscopic timest5n. In Fig. 11 we compare the
time dependence of dLz(n) on a semilogarithmic
plot for a chaotic state ~filled circles! with uW (0)
5(20°,40°,160°,130°) and a regular state~open circles!,
uW (0)5(5°,5°,5°,5°), evolved using the same mixed-regim
parameters (g51.215 andr .1.1) and quantum number
( l 5154) as in Fig. 5.

nd

FIG. 10. Same as Fig. 9, but forn515. Both quantum and
classical distributions have relaxed close to the microcanon
equilibrium.

FIG. 11. Time dependence of quantum-classical differences
regular zone~open circles! and a chaotic zone~filled circles! of
mixed regime (g51.215 andr .1.1) with l 5154. For the chaotic
state,dLz5u^Lz&2^Lz&cu is contrasted with the Ehrenfest differ
ence u^Lz&2Lzu between the quantum expectation value and
single trajectory~plus signs!, which grows until saturation at the
system dimension. The solid line corresponds to Eq.~43! using
lqc50.43. The horizontal lines indicate two different values of t
difference tolerancep which may be used to determine the bre
time; for p50.1 ~dotted line! tb occurs on a logarithmic time scale
but for p515.4 ~sparse dotted line! tb is not defined over numeri-
cally accessible time scales.
3-10
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CHARACTERISTICS OF QUANTUM-CLASSICAL . . . PHYSICAL REVIEW A 63 052103
We are interested in the behavior of the upper envelop
the data in Fig. 11. For the regular case, the upper enve
of the quantum-classical differences grows very slowly,
some polynomial function of time. For the chaotic case,
the other hand, at early times the difference measure~42!
grows exponentially until saturation aroundn515, which is
well before reaching system dimension,uL u. l 5154. After
this time, which we denotet* , the quantum-classical differ
ences exhibit no definite growth, and fluctuate about
equilibrium valuedLz;1!uL u. In Fig. 11 we also include
data for the time dependence of the Ehrenfest differe
u^Lz&2Lzu, which is defined as the difference between t
quantum expectation value and the dynamical variable o
single trajectory initially centered on the quantum state.
contrast todLz , the rapid growth of the Ehrenfest differenc
continues until saturation at the system dimension.

In Fig. 12 we compare the time dependence of
quantum-classical differences in the case of the cha

initial condition uW (0)5(20°,40°,160°,130°) for quantum
numbersl 522 ~filled circles! and l 5220 ~open circles!, us-
ing the same parameters as in Fig. 11. This demonstrate
remarkable fact that the exponential growth terminates w
the difference measure reaches an essentially fixed ma
tude (dLz;1 as for the casel 5154), although the system
dimension differs by an order of magnitude in the two cas

In Fig. 13 we consider the growth of the quantum
classical difference measuredLz(n) in a regime of global
chaos, forl 5154, and using the same set of parameters
those examined in Fig. 7 (g52.835 andr .1.1). Again the
upper envelope of the difference measuredLz(n) exhibits
exponential growth at early times, though in this regime
global chaos the exponential growth persists only for a v
short duration before saturation att* .6. The initial condi-
tion uW (0)5(20°,40°,160°,130°) is a typical case~filled
circles!, where, as seen for the mixed regime parameters,

FIG. 12. Growth of the quantum-classical differencedLz in the
chaotic zone of a mixed regime,g51.215 andr .1.1, with l 522
~filled circles! andl 5220~open circles!. For l 5220 the exponentia
growth rate~43! is plotted using the classical Lyapunov expone
lL50.04 ~sparse dotted line!, and for bothl values~43! is plotted
using the exponentlqc50.43 ~solid line for l 522, dotted line for
l 5220), which is obtained from a fit of Eq.~44! to the correspond-
ing break-time data in Fig. 14.
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magnitude of the difference at the end of the exponen
growth phase saturates at the valuedLz(t* ).1, which does
not scale with the system dimension~see Fig. 15!. The initial
condition uW (0)5(45°,70°,135°,70°)~open circles! leads to
an anomolously large deviation at the end of the exponen
growth phase,dLz(t* ).10, though still small relative to the
system dimensionuL u.154. This deviation is transient how
ever, and at later times the magnitude of quantum-class
differences fluctuates about the equilibrium valuedLz;1.
The quantum-classical differences are a factor of 1/l smaller
than typical differences between the quantum expecta
value and the single trajectory, which are of order syst
dimension~see Fig. 6! as in the mixed regime case.

In all cases where the initial quantum and classical sta
are launched from a chaotic zone we find that the initial ti
dependence of quantum-classical differences comp
favorably with the exponential growth ansatz,

dLz~n!.
1

8l
exp~lqcn! for n,t* , ~43!

where the exponentlqc is a new exponent subject to numer
cal measurement@17#. The prefactor 1/8l is obtained by ac-
counting for the initial contributions from the three Cartesi
components,@d2Lx(0)1d2Ly(0)1d2Lz(0#1/251/8l .

We are interested in whether the Lyapunov exponentlL
is a good approximation tolqc . In Fig. 12 we plot Eq.~43!
with lqc5lL50.04 ~dotted line! for l 5220. Clearly the
largest Lyapunov exponent severly underestimates the e
nential growth rate of the quantum-classical differences
this case by more than an order of magnitude. The gro
rate of the state width,lw50.13, is also several time
smaller than the initial growth rate of the quantum-classi
differences. In the case of Fig. 13, corresponding to a reg
of global chaos with a much larger Lyapunov exponent,
plot Eq. ~43! with lqc5lL50.45 ~dotted line!, demonstrat-
ing that in this regime, too, the largest Lyapunov expon

,

FIG. 13. Growth of quantum-classical differences in the regi
of global chaos,g52.835 andr .1.1 with l 5154, for the two
initial conditions cited in text. The exponential growth rate~43! is
plotted using the classical Lyapunov exponent,lL50.45 ~dotted
line!, and the exponentlqc51.1 ~solid line!, which is obtained from
a fit of Eq. ~44! to the corresponding break-time data in Fig. 14.
3-11
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underestimates the initial growth rate of the quantu
classical difference measuredLz(n).

We also find, from an inspection of our results, that t
time t* at which the exponential growth~43! terminates can
be estimated fromtsat , the time scale on which the distribu
tions saturate at or near system size~40!. In the case of the
chaotic initial condition of Fig. 5, for whichg51.215, visual
inspection of the figure suggests thattsat.18. This should
be compared with Fig. 11, where the exponential growth
dLz(n) ends rather abruptly att* .15. In Fig. 7, correspond
ing to a regime of global chaos (g52.835), the variance
growth saturates much earlier, aroundtsat.6, for both initial
conditions. From Fig. 13 it is aparent that in this regimet*
.6. As we increaseg further, we find that the exponentia
growth phase of quantum-classical differencesdLz(n) is
shortened, lasting only until the corresponding quantum
classical distributions saturate at system size. Forg.12,
with lL.1.65, the chaos is sufficiently strong that the init
coherent state forl 5154 spreads to coverP within a single
time step. Similarly the initial difference measuredLz(0)
.0.001 grows to the magnitudedLz(1).1 within a single
time step and subsequently fluctuates about that equilibr
value. We have also inspected the variation oft* with the
quantum numbers and found it to be consistent with the lo
rithmic dependence oftsat in Eq. ~40!.

VII. CORRESPONDENCE SCALING
IN THE CLASSICAL LIMIT

We have assumed in Eq.~43! that the exponentlqc is
independent of the quantum numbers. A convenient way
confirming this, and also estimating the numerical value
lqc , is by means of a break time measure. The break tim
the time tb( l ,p) at which quantum-classical difference
exceed some fixed tolerancep, with the classical parameter
and initial condition held fixed. SettingdLz(tb)5p in Eq.
~43!, we obtaintb in terms ofp, l, andlqc ,

tb.lqc
21 ln~8pl ! provided p,O~1!. ~44!

The restrictionp,O(1), which plays a crucial role in lim-
iting the robustness of the break-time measure~44!, is
explained and motivated further below.

The explicit form we have obtained for the argument
the logarithm in Eq.~44! is a direct result of our estimate tha
the initial quantum-classical differences arising from t
Cartesian components of the spin provide the dominant c
tribution to the prefactor of the exponential growth ans
~43!. Differences in the mismatched higher-order momen
as well as intrinsic differences between the quantum dyn
ics and classical dynamics, may also contribute to this ef
tive prefactor. We have checked that the initial val
dLz(0).1/8l is an adequate estimate by comparing the
tercept of the quantum-classical data on a semilogarith
plot with the prefactor of Eq.~43! for a variety of l values
~see, e.g., Fig. 12!.

In Fig. 14 we examine the scaling of the break time fol
values ranging from 11 to 220 and with fixed toleran
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p50.1. The break time can assume only the integer val
t5n, and thus the data exhibit a step-wise behavior. For
mixed regime parameters,g51.215 and r .1.1 ~filled
circles!, with the initial condition uW (0)5(20°,
40°,160°,130°), a nonlinear least-squares fit to Eq.~44!
gives lqc50.43. This fit result is plotted in the figure as
solid line. The close agreement between the data and th
provides good evidence that the quantum-classical expo
lqc is independent of the quantum numbers. To check
result against the time-dependentdLz(n) data, we have plot-
ted the exponential curve~43! with lqc50.43 in Fig. 11
using a solid line and in Fig. 12 using a solid line fo
l 522 and a dotted line forl 5220. The exponent obtaine
from fitting Eq. ~44! serves as an excellent approximation
the initial exponential growth~43! of the quantum-classica
differences in each case.

In Fig. 14 we also plot break-time results for the glob
chaos caseg52.835 andr .1.1 ~open circles! with the ini-
tial conditionuW (0)5(45°,70°,135°,70°). In this regime th
quantum-classical differences grow much more rapidly a
consequently, the break time is very short and remains ne
constant over this range of computationally accessible qu
tum numbers. Due to this limited variation, in this regime w
cannot confirm~44!, although the data are consistent with t
predicted logarithmic dependence onl. Moreover, the break-
time results provide an effective method for estimatinglqc if
we assume that Eq.~44! holds. The same fit procedure a
detailed above yields the quantum-classical exponentlqc
51.1. This fit result is plotted in Fig. 14 as a solid line. Mo
importantly, the exponential curve~43!, plotted with fit result
lqc51.1, can be seen to provide very good agreement w
the initial growth rate of Fig. 13 for either initial condition
as expected.

In the mixed regime (g51.215), the quantum-classica
exponentlqc50.43 is an order of magnitude greater than t
largest Lyapunov exponentlL50.04, and about three time
larger than the growth rate of the widthlw50.13. In the
regime of global chaos (g52.835) the quantum-classica

FIG. 14. Scaling of the break-time using the tolerancep50.1 as
a function of increasing quantum number for the mixed regi

parametersg51.215 andr .1.1 with uW (0)5(20°,40°,160°,130°)
~filled circles!, and for the global chaos parametersg52.835 and

r .1.1 with uW (0)5(45°,70°,135°,70°)~open circles!. We also plot
the results of fits to the logarithmic rule~44!, which produced ex-
ponentslqc50.43 forg51.215 andlqc51.1 for g52.835.
3-12
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exponentlqc51.1 is a little more than twice as large as t
largest Lyapunov exponentlL50.45.

The conditionp,O(1) is a very restrictive limitation on
the domain of application of the logarithmic break time~44!,
and it is worthwhile to explain its significance. In the mixe
regime case of Fig. 11, withl 5154, we have plotted the
tolerance valuesp50.1 ~dotted line! and p515.4 ~sparse
dotted line!. The tolerancep50.1 is exceeded att511,
while the quantum-classical differences are still growing
ponentially, leading to a logarithmic break time for this to
erance value. For the tolerancep515.4!uL u, on the other
hand, the break-time does not occur on a measurable
scale, whereas according to the logarithmic rule~44!, with
l 5154 andlqc50.43, we should expect a rather short bre
time tb.23. Consequently, the break time~44!, applied to
delimiting the end of the Liouville regime, is not a robu
measure of quantum-classical correspondence.

Our definition of the break time~44! requires holding the
tolerancep fixed in absolute terms~and not as a fraction o
the system dimension as in@3#! when comparing system
with different quantum numbers. Had we chosen to comp
systems using a fixed relative tolerancef, then the break time
would be of the formtb.lqc

21 ln(8fl2) and subject to the
restriction f ,O(1/l ). Since f→0 in the classical limit, this
form emphasizes that the logarithmic break time applies o
to differences that are a vanishing fraction of the syst
dimension in that limit.

Although we have provided numerical evidence~in Fig.
12! of one mixed regime case in which the largest quantu
classical differences occuring at the end of the exponen
growth period remain essentially constant for varying qu
tum numbers,dLz(t* );O(1), we find that this behavior
represents the typical case for all parameters and initial c
ditions which produce chaos classically. To demonstrate
behavior we consider the scaling~with increasing quantum
numbers! of the maximum values attained bydLz(n) over
the first 200 kicks,dLz

max. Sincet* !200 over the range o
l values examined, the quantitydLz

max is a rigorous upper
bound fordLz(t* ).

In Fig. 15 we comparedLz
max for the two initial condi-

tions of Fig. 13 and using the global chaos parametersg
52.835, r .1.1). The filled circles in Fig. 15 correspond
the initial conditionuW (0)5(20°,40°,160°,130°). As in the
mixed regime, the maximum deviations exhibit little or n
scaling with increasing quantum number. This is the typi
behavior that we have observed for a variety of differe
initial conditions and parameter values. These results m
vate the generic rule,

dL̃z~ t* !

Al ~ l 11!
<

dL̃z
max

Al ~ l 11!
;O~1/l !. ~45!

Thus the magnitude of quantum-classical differences reac
at the end of the exponential growth regime, expressed
fraction of the system dimension, approaches zero in
classical limit.
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However, for a few combinations of parameters a
initial conditions we do observe a ‘‘transient’’ discrepan
peak occuring att.t* that exceedsO(1). This peak is
quickly smoothed away by the subsequent relaxation of
quantum and classical distributions. This peak is apparen
Fig. 13 ~open circles!, corresponding to the most conspic
ous case that we have identified. This case is apparent
small deviation in the normalized data of Fig. 6. The scal
of the magnitude of this peak with increasingl is plotted with
open circles in Fig. 15. The magnitude of the peak initia
increases rapidly, but appears to become asymptotically
dependent ofl. The other case that we have observed occ
for the classical parametersg52.025, with r .1.1 anda

55, and with the initial condition uW (0)
5(20°,40°,160°,130°). We do not understand the mec
nism leading to such transient peaks, although they are
considerable interest since they provide the most promin
examples of quantum-classical discrepancy that we have
served.

VIII. DISCUSSION

In this study of a nonintegrable model of two interactin
spins we have characterized the correspondence betw
quantum expectation values and classical ensemble aver
for intially localized states. We have demonstrated that
chaotic states the quantum-classical differences initia
grow exponentially with an exponentlqc that is consistently
larger than the largest Lyapunov exponent. In a study of
moments of the Henon-Heiles system, Ballentine and McR
@17,18# have also shown that quantum-classical differen

FIG. 15. Maximum quantum-classical difference occuring ov
the first 200 kicks in the regime of global chaos (g52.835,
r .1.1) plotted against increasing quantum number. These m
mum values provide an upper bound ondLz(t* ) for each l. The

data corresponding to the initial condition uW (0)
5(20°,40°,160°,130°)~filled circles! represent a typical case i
which the maximum quantum-classical differences do not vary
nificantly with l. The large deviations observed for the initial co

dition uW (0)5(45°,70°,135°,70°)~open circles! are an exceptiona
case, with maximum differences growing rapidly for small quantu
numbers but tending asymptotically toward independence ol.
These curves provide an upper bound on the tolerance valuesp for
which the break-time measure scales logarithmically withl.
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in chaotic states grow at an exponential rate with an ex
nent larger than the largest Lyapunov exponent. This ex
nential behavior appears to be a generic feature of the sh
time dynamics of quantum-classical differences in chao
states.

Since we have studied a spin system, we have been
to solve the quantum problem without truncation of t
Hilbert space, subject only to numerical roundoff, and th
we are able to observe the dynamics of the quantum-clas
differences well beyond the Ehrenfest regime. We ha
shown that the exponential growth phase of the quant
classical differences terminates well before these differen
have reached system dimension. We find that the time s
at which this occurs can be estimated from the time scal
which the distribution widths approach the system dim
sion, tsat.(2lw)21 ln(l) for initial minimum uncertainty
states. Due to the close correspondence in the growth rat
the quantum and classical distributions, this time scale
be estimated from the classical physics alone. This is us
because the computational complexity of the problem d
not grow with the system action in the classical case. Mo
over, we find that the exponentlw can be approximated b
the largest Lyapunov exponent when the kinematic surfac
predominantly chaotic.

We have demonstrated that the exponentlqc governing
the initial growth rate of quantum-classical differences
independent of the quantum numbers, and that the effec
prefactor to this exponential growth decreases as 1/l . These
results imply that a logarithmic break-time rule~44! delimits
the dynamical regime of Liouville correspondence. Ho
ever, the exponential growth of quantum-classical diff
ences persists only for short times and small differences,
thus this logarithmic break-time rule applies only in a sim
larly restricted domain. In particular, we have found that
magnitude of the differences occuring at the end of the ini
exponential growth phase does not scale with the sys
dimension. A typical magnitude for these differences, re
tive to the system dimension, isO(1/l ). Therefore, log(l)
break-time rules characterizing the end of the Liouvi
regime are not robust, since they apply to quantum-class
differences only in a restricted domain, i.e., to relative d
ferences that are smaller thanO(1/l ).

This restricted domain effect does not arise for the be
known logarithmic break-time rules describing the end of
Ehrenfest regime@1–3#. The Ehrenfest logarithmic brea
time remains robust for arbitrarily large tolerances, since
corresponding differences grow roughly exponentially un
saturation at the system dimension@22,24#. Consequently, a
log(l) break time indeed implies abreakdownof Ehrenfest
correspondence. However, the logarithmic break-time r
characterizing the end of the Liouville regime does not im
a breakdown of Liouville correspondence because it does
apply to the observation of quantum-classical discrepan
larger than O(1/l ). The appearance of residualO(1/l )
quantum-classical discrepancies in the description of a m
roscopic body is, of course, consistent with quant
mechanics having a proper classical limit.
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We have found, however, that for certain exception
combinations of parameters and initial conditions there
relative quantum-classical differences occuring at the end
the exponential growth phase that can be larger thanO(1/l ),
though still much smaller than the system dimension.
absolute terms, these transient peaks seem to grow with
system dimension for small quantum numbers, but beco
asymptotically independent of the system dimension
larger quantum numbers. Therefore, even in these l
favorable cases, thefractional differences between quantum
and classical dynamics approach zero in the limitl→`. This
vanishing of fractional differences is sufficient to ensure
classical limit for our model.

Finally, contrary to the results found in the present mod
it has been suggested that a logarithmic break time delim
ing the Liouville regime implies that certain isolated macr
scopic bodies in chaotic motion should exhibit nonclassi
behavior on observable time scales. However, since s
nonclassical behavior is not observed in the chaotic mo
of macroscopic bodies, it is argued that the observed cla
cal behavior emerges from quantum mechanics only w
the quantum description is expanded to include interacti
with the many degrees of freedom of the ubiquitous envir
ment@9,10#. ~This effect, called decoherence, rapidly evolv
a pure system state into a mixture that is essentially dev
of nonclassical properties.! However, in our model the clas
sical behavior emerges in the macroscopic limit of a f
degree-of-freedom quantum system that is described b
pure state and subject only to unitary evolution. Quantu
classical correspondence at both early and late times aris
spite of the logarithmic break time because this break-ti
rule applies only when the quantum-classical differen
threshold is chosen smaller thanO(\). In this sense we find
that the decoherence effects of the environment are not
essary for correspondence in the macroscopic limit.
course the effect of decoherence may be experimentally
nificant in the quantum and mesoscopic domains, but it is
requiredas a matter of principleto ensure a classical limit.

ACKNOWLEDGMENTS

We wish to thank F. Haake and J. Weber for drawing o
attention to the recursion algorithm for the rotation mat
elements published in@23#. J.E. would like to thank K. Kal-
lio for stimulating discussions. We acknowledge financ
support from the Natural Sciences and Engineering Rese
Council of Canada.

APPENDIX

Ideally, we would like to construct an initial classical de
sity that reproduces all of the moments of the initial quant
coherent states. This is possible in a Euclidean phase sp
in which case all Weyl-ordered moments of the coher
state can be matched exactly by the moments of a Gaus
classical distribution. However, we prove that no classi
densityrc(u,f) that describes an ensemble of spins of fix
lengthuJu can be constructed with marginal distributions th
match those of the SU~2! coherent states~21!. Specifically,
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we consider the set of distributions onS 2 with continuous
independent variablesuP@0,p# and fP@0,2p), measure
dm5sinu du df, and subject to the usual normalization,

E
S 2

dm rc~u,f!51. ~A1!

For convenience we choose the coherent state to
polarized along the positive-z axis, r5u j , j &^ j , j u. This state
is axially symmetric: rotations about thez axis by an arbi-
trary angle f leave the state operator invariant. Cons
quently, we require axial symmetry of the correspond
classical distribution,

rc~u,f!5rc~u!. ~A2!

We use the expectation of the quadratic operator,^J2&
5 j ( j 11), to fix the length of the classical spins,

uJu5A^J2&c5Aj ~ j 11!. ~A3!

Furthermore, the coherent stateu j , j & is an eigenstate ofJz

with moments along thez axis given bŷ Jz
n&5 j n for integer

n. Therefore we require that the classical distribution p
duces the moments

^Jz
n&c5 j n. ~A4!

These requirements are satisfied by thed-function distribu-
tion

rv~u!5
d~u2uo!

2p sinuo
, ~A5!

where cosuo5j/uJu definesuo . This distribution is the famil-
iar vector model of the old quantum theory corresponding
the intersection of a cone with the surface of the sphere

However, in order to derive an inconsistency between
quantum and classical moments we do not need to ass
that the classical distribution is given explicitly by Eq.~A5!;
we only need to make use of the the azimuthal invaria
condition ~A2!, the length condition~A3!, and the first two
even moments of Eq.~A4!.
tte

ca

ev
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First we calculate some of the quantum coherent s
moments along thex axis ~or any axis orthogonal toz),

^Jx
m&50 for odd m,

^Jx
2&5 j /2,

^Jx
4&53 j 2/42 j /4.

In the classical case, these moments are of the form

^Jx
m&c5E dJzE df rc~u!uJum cosm~f!sinm~u!. ~A6!

For m odd the integral overf vanishes, as required for cor
respondence with the odd quantum moments. Form even we
can evaluate Eq.~A6! by expressing the right-hand side as
linear combination of thez-axis moments~A4! of equal and
lower order. Form52 this requires substituting sin2(u)51
2cos2(u) into Eq.~A6! and then integrating overf to obtain

^Jx
2&c5pE dJz rc~u!uJu22pE dJz rc~u!uJu2 cos2~u!

5uJu/22^Jz
2&/2.

Since^Jz
2& is determined by Eq.~A4! and the length is fixed

from Eq. ~A3! we can deduce the classical value witho
knowing r(u),

^Jx
2&c5 j /2. ~A7!

This agrees with the value of the corresponding quant
moment. Form54, however, by a similar procedure w
deduce

^Jx
4&c53 j 2/8, ~A8!

which differs from the quantum moment^Jx
4& by the factor

dJx
45u^Jx

4&2^Jx
4&cu5u3 j 2/82 j /4u, ~A9!

concluding our proof that no classical distribution onS 2 can
reproduce the quantum moments.
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