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Characteristics of quantum-classical correspondence for two interacting spins
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The conditions of quantum-classical correspondence for a system of two interacting spins are investigated.
Differences between quantum expectation values and classical Liouville averages are examined for both
regular and chaotic dynamics well beyond the short-time regime of narrow states. We find that quantum-
classical differences initially grow exponentially with a characteristic exponent consistently larger than the
largest Lyapunov exponent. We provide numerical evidence that the time of the break between the quantum
and classical predictions scales as (@(), where 7 is a characteristic system action. However, this loga-
rithmic break-time rule applies only while the quantum-classical deviations are smalleOtign We find
that the quantum observables remain well approximated by classical Liouville averages over long times even
for the chaotic motions of a few degree-of-freedom system. To obtain this correspondence it is not necessary
to introduce the decoherence effects of a many degree-of-freedom environment.
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| INTRODUCTION seems to scale ag7(#)? [8].) Since the log(7#) time scale
is rather short, it has been suggested that certain macroscopic

There is considerable interest in the interface betweewbjects would be predicted to exhibit nonclassical behavior
quantum and classical mechanics and the conditions that leauh observable time scal§8,10]. These results highlight the
to the emergence of classical behavior. In order to charactefmportance of investigating the characteristics of quantum-
ize these conditions, it is important to differentiate two dy-classical correspondence in more detail.
namical regimes of quantum-classical correspondéticei) !N this paper we study the classical and quantum dynam-
Ehrenfest correspondence, in which the centroid of the wav s of two Interacting spins. This model is convenient
packet approximately follows a classical trajectory; il ecause the Hilbert space of the quantum system is finite

Liouville correspondence, in which the quantum probabilit dimensional, and hence tractable for computations. Spin
S be - q im p Ymodels have been useful in the past for exploring classical
distributions are in approximate agreement with those of an 4 quantum chaof8,11—-15 and our model belongs to a

a_ppropriately constructed classical ensemble satisfying Liouc':lass of spin models that shows promise of experimental
ville’s equation. , realization in the near futurgl6]. The classical limit is
Regime(i) is relevant only when the width of the quan- 5phr0ached by taking the magnitude of both spins to be very
tum state is small compared to the dimensions of the systemage relative to%, while keeping their ratio fixed. For our
if the initial state is not narrow, this regime may be absentyode| a characteristic system action is given Bl
Regime(ii), which generally include$), applies to a much  wherel is a quantum number, and the classical limit is sim-
broader class of states, and this regime of correspondengsty the limit of large quantum numbers, i.e., the limit
may persist well after the Ehrenfest correspondence has brp-— «,
ken down. The distinction between regimgsand (i) has In the case of the chaotic dynamics for our model, we first
not always been made clear in the literature, though the corshow that the widths of both the quantum and classical states
ditions that delimit these two regimes, and in particular theirgrow exponentially at a rate given approximately by the larg-
scaling with system parameters, may be quite different.  est Lyapunov exponeigtintil saturation at the system dimen-
The theoretical study of quantum chaos has raised theion). We then show that the initially small quantum-
question of whether the quantum-classical break occurs difelassical differences also grow at an exponential rate, with an
ferently in chaotic states, in states of regular motion, and irexponent\ . that is independent of the quantum numbers
mixed phase-space systems. This is well understood only iand at least twice as large as the largest Lyapunov exponent.
the case of regimé). There it is well known2—-4] that the  We demonstrate how this exponential growth of differences
time for a minimum-uncertainty wave packet to expandleads to a logarithmic break-time ruleb:)\gclln(lp/h),
beyond the Ehrenfest regime scales as Jéfjj for chaotic  delimiting the regime of Liouville correspondence. The
states, and as a power g for regular states, whergy  factorp is some preset tolerance that defindseakbetween
denotes a characteristic system action. the quantum and classical expectation values. However, we
The breakdown of quantum-classical correspondence, ialso show that this logarithmic rule holdmly if the toler-
the case of regiméi), is less well understood, though it has ancep for quantum-classical differences is chosen extremely
been argued that this regime may also be delimited by amall, in particularp<O(#). For larger values of the
log(J7%) break time in classically chaotic stafés6]. Some  tolerance, the break time does not occur on this logarithmic
numerical evidence in support of this conjecture has beetime scale and may not occur until the recurrence time. In
reported in a study of the kicked rotor in tl@omolous this sense, logarithmic break-time rules describing Liouville
diffusion regime[7]. (On the other hand, in the regime of correspondence are not robust. These results demonstrate
quantum localizationthe break time for the kicked rotor that, for chaotic states in the classical limit, quantum observ-
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ables are described approximately by Liouville ensemble avf2s+1)X (21 +1). This space is spanned by the orthonor-
erages well beyond the Ehrenfest time scale, after which bottnal vectors|s,mg)®|l,m;), where mge{s,s—1,...,—s}
quantum and classical states relax towards equilibrium disandm,e{l,I—1,...,—I}. These are the joint eigenvectors
tributions. This demonstration of correspondence is obtainedf the four spin operators

for a few degree-of-freedom quantum system of coupled

spins that is described by a pure state and subject only to S[s,l,ms,m))=s(s+1)[s,I,mg,m),
unitary evolution.
This paper is organized as follows. In Sec. |l we describe S/ls.lms,m)=mgls,l,mg,my), 2

the quantum and classical versions of our model. We exam-
ine the behaviors of the classical dynamics in some detalil. In
Sec. Il we define the initial quantum states, which aré3U
coherent states, and then define a corresponding classical

density on the two-sphere which is a good analog for these g periodic sequence of interactions introduced bydhe

states. We show in the Appendix that a perfect match i§nction produces a quantum mapping. The time evolution

. . . . . . 2

impossible: no distribution onS® can reproduce the fo 5 single iteration, from just before a kick to just before
moments of the S(2) coherent states exactly. In Sec. IV we 4 next, is produced by the unitary transformation
describe our numerical techniques. In Sec. V we examine the

quantum dynamics in regimes of classically chaotic and [p(n+1))=F |¢(n)), 3
regular behavior and demonstrate the close quantitative cor- _ _

respondence with the Liouville dynamics that persists welwhereF is the single-step Floquet operator,

after the Ehrenfest break time. In Sec. VI we characterize the . .

growth of quantum-classical differences in the time domain. F=exg—ia(S;+L,) Jexd —icS,L,]. )
In Sec. VIl we characterize the scaling of the break time forg; .« o is a rotation its range is 2 radians. The quantum

small quantum-classical differences and also examine thﬁynamics are thus specified by two parametemsndc, and

scahng of_th_e maximum quantum-classical differences in th(:‘EW0 quantum numbers and|.
classical limit.

An explicit representation of the single-step Floquet
operator can be obtained in the bagisby first reexpressing
Il. THE MODEL the interaction operator in E¢4) in terms of rotation opera-
fors,

L?[s,l,ms,m)=1(1+1)|s,I,mg,m;),

L,|s,I,mg,m)=ms,I,mg,m;).

We consider the quantum and classical dynamics gene
ated by a nonintegrable model of two interacting spins, exd —icS,®L,]=[RO(8,$)®RD(8, ) Jexd —icS,oL,]

. (s 0 -1
H=a(SZ+LZ)+cs(|_XZ S(t—n), 1) X[R¥(6,9)2RYV(6,4)] %, (5

using polar angled= /2 and azimuthal anglé=0. Then
where S=(S,,S,,S,) and L=(L,,L,,L,). The first two the only nondiagonal terms arise in the expressions for the
il il X y1 z)"

terms in Eq.(1) correspond to a simple rotation of both spins otation matrices, which take the form,

about thez axis. The sum over the coupling terms describes Cpd) o L G0)

an infinite sequence af-function interactions at times=n (1.m’|RY(6,)|j,m)=exp(—im ¢y m(0). (6)
for integern. Each interaction term corresponds to an impul-tpa matrix elements

sive rotation of each spin about thkeaxis by an angle pro- ’

portional to thex component of the other spin. d9) (0)=(j,m’|exp(—i6d,)|j,m) (7)

A. The quantum dynamics are given explicitly by Wigner's formul@19].

To obtain the quantum dynamics we interpret the Carte- We are interested in studying the different time-domain

sian components of the spins as operators satisfying the usu%l'ag?;iirg;css (s)tfe?:]jir;(tﬁi?i tgzsiteh';/?zeiIg?gpctﬁzoiiocr:jesﬁsrg?'
angular-momentum commutation relations, 9 Y 9 y

ics. In order to compare quantum systems with different

[S.S]1=i€iSk, quantum numbers it is convenient to normalize subsystem
observables by the subsystem magnituy@e?)=\i(1+1).
[Li,Lj]=ie€jxl, We denote such normalized observables with a tilde, where
= ~ Lly(m)
[Jidj]=l€ijdx- L.(n :<¢(n)| z 8
(Lo(n)) T ()

In the above we have sét=1 and introduced the total

angular momentum vectar=S+L. and the normalized variance at timds defined as
The Hamiltonian(1) possesses kinematic constants of the

motion,[ S>,H]=0 and[L? H]=0, and the total state vector (LA —(L(n))?

[(1+1)

~a
| ) can be represented in a finite Hilbert space of dimension AL ()

C)
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B. Classical map v

For the Hamiltoniar(1) the corresponding classical equa-  FIG. 1. Behavior of the classical mapping for different values of
tions of motion are obtained by interpreting the angular-r=|L|/|S| andy=c|S| with a=5. Circles correspond to parameter
momentum components as dynamical variables, satisfying values for which at least 99% of the surface aPggroduces regular

dynamics and crosses correspond to parameter values for which the

1S .Sj} = €ijk Sk, dynamics are at least 99% chaotic. Superpositions of circles and
crosses correspond to parameter values that produce a mixed phase

{L; ,Lj}=sijkLk, space. We investigate quantum-classical correspondence for the
parameter valuey=1.215 (mixed regime and y=2.835 (global

13i Jj} = €ijk chao$, with r=1.1, which are indicated by filled circles.

with _{.,._} denoting _the Poisson bracket. The _perloaﬁc ac[0,27), ye(—o,»), andr=1. The first of thesea,
function in the coupling term can be used to define surfaces ) . .
att=n, for integern, on which the time evolution reduces to controls the angle of free-field rotation about thaxis. The

a stroboscopic mapping parametery=c|9| is a dimensionless coupling strength and

r=|L|/|S| corresponds to the relative magnitude of the two
SNn+1_"&n _ran TN _ BN o n : spins.

S Sccosa) —[ Sy cosyrl,) = S; sintyrl) sin(@), We are particularly interested in the effect of increasing
the coupling strengtly for different fixed values of. In Fig.

an+1_ e AN = N o
S =[S cogyrLy) — S sin(yrLy) Jcoda) + Sisin(a), 1 we plot the dependence of the classical behavior on these
i1 = o . two parameters for the case=5, which produces typical
S; =S, cogyrL,) + Sy sin(yrLy), (1)) results. The data in this figure were generated by randomly
B B B o B sampling initial conditions orP, using the canonical invari-
LQ+1: L)r: coga)— [L; cog ’)’an) — LQ sin( nysxn)]sin(a), ant measure
Ly i=[L]cogyS)) L} sin(yS})]coga) + Ly sin(a), du(x)=d8,dé.dl,dd, , (12)
TnHl_T TN L TN i R
L3" =L codyS)+Lysin(yS)), and then calculating the largest Lyapunov exponent associ-

~ ~ ] ated with each trajectory. Open circles correspond to regimes

where L=L/|L|, S=S/[S| and we have introduced the \here at least 99% of the initial conditions were found to
parametersy=c|S andr=|L|/|S. The mapping equations exhibit regular behavior and crosses correspond to regimes
(11) describe the time-evolution of E¢l) from just before  \yhere at least 99% of these randomly sampled initial condi-
one kick to just before the next. _ tions were found to exhibit chaotic behavior. Circles with

ZSmce tr;e magnitudes of both spins are conservedsrosses through thertthe superposition of both symbols
{S"H}={L%H}=0, the motion is actually confined to the correspond to regimes with a mixed phase space. For the
four-dimensional manifoldP=S%x S, which corresponds casea=5 and withr held constant, the scaled coupling
to the surfaces of two spheres. This is manifest when theiengthy plays the role of a perturbation parameter: the
mapping (11) is expressed in terms of the foganonical  cjassical behavior varies from regular, to mixed, to predomi-
coordinatesx=(S;, ¢s,L,,¢), where ¢s=tan(S,/S,) and  nantly chaotic a$y| is increased from zero.
$=tan(L,/L,). We will refer to the mapping(11) in The fixed points of the classical mé&pl) provide useful
canonical form using the shorthand notatidti *=F(x"). It information about the parameter dependence of the classical
is also useful to introduce a complete set of spherical coorhehavior and, more importantly, in the case of mixed
dinates §=(05,¢S,0| &), where ,=cos }(S,/|S]) and regimes, help locate the zones of regular behavior in the
6,=cos Y(L,/|L]). four-dimensional phase space. We find it sufficient to con-

The classical flon(11) on the reduced surface still has  sider only the four trivial (parameter-independenfixed
a rather large parameter space; the dynamics are determinpdints that lie at the poles along tleaxis: two of these
from three independent dimensionless parameterspoints correspond to parallel spinsS,(L,)==(|9,|L]),
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and the remaining two points correspond to antiparallel 3.
spins, 6,.L,)=(=[S,7|L]). . =
The stability around these fixed points can be determined
from the eigenvalues of the tangent map matri¥,
=gF/dx, where all derivatives are evaluated at the fixed °
point of interest(lt is easiest to derivd/l using the sixnon-
canonicalmapping equationéll) since the tangent map for
the canonicalmapping equations exhibits a coordinate sys-
tem singularity at these fixed point§he eigenvalues corre-
sponding to the four trivial fixed points are obtained from the
characteristic equation,

1

FIG. 2. Stroboscopic trajectories on the unit sphere launched
from a regular zone of the mixed regime with=1.215,r=1.1,

[£2—2¢&cosa+1]%+ £2y%r sirfa=0, (13 a=5, andf(0)=(5°,5°5°5°).

with the minus (plus) sign corresponding to the parallel spheres in a seemingly random manner. As expected, a com-
(antiparalle] cases, and we have suppressed the trivial factoputation of the largest associated Lyapunov exponent yields
(1—&)2 that arises since the six equatidid) are not inde- g5 positive numberX, =0.04).

pendent. For the parallel fixed points we have the four eigen-

values are 2. Global chaos:y=2.835
1 If we increase the coupling strength to the valye
552: cosaiz\/r yz sirfa =2.835, witha=5 andr=1.1 as before, then all four trivial

fixed points become unstable. By randomly sampiihgith
1 3% 10* initial conditions we find that less than 0.1% of the
+ E\/i4 cosay/y?r siffa— (sinta)(4— y2r), kinematically accessible surfade is covered with regular
islands(see Fig. 1 This set of parameters produces a con-
(14 nected chaotic zone with largest Lyapunov exponknt
1 =0.45. We will refer to this type of regime as one of “glo-
P _ +_Jr2si bal chaos” although the reader should note that our usage of
£ Cosa_2 o sira this expression differs slightly from that in R¢R0].

1 -
- 5\/i4 cosay/y?r siffa— (sirta)(4— y%r), 3. The limit r>1
Another interesting limit of our model arises when one of

and the eigenvalues for the antiparallel casé$, are ob- the spins is much larger than the other; 1. We expect that
tained from Egs.(14) through the substitutiom— —r. A in this limit the larger spinif) will act as a source of essen-
fixed point becomes unstable if and only4f>1 for at least fially external “driving” for the smaller spin §). Referring

one of the four eigenvalues. to the coupling terms in the mappindl), the driving
strength, or perturbation updfrom L, is determined from
1. Mixed phase spacey=1.215 the productyr =c|L|, which can be quite large, whereas the

“back-reaction” strength, or perturbation upanfrom S, is
governed only by the scaled coupling strenggkc|9|,
&vhich can be quite small. It is interesting to examine whether
a dynamical regime exists where the larger system might
approach regular behavior while the smaller “driven” sys-
tem is still subject to chaotic motion.

We are particularly interested in the behavior of this
model when the two spins are comparable in magnitud
Choosing the value=1.1 (with a=5 as beforg we deter-
mined by numerical evaluation that the antiparallel fixed
points are unstable fgry|>0. In the case of the parallel
fixed points, all four eigenvalues remain on the unit circle,
|€P|=1, for |y|<1.42. This stability condition guarantees .
the presence of regular islands about the parallel fixed points
[20]. In Fig. 2 we plot the trajectory corresponding to the 1
parametera=5, r=1.1, y=1.215 and with initial condi-
tion 5(0)=(5°,5°,5°,5°) which locates the trajectory neara
stable fixed point of a mixed phase spdsee Fig. 1. This
trajectory clearly exhibits a periodic pattern that we have
confirmed to be regular by computing the associated I _;
Lyapunov exponentN; =0). In contrast, the trajectory plot- 3
ted in Fig. 3 is launched with the same parameters but with
initial condition #(0)=(20°,40°,160°,130°), which is close FIG. 3. Same parameters as Fig. 2, but the trajectory is launched
to one of the unstable antiparallel fixed points. This trajecfrom a chaotic zone of the mixed regime with the initial condition
tory explores a much larger portion of the surface of the twog(0)=(20°,40°,160°,130°).

z
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~ L,
<Lz(n)>c: fpdﬂ(x)mpc(xun) (17)

by summing over this distribution of trajectories at each time
step.

D. Correspondence between quantum and classical models

For a quantum system specified by the four numbers
{a,c,s,I}, the corresponding classical parametgasy,r}

FIG. 4. A chaotic trajectory for mixed regime parameters are determined if we associate the magnitudes of the classi-
=0.06, r=100, anda=5 with 6(0)=(27°,27°,27°,27°). The cal angular momenta with the quantum spin magnitudes,
motion of the larger spin appears to remain confined to a narrow

band on the surface of the sphere. |S|c=s(s+1),
(18
In Fig. 4 we plot a chaotic trajectory far=100 with ILle=VI(I+1).

initial condition 5(0)=(27°,27°,27°,27°), which is located

in a chaotic zoneX, —0.026) of a mixed phase spatgith This prescription produces the classical parameters,

a=5 and y=0.06). Although the small spin wanders \/m
chaotically over a large portion of its kinematically acces- r=\/———>-
sible shellS?, the motion of the large spin remains confined S(s+1)
to a “narrow” band. Although the band is narrow relative to —cVs(s+1) (19)
the large spin’s length, it is not small relative to the smaller y=Cys(s '
spin’s length. The trajectories are both plotted on the unityiin 3 the same number for both models.
sphere, so the effective area explored by the large (pla- We are interested in determining the behavior of the
tive to the effective area covered by the small $icales in guantum dynamics in the lims—o andl—. This is a
proportion tor?. ccomplished by studying sequences of quantum models with
sandl increasing though chosen such that the classieald
C. The Liouville dynamics v are held fixed. Since and| are restricted to integeior

glalf-intege]f values, the corresponding classicalill actu-

ally vary slightly for each member of this sequertathough

aY can be matched exactly by varying the quantum parameter
In the limit s—o and |—o this variation becomes

We are interested in comparing the quantum dynamic
generated by Eq.(3) with the corresponding Liouville
dynamics of a classical distribution. The time evolution of
Liouville density is generated by the partial-differential _C)'

equation increasingly small sincer=yI(I+1)/s(s+1)—l/s. For
convenience, the classicalcorresponding to each member
dpe(X,t) of the sequence of quantum models is identified by its value
—r — teeHh (19 in this limit. We have examined the effect of the small varia-

tions in the value of on the classical behavior and found the

where H stands for the Hamiltonian(l) and x  variation to be negligible.

:(SZI¢51LZI¢I)'
The solution to Eq(15) can be expressed in the compact I INITIAL STATES
form A. Initial quantum state
We considerinitial quantum states which are pure and
b0 | duS-XtYIply0, (16 separable,

_ _ _ |4(0))=45(0))®|¢4(0)). (20)
with measuredu(y) given by Eq.(12) and each time-
dependent function(t,y) € P is a solution of the equations For the initial state of each subsystem we use one of the
of motion for Eq.(1) with an initial conditionye P. This  directed angular-momentum states,
integral solution(16) simply expresses that Liouville’s equa- i .
tion (15 describes the dynamics of a classical density 10,0)=RY(0,4)]j.1), (2D
pc(x,t) of points evolving in phase space under the Hamil-
tonian flow. We exploit this fact to numerically solve Eq.
(15 by randomly generating initial conditions consistent

which corresponds to states of maximum polarization in the
direction (0, ¢). It has the properties

with an initial phase-space distributi@R(x,0) and then time (6,¢]3,]0,4)=] cosb,

evolving each of these initial conditions using the equations (22)
of motion (11). We then calculate the ensemble averages of .

dynamical variables (0,0|3xidy|0,py=je"'?sing,
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wherej in this section refers to eithéror s. The variances? and the magnitudél|, are free param-
The stateg21) are the SW2) coherent states, which, like eters of the classical distribution that should be chosen to fit

their counterparts in the Euclidean phase space, are minihe quantum probabilities as well as possible. It is shown in

mum uncertainty statd®1]; the normalized variance of the the Appendix that no classical density has marginal distribu-

quadratic operator, tions that can match all of the quantum moments, so we
5 5 concentrate only on matching the lowest-order moments.

2 (0, #|3706,0)—(6,913]6, ) 1 (23 Since the magnitude of the spin is a kinematic constant, both

j(j+1) (j+1) classically and quantum mechanically, we choose the

squared length of the classical spin to have the correct quan-
is minimized for giverj and vanishes in the limjt—«~. The  tum value,
coherent statef§,j) and|j,—j), polarized along the axis,

also saturate the inequality of the uncertainty relation, 918=(32) e+ (I +(I)c=i(j+1). (26)
J Z)Z For a state polarized along the axis, we have(J,)
<‘]x><‘]y>> (24 =(3,)=0 and(J2)=(32) for both distributions as a conse-

quence of the axial symmetry. Furthermore, as a conse-
although this inequality is not saturated for coherent stateguence of Eq(26), we will automatically satisfy the condi-
polarized along other axes. tion

2 2 iy
B. Initial classical state and correspondence 2(Tdet (J2)e=1(+1). (27)

in the macroscopic limit Therefore we only need to consider the classical moments

We compare the quantum dynamics with that of a classi-

cal Liouville density which is chosen to match the initial (IDe=1|G(a?), (28)
probability distributions of the quantum coherent state. For )
quantum systems with a Euclidean phase space it is always (35 c=131%c%G(d?), (29

possible to construct a classical density with marginal prob-

ability distributions that match exactly the correspondingcalculated from the densit{25) in terms of the remaining
moments of the quantum coherent state. This follows fronfree parameter?, where

the fact that the marginal distributions for a coherent state are
positive definite Gaussians, and therefore all of the moments
can be matcheexactly by choosing a Gaussian classical
density. For the S(2) coherent state, however, we show in
the Appendix that no classical density has marginal distribuyve would like to match both of these classical moments
tions that can reproduce even the low-order moments of th@jith the corresponding quantum values,

guantum probability distributiongexcept in the limit of

1+exp—20 ?)

2
SR Eyp—

— o2, (30)

infinite j). Thus from the outset it is clear that any choice of J)=1i, (31
an initial classical state will exhibit residual discrepancy in
matching some of the initial quantum moments. (3%y=j/2, (32

We have examined the initial state and dynamical
guantum-classical correspondence using several differemialculated for the coherent sta@l). However, no choice of
classical distributions. These included the vector modeb? will satisfy both constraints.
distribution described in the Appendix and the Gaussian dis- If we chooseo? to satisfy Eq(31) exactly then we would
tribution used by Fox and Elston in correspondence studiesbtain
of the kicked topg22]. For a state polarized along tkeaxis

we chose the density 1 3 .
0'2:—.——_+O(J 3). (33)
2 sirf| =
pc(0,0)singdodp=Cexpg — 2 sinadade If we chooseos? to satisfy(32) exactly then we would obtain
! 2
g
) 1 1 3
(1— Jz) o =2—+—2+O(j ). (34
=Cexp — di,dg, (25 I 4
0'

[These expansions are most easily derived from the approxi-
with C={27c?[1—exp(—20~ 2]} 1, instead of those previ- mation G(o?)=1—¢?, which has an exponentially small
ously considered, because it is periodic under @tation.  error for largej.]

An initial state directed along , ¢,) is then produced by a We have chosen to compromise between these values by
rigid body rotation of Eq/(25) by an angled, about they  fixing o so that the ratidJ,)./(JZ). has the correct quan-
axis followed by rotation with angle, about thez axis. tum value. This leads to the choice
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Uzz;zi_iJro(j%)_ (35) cwang
2Ji(j+1) 21 42 : L

These unavoidable initial differences between the classi-

cal and quantum moments will vanish in the “classical” "'-.quanzum g o
limit. To see this explicitly it is convenient to introduce a d o
classical (b X

measure of the quantum-classical differences,
**** *** **** **** *** *

L

83,(n) =[{3(n)) = (I(n))dl, (36)

defined at timen. For an initial state polarized in direction 20 30 40 50
(0, ), the choice(35) produces the initial difference, Kick Number

FIG. 5. Growth of normalized quantum and classical variances
37) in a chaotic zonda) and a regular zonéb) of the mixed phase-
space regime/=1.215 and =1.1 with| =154. Quantum and clas-
sical results are nearly indistinguishable on this scale. In the chaotic
which vanishes ag— . case, the approximate exponential growth of both variances is gov-
erned by a much larger rata,,=0.13 (solid line), than that pre-
dicted from the largest Lyapunov exponekt,=0.04 (dotted ling.

coq 6)

63(0)= =g +0(i ?),

IV. NUMERICAL METHODS

We have chosen to study the time-periodic spin Hamil-and thus evolves under the action of the tangent map
tonian(1) because the time dependence is then reduced to &(n+1)=M-éx(n), where M is evaluated along some
simple mapping and the quantum state vector is confined to fiducial trajectory] 20].
finite-dimensional Hilbert space. Consequently we can solve Since we are interested in studying quantum states and the
the exact time-evolution equatiori8) numerically without corresponding classical distributions that have nonzero sup-
introducing any artificial truncation of the Hilbert space. Theport on the sphere, it is also important to get an idea of the
principal source of numerical inaccuracy arises from thesize of these regular and chaotic zones. By comparing the
numerical evaluation of the matrix elements of the rotationsize of a given regular or chaotic zone to the variance of an
operator(j,m’|R(6, $)|] ,m)=exp(—i¢m’)d(j)m(0). The ro- initial state located within it, we can determine whether most

. . . m’ . 1 1 1 1 1
tation operator is required both for the calculation of theOf the state is contained within this zone. However, we can-

initial quantum coherent state, ¢)=R(6, $)|j,m=]), and  not perform this comparison by direct visual inspection since
for the evaluation of the unitary Floguet operator. In order toth€ relevant phase space is four dimensional. One strategy
maximize the precision of our results we calculated thehat we used to overcome this difficulty was to calculate the
matrix elementsdg),m( 6)=(j,m’ |exp(—i0Jy)|j,m> using the Lyapunov exponent for a large number of randomly sampled

recursion algorithm of Ref23] and then tested the accuracy initial conditions and .then project only those points XVhiCh
of our results by introducing controlled numerical errors. Forar® regular(or chaotig onto the plane spanned b§,
small quantum numberg €50) we are able to confirm the =cosé;andL,=cos§, . If the variance of the initial quantum
correctness of our coded algorithm by comparing theseétate is located within, and several times smaller than, the
results with those obtained by direct evaluation of Wigner'sdimensions of a zone devoid of any of these points, then the
formula for the matrix elementdff]),m(e). state in question can be safely identified as chaaticegu-

The time evolution of the Liouville density was simulated lar).
by numerically evaluating between &@nd 18 classical
trajectories with randomly selected initial conditions V. CHARACTERISTICS OF THE QUANTUM AND
weighted according to the initial distributiof25). Such a LIOUVILLE DYNAMICS
large number of trajectories was required in order to keep _
Monte Carlo errors small enough to resolve the initial nor- A. Mixed phase space
malized quantum-classical differences, which scale ag’1/8 We consider the time development of initial quantum
over the range of values we have examined. coherent state21) evolved according to the mappin@)
We identified initial conditions of the classical map asusing quantum numbers=140 andl =154 and associated
chaotic by numerically calculating the largest Lyapunovclassical parametens=1.215,r=1.1, anda=>5, which pro-
exponentx using the formula duce a mixed phase spatsee Fig. 1 The classical results
. are generated by evolving the initial ensem{#b) using the
mapping(11). In Fig. 5 we compare the time dependence of
A 32 ind(n), 39 pping(11) g p p

N & the normalized quantum variance\L?=[(L?)—(L)?]/

I(1+1), with its classical counterpartALZ=[(L?),
where d(n)=3;|6x,(n)|, with d(0)=1. The differential —(L)2]/|L|?. Squaregdiamonds correspond to the dynam-
ox(n) is a difference vector between adjacent trajectoriescs of an initial quantum/(classical state centered at
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6(0)=(20°,40°,160°,130°), which is located in the con- by a few eigenvalues of the local tangent map. In mixed

nected chaotic zone near one of the unstable fixed points degimes these local eigenvalues will vary considerably over
the classical map. Crosséslus signg correspond to an ini- the phase-space manifold and the product of a few of these
tial quantum(classical state centered on the initial condition €igenvalues can be quite different from the geometric mean

§(O)=(5°,5°,5°,5°), which is located in the regular zone over the entire co_nnected Zone. . .

near one of the stable fixed points. For both initial conditions However, we find that the actual growth rate Is consis-
the quantum and classical results are nearly indistinguishabf(?ntly larger than th? Lyapu.nov exponent prediction. .It IS
on the scale of the figure. In the case of the regular initial ell known that in mixed regimes the remnant KAM tori can

condition, the quantum variance remains narrow over lon € sﬂqky ; ftfhefe St'Ck% rel,'gtl'ons fc£ahn Eave a SIgnlflcantt
times and, like its classical counterpart, exhibits a regula ecreasing etiect on a caicuiation ot the Lyapunov exponent.

oscillation. In the case of the chaotic initial condition the " order to identify an initial condition as chaotic, we spe-

guantum variance also exhibits a periodic oscillation but thisCifically choose initial states_that are conc_er)t_rated away.from
oscillation is superposed on a very rapid, approximatel)}hese KAM surface¢regular islands Such initial states will

exponential, growth rate. This exponential growth perSiStjEEEdevS;)?c:‘fgg rtr;;lg(lay ;ﬁrﬁggefr%eﬁiéog%|2)r:gétligiloi2 rSzTJtSS
Zrltlzlihe "T:""‘.”?e Iapproache.slthe syste;nhsme, that is, W.rj ported by our observations that, when we choose initial con-
L .1' T e Initial exponential growth of the quantum varl- yiiong closer to these remnant tori, we find that the growth
ance in classically chaotic regimes has been obser\{ed Pr€\te of the variance is significantly reduced. These variance
ously in several models and appears to be a generic featugg, i, rates are still slightly larger than the Lyapunov rate,
of the_qua_ntL_jm dynamics; this behavior of th(_:‘ quantum variy, ¢ this s not surprising since our initial distributions are
ance is mimicked very accurately by the variance of an ini-oncentrated over a significant fraction of the phase space
tially weII—matchgad classical Q|str|but|c[d7,22,24. and the growth of the distribution is probably more sensitive
qu well-localized s.tat('es, In the g:lassu;al case, the €XP% contributions from those trajectories subject to large
nential growth of the distribution variance in chaotic zones 'Seigenvalues away from the KAM boundary than those stuck

certainly related to the exponential divergence of the underpay, the houndary. These explanations are further supported
lying trajectories, a property that characterizes classmaﬂ)

h e thi . he ob the results of the following section, where we examine a
chaos. TO. ?Xamm?t IS Cﬁn?eﬁt'on.(‘j’vﬁ co;”nﬁarelt e.;alzervei%ase-space regime that is nearly devoid of regular islands.
exponentia ratep growtn of the Wi ths of t e.cass( In these regimes we find that the Lyapunov exponent serves
quantum state with the exponential rate predicted from the

. .-as a much better approximation to the variance growth rate.
classical Lyapunov exponent. For the coherent states the ini-

tial variance can be calculated exactlyl 2(0)=1/(1+1). B. Regime of global chaos
Then, assuming exponential growth of this initial variance, ) ) ) )
we get If we increase the dimensionless coupling strengthyto

=2.835, witha=5 andr=1.1 as before, then the classical
- 1 flow is predominantly chaotic on the surfage(see Fig. 1
AL?(n)= TEXA2NN) - for n<tsa, (39  Under these conditions we expect that generic initial classi-
cal distributions(with nonzero suppoytwill spread to cover
o . - the full surface? and then quickly relax close to microca-
where a factor of 2 is included in the exponent becalls  nonjcal equilibrium. We find that the initially localized quan-
corresponds to a squared length. The dotted line in Fig. fum states also exhibit these generic features when the quan-
corresponds to the predictiad@9) with N, =\ =0.04, the tym map is governed by parameters that produce these
value of the largest classical Lyapunov exponent. As can bgonditions classically.
seen from the figure, the actual grOWth rate of the classical For the nonautonomous Hamiltonian Systm) the total
cantly larger than that predicted using the largest Lyapunoynd s?, confine the dynamics to the four-dimensional mani-
exponent. For comparison purposes we also plot a solid lingy|q p= $2x $2, which is the surface of two spheres. The
in Fig. 5 corresponding to Eq39) usingA,,=0.13, which  corresponding microcanonical distribution is a constant on
provides a much closer approximation to the actual growthhis surface, with measuré2), and zero elsewhere. From
rate. We find, for a variety of initial conditions in the chaotic this distribution we can calculate microcanonical equilibrium
zone of this mixed regime, that the actual classi@id yajues for low-order moments, where, for example,}
quantum variance growth rate is consistently larger than the— (4 7)-21 | . du=0 and{AL%}={L2}—{L}2=|L|2. The
simple prediction(39) using \, for the growth rate. This

o . : symbols{-} denote a microcanonical average.
systematic bias requires some explanation.

To give a sense of the accuracy of the correspondence

As pointed out i 22], the presence of some dlscrepancybetween the classical ensemble and the quantum dynamics in

betweenh,, and A, can be.expected from the_ fact that the Fig. 6, we show a direct comparison of the dynamics of the
Lyapunov exponent is defined as a geometric mean of the

tangent map eigenvalues sampled over the entire connectd{@ntum expectation valug ;) with 1=154 and the classi-
chaotic zone(corresponding to the infinite time limih  cal distribution averagél ;). for an initial coherent state and
— ), whereas thactual growth rate of a given distribution corresponding classical distribution centered at
over a small number of time steps will be determined largely= (45°,70°,135°,70°). To guide the eye in this figure we
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1 | T T % . | scale of the figure, and the differences between the quantum
08 [ _5‘: b + ¥ 7 and classical variance growth rates are many orders of mag-
0.6 : : % nitude smaller than the small differences in the growth rate
0.4 arising from the different initial conditions.
0.2 In contrast with the mixed regime case, in this regime of
(Ly o global chaos the predictiof39) with \,,=A =0.45 now
-0.2 serves as a much better approximation to the exponential

-0.4

growth rate of the quantum variance and associated relax-

05 + 00 : o N Classical Averag;""_e_ ation rate of the quantum and classical states. In this regime
08 L L o+ ! uantum Expectation —e— | i i i
0.8 i i et the_exponentkW is also much larger than in _the mixed
1 . " " - - - = regime case due to the stronger degree of classical chaos. As
Kick Number a result, the initially localized quantum and classical distri-

butions saturate at system size much sooner.

FIG. 6. Comparison of the quantum expectation value and cor- It is useful to apply Eq(39) to estimate the time scale at
responding classical averagk,). in the regime of global chaos which the quantum(and classical distributions saturate at
vy=2.835 andr=1.1 with |=154 and the initial conditiond, system size. From the Conditiqﬂtz(tsat)z]_ and using Eq.
=(45°,70%135°,70°). The points of the stroboscopic map are con-(39) we obtain
nected with lines to guide the eye. The quantum expectation value
and the Liouville average exhibit esentially the same rate of relax-
ation to microcanonical equilibrium, a behavior which is qualita-
tively distinct from that of the single trajectory.

tsar=(2Ny) "1 In(1), (40)
which serves as an estimate of this characteristic time scale.
In the regimes for which the full surface is predominately
have drawn lines connecting the stroboscopic points of thehaotic, we find that the actual exponential growth rate of the
mapping equations. The quantum expectation value exhibitgidth of the quantum state,,,, is well approximated by the
essentially the same dynamics as the classical Liouvillgargest Lyapunov exponemt, . For a=5 andr=1.1, the
average, not only at early times, that is, in the initial Ehren-approximation\,,=\, holds for coupling strengthsg>2,
fest regime[1,25], but for times well into the equilibrium  for which more than 99% of the surfais covered by one
regime where the classical momeht,) has relaxed close to connected chaotic zonsee Fig. L
the microcanonical equilibrium valye. ,} =0. We have also By comparing the quantum probability distribution to its
provided results for a single trajectory launched from theclassical counterpart, we can learn much more about the
same initial condition in order to emphasize the qualitativelyrelaxation properties of the quantum dynamics. In order to
distinct behavior it exhibits. compare eachm; value of the quantum distributioR,(m;)

In Fig. 7 we show the exponential growth of the normal-with a corresponding piece of the continuous classical mar-
ized quantum and classical variances on a semilogarithmiginal probability distribution,
plot for the same set of parameters and quantum numbers.

Numerical data for@) correspond to initial conditiorﬁ(O)
=(20°,40°,160°,130°) and those faib) correspond to
6(0)=(45°,70°,135°,70°). As in the mixed regime case, the

quantum-classical differences are nearly imperceptible on the/e discretize the latter intoj2-1 bins of width7=1. This
procedure produces a discrete classical probability distribu-

PC<LZ>=HJdézd¢sd¢|pc<es,¢s,a|,¢|>, (42)

1 ¥l a8 tion P5(m;) that prescribes the probability of finding the spin
C ] component., in the interval[ m,+ 1/2m,— 1/2] along thez
a ] axis.
Af? quantum (a) O To illustrate the time development of these distributions
oL qglgg;g; %o we compare the quantum and classical probability distribu-
classical (b) x 3 tions for three successive values of the kick nuntharsing
the same quantum numbers and initial condition as in Fig. 6.
In Fig. 8 the initial guantum and classical states are both well
localized and nearly indistinguishable on the scale of the
0.01 . figure. At timen=6=tg,;, shown in Fig. 9, both distribu-
. . . L] tions have grown to fill the accessible phase space. It is at

6 8 10 12 14
Kick Number

this time that the most significant quantum-classical discrep-
ancies appeatr.

FIG. 7. Growth of normalized quantum and classical variances FOf times greater thans,;, however, these emergent
in the regime of global chaos;=2.835 and =1.1 with| = 154, for quantum-classical discrepencies do not continue to grow,
the two initial conditions cited in the text. Quantum-classical dif- Since both distributions begin relaxing towards equilibrium
ferences are nearly imperceptible on this scale. In this regime théistributions. Since the dynamics are confined tooenpact
largest Lyapunov exponent, =0.45 provides a much better esti- phase space, and in this parameter regime the remnant KAM
mate of the initial variance growth rate. tori fill a negligibly small fraction of the kinematicaly acces-
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0.1 0.02
0.08 | P(m) —— A P, (m)) ——
P:lmy . 0.015 - Pém) - A
0.06 |- i
0.01 F i
0.04 | i
0.005
0.02 | 4 Mo |
0 | I\ | | | | | 0 | | | | | | |
-150  -100 50 0 50 100 150 4150 -100 -50 0 50 100 150
my my

FIG. 8. Initial probability distributions forL, for 6(0) FIG. 10. Same as Fig. 9, but for=15. Both quantum and
=(45°,70°,135°,70°) with=154. The quantum and classical dis- classical distributions have relaxed close to the microcanonical

tributions are indistinguishable on the scale of the figure. equilibrium.

VI. TIME-DOMAIN CHARACTERISTICS

sible phase space, we might expect the classical equilibrium OF QUANTUM-CLASSICAL DIFFERENCES

distribution to be very close to the microcanonical distribu- _ _ _
tion. Indeed such relaxation close to microcanonical equilib- We consider the time dependence of quantum-classical
rium is apparent for both the quantum and the classical disdifferences defined along theaxis of the spirL,
tribution at very early times, as demonstrated in Fig. 10, _ _
corresponding to=15. SLo(M)=[{Lo(m) = {Lo(m)cl,
Thus the signature of a classically hyperbolic flow, 4t the stroboscopic times=n. In Fig. 11 we compare the

namely, the exponential relaxation of an arbitrary distribu-tjme dependence ofSL,(n) on a semilogarithmic
tion (with nonzero measuyeo microcanonical equilibrium plot for a chaotic state(filled circles with 5(0)

[26], holds to good approximation in this model in a regime:(200 ,40°,160°,130°) and a regular staiEpen circles
of global chaos. More suprisingly, this classical signature isé(O):(5° 5° 5° 59, evolved using the same mixed-regime
manifest also in the dynamics of the quantum distribution. In arameter,s szl 21’5 andr=1.1) and quantum numbers
the quantum case, however, as can be seen in Fig. 10, t [ 154) as in FiQ 5 ’

probability distribution is subject to small irreducible time- T

dependent fluctuations about the classical equilibrium. We

(42

T
. . : . et Mty
examine these quantum fluctuations in detail elsewf&fg 100 WW%%+ tf
.................. +tT T s
. e LN
PR AR AR L
1 L] - -
0.02 T eaosestass e
! 00 %0 02508 . o o
T T T T T T T 01 w%?%’o%%p% 2 ooo‘*’%%o‘z’ 6. '_2”;9_,
P(m) —— 0.01 §. o o i
0.015 - p;fm,g ______ § .
0.001 . i
1 Il
100 150 200
0.01 Kick Number
FIG. 11. Time dependence of quantum-classical differences in a
0.005 - regular zone(open circles and a chaotic zongfilled circles of
mixed regime =1.215 andr=1.1) with|=154. For the chaotic
state, 6L,=|(L,)—{(L,)¢ is contrasted with the Ehrenfest differ-
0 - . . i . ence [(L,)—L,| between the quantum expectation value and a
2150 -100 -50 0 50 100 150 single trajectory(plus signg, which grows until saturation at the
m system dimension. The solid line corresponds to E®) using

Aqc=0.43. The horizontal lines indicate two different values of the
FIG. 9. Same as Fig. 8, but the states have evolvat=té in difference tolerance which may be used to determine the break
the regime of global chaog=2.835 and =1.1. Both the quantum time; for p=0.1 (dotted ling t,, occurs on a logarithmic time scale,
and classical distribution have spread to the system dimension aralit for p=15.4 (sparse dotted linet,, is not defined over numeri-
exhibit their largest differences on this saturation time scale. cally accessible time scales.
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FIG. 12. Growth of the quantum-classical differengle, in the FIG. 13. Growth of quantum-classical differences in the regime

chaotic zone of a mixed regime,=1.215 andr=1.1, withI=22  of global chaos,y=2.835 andr=1.1 with |=154, for the two

(filled circles andl =220 (open circles Forl =220 the exponential initial conditions cited in text. The exponential growth r&4) is

growth rate(43) is plotted using the classical Lyapunov exponent, plotted using the classical Lyapunov exponext=0.45 (dotted

A\_=0.04 (sparse dotted lingand for bothl values(43) is plotted  line), and the exponent,.= 1.1(solid ling), which is obtained from

using the exponent .= 0.43 (solid line for| =22, dotted line for  a fit of Eqg. (44) to the corresponding break-time data in Fig. 14.

|1 =220), which is obtained from a fit of E¢44) to the correspond-

ing break-time data in Fig. 14. magnitude of the difference at the end of the exponential
growth phase saturates at the valilg(t*)=1, which does

We are interested in the behavior of the upper envelope dfot scale with the system dimensisee Fig. 15 The initial
the data in Fig. 11. For the regular case, the upper envelopgondition 6(0)=(45°,70°,135°,70°Xopen circleg leads to
of the quantum-classical differences grows very slowly, a@n anomolously large deviation at the end of the exponential
some polynomial function of time. For the chaotic case, or@rowth phasegL,(t*)=10, though still small relative to the
the other hand, at early times the difference meagdge  System dimensiotL!2154. This deviation is transient how-
grows exponentially until saturation aroune-15, which is ~ €Ver, and at later times the magnitude of quantum-classical
well before reaching system dimensidh|=I=154. After differences fluctuates about the equilibrium valéle,~1.
this time, which we denoté*, the quantum-classical differ- The quantum-classical differences are a factor bisfraller
ences exhibit no definite growth, and fluctuate about thé"an typical differences between the quantum expectation

equilibrium valuesL,~1<|L|. In Fig. 11 we also include value and the single trajectory, which are of order system

. . dimension(see Fig. 6 as in the mixed regime case.
data for the time dependence of the Ehrenfest difference In all cases where the initial quantum and classical states

(Lz)—L|, which is defined as the difference between theare launched from a chaotic zone we find that the initial time

guantum expectation value and the dynamical variable of ?iependence of quantum-classical differences compares
single trajectory initially centered on the quantum state. '”favorably with the exponential growth ansatz
contrast tosL,, the rapid growth of the Ehrenfest difference

continues until saturation at the system dimension.

In Fig. 12 we compare the time dependence of the 1
quantum-classicell differences in the case of the chaotic SL,(n)= aexp(?\qcn) for n<t*, (43)
initial condition 6(0)=(20°,40°,160°,130°) for quantum
numbers = 22 (filled circles andl =220 (open circleg, us- ) ) )
ing the same parameters as in Fig. 11. This demonstrates tN&€"€ the exponeni, is a new exponent subject to numeri-
remarkable fact that the exponential growth terminates whef& measuremen.7]. The prefactor 1/8is obtained by ac-
the difference measure reaches an essentially fixed magrfunting for th(ze initial co?tnbutlons2 from H;e three Cartesian
tude (OL,~1 as for the casé=154), although the system corcvponent.s[té Lxgoéf o Lﬁ/(?hH thZ(LO] =1/d. ¢
dimension differs by an order of magnitude in the two cases. € are interested in whether the Lyapunov expongn

In Fig. 13 we consider the growth of the quantum- |s_agood approximation tqc. In Fig. 12 we plot Eq(43)
classical difference measui@,(n) in a regime of global :N'th ?\th—M—O-04 (dottedt ling flor I—dZZO.t. Cleiarl)ihthe
chaos, forl=154, and using the same set of parameters aarges yapunov exponent Severly underssumaes e expo-

: - N ) Rential growth rate of the quantum-classical differences, in
those examined in Fig. 7(=2.835 and'=1.1). Again the s case by more than an order of magnitude. The growth
upper envelope of the difference measuile,(n) exhibits  rate of the state widthh,,=0.13, is also several times

exponential growth at early times, though in this regime ofsmajler than the initial growth rate of the quantum-classical
global chaos the exponential growth persists only for a veryitferences. In the case of Fig. 13, corresponding to a regime
short duration before saturation &t=6. The initial condi- of g|oba| chaos with a much |arger Lyapunov exponent, we
tion 6(0)=(20°,40°,160°,130°) is a typical cas@iled  plot Eq.(43) with Ngc=A_ =0.45 (dotted ling, demonstrat-

circles, where, as seen for the mixed regime parameters, thimg that in this regime, too, the largest Lyapunov exponent
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underestimates the initial growth rate of the quantum-
classical difference measuét ,(n).

We also find, from an inspection of our results, that the
time t* at which the exponential growtfd3) terminates can
be estimated fromg,,;, the time scale on which the distribu-
tions saturate at or near system s{#6). In the case of the

12

10

8
ty

PHYSICAL REVIEW A63 052103

chaaotic initial condition of Fig. 5, for whicly=1.215, visual
inspection of the figure suggests thiat~18. This should

be compared with Fig. 11, where the exponential growth of
SL,(n) ends rather abruptly &t =15. In Fig. 7, correspond-
ing to a regime of global chaosyE& 2.835), the variance

growth saturates much earlier, arougg=6, for both initial
conditions. From Fig. 13 it is aparent that in this regittie

=6. As we increasey further, we find that the exponential

growth phase of quantum-classical differencéls,(n) is

6

4 +

2

0 50 100 150 200 250
!

FIG. 14. Scaling of the break-time using the tolerapee0.1 as
a function of increasing quantum number for the mixed regime

shortened, lasting only until the corresponding quantum angiarametersy=1.215 andr=1.1 with §(0)=(20°,40°,160°,130°)

classical distributions saturate at system size. ferl2,

(filled circles, and for the global chaos parameters 2.835 and

with \| =1.65, the chaos is sufficiently strong that the initial r=1.1 with §(0)=(45°,70°,135°,70° Yopen circles We also plot

coherent state for=154 spreads to cové? within a single
time step. Similarly the initial difference measuég ,(0)
=0.001 grows to the magnitudé_,(1)=1 within a single

time step and subsequently fluctuates about that equilibriu

value. We have also inspected the variationtofwith the

guantum numbers and found it to be consistent with the log

rithmic dependence df,; in Eq. (40).

VII. CORRESPONDENCE SCALING
IN THE CLASSICAL LIMIT

We have assumed in Eg43) that the exponenk . is

a_

the results of fits to the logarithmic ruld4), which produced ex-
ponents\ ,=0.43 for y=1.215 and\ ;.= 1.1 for y=2.835.

r{%:0.1. The break time can assume only the integer values

n, and thus the data exhibit a step-wise behavior. For the
mixed regime parametersy=1.215 andr=1.1 (filled
circles, with the initial conditon 6(0)=(20°,
40°,160°,130°), a nonlinear least-squares fit to Et{)
gives \4.=0.43. This fit result is plotted in the figure as a
solid line. The close agreement between the data and the fit
provides good evidence that the quantum-classical exponent
Nqc is independent of the quantum numbers. To check this

independent of the quantum numbers. A convenient way ofésult against the time-dependeitt,(n) data, we have plot-
confirming this, and also estimating the numerical value ofied the exponential curvé43) with A\;=0.43 in Fig. 11

A

qc. is by means of a break time measure. The break time igsing a solid line and in Fig. 12 using a solid line for

the time t,(l,p) at which quantum-classical differences | =22 and a dotted line for=220. The exponent obtained
exceed some fixed toleranpewith the classical parameters from fitting Eq. (44) serves as an excellent approximation to

and initial condition held fixed. SettingL,(t,)=p in Eq.
(43), we obtaint, in terms ofp, |, and\ 4,

th=Nge IN(8pl) provided p<O(1). (44)
The restrictionp<O(1), which plays a crucial role in lim-
iting the robustness of the break-time measd), is

explained and motivated further below.

the initial exponential growtti43) of the quantum-classical
differences in each case.

In Fig. 14 we also plot break-time results for the global
chaos case/=2.835 andr=1.1 (open circley with the ini-
tial condition 5(0)=(45°,70°,135°,70°). In this regime the
gquantum-classical differences grow much more rapidly and,
consequently, the break time is very short and remains nearly
constant over this range of computationally accessible quan-
tum numbers. Due to this limited variation, in this regime we

The explicit form we have obtained for the argument of cannot confirm(44), although the data are consistent with the
the logarithm in Eq(44) is a direct result of our estimate that predicted logarithmic dependence loiMoreover, the break-
the initial quantum-classical differences arising from thetime results provide an effective method for estimating if
Cartesian components of the spin provide the dominant corwe assume that Eq44) holds. The same fit procedure as
tribution to the prefactor of the exponential growth ansatzdetailed above yields the quantum-classical expongjpt
(43). Differences in the mismatched higher-order moments=1.1. This fit result is plotted in Fig. 14 as a solid line. More
as well as intrinsic differences between the quantum dynamimportantly, the exponential curd3), plotted with fit result
ics and classical dynamics, may also contribute to this effechc=1.1, can be seen to provide very good agreement with
tive prefactor. We have checked that the initial valuethe initial growth rate of Fig. 13 for either initial condition,
5L,(0)=1/8 is an adequate estimate by comparing the in-as expected.
tercept of the quantum-classical data on a semilogarithmic In the mixed regime ¢=1.215), the quantum-classical

plot with the prefactor of Eq(43) for a variety ofl values
(see, e.g., Fig. 12

exponent ;.= 0.43 is an order of magnitude greater than the
largest Lyapunov exponent =0.04, and about three times

In Fig. 14 we examine the scaling of the break timelfor larger than the growth rate of the width,=0.13. In the
values ranging from 11 to 220 and with fixed toleranceregime of global chaosy=2.835) the quantum-classical
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exponent\,.=1.1 is a little more than twice as large as the
largest Lyapunov exponeni =0.45.

The conditionp<O(1) is a very restrictive limitation on
the domain of application of the logarithmic break tifdd),
and it is worthwhile to explain its significance. In the mixed
regime case of Fig. 11, with=154, we have plotted the
tolerance valuep=0.1 (dotted ling and p=15.4 (sparse

PHYSICAL REVIEW A 63 052103
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dotted ling. The tolerancep=0.1 is exceeded at=11,
while the quantum-classical differences are still growing ex-
ponentially, leading to a logarithmic break time for this tol-
erance value. For the toleranpe=15.4<|L|, on the other
hand, the break-time does not occur on a measurable time
scale, whereas according to the logarithmic r(#d), with

| =154 and\ 4= 0.43, we should expect a rather short brea
time t,=23. Consequently, the break tinté4), applied to
delimiting the end of the Liouville regime, is not a robust
measure of quantum-classical correspondence.

Our definition of the break timé&4) requires holding the
tolerancep fixed in absolute termgand not as a fraction of
the system dimension as {8]) when comparing systems
with different quantum numbers. Had we chosen to compar
systems using a fixed relatl\celtoleragicmen the .break time case, with maximum differences growing rapidly for small quantum
WOUI,d .be of the formsz}‘qc In(8f| ) and s.ub]e(-:t -to the numbers but tending asymptotically toward independencd. of
restrictionf <O(1/1). Sincef—0 in the classical limit, this  thase curves provide an upper bound on the tolerance vpltes

form emphasizes that the logarithmic break time applies onlyyhich the break-time measure scales logarithmically with
to differences that are a vanishing fraction of the system

dimension in that limit. o
Although we have provided numerical eviden@e Fig. ~_However, for a few combinations of parameters and
12) of one mixed regime case in which the largest quantuminitial conditions we do observe a “transient” discrepancy
classical differences occuring at the end of the exponentig?eak occuring at=t* that exceedsO(1). This peak is
growth period remain essentially constant for varying quanguickly smoothed away by the subsequent relaxation of the
tum numbers,sL,(t*)~O(1), we findthat this behavior quantum and classical distributions. This peak is apparent in
represents the typical case for all parameters and initial corFig. 13 (open circle§ corresponding to the most conspicu-
ditions which produce chaos classically. To demonstrate thisus case that we have identified. This case is apparent as a
behavior we consider the scalifgith increasing quantum small deviation in the normalized data of Fig. 6. The scaling
number$ of the maximum values attained bt ,(n) over  of the magnitude of this peak with increasinig plotted with
the first 200 kicks SLJ'®*. Sincet* <200 over the range of open circles in Fig. 15. The magnitude of the peak initially
| values examined, the quantigL)'®" is a rigorous upper increases rapidly, but appears to become asymptotically in-
bound for 8L ,(t*). dependent of. The other case that we have observed occurs
In Fig. 15 we compareSL]'® for the two initial condi- ~ for the classical parameterg=2.025, withr=1.1 anda
tions of Fig. 13 and using the global chaos parameters (=5, and with  the initial  condition 6(0)
=2.835,r=1.1). The filled circles in Fig. 15 correspond to =(20°,40°,160°,130°). We do not understand the mecha-
the initial condition #(0)=(20°,40°,160°,130°). As in the Nism leading to such transient peaks, although they are of
mixed regime, the maximum deviations exhibit little or no considerable interest since _they prowde the most prominent
scaling with increasing quantum number. This is the typica®xamples of quantum-classical discrepancy that we have ob-
behavior that we have observed for a variety of differentserved.
initial conditions and parameter values. These results moti-
vate the generic rule,

0.1 1 1 1 1
150 200

250

K FIG. 15. Maximum quantum-classical difference occuring over
the first 200 kicks in the regime of global chaoy=2.835,
r=1.1) plotted against increasing quantum number. These maxi-
mum values provide an upper bound éh,(t*) for eachl. The
data corresponding to the initial condition 5(0)
=(20°,40°,160°,130°)filled circles represent a typical case in
which the maximum quantum-classical differences do not vary sig-
nificantly with |. The large deviations observed for the initial con-
%ition 6(0)=(45°,70°,135°,70°Yopen circley are an exceptional

VIII. DISCUSSION

In this study of a nonintegrable model of two interacting

SL(t%) oL

=

d+1) Jid+1)

~O(11). (45)

spins we have characterized the correspondence between
quantum expectation values and classical ensemble averages
for intially localized states. We have demonstrated that in
chaotic states the quantum-classical differences initially

Thus the magnitude of quantum-classical differences reachegtow exponentially with an exponent,. that is consistently

at the end of the exponential growth regime, expressed aslarger than the largest Lyapunov exponent. In a study of the
fraction of the system dimension, approaches zero in thenoments of the Henon-Heiles system, Ballentine and McRae
classical limit. [17,18 have also shown that quantum-classical differences
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in chaotic states grow at an exponential rate with an expo- We have found, however, that for certain exceptional
nent larger than the largest Lyapunov exponent. This exposombinations of parameters and initial conditions there are
nential behavior appears to be a generic feature of the shontelative quantum-classical differences occuring at the end of
time dynamics of quantum-classical differences in chaoti¢he exponential growth phase that can be larger @ébf),
states. though still much smaller than the system dimension. In
Since we have studied a spin system, we have been abfbsolute terms, these transient peaks seem to grow with the
to solve the quantum problem without truncation of theSystem dimension for small quantum numbers, but become
Hilbert space, subject only to numerical roundoff, and thusasymptotically independent of the system dimension for
we are able to observe the dynamics of the quantum-classic'9er quantum numbers. Therefore, even in these least

differences well beyond the Ehrenfest regime. We havdavorable cases, thieactional differences between quantum

shown that the exponential growth phase of the quantum"fmd.d"’.ISSical dyna}mics a'pproach Zero in t.h‘? lirito, This
anishing of fractional differences is sufficient to ensure a

classical differences terminates well before these difference . T
. : . . assical limit for our model.
have reached system dimension. We find that the time scalé™_: :
Finally, contrary to the results found in the present model,

ath\./vr;:ctrr\] th:; ?ggu? can_gfhesnmated rf]r%n the ttlme Zpale 4 has been suggested that a logarithmic break time delimit-
whic € distribution widths approac € system 'men"mg the Liouville regime implies that certain isolated macro-

sion, tsa=(2\y) ~*In(l) for initial minimum uncertainty  goqnic podies in chaotic motion should exhibit nonclassical
states. Due to the close correspondence in the growth rates ginavior on observable time scales. However, since such
the quantum and classical distributions, this time scale cafonclassical behavior is not observed in the chaotic motion
be estimated from the classical physics alone. This is usefi§f macroscopic bodies, it is argued that the observed classi-
because the computational complexity of the problem doega| behavior emerges from quantum mechanics only when
not grow with the system action in the classical case. Morethe quantum description is expanded to include interactions
over, we find that the exponeint, can be approximated by with the many degrees of freedom of the ubiquitous environ-
the largest Lyapunov exponent when the kinematic surface iment[9,10]. (This effect, called decoherence, rapidly evolves
predominantly chaotic. a pure system state into a mixture that is essentially devoid
We have demonstrated that the exponkegt governing  of nonclassical propertiestHowever, in our model the clas-
the initial growth rate of quantum-classical differences issical behavior emerges in the macroscopic limit of a few
independent of the quantum numbers, and that the effectivdegree-of-freedom quantum system that is described by a
prefactor to this exponential growth decreases hsTHese Pure state and subject only to unitary evolution. Quantum-
results imply that a logarithmic break-time ru#4) delimits cla_ssmal correqunde_nce at both early and late _t|mes arises in
the dynamical regime of Liouville correspondence. How- Shite of the logarithmic break time because FhIS b(eak—t|me
ever, the exponential growth of quantum-classical differ-"u/€ applies only when the quantum-classical difference

ences persists only for short times and small differences, an@resﬂol% is crr:osen smzfifller th?‘g)' In this sense we find
thus this logarithmic break-time rule applies only in a simi- that the decoherence efiects of the environment are not nec-

larly restricted domain. In particular, we have found that thetSSary for correspondence in the macroscopic limit. Of

magnitude of the differences occuring at the end of the initia o1 >¢ t.he effect of decoherence may be exp'erlmentgll.y SIg-
. . nificant in the quantum and mesoscopic domains, but it is not
exponential growth phase does not scale with the syste

X X . . . 'Tequiredas a matter of principléo ensure a classical limit.
dimension. A typical magnitude for these differences, rela- q P P

tive to the system dimension, ®(1/1). Therefore, lod{
break-time rules characterizing the end of the Liouville ACKNOWLEDGMENTS
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correspondence. However, the logarithmic break-time rulgity that reproduces all of the moments of the initial quantum
characterizing the end of the Liouville regime does not implycoherent states. This is possible in a Euclidean phase space,
a breakdown of Liouville correspondence because it does ndh which case all Weyl-ordered moments of the coherent
apply to the observation of quantum-classical discrepanciestate can be matched exactly by the moments of a Gaussian
larger than O(1/1). The appearance of residu&@(1/) classical distribution. However, we prove that no classical
qguantum-classical discrepancies in the description of a maaensityp.( 6, ¢) that describes an ensemble of spins of fixed
roscopic body is, of course, consistent with quantumlength|J| can be constructed with marginal distributions that
mechanics having a proper classical limit. match those of the S2) coherent state€1). Specifically,

APPENDIX
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we consider the set of distributions @ with continuous First we calculate some of the quantum coherent state
independent variablege[0,7] and ¢<[0,2r), measure Mmoments along th& axis (or any axis orthogonal ta),
du=sin#ddde, and subject to the usual normalization,

K ¢ ) IH=0 for odd m,

| g ed0.0-1 (AD (D=2

For convenience we choose the coherent state to be <J§):3j2/4—j/4.
polarized along the positive-axis, p=1j,j){j,j|. This state ,
is axially symmetric: rotations about tieaxis by an arbi- N the classical case, these moments are of the form
trary angle ¢ leave the state operator invariant. Conse-
quen;ly, we r_equ_ire axial symmetry of the corresponding (JT)sz szf de pe(6)]I™cos™(¢p)sin™(6). (A6)
classical distribution,

_ For m odd the integral ovet) vanishes, as required for cor-
0,0)=pc(0). A2 .
Pel0:4)=pc(f) (A2) respondence with the odd quantum moments.rkerven we
We use the expectation of the quadratic operatdfy  can evaluate EqAG) by expressing the right-hand side as a

=j(j+1), to fix the length of the classical spins, linear combination of the-axis momentgA4) of equal and
lower order. Form=2 this requires substituting $if)=1
|3]=V(3%=Vj(j+1). (A3)  —cog(6) into Eq.(A6) and then integrating ovep to obtain
Furthermore, the coherent stdfej) is an eigenstate o, s 5 5
with moments along the axis given by(J") =" for integer <Jx>c:7TJ dJ, pe(0)]J| —Trf dJ, pe(0)]J]% cos(6)
n. Therefore we require that the classical distribution pro- )
duces the moments =|3|12—(Jy)/2.
(INe=j" (A4) Since(J?) is determined by EqiA4) and the length is fixed

from Eqg. (A3) we can deduce the classical value without
These requirements are satisfied by th&unction distribu-  knowing p(6),
tion
(35 .=jl2. (A7)
8(0—06,)

(0= 5 g,

(A5)  This agrees with the value of the corresponding quantum
moment. Form=4, however, by a similar procedure we

where cos,=j/|J| definesd, . This distribution is the famil- ~deduce

iar vector model of the old quantum theory corresponding to A a2

the intersection of a cone with the surface of the sphere. (Jx)e=3]78, (A8)
However, in orde_r to derive an inconsistency between th%vhich differs from the quantum mome(m“) by the factor

guantum and classical moments we do not need to assume X

that the classical distribution is given explicitly by H#5); 8I4=(IH—(IN|=|3j28—]I4), (A9)

we only need to make use of the the azimuthal invariance ©o X

condition (A2), the length conditior{A3), and the first two  concluding our proof that no classical distribution 8A can

even moments of EqA4). reproduce the quantum moments.
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