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Fundamental solution method applied to time evolution of two-energy-level systems:
Exact and adiabatic limit results
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A method of fundamental solutions has been used to investigate transitions in two-energy-level-systems with
no level crossing in a real time. Compact formulas for transition probabilities have been found in their exact
form as well as in their adiabatic limit. No interference effects resulting from many-level complex crossings as
announced by Joye, Mileti, and Pfisf&hys. Rev. Ad4, 4280(1991)] have been detected in either case. It is
argued that these results of this work are incorrect. However, some effects of Berry’s phases are confirmed.
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[. INTRODUCTION amplitudes is rewritten in form of two decoupled equations
of the Schrdinger type. In Sec. Ill properties of the funda-
Transitions between energy levels in a two-energy-levemental solution method are recalled. In Sec. IV some subtle-
system evolving in time are of great importance from manyties of the application of the fundamental solution method to
points of view. On one side, such systems provide us witdthe problems considered in the paper are discussed. The
the simplest models to investigate transition amplitudes beMethod is first applied to a particular system of the atom-
tween different energy levels by different approadiigson ~ atom scattering within a frame of the Nikitin modal1,12
the other side, these systems play an important role in el Sec. V. In Sec. VI results of Sec. V are generalized to
perimental investigations of basic principles of quantum meSYStems with an algebraic time dependence of the effective
chanics[2]. Recently a lot of effort has been devoted to Magnetic field. In Sec. VIl another two examples of two-
obtain more rigorous results on the adiabatic limit of transi_energy—_levgl systems are con3|de(ed W'th. corresponding
tion amplitudes for these systerf@—7]. In particular, in a magnetic fields depending exponentially on time. These ex-

series of recent papers Jogeal. have studied this problem amples, together with the ones of Secs. V and VI, show that

by the Hilbert thods. Such t level a general structure of the transition amplitudes is indepen-
y the niibert-space Menods. -such Wo-energy-level SySgant of how the magnetic fields vary in time. This form is not
tems are formally equivalent to a one-half spin system p

Ubtfected either by the number dtompleX energy level

into time-dependent magnetic field. However good approXi¢rossings on the Stokes lines closest to the real axis of the

mate results and more so the exact ones are difficult to obtaigomplex time plane. The latter result confirms the findings of
for such systems even for simple time evolutions of the efthe previous section. Such a dependence resulting with some
fective “magnetic” field. Therefore each opportunity of im- interference effects has been announced by dow [4]. In
proving this situation is worth trying. A treatment of the Sec. VIIl we consider an example of the magnetic field with
problem by a method of fundamental solutidee fruitful in an explicit contribution of the geometricéBerry) phase to

its application to stationary problems of one-dimensionalhe transition probability.

Schralinger equation8-10)) is of first importance, more so We summarize and discuss our results in the last section.
that to our knowledge, the method was not used so far to thith particular, we show there that the results of Joye, Mileti,
goal. A possibility of application of the method is related to and Pfistef4] on the effects of interference from many-level
the fact that a linear system of first-order differential equa-crossings are incorrect.

tions describing time evolution of transition amplitudes can

always be transformed into a system of decoupled-secondy. ADIABATIC TRANSITIONS IN TWO-ENERGY-LEVEL

order equations having a form of the stationary-Sdhmger SYSTEMS
equation, one for each amplitude. This allows us to apply all .
advantages of the fundamental solution metha@]. The In general, any two-energy-level system is formally

only obstacle related with this approach is a complexity ofequivalent to a one-half spin system put into an external
effective “potentials” that appear in the final system of the magnetic fieldB(t). Therefore, we shall consider just such a
Schralinger-type equations. system. Its HamiltonianH(t) is given then by H(t)
The paper is organized as follows. =3 uB(t)- o, whereo= (0,0 ,0,) are Pauli's matrices so
In the next section the problem of transitions in two-that two energy level&. (t) of H(t) are given byE.(t)
energy-level systems is stated and corresponding assump-= (u/2)B(t) whereB(t) = VBZ(t).
tions about the effective “magnetic field” are formulated. A When the adiabatic transitions between the two energy
linear system of two differential equations for the transitionlevelsE_. (t) are considered then the following properties of
the field B(t) are typically assumed.
(1) B(t) is real being defined for the red] —o<t<
*Email address: sgiller@krysia.uni.lodz.pl + oo,
TEmail address: cgonera@krysia.uni.lodz.pl (2) B(t) can be continued analytically off the real values
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of t as a meromorphic function defined on sotriRiemann ©)
surfaceRg. A sheet ofRg from which B(t) is originally s 0 cosw
continued is called physical. \p+(S'T):eX[{ _if éﬁsinz—da) '

(3) On the physical sheeB(t) is analytic in an infinite 0 2 . 9 i
strip 3 ={t:|Imt|<§,5>0}, without roots in the strip and s e
achieves there finite limits for Re=*t«, i.e., B(Ret 3
=+0)=B*+0 in the strip; o)

The field B(t) depends additionally on a paramefer < 0 SiHE
(>0), i.e., B(t)=B(t,T) which introduces a *“natural” ‘If_(s,T)=exr{—if éﬁcos’-—dcr) '
scale of time to the system so that its time evolution is ex- 0 2 i
pressed most naturally in units ®f If T is small in compari- —cosEe

son with the actual period of the process considered then the
latter is “fast” or “sudden.” If, however,T is large in this  where® and ¢ are polar and azimuthal angles of the vector

comparison then the process is “slow” or “adiabatic.” B(t,T), respectively, and dots over different quantities mean
In the adiabatic process of the system the following isderivatives with respect te variable.
assumed abouB(t,T). The wave function¥ (s, T) can now be represented as

(4) A dependence oB(t,T) on T is such that a rescaled

field B(sT,T) has the following asymptotic behavior fdr s
oo ‘I’(8,T)=a+(s,T)eXp( —iTJ,E+(5,T>d§)\P+<s.T)
1 1 |
B(ST.T)~Bo(8) + 7B+ B9+ -+ (D) +a—(S’T)eXp( 'TLfE‘(g’T)dg)\P‘(S’T)'

4

while its ss-Riemann surfac&g /T approaches ‘“smoothly”
the topological structure of the Riemann surface correspondvheres’ takesany real but fixed value.
ing to the first termBy(s) of the expansioril). The Schrdinger equatior{2) can be rewritten in terms of

(5) With respect to its dependence snthe field By(s) the coeffiqientsai(s,T) as the following linear system of
satisfies propertiedl)—(3) above with substitutions—sand  two equations:
B(s)—By(s).

Note that condition3) excludes periodic fieldB(t). : _ (S

The time-dependent Sc'h]"rmgerp equation ind(uz:ed by a+(s,T)—c(s,T)exp(|L'w(g,T)dg a(s,T),
H(t) takes therefore a form (5)

é_(s,T):—c*(s,T)exp<—iJ':,w(g,T)dg a,(sT),

i d¥(s,T) 1
TTZEMB(ST,T)-O"I’(S,T). (2)

where
The adiabatic regime of evolution of the wave function
V¥ (s,T) corresponds now to taking a limit— +< in Eq. ® i
(2). c(s,T)=—§+7sin®
The main problem of the adiabatic limit in the considered
case is to find in this limit the transition amplitude between 1 [BX(BXB)]Z i (BXB)Z
the two energy levels of the system fer- +o under the =—= —+3 —, (6)
assumptions tha¥ (—o,T) coincides with one of the two 2 B*\Bi+B;, 2B\B;+Bj
possible eigenstateE . (—o0,T) of H(— =) and that there is
no level crossing for reat, i.e., liminf_ ;... B(t)=¢€ . B, (BXB),
>0. Known approximate solutions of this problem are that (s, T)=T(E,—E_)—¢cos®=uTB— B alin?
of Landau[13] and Zener{14] in a form of the so-called B+ By
Landau-Zener formula and that of Dykhh&5] who have ) _
shown that such an amplitude should be exponentially small The system(5) can be rewritten further as the following
in the limit T— + . In the next sections we shall show how linear system of second-order equations:
to get an exacti.e., not approximateresult for this ampli-
tude as well as its adiabatic limit with the help of the funda- . c . |- 5
mental solutions. a—|ctle a, +[cl*a, =0,
A typical way of proceeding when the adiabatic limit is @
investigated is using eigenvectols. (s,T) of H(sT,T) sat- ( :
A —

isfying (V. ,¥.)=0. Then, such eigenvectod . (s,T) i

_ a_+|c|?a_=0,
can be chosen as the following ones:

——iw
C*
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where the coefficient functiors. decouple from each other

being however still related by E@5).
By the following transformations,

s(c
a+(s,T)=ex;{%f E+iw dg}m(s,T)
s/
_ tS)
s c*
a(s,T):exp{%f (C—*—iw)dg b_(s,T),
S!
we bring the Eqs(8) to Schralinger types
b (s,T)+T%q.(s,T)b.(s,T)=0, 9
where
oot tfe 2,
.+ (s )—_ITZ —zlctie] *lel
! é-l—' 10
ﬁ c lw |-, (10
1] o1fer N
q- (ST) —2 _Z C—*_Iw +|C|
1 [c*
+2T2 — =i,
so that for reak (andT) we have
a-(s, T)=0a%(s,T). (11)

The Egs.(9) are now basic for our further analysis since

their form is just of the stationary one-dimension(aD)
Schralinger equation.

PHYSICAL REVIEW A 63 052101

Therefore the above form of dependenceofs, T) onT
permits us to apply to the considered case the method of
fundamental solutions. For this reason we shall start the next
section with a review of basic principles of the method suit-
ably adapted to the considered case.

Ill. FUNDAMENTAL SOLUTIONS
AND THEIR PROPERTIES

Consider firstg..(s,T) as functions of. They are defined
completely by ars dependence of fiel&(Ts,T). According
to our assumptions, the latter is meromorphic on some Rie-
mann surfaceRg/T. However, by Eq.(12), gq.(s,T) are

algebraic functions oB, B, andB and, therefore, they are
also meromorphic functions afdefined again on some other
Riemann surfaceR.. determined by these algebraic depen-
dencies. As it follows from Eq.12) topological structures of
R. can be quite complicated. However, in what follows, we
are interested in the adiabatic limit— + by which the
structure ofR.. should be determined fof large enough
basically by the first terng?)(s) of the expansior(13). In
consequence, by Eql2), it should be determined by
uBO)(s), i.e., by the first term of the expansidf). The
structure ofR.. can turn out to be much simpler in this limit.
Despite this supposed complexity qf.(s,T) and of their
Riemann surfaces we shall introduce and discuss the funda-
mental solutions to the Eg$9) without simplifications. We
shall do it for theg, (s,T) case of Eq(12). An extension of
the discussion to thg_(s,T) case will be obvious.

A standard way of introducing the fundamental solutions
is a construction of a Stokes graf#-10] related to a given
g.(s,T). Such a construction, according to Fran and Fre
man[8] and FedoriuK9], can be performed in the following
way [10].

Let Z denote a set of all the points d®, at which
d.(s,T) has its single or double poles. L&(x) be a mero-
morphic function onR ., the unique singularities of which

First let us note that the dependence of the “potential” are double poles at the points collectedzwith coefficients

functionq, (s, T) on T is given by

q+(sT)—4,usz+ B— B(——|¢cos®)

2T
+ Ll e 0 2+ 2
= it ——i¢cos Ic|
+ ! (6 é ®) (12
—| =—i¢cos
2T2\¢C

where the dependence Bfc,0,¢ on T in Eq. (12) is also

at all the poles equal to 1/4 eactin a case wherR, is
simply a complex plain, the latter function can be con-
structed in general with the help of the Mittag-Leffler theo-
rem[17]. But for a case of branched, the general proce-
dure is unknown to us.Consider now a function

- 1
g+(s,T)=0q.(s,T)+ ;5(3)- (149

The presence and the role of tldeterm in Eq.(14) are
explained below. This term contributes to E44) if and
only when the corresponding “potential” function, (s,T)

anticipated. By Eq(11) we get a corresponding dependencecontains simple or second order polédtherwise the corre-

of g_(s,T) on T. Taking into account Eqg1) and(6) it is

spondingé term is put to zerg.lt is called the Langer term

easy to check that the last formula provides us with the fol{10,14.

lowing type of asymptotic behavior af, (s,T) for largeT,

<°>(s)+

q.(sT)= q(s)+ 20|‘2>(s>+ e (19

The Stokes graph corresponding to the functinr(s,T)
consists now of Stokes lines emerging from ro@tsning
point9 of q. (s, T). Stokes lines satisfy one of the following
equations:
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Im E\/q+(§,T)d§=0 (15

with s; being a root ofg., (s, T). We shall assume further a

generic situation when all the roass are simple.
Stokes lines that are not closed end at these poini, of
(i.e., have the latter points as their boundarfes which the

action integral in Eq(15) becomes infinite. Of course such
points are singular f0ﬁ+(s,T) and they can be its finite

poles or its poles lying at an infinity.
Each such singularity, of q.(s,T) defines a domain
called a sector. This is the connected domaiRgefbounded

PHYSICAL REVIEW A63 052101

integrals in Eq.(18) to converge wherg, is a first or a

second order pole af(s, T) or when the solutionél6) are to

be continued to such poles. As it follows from E8) each
such polez, demands a contribution té(s) of the form
[2(s—z)] 2, what has been already assumed in the corre-
sponding construction of(s).

IV. THE ADIABATIC LIMIT IN THE FUNDAMENTAL
SOLUTION APPROACH

Consider now the consequences of taking the large-
limit for the above description. We assume that for a given

the Stokes lines being an isolated boundary point of the seesiokes graphG, is drawn. It is drawn, of course, on the

tor (as it is in the case of the second-order pole

In each sector the left-hand-sideHS) in Eq. (15) is only
positive or only negative.

Consider now Eq(9) for b (s,T). Following Franan
and Franan in each sectd, having a singular poirg, at its
boundary one can define a solution of the form

b, (s, T)=0q;"%s,T)e” ™Gy, (s,T), k=12,...,
(16)

where

X+,k(S:T):1+21<_%) fdfl
n= 7

& En—1
xf dfsz 460608 - Q&)
7 7
% (1 expf — 201 T[W(S) ~W(£D)TH)
X (1 expf — 201 TIW(£) ~W(E)T})- - -
(1 exp{— 20iTIW(gn_ 1)~ W(£D)T}) (17

with
8(s)  194sT) 5 09¥(sT)
Q(s,T)== ——== ==
ST F T AsT) BgsT)
and
wis)= | Ve e 19

wheres; is a root ofg(s,T) lying at the boundary 08, .
In Egs.(16) and(18) a sign ofo (= =1) and an integra-
tion path are chosen in such a way to have
o Im[W(&;) —W(&j+1)]<0 (20)

for any ordered pair of integration variablésith £,=5).

Riemann surface/R., corresponding to/q. (s, T).

First let us notice that singular points of (s, T) such as
its branch points and poles depend in general oRor both
kinds of these singularities this also means a dependence on
T of jumps ofq. (s, T) on its cuts as well as th& depen-
dence of coefficients of its poles.

According to the property4) of the magnetic fieldB (see
Sec. |) we can expect that the singular structurgefs, T),

i.e., positions of its roots and poles, as well as the cut jumps
and pole coefficients, change smoothly in this limit to their
final positions and values, respectively. This limit structure is
defined by the singularity structure qf®)(s,T) [see expan-
sion (13)]. Therefore, both the topology ofR. and the
associated Stokes grah, change accordingly to coincide
eventually with the Riemann surfacgR(® and with the
Stokes graprG(f) corresponding tQ/qﬁ))(s,T) . This limit
structure can be achieved in the following waya: some
branch points and poles af. (s,T) escape to infinities of
R. ; (b) some branch points and polesaf(s,T) approach
the respective singularities afl®’(s,T); (c) some branch
points and poles ofi. (s, T) disappear because their respec-
tive jumps and coefficients vanish in the linfit— + oo.

Being more specific we expect that férlarge enough a
setS, of all singular points ofy. (s, T) (i.e., containing all
its branch points and polgsonsists of three well-separated
subsetsS"", 2" andS"". The points ofs"" run to infini-
ties of R, whenT— +. Those ofS}?" disappear in this
limit while those ofS{" coincide in this limit with the set
SO of the singular points 0§®)(s,T) .

Let us remove the points containeddfi'U 52" from the
Riemann surfacéR, , i.e., let us consider these points as
regular forq, (s,T). ThenR, will transform into R\"—a
Riemann surface whose singular points coincide with those
of the sets'™".

Together with the previous operation let us remove from
VR the Stokes lines generated by the pointsS8fu 2"

Such an integration path is then called canonical. Of courses0 that the remaining Stokes lines can uniquely continue to
the condition(20) means thab . (s, T) vanishes in its sector form the Stokes grapl® " generated by the s&"". It is

when s—z, along the canonical path. The Langérterm

clear that the grapis " coincides withG? in the limit T

appearing in Eq9.14) and(18) is necessary to ensure all the — + o,
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The above two operations will be called the adiabatic Let us note that propertigd)—(6) above can be satisfied
limit reduction or simply the reduction operation. by the fieldB for which B? is ameromorphicfunction oft.

As we have mentioned earlier there is a set of sectors and/e shall assume just such a dependend® oht and of the
a corresponding set of fundamental solutions defined in theroorresponding rescaled field(sT,T) on s. However, for
associated with the grap®, . By the reduction operation, simplicity, instead of continuing our considerations in their
both sets can be reduced, i.e., under this operation some sanost general form we shall investigate first a particular ex-
tors of G, transform into corresponding sectors 6f"  ample of the fieldB(t,T) that, as it seems to us, will illus-
whereas the others disappear. Obviously, the latter sectotgate our method in a satisfactory way.
are those that disappear when the lifiit> + o0 is taken.

The following assumption should stabilize the corre-
sponding results obtained with the help of the fundamental
solution method. V. THE NIKITIN MODEL OF THE ATOM-ATOM

(6) Among a full set of fundamental solutions associated SCATTERING

with the Stokes grapls ., there is a subset of them associ-
grap® The model of Nikitin [12] describes the scattering*

ated with graphG " that allows us to solve the basic prob- ; . .
grapre b +B—A+B+Ae of the exited atomA* moving with a

lem of the adiabatic transition and that is invariant under them Il velocitvo with the impact parametds’ and scattered
reduction operation. small velocityu € Impact parame and scattere

The dynamical systems described by the Hamiltoniargy trlled_atc:TB. Tr_:_i |r:tet:act|on beltween the Iatorgs_ |s;hof the
H(t) satisfying assumptioi6) will be called the adiabatic t'p:’ 'f't'%o yg’.ei) t.el?‘ .f)r e’(‘)amlpet‘)"’ajs a”atyzle[ 45” € con-
limit reducible (ALR) systems. ext of the adiabatic imiv =% aiso by Joye&t al. [4].

The above assumption means that to solve the problem %f 3T£1e I—&alrgil)toman for this system readl1], paragraph
the adiabatic transitions in the ALR system we can first per-""~" an

form the reduction operation and next work with the simpli-
fied Stokes graph& f+'“ . A set of fundamental solutions as-

sociated with this graph that can be used to solve the Ae C

problem considered coincide with the corresponding ones of 2

the full graphG, . The procedure used to construct a solu- H(R)= ’ (22)
tion of the problem with the help of the latter graph is not C Ae

affected by the reduction operation, i.e., it looks the same % T

when the simplified graptG " is used instead of3, .

Therefore the aim of the reduction operation is to make

easier choosing the proper set of fundamental solution solv- here Ae and C are constants an®= b2+ 022 is the

ing the problem. The results obtained in this way can be StiY[,ivistance between the atoms. Introducihg (2C/A€) 3 as a
- . - n .

exact if the integration paths taken on the grﬁ)h can be natural distant unit for this case arfid=d/v as the corre-

mapped properly on the Stokes gra@h restoring in this  g,,h4ing adiabatic parameter and rescaling:sT and b’
way the exact condition of the problem. However, if such a

. e —bd we get from Eq(21)
map is not known or is difficult to constru@ecause of the
complicated structure of grapB,) the result obtained in
this way can be considered only as an approximation, i.e.,

valid only in the limitT— +c. 1
According to the above assumptions we can conclude Ae (b?+5%)23
from Eqgs.(12) and(13) that there is one-to-one correspon- H(s)= 3 1 : (22)
dence between the Stokes grajths and G(+°) and the cor- _ -1
responding set§ " andS). Namely, this correspondence (b?+5%)%°

is built by aggregationgblobs of singular points ofS™",
i.e., the branch points and polesEpi(s,T), which are trans-
formed into single points 08 when the limitT— + is
taken. Also there are sheaves of Stokes line§ §f emerg-
ing from the blobs and transformed into single Iine&’iﬁf)
in the same limit.

Therefore in the limifT — + o we can eventually consider
for potentials(12) Stokes graphs corresponding to first terms
q(f)(s) of the asymptotic expansions fqgr.(s,T). The first
terms of the asymptotic expansions correspondinq(ﬁi(s) 2, 12
andq.(s,T) are the same in this limit and equal, according . — § S(b”+s7)
to Eq. (1), to £ u?B(s). 2 1+ (b%+s?)%’

In the “magnetic field” language we have of course
B(sT,T)=((b?+5s?) %20,1)Ae/p so that all the assump-
tions (1)—(6) above are satisfied witB=(T)=B*(*+«,T)
=(0,0,2)A €/ u. Since in the considered cagds)=0 then
for the corresponding quantities defined by E@$.and(12)
we get,

1/2

w=TAe| 1+ . (23

(b?+5?)3
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1/2

Ae 1 i [ 6s(b2+5?)2 s 1\]® 3iAe s
q:(s,N=| 5| 1+t ——=3| *57 - <l 5+
2 (b?+s9)3] 2T\ 1+(b*+s?)3 b2+s? S| 2 T [1+(b?+s?)%|Vqb?+s?)%"?
1 |2s?+b2(b%+s?) 3 4(b%+s?)%(s?—b?)—4(b?+s?)(b2+55?) + 35%(b?+s?)

2T R(b*ts?) 2 [1+(b?+ 7))

Equations(23) show that in the limifT— + the Stokes however that for finite but largel these six roots of
graph for the considered problem is determined by the funcg(®)(s,T) are each split initially into two. The split is the
tion result of the square root branch pointssat =ib to which

the recovering of the finiteT transforms the poles of
(Ae)? 1 q(®(s,T) at the same points. The two copies of each of these
qO(s,T)= 7 1+ 3] (29 six roots lie of course on different sheetsRf . Next, each
(b*+s%) of these 12 roots is still split into three by the same reason of
finiteness ofT. In this way, on each of the two sheetsRf

The graph is shown in Fig. 1. there are 36 roots grouped by three around their lisnit
Each q.(s,T) has 40 roots, five branch points at =+s,  k=1,2,3 achieved foll — + .

=+ib and ats=s, =+ (el D7l p?)172 k=123, as The remaining four roots aj. (s, T) are displaced in two

V\/(eoy as two poles ats=0. Therefore only six roots of pairs, one pair on each sheetRf , close to the points

q-’(s,T) at s=sy, k=1,2,3 and its two poles &==*ib =0 at which the second-order poles @f (s,T) are local-

look encouraging. Nevertheless, we shall consider first th¢ed. WhenT— +« the roots in each pair collapse into

case without any approximations. =0 multiplying the corresponding second-order poles and

At first glance the Stokes graphs corresponding to thehus causing mutual cancellations of the latter and them-
functionsq. (s, T) seem to be quite complicated. However it gglves in this limit.
can be handled in the following way. _ Now we shall focus our attention on the Stokes gr&ph
Functionsqg..(s,T) are determined on two sheeted Rie- generated byj_(s,T) on the first sheet oR_ as well as on
mann surface®k.. , respectively, with the branch points at the remaining ones. It looks as in Fig. 2. The Stokes graph
.S: +ib and ats= S, k:l,2,3 and with 40 roots distributed -G+ Corresponding t(m+(S,T) can be obtained frons_ by
into halves on each sheet of the surfaces. Therefore the Rigomplex conjugation of the latter. On the figure the wavy
mann surfaces/R.. corresponding ta/q.(s,T) (itwill turn  |ines denote the cuts corresponding to the branch points of
out that it is not necessary to introduce to the latter functionshe fundamental solutions defined Bn . The sheet on Fig.
the corresponding Langer terjrare four sheeted with these 2 cut along the wavy lines defines a domain where all the
40 roots being square root branch points on them. When fyndamental solution® _ (s, T), ... ,b_5(s,T) defined in
—+ only six of these branch points survive coinciding the corresponding secto®, . . . ,S, (shown in the figure
with the six roots ofy(®)(s, T) ats=*s,, k=1,2,3 whereas are holomorphic.
R.. transforms into the comples plane since the branch  According to our earlier description of the behavior of the

points ofq.(s,T) ats==*ib disappear, being transformed Rijemann surfacgR, whenT— + the setS" correspond-
into the second-order poles qf?(s,T). It is easy to check,

Ims
1 2

(’—
ib
P .
Res
k

1 2

FIG. 2. The Stokes graph corresponding to “potential”
FIG. 1. The Stokes graph corresponding to “potentig?4). g_(s,T) of Eq. (23.
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ing to the considered case is emp®/2" contains four points then we can conclude th&=0 in Eq. (25).

ats=0 on each of the four sheets gR_ [these four points 10 fix the value of the constart in Eq. (25) we can use
correspond to the second-order polesgof(s,T)] and the the second of relation®) and apply the condition mentioned

four branch points close ts=0, while S” contains all the " the second step of the procedure, i.e.,
remaining singular points ofq_(s,T). Now, for our case,
the solution of the problem stated in this paper is simple. . 1 (3

lim _c(s ) -ex wdo

Namely, it can be found in the following steps.
(i) Take a linear combination of the fundamental solutions
_1(s,T) andb_ (s, T) to construct the amplitude_(s,T)
W|th the desired property at s=—«, e,
limg_, _..|a_(s,T)|=0. This amplitude is defined in this way

up to a multiplicative constant. Al L [Ae expl - Jsoiwds+ fso {_ E(E—iw)
(i) Use Eq.(5) to constructa, (s,T) and adjust the con- TAe V 2 s’ —w| 2\C
stant mentioned earlier so that the limit im_..|a, (s, T)]
=1 can be satisfied. )
(iii) Continue canonicallya_(s,T) along the real s axis +|T\/q_,
with the help of the solutionb_ (s, T) andb_ 1(s,T) using
to this goal the remaining fundamental solutions if necessary.
(iv) Calculate the limits— + o,
(v) Calculate the adiabatic limif— + o,

a(s,T)}zl

to get,

ds+In c(so)]. 27

Therefore, for the amplitudea_(s,T) we obtain finally

ha\,::cordmg to Eq(9) and to the first of the above steps we a_(s.T)= A q:l"‘(s T)expl f {wds
1/ +fs°{ l(c i | +iTVg_|ds+Inc(so)
sl(c —=|=—lw|+iTyg_|ds+Inc(s
a(s,T)qul"‘(s,T)exr{J’ §<E—iw)(a,T)da . 2\c 0
S!
s{1(c
s +f —(——iw +iTVo_ do-} s,T).
+in q¥% o, T)do | x1(s, T) sl2\C a X
N _ (28)
1/4 slic H P .
+Bg_""(s,T)ex SlgTle (o,T)do Now we can take the limis— +« in the above formula,
S continuing along the canonical paji_., shown in Fig. 2, to
s get,
—in qY4 o, T)do | x1(s,T), (25)
%o S S 1 C )
a_(+o,T)=": ex —f |wds+f —=|l=-—iw
wheres’ is any point on the real axis that is regular for the iTAe s’ —=| 2\C
integrand whiles, is the one from the infinite strip bounded (e
by the Stokes linebcdefrom one side and bg’b’c’ from L n i f“”{_(f_- )
the other(see Fig. 2, being also an arbitrary but regular ITg-|ds+Inc(so) s L2\C o

point for all the integrands. The choice ofl?zignatures in Eq.
s . :
(?5) was dong QUe to the fact that R‘ngsoq_ do) is po§| +iT\/q_, do] a(T). (29
tive (for s sufficiently large for the sectorS; and negative
for S;. The latter property follows from the fact that accord-
ing to Eq.(25) and the Stokes graph on Fig. 2 we have onthe The apparens, dependence in the above formula is illu-
first sheet of VR_: sgn(Re/qY%(s,T))=sgn(s) for s—  sive. We can use this fact to calculate the integrals in the

+o along the real axis. exponent most accurately. First let us note that we cannot
If further we take into account the following asymptotic disjoint totally the integrations in the two infinite integrals
behavior of the relevant quantities on the real axis, since the diverging contributions of the three terms in both of

these integrals cancel mutually at the corresponding infini-

4 ties, making the integrals convergent. We can, however, take

; ; as the integration paths for these two integrals the Stokes
+|T\/q_’~_ITAE_ s ST lines abc og Fig. lpandabcdeon Fig. 2. Nagmely, let the
(26) pointss, on linea andsg on linee be arbitrarily close to the
corresponding infinities of the real axis. Let further poisjts

S — 0 and sy be the points on the Stokes linasand ¢ of Fig. 1,
respectively. We choose the latter points to lie on the anti-

llc
Eela)

—iTJg_~0

1
S8/’

1lc
5__'“’
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Stokes lines of Fig. 1 that pass by the respective pants

5b?i ilna, g
andsg. Then the integral in the exponential of formuz0) SLR—SLR™— In|s|— - =,
can be rewritten as TAe 2TAels|?  TAe
_ So | So 1/c
:—L |wds+ﬁw “5lG ——lw|+iTyg_|ds+Inc(sy) jo~iTAe| 1+ —|, (33)
2s
+=1c
+f {—(——Iw |T\/_ ds
So 2 2 5b2
Relnc(s)~Inz—4In|s|— >
4 SL 1 C 3 2|S
=—f iwds+f 3 E_iw +iTyq_|ds
s’ —o
_ where constants, g are also independent of T and can be
s . 1 +=1(c ) estimated exactly only when the exact equations of the
+3 | “iwdst S| + S|l =—io | +iTy i i i
2| tedsts nc(s) . |2l e Stokes linesabc of Fig. 1 andabcdeof Fig. 2 are known.
L R

The imaginary part of the integralcan be calculated as
the following limit,

’ 1 SR
+%stiwds+—lnc(sR)+f iTVg_ds+ 1 f iwds
SR 2 SL

1 1
! T)=Iml= I|im Im|sInc(s )+ sInc(s
— JSR | (I)ds, (30) Y( ) N 2 ( L) 2 ( R)
s’ ,
where the last three integrals run along the respective Stokes +f iTVg_ds+3 j deS—-fSRiwdS
S U

lines and, therefore, are purely imaginary. Paifitin the

above formula is an arbitrary point of the Stokes latec in o

Fig. 1. —f iwds). (34)
We are interested mainly in the transition probability de- s’

fined by amplitudea_(+,T) for which only the real part

of the integrall is important. Formul430) gives for it, Therefore, the finakxactformula for the transition ampli-

i tude is
4 § lfc
Rel=—RefS iwds+Ref - [——(——iw +iT\/q__}ds
s’ -® 2\c 3a.|_a.R
a_(+%,T) f (s, T)ds+iy(T)
 [Fiost L e
+3 iwds+—ReInc(s)+Rej )
’ SL 2 : sz L2\C X x1-2(T) (35
1 -
+iTg_|ds+3 f iwds+ > Re Inc(sg). (31)  and the probabilityP reads,
We can now calculate Retaking in Eq.(32) the limits 9alai
s, — — andsg— + o along the corresponding Stokes lines. 4T2(Ae)2 ""ds (36)

We get in this way,

1 s, where in the last two formulas poist is an arbitrary point
Rel=— ReL lods+ 5 lim L iwds+Relnc(s,) on the real axis while point” being the one of lin@bc of
ST Fig. 1 is taken to lie simultaneously on the anti-Stokes line

1 o passing by poins’.
+= lim (f Riwds+ Relnc(SR)) The adiabatic limit of the transition probability is there-
SR\ Y SR fore,
= RJS"' ds+in o 32
=————expg — i s)yds| |,
. o 4T%(Ae)? g 70

The limits in Eq.(32) can be obtained by estimating the
asymptotic behavior of the differenceg ;—s g and the
corresponding functions whes| —  along the Stokes lines, wheres” is now an arbitrary point of the continuous Stokes
for which direct calculation gives line passing by roots dBy(s) closest to the real axis.
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Ims

FIG. 4. The Stokes graph corresponding to genera(s,T)

FIG. 3. The Stokes graph corresponding to gengf3d(s) con- considered in Sec. VI.

sidered in Sec. VI.

Let us choose thayz axes in the space of vect& in
such a way that one of its limit componeris, and B, ,
does not vanish in the corresponding infinities. Let us also

The result given by the formulé85) can be easily gener- assume that vectoB, (T) andB; (T) of expansion(38) are
alized. From the way of obtaining formui@0) it follows not parallel to each other in the respective infinifiether-
that the most important is the existence of the continuousvise we should take another pair of vectors appearing in Eqg.
Stokes lineabcdeon Fig. 2 and itsT— +cc-limit, i.e., the  (38) satisfying the last property and having the smallest sum
Stokes lineabc of Fig. 1, which link the respective infinities of the power exponents by which they are accompdnied
Res= —« and Re= +« on both Stokes graphs. Another im- Then, if we take into account the following asymptotic that
portant property was the way fielB approached the limits comes out of Eq(6) and of the above assumptions when
B* when Re— *+«, respectively, in the strif mentioned Res— *= inside the strip,
in the assumptiori3). Let us therefore accept the following

VI. THE GENERAL CASE OF ALGEBRAIC
MAGNETIC FIELD

two additional assumptions. * * Rt . o n*
. By X(By XB By XB
(7) There are two Stokes lines on each of the Stokes ¢~ _ 1l °+2 ( 32 1+)2]z+l_ +( 0 _ 1)Z+2)i+
graphs corresponding tor \/g.. that can be taken as the 2 By®\Bi5tBy5 2 BgyB5+Byg)sn
boundaries of the strit. Each of these two Stokes lines .
links continuously both infinities of the strif, see Fig. 3; — E
(8) Inside the stripx the fieldB approaches the infinities a’
of the strip according to the following asymptotic formula:
+ + + B;;,O (BOI X Blt)Z 1 Gi
. By (T) B,(T) By (T) 0~ puTBy +|{ uTBy By — = T—=— | == =,
B(sT,T)~Bg (T)+ o)y P2 B Bo VBiotByo/sh s
s s*2 S%
+
+... + a
, Res— £, . —i,uTBg—l
(38) 1(c* | e
P +iTVq_~ 39
1., . A A N A T
<l ar<lary <o <ap<--- - —
212 %k ’ inTBy 2
where a7 , ...,a , are rational ifB? is a meromorphic D*(D")* 1
function of s. % T ¥ ¥
1/c iuTB, 201
If the Stokes graph correspondingifb\/q_ satisfies the §<_*_iw —iTVq_~ #1o B S
conditions of being a graph of the ALR system described in c i .TB- ay
Sec. IV, then we can claim that there are four sectors 1wl Bo =57
S1,S1.,S,,S; of the graph and the corresponding fundamen-
tal solutionsy, x1 that can be used in exactly the same way : N
as it was done in the case of the Nikitin model to solve the c x
problem stated in Sec. I, see Fig. 4. c s’
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then we can repeat the procedure of the previous section to
get the analog of formula&30) and (34). Namely, we have

for them,

a_(+0x,T) ! exp{fso[ 1(6 i )
— o, )= —=|l-—lw
uTVBy (T)Bg (T) = 2\c

S

L NE ds+|nc(so)—f,°iwds
+=[1c
+ | 122 —ie| +iTVg |do | xro(T
Lo 2(0 o | +i \/q_} UJXl 2(T)
(40)

_aag /|D7(T)D+(T)|
©wT N By (T)Bg(T)

xexp(—fs iw(s,T)ds+iy| xia(T),
S/

PHYSICAL REVIEW A63 052101

a?a2B; (T)B{ (T)sing~(T)sing™(T)

P(T)=
™ (2pTBy (T)BG(T))?

Xexr{ -2 ReJ:’”i w(s,T)ds) Ix1_2(T)|? (49)

and

pad_ afagB; B1 ¢sin g sin g
(2uTBy Bs o>

Xex;{ —2 Re< iTJS,”,uBO(s)ds>

where to get the last formula, the asymptotic expangion
has been applied to field®, (T) andB; (T) as well as taw
given by Eq.(6). Points” is now an arbitrary point of the

, (49

where pointss’ ands” have been chosen again on the samecontinuous Stokes line;a,- - -a,a,+1 passing by the roots

anti-Stokes line of the graph corresponding &gs, T) and

~ afaz/D (T)D*(T)|
(#T)?Bg (T)Bg (T)

P(T)

><exp( -2 RefS iw(s,T)ds) Ix1_2(T)|?,
S!

(41)
whereD* are given by
. 1[Bgx(ByxBi)l, i (ByXBi),
D_Z_E 2 %2, p*2 @ 2 pt [prl2. p=2 (42)
Bo VByxo+B, g Bo VByxo+B, 2
so that
. Bising®
DF|=——7, (43
2B;

where ¢=(T) are the angles between field; and B,
respectively.

Again, the exact form of the coefficients g can be

of By(s) closest to the real axis, as it is shown on Fig. 3.
Note that because of our assumption the angles in @4s.
and (45) are different from 0 andr.

VII. OTHER TWO EXAMPLES WITH EXPONENTIALLY
DECREASING MAGNETIC FIELDS

We consider here another two examples of magnetic
fields depending exponentially on time. The main difference
between these cases and those considered in the previous
sections lies in the number of level crossings that in the
exponential cases is, of course, infinite.

We consider the following two cases of the fields:

(a.) B(t,T):Bo+ y Bo'B]_:O,

By
t
cosh =

Bo=|Bol#|B4|=B1,
(46)

t
(b) B(t,T)=Bo+Bltan)'(?), Bo-B1=0, |Bg|=B|=By.

found if the exact equations of the Stokes lines correspond-

ing to w(s,T) andg_(s,T) are known.

Therefore, the final forms of the transition probability and Case(a). The relevant quantities for this case have the

its adiabatic limit are

forms
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s, IR s, s,
N %
s" /'Im
%
< Res
—
ar
N4
&
| S | $2 s

FIG. 5. The Stokes graph correspondingit®(s) of case(a) of
Eq. (46).

FIG. 6. The Stokes graph correspondingjtd(s, T) of Eq. (47).

fundamental solutions defined in these sectors vanish in their

(T) 1 ByB;sinhs imaginary infinities. Therefore, the corresponding transition
c(s =g ——7>——, . _
2 B2+B2cosh's amplitudea_(s,T) from level E to E_ looks as follows:
B2 B 2iBia ag
- 2 1 a_(T)=
(s, T)=uT\/Bj+ E, (47 1B, /1+M2TZBOZ
SH
1 B3 sinh(2s) exp( L, (s, T)ds+iy(T) | x1-.2(T)
q*(syT):__z o] S_#
AT B{+Bgcostt s (48)

To get the above formula we have taken into account the
following asymptotic behavior of the quantities determining
it.

i

BZsinh 2

+_
2T sini? s(B%+ B3 costf s)*?

B .
+—te XY X oo
Bo

1 B3Bisink’s 1 c(x+iy)~
+— -— 1 e
4T? (B2+B2costts)? 2T2 —B—Oe”“y,XH—w,
1 2B3coshx _
: + —1,Res— +
sintfs B2+BZcoslfs € ST
c(s) +1,Res— — oo,
B{ sint? 2s (49)
(B%+B2cosif s)? o(x+iy, T)~=uTBy, [|x[—e,

and the Stokes graphs defined bys,T) andq_(s,T) are
shown on Figs. 5 and 6, respectively.

The procedure leading us to formu[80) is still valid but
the corresponding sectoiS;,S1,S,,S, are now less ex-
posed. Namely, the first two lie on the left of the imaginarywhere s, g=x g+iy g and s{ g=x| g+iy| g have the
axis, S; above andS; below the real axis whereas the next same meaning as previously, i.e., lie on the corresponding
two lie on the right of the imaginary axis and, respectively; Stokes lines defined by_(s,T) and w(s,T), respectively,
above and below the real axis. A peculiarity of this and thewhilst a; g measurgtogether with the terms linear ix_g)
next case is that these sectors are cut by the infinite numbéhne deviations of these lines at the corresponding infinities.
of the Stokes lines parallel to the real axis and distributed up Therefore, for the exact-transition probability and its adia-
and down to the imaginary infinities, see Figs. 3 and 4. Théatic limit, we obtain from Eq(48),

;. 2Inace XA
YLRTYLR 4TBy | uTBy’

XL rl—,
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FIG. 7. The Stokes graph correspondingjt®)(s) of case(b) of
Eq. (46).

2B,a ag)?
P(T)=— (2 - LzR)z 2\2
wBo(1+ uT°Bg)
xexp( -2 Refs iw(s,T)ds) Ix12(T)|? (50
s/
and
pad_ 2Bia ar
p>TBY

s ) Bi
Xexp —2uTRe| i\/Bg+ ds|,
s/ cost' s

(51)
respectively.
Case(b). In this case we have,
e 1 c(s,T) > a2
c(s,T)= 2 costizs)’ c(s,T) tanh2s),
ycosh2s
w(S,T):MTBoﬁ,
coshs
(52
1 _ Jcosh2s) 2
q_(s,T)=— ﬁ 2 tanh25)+|,uTBOW>
i uBg tanh(2s) —tanhs
2T coshs costi2s)
7 1

aT? cosH(2s)

and the Stokes graphs corresponding{s, T) andq_(s,T)
are shown in Figs. 7 and 8, respectively.

PHYSICAL REVIEW A63 052101

FIG. 8. The Stokes graph correspondingjtq(s, T) of Eq. (52).

. —e W x—+o ¢(s) [ —2Res—+o
C(x+iy)~ _e+2x+2iy,x_)_oc, @N +2,Res— — o,
w(X+iy, T)~—\2uTBy, [|X|—c°, (53
Yy NZInaL,R X0 Rl IX_ gl o0
SRR 2uTBy 2uTB, T
so that we get for it,
()= — 8 p( fs (s, T)ds+i (T))
a (T)= exp — | iw(s,T)ds+i
uNA+2u’T?B] s’ 7

Therefore, for the corresponding transition probabilities
we obtain

(2a,ag)? "
P(T)= Soexp —2 Ref iw(s,T)ds
w2 (4+2p>T?BY) s’
X|x1-2(TI? (55
and
2
2a,a Y cosh2s
pad— % exp(—z,uTBORefsi\/Lds).
u“TBg s’ coshs

(56)

VIIl. NONVANISHING CONTRIBUTION
OF THE BERRY PHASE

Again, the transition amplitude can be calculated taking The previous sections have provided us with the examples

into account the following asymptotic.

of Hamiltonians in which the corresponding transition prob-
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abilities have had no contributions from the term IX. CONCLUSIONS AND DISCUSSION

: We have shown in this paper that the fundamental solu-
_ E (BXB), tion method has turned out to be very effective also in its
B B)2<+ Bf, application to the problems of the transition amplitudes in

two-energy-level systems. In particular, it has enabled us to

of w [see Eq(6)] representindat least a part of the Berry 0btain compact and exact formulas for these amplitudes and
phase of the transition amplitudes. The Hamiltonian definedo get easily their adiabatic approximations as well. Due to
by the field the clear way of their obtaining and their compact forms, the
formulas allow us to claim that there are no particular effects

B coming out of the many-complex level crossings, i.e., there
[1,015,32], a> \/E (57) are no individual contributions of any kind to the transition

+s? amplitude from each such crossing leading to any particular

interference effects in these amplitudes. Just the opposite,
provides us with the corresponding positive example of suclsuch a contribution is controlled totally by the Stokes line

B:
1

a contribution. Namely, for this case we have closest to the real axis of theplane that is however built by
these crossing points of the two energy levels. This result is
\/(1+37)7+ a’—2 independent of both the number of complex level crossings
w=puTBo 1482 (i.e., finite or infinite and of the particular type of the
dependence of the effective magnetic fiélé., algebraic or
1 2 exponentigl. In this way the respective results of Joye, Mi-
m XL (58) leti, and Pfistef4] have not been confirmed by our approach.

This last difference seems to be rather dramatic and, as it
seems to us, its origin lies in an erroneous calculation of the
From Eq.(57) it follows easily that for this case the tran- transition amplitude by the authors mentioned. Namely, it is
sition probability(44) takes the form the formula(6.21) of their papef4] for the transition matrix
X(z,) that is wrong, particularly if applied further in their

a‘ad s B ) Lemma 6.10 get the general formula of it. This can be seen
P(T)= (2aTBy)? )29X -2 Refs, io(s,T)ds|[x1-2(T)|*. if we rewrite our results in terms of the transition matrix.
0

(59 Namely, let us denote the rhs of the formu28) by
U,4(s,T) and the result we obtain calculatimg (s, T) with
It is the second term of Eq58) that is responsible for the 1€ help of the second of Eqg¢5) and of Eq.(28) by
Berry phase contribution to the transition probabil{§9). Uza(s,T). _ )
We shall calculate this contribution in the adiabatic limit Reversing the problem we have solved in our paper by
only and fora close to\2. This assumption allows us to assuming that fos= —« the vanishing amplitude is rather

: : a,(s,T) thana_(s,T) we obtain by exactly the same meth-
calculate the corresponding path integral, ods as used in Sec. lll and the further ones the remaining
5 elementd) (s, T) andU,,(s, T) that construct the transition
| =—j f 1 S ds, (60) matrix U(s, T). For the choice we have done in our paper we
7 W(L+5)2+ a?—2 1+ a?s? have of course,
from points=0 to the closest roaty=i(1+ia?—2)"2 of CadsT)| [Un(sT) Ug(sT) |1
the polynomial (# s?)2+ a?—2, lying in the second quad- as,T)= a_(s,T)| |Uxn(sT) Uuss T 0] (63

rant of thes plane. Fora close to\2 we can simplify the

integration expanding suitably the square root in the inteMatrix U(s,T) is of course unitary(for real s) and U

grand of Eq.(60) and the roos, as well. It is easy to check (—»,T)=I.

that under the above assumptions the net result of such cal- It should be clear that the order bf (s, T) as a function

culations is, of its arguments is theameas that ofU,4(s,T), the latter
element being given by the rhs of E@8) so that the adia-

a—\2)1? batic limit of U(s,T) is given by
—2 Relyzln(—\/—),_+0(\/a— J2). (61
21/4( \/5_1)\‘2 1 U?g(S,T)
Uad(s,T)=| .4 (64)
Obviously, the above Berry phase contribution to the tran- Uai(s,T) 1
sition probability(59) modifies its prexponential factor mul-

tiplying it by the following additional one, Therefore this matrix igot a triangular one in this limit,

as it is the case aK(z;) mentioned earlier, which doawt

_ 3y contain thenon vanishingelementU23(s, T).
= (a—_ (62) Moreover we can not apply matri¥)(s,T) directly to
214 \/5— 1)Y? continue the solutiort63) along the central strip of the cor-
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responding Stokes graph from posito another ons’. The  and
proper continuation is of course

a(s’,T)=U(s', T)U (s, Ta(s,T). (65) 1
ad —
In particular, if it is possible to continue the solution a(H o2 T =X () X(Sn-1) - - X($)X (1) 0}' (€8)
a(s,T) along, say, the upper Stokes line limiting the central
strip (i.e., the level crossings,,s,, .. .,S, met along this
line are not an obstacle to such a continuatib®en continu- Comparing the last two formulas with the respective Egs.
ing a(s,T) in this way tos= + we get (64) and (66) ones we see that formuld67) and (68) are

B 4 wrong. Particularly, it is the incorrect formu(&8) that gives
a(+o,T)=U(+2,T)U (s, T) rise to the interference effects in the amplitudes of Joye,
xU(s,, U™ Y(s, 1,T)-- -, Mileti, and Pfisterf4]. _
(66) .F!nally, we would like to me'ntlo'n that, as we hay_e shown
this in Sec. VIII there are contributions to the transition prob-
}. abilities originating from the geometricéBerry) phase 16]
0 although their geometrical meaning in the context of the
transition amplitudes is not clear.

=U(+x,T)

1
U(Sz,T)Ul(Sl,T)U(Sl,T){O

The above results show thabne of the contributions
from the individual level crossings lying on the considered
Stokes line survive on the way of continuation.

On the other hand, writing both formui®.21) and the ACKNOWLEDGMENTS
respective result dfemma 6.1of [4] in terms of the quanti-
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