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Fundamental solution method applied to time evolution of two-energy-level systems:
Exact and adiabatic limit results

Stefan Giller* and Cezary Gonera†
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A method of fundamental solutions has been used to investigate transitions in two-energy-level-systems with
no level crossing in a real time. Compact formulas for transition probabilities have been found in their exact
form as well as in their adiabatic limit. No interference effects resulting from many-level complex crossings as
announced by Joye, Mileti, and Pfister@Phys. Rev. A44, 4280~1991!# have been detected in either case. It is
argued that these results of this work are incorrect. However, some effects of Berry’s phases are confirmed.
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I. INTRODUCTION

Transitions between energy levels in a two-energy-le
system evolving in time are of great importance from ma
points of view. On one side, such systems provide us w
the simplest models to investigate transition amplitudes
tween different energy levels by different approaches@1#. On
the other side, these systems play an important role in
perimental investigations of basic principles of quantum m
chanics@2#. Recently a lot of effort has been devoted
obtain more rigorous results on the adiabatic limit of tran
tion amplitudes for these systems@3–7#. In particular, in a
series of recent papers Joyeet al. have studied this problem
by the Hilbert-space methods. Such two-energy-level s
tems are formally equivalent to a one-half spin system
into time-dependent magnetic field. However good appro
mate results and more so the exact ones are difficult to ob
for such systems even for simple time evolutions of the
fective ‘‘magnetic’’ field. Therefore each opportunity of im
proving this situation is worth trying. A treatment of th
problem by a method of fundamental solutions~so fruitful in
its application to stationary problems of one-dimensio
Schrödinger equation@8–10#! is of first importance, more so
that to our knowledge, the method was not used so far to
goal. A possibility of application of the method is related
the fact that a linear system of first-order differential equ
tions describing time evolution of transition amplitudes c
always be transformed into a system of decoupled-seco
order equations having a form of the stationary-Schro¨dinger
equation, one for each amplitude. This allows us to apply
advantages of the fundamental solution method@10#. The
only obstacle related with this approach is a complexity
effective ‘‘potentials’’ that appear in the final system of th
Schrödinger-type equations.

The paper is organized as follows.
In the next section the problem of transitions in tw

energy-level systems is stated and corresponding assu
tions about the effective ‘‘magnetic field’’ are formulated.
linear system of two differential equations for the transiti
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amplitudes is rewritten in form of two decoupled equatio
of the Schro¨dinger type. In Sec. III properties of the funda
mental solution method are recalled. In Sec. IV some sub
ties of the application of the fundamental solution method
the problems considered in the paper are discussed.
method is first applied to a particular system of the ato
atom scattering within a frame of the Nikitin model@11,12#
in Sec. V. In Sec. VI results of Sec. V are generalized
systems with an algebraic time dependence of the effec
magnetic field. In Sec. VII another two examples of tw
energy-level systems are considered with correspond
magnetic fields depending exponentially on time. These
amples, together with the ones of Secs. V and VI, show t
a general structure of the transition amplitudes is indep
dent of how the magnetic fields vary in time. This form is n
affected either by the number of~complex! energy level
crossings on the Stokes lines closest to the real axis of
complex time plane. The latter result confirms the findings
the previous section. Such a dependence resulting with s
interference effects has been announced by Joyeet al. @4#. In
Sec. VIII we consider an example of the magnetic field w
an explicit contribution of the geometrical~Berry! phase to
the transition probability.

We summarize and discuss our results in the last sect
In particular, we show there that the results of Joye, Mile
and Pfister@4# on the effects of interference from many-lev
crossings are incorrect.

II. ADIABATIC TRANSITIONS IN TWO-ENERGY-LEVEL
SYSTEMS

In general, any two-energy-level system is forma
equivalent to a one-half spin system put into an exter
magnetic fieldB(t). Therefore, we shall consider just such
system. Its HamiltonianH(t) is given then by H(t)
5 1

2 mB(t)•s, wheres5(sx ,sy ,sz) are Pauli’s matrices so
that two energy levelsE6(t) of H(t) are given byE6(t)
56(m/2)B(t) whereB(t)5AB2(t).

When the adiabatic transitions between the two ene
levelsE6(t) are considered then the following properties
the fieldB(t) are typically assumed.

~1! B(t) is real being defined for the realt, 2`,t,
1`.

~2! B(t) can be continued analytically off the real valu
©2001 The American Physical Society01-1
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of t as a meromorphic function defined on somet-Riemann
surfaceRB . A sheet ofRB from which B(t) is originally
continued is called physical.

~3! On the physical sheetB(t) is analytic in an infinite
strip S5$t:uIm tu,d,d.0%, without roots in the strip and
achieves there finite limits for Ret56`, i.e., B(Ret
56`)5B6Þ0 in the strip;

The field B(t) depends additionally on a parameterT
(.0), i.e., B(t)[B(t,T) which introduces a ‘‘natural’’
scale of time to the system so that its time evolution is
pressed most naturally in units ofT. If T is small in compari-
son with the actual period of the process considered then
latter is ‘‘fast’’ or ‘‘sudden.’’ If, however,T is large in this
comparison then the process is ‘‘slow’’ or ‘‘adiabatic.’’

In the adiabatic process of the system the following
assumed aboutB(t,T).

~4! A dependence ofB(t,T) on T is such that a rescale
field B(sT,T) has the following asymptotic behavior forT
→1`:

B~sT,T!;B0~s!1
1

T
B1~s!1

1

T2
B2~s!1•••, ~1!

while its s-Riemann surfaceRB /T approaches ‘‘smoothly’’
the topological structure of the Riemann surface correspo
ing to the first termB0(s) of the expansion~1!.

~5! With respect to its dependence ons, the field B0(s)
satisfies properties~1!–~3! above with substitutionst→s and
B(s)→B0(s).

Note that condition~3! excludes periodic fieldsB(t).
The time-dependent Schro¨dinger equation induced b

H(t) takes therefore a form

i

T

dC~s,T!

ds
5

1

2
mB~sT,T!•sC~s,T!. ~2!

The adiabatic regime of evolution of the wave functi
C(s,T) corresponds now to taking a limitT→1` in Eq.
~2!.

The main problem of the adiabatic limit in the consider
case is to find in this limit the transition amplitude betwe
the two energy levels of the system fors→1` under the
assumptions thatC(2`,T) coincides with one of the two
possible eigenstatesC6(2`,T) of H(2`) and that there is
no level crossing for realt, i.e., lim inf2`,t,1` B(t)>e
.0. Known approximate solutions of this problem are th
of Landau@13# and Zener@14# in a form of the so-called
Landau-Zener formula and that of Dykhne@15# who have
shown that such an amplitude should be exponentially sm
in the limit T→1`. In the next sections we shall show ho
to get an exact~i.e., not approximate! result for this ampli-
tude as well as its adiabatic limit with the help of the fund
mental solutions.

A typical way of proceeding when the adiabatic limit
investigated is using eigenvectorsC6(s,T) of H(sT,T) sat-
isfying (C6 ,Ċ6)50. Then, such eigenvectorsC6(s,T)
can be chosen as the following ones:
05210
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C1~s,T!5expS 2 i E
0

s

ḟ sin2
Q

2
ds DF cos

Q

2

sin
Q

2
eif
G ,

~3!

C2~s,T!5expS 2 i E
0

s

ḟ cos2
Q

2
ds DF sin

Q

2

2cos
Q

2
eif
G ,

whereQ andf are polar and azimuthal angles of the vec
B(t,T), respectively, and dots over different quantities me
derivatives with respect tos variable.

The wave functionC(s,T) can now be represented as

C~s,T!5a1~s,T!expS 2 iTE
s8

s

E1~j,T!dj DC1~s,T!

1a2~s,T!expS 2 iTE
s8

s

E2~j,T!dj DC2~s,T!,

~4!

wheres8 takesany real but fixed value.
The Schro¨dinger equation~2! can be rewritten in terms o

the coefficientsa6(s,T) as the following linear system o
two equations:

ȧ1~s,T!5c~s,T!expS i E
s8

s

v~j,T!dj D a2~s,T!,

~5!

ȧ2~s,T!52c* ~s,T!expS 2 i E
s8

s

v~j,T!dj D a1~s,T!,

where

c~s,T!52
Q̇

2
1

i ḟ

2
sinQ

52
1

2

@B3~B3Ḃ!#z

B2ABx
21By

2
1

i

2

~B3Ḃ!z

BABx
21By

2
, ~6!

v~s,T!5T~E12E2!2ḟ cosQ5mTB2
Bz

B

~B3Ḃ!z

Bx
21By

2
.

The system~5! can be rewritten further as the followin
linear system of second-order equations:

ä12S ċ

c
1 iv D ȧ11ucu2a150,

~7!

ä22S ċ*

c*
2 iv D ȧ21ucu2a250,
1-2
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where the coefficient functionsa6 decouple from each othe
being however still related by Eq.~5!.

By the following transformations,

a1~s,T!5expF 1
2 E

s8

s S ċ

c
1 iv D djGb1~s,T!

~8!

a2~s,T!5expF 1
2 E

s8

s S ċ*

c*
2 iv D djGb2~s,T!,

we bring the Eqs.~8! to Schrödinger types

b̈6~s,T!1T2q6~s,T!b6~s,T!50, ~9!

where

q1~s,T!5
1

T2 F2
1

4
S ċ

c
1 iv D 2

1ucu2G
1

1

2T2 S ċ

c
1 iv D •••, ~10!

q2~s,T!5
1

T2 F2
1

4
S ċ*

c*
2 iv D 2

1ucu2G
1

1

2T2 S ċ*

c*
2 iv D •••,

so that for reals ~andT) we have

q2~s,T!5q1* ~s,T!. ~11!

The Eqs.~9! are now basic for our further analysis sin
their form is just of the stationary one-dimensional~1D!
Schrödinger equation.

First let us note that the dependence of the ‘‘potentia
function q1(s,T) on T is given by

q1~s,T!5
1

4
m2B21

im

2T
F Ḃ2BS ċ

c
2 i ḟ cosQ D G

1
1

T2 F2
1

4
S ċ

c
2 i ḟ cosQ D 2

1ucu2G
1

1

2T2 S ċ

c
2 i ḟ cosQ D , ~12!

where the dependence ofB,c,Q,f on T in Eq. ~12! is also
anticipated. By Eq.~11! we get a corresponding dependen
of q2(s,T) on T. Taking into account Eqs.~1! and ~6! it is
easy to check that the last formula provides us with the
lowing type of asymptotic behavior ofq1(s,T) for largeT,

q1~s,T!5q1
(0)~s!1

1

T
q1

(1)~s!1
1

T2
q1

(2)~s!1•••. ~13!
05210
’
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Therefore the above form of dependence ofq6(s,T) on T
permits us to apply to the considered case the method
fundamental solutions. For this reason we shall start the n
section with a review of basic principles of the method su
ably adapted to the considered case.

III. FUNDAMENTAL SOLUTIONS
AND THEIR PROPERTIES

Consider firstq6(s,T) as functions ofs. They are defined
completely by ans dependence of fieldB(Ts,T). According
to our assumptions, the latter is meromorphic on some R
mann surfaceRB /T. However, by Eq.~12!, q6(s,T) are
algebraic functions ofB, Ḃ, and B̈ and, therefore, they are
also meromorphic functions ofs defined again on some othe
Riemann surfacesR6 determined by these algebraic depe
dencies. As it follows from Eq.~12! topological structures of
R6 can be quite complicated. However, in what follows, w
are interested in the adiabatic limitT→1` by which the
structure ofR6 should be determined forT large enough
basically by the first termq1

(0)(s) of the expansion~13!. In
consequence, by Eq.~12!, it should be determined by
mB(0)(s), i.e., by the first term of the expansion~1!. The
structure ofR6 can turn out to be much simpler in this limi
Despite this supposed complexity ofq6(s,T) and of their
Riemann surfaces we shall introduce and discuss the fu
mental solutions to the Eqs.~9! without simplifications. We
shall do it for theq1(s,T) case of Eq.~12!. An extension of
the discussion to theq2(s,T) case will be obvious.

A standard way of introducing the fundamental solutio
is a construction of a Stokes graph@8–10# related to a given
q1(s,T). Such a construction, according to Fro¨man and Fro¨-
man@8# and Fedoriuk@9#, can be performed in the following
way @10#.

Let Z denote a set of all the points ofR1 at which
q1(s,T) has its single or double poles. Letd(x) be a mero-
morphic function onR1 , the unique singularities of which
are double poles at the points collected byZ with coefficients
at all the poles equal to 1/4 each.~In a case whenR1 is
simply a complex plain, the latter function can be co
structed in general with the help of the Mittag-Leffler the
rem @17#. But for a case of branchedR1 the general proce-
dure is unknown to us.! Consider now a function

q̃1~s,T!5q1~s,T!1
1

T2
d~s!. ~14!

The presence and the role of thed term in Eq.~14! are
explained below. This term contributes to Eq.~14! if and
only when the corresponding ‘‘potential’’ functionq1(s,T)
contains simple or second order poles.~Otherwise the corre-
spondingd term is put to zero.! It is called the Langer term
@10,18#.

The Stokes graph corresponding to the functionq̃1(s,T)
consists now of Stokes lines emerging from roots~turning
points! of q̃1(s,T). Stokes lines satisfy one of the followin
equations:
1-3
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ImE
si

sAq̃1~j,T!dj50 ~15!

with si being a root ofq̃1(s,T). We shall assume further
generic situation when all the rootssi are simple.

Stokes lines that are not closed end at these points ofR1

~i.e., have the latter points as their boundaries! for which the
action integral in Eq.~15! becomes infinite. Of course suc
points are singular forq̃1(s,T) and they can be its finite
poles or its poles lying at an infinity.

Each such singularityzk of q̃1(s,T) defines a domain
called a sector. This is the connected domain ofR1 bounded
by Stokes lines andzk itself. The latter is also a boundary fo
the Stokes lines being an isolated boundary point of the
tor ~as it is in the case of the second-order pole!.

In each sector the left-hand-side~LHS! in Eq. ~15! is only
positive or only negative.

Consider now Eq.~9! for b1(s,T). Following Fröman
and Fröman in each sectorSk having a singular pointzk at its
boundary one can define a solution of the form

b1,k~s,T!5q̃1
21/4~s,T!es iTW(s,T)x1,k~s,T!, k51,2, . . . ,

~16!

where

x1,k~s,T!511 (
n>1

S 2
s

2iT D nE
zk

s

dj1

3E
zk

j1
dj2•••E

zk

jn21
djnV~j1!V~j2!•••V~jn!

3~12exp$22s iT@W~s!2W~j1!#%!

3~12exp$22s iT@W~j1!2W~j2!#%!•••

3~12exp$22s iT@W~jn21!2W~jn!#%! ~17!

with

V~s,T!5
d~s!

q̃1
1/2~s,T!

2
1

4

q̃19 ~s,T!

q̃1
3/2~s,T!

1
5

16

q̃18
2~s,T!

q̃1
5/2~s,T!

~18!

and

W~s,T!5E
si

sAq̃~j,T!dj ~19!

wheresi is a root ofq̃(s,T) lying at the boundary ofSk .
In Eqs.~16! and~18! a sign ofs (561) and an integra-

tion path are chosen in such a way to have

s Im@W~j j !2W~j j 11!#<0 ~20!

for any ordered pair of integration variables~with j05s).
Such an integration path is then called canonical. Of cou
the condition~20! means thatb1,k(s,T) vanishes in its secto
when s→zk along the canonical path. The Langerd term
appearing in Eqs.~14! and~18! is necessary to ensure all th
05210
c-

e,

integrals in Eq.~18! to converge whenzk is a first or a
second order pole ofq̃(s,T) or when the solutions~16! are to
be continued to such poles. As it follows from Eq.~18! each
such polezk demands a contribution tod(s) of the form
@2(s2zk)#22, what has been already assumed in the co
sponding construction ofd(s).

IV. THE ADIABATIC LIMIT IN THE FUNDAMENTAL
SOLUTION APPROACH

Consider now the consequences of taking the largT
limit for the above description. We assume that for a giv
q̃1(s,T) and its Riemann surfaceR1 the corresponding
Stokes graphG1 is drawn. It is drawn, of course, on th

Riemann surfaceAR1 corresponding toAq̃1(s,T).
First let us notice that singular points ofq̃1(s,T) such as

its branch points and poles depend in general onT. For both
kinds of these singularities this also means a dependenc
T of jumps of q̃1(s,T) on its cuts as well as theT depen-
dence of coefficients of its poles.

According to the property~4! of the magnetic fieldB ~see
Sec. II! we can expect that the singular structure ofq̃1(s,T),
i.e., positions of its roots and poles, as well as the cut jum
and pole coefficients, change smoothly in this limit to th
final positions and values, respectively. This limit structure
defined by the singularity structure ofq̃1

(0)(s,T) @see expan-
sion ~13!#. Therefore, both the topology ofAR1 and the
associated Stokes graphG1 change accordingly to coincid

eventually with the Riemann surfaceAR1
(0) and with the

Stokes graphG1
(0) corresponding toAq̃1

(0)(s,T) . This limit
structure can be achieved in the following ways:~a! some
branch points and poles ofq̃1(s,T) escape to infinities of
R1 ; ~b! some branch points and poles ofq̃1(s,T) approach
the respective singularities ofq̃1

(0)(s,T); ~c! some branch

points and poles ofq̃1(s,T) disappear because their respe
tive jumps and coefficients vanish in the limitT→1`.

Being more specific we expect that forT large enough a
setS1 of all singular points ofq̃1(s,T) ~i.e., containing all
its branch points and poles! consists of three well-separate
subsetsS1

in f , S1
van andS1

f in . The points ofS1
in f run to infini-

ties of R1 when T→1`. Those ofS1
van disappear in this

limit while those ofS1
f in coincide in this limit with the set

S1
(0) of the singular points ofq̃1

(0)(s,T) .
Let us remove the points contained inS1

in føS1
van from the

Riemann surfaceR1 , i.e., let us consider these points
regular for q̃1(s,T). Then R1 will transform into R1

f in—a
Riemann surface whose singular points coincide with th
of the setS1

f in .
Together with the previous operation let us remove fro

AR1 the Stokes lines generated by the points ofS1
in føS1

van

so that the remaining Stokes lines can uniquely continue
form the Stokes graphG 1

f in generated by the setS1
f in . It is

clear that the graphG 1
f in coincides withG1

(0) in the limit T
→1`.
1-4
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The above two operations will be called the adiaba
limit reduction or simply the reduction operation.

As we have mentioned earlier there is a set of sectors
a corresponding set of fundamental solutions defined in th
associated with the graphG1 . By the reduction operation
both sets can be reduced, i.e., under this operation some
tors of G1 transform into corresponding sectors ofG 1

f in

whereas the others disappear. Obviously, the latter sec
are those that disappear when the limitT→1` is taken.

The following assumption should stabilize the corr
sponding results obtained with the help of the fundame
solution method.

~6! Among a full set of fundamental solutions associa
with the Stokes graphG1 there is a subset of them assoc
ated with graphG 1

f in that allows us to solve the basic pro
lem of the adiabatic transition and that is invariant under
reduction operation.

The dynamical systems described by the Hamilton
H(t) satisfying assumption~6! will be called the adiabatic
limit reducible ~ALR! systems.

The above assumption means that to solve the problem
the adiabatic transitions in the ALR system we can first p
form the reduction operation and next work with the simp
fied Stokes graphsG 1

f in . A set of fundamental solutions as
sociated with this graph that can be used to solve
problem considered coincide with the corresponding one
the full graphG1 . The procedure used to construct a so
tion of the problem with the help of the latter graph is n
affected by the reduction operation, i.e., it looks the sa
when the simplified graphG 1

f in is used instead ofG1 .
Therefore the aim of the reduction operation is to ma
easier choosing the proper set of fundamental solution s
ing the problem. The results obtained in this way can be
exact if the integration paths taken on the graphG 1

f in can be
mapped properly on the Stokes graphG1 restoring in this
way the exact condition of the problem. However, if such
map is not known or is difficult to construct~because of the
complicated structure of graphG1) the result obtained in
this way can be considered only as an approximation,
valid only in the limit T→1`.

According to the above assumptions we can concl
from Eqs.~12! and ~13! that there is one-to-one correspo
dence between the Stokes graphsG1 andG1

(0) and the cor-
responding setsS1

f in andS1
(0) . Namely, this correspondenc

is built by aggregations~blobs! of singular points ofS1
f in ,

i.e., the branch points and poles ofq̃1(s,T), which are trans-
formed into single points ofS1

(0) when the limitT→1` is
taken. Also there are sheaves of Stokes lines ofG 1

f in emerg-
ing from the blobs and transformed into single lines ofG1

(0)

in the same limit.
Therefore in the limitT→1` we can eventually conside

for potentials~12! Stokes graphs corresponding to first term
q6

(0)(s) of the asymptotic expansions forq6(s,T). The first
terms of the asymptotic expansions corresponding toq6

(0)(s)
andq6(s,T) are the same in this limit and equal, accordi
to Eq. ~1!, to 1

4 m2B0
2(s).
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Let us note that properties~1!–~6! above can be satisfie
by the fieldB for which B2 is a meromorphicfunction of t.
We shall assume just such a dependence ofB on t and of the
corresponding rescaled fieldB(sT,T) on s. However, for
simplicity, instead of continuing our considerations in the
most general form we shall investigate first a particular
ample of the fieldB(t,T) that, as it seems to us, will illus
trate our method in a satisfactory way.

V. THE NIKITIN MODEL OF THE ATOM-ATOM
SCATTERING

The model of Nikitin @12# describes the scatteringA*
1B→A1B1De of the exited atomA* moving with a
small velocityv with the impact parameterb8 and scattered
by the atomB. The interaction between the atoms is of t
dipol-dipol type. The latter example was analyzed in the c
text of the adiabatic limitv→0 also by Joyeet al. @4#.

The Hamiltonian for this system reads~@11#, paragraph
9.3.2 and@12#!

H~R!5F De

2

C

R3

C

R3
2

De

2
G , ~21!

where De and C are constants andR5Ab821v2t2 is the
distance between the atoms. Introducingd5(2C/De)1/3 as a
natural distant unit for this case andT5d/v as the corre-
sponding adiabatic parameter and rescaling:t→sT and b8
→bd we get from Eq.~21!

H~s!5
De

2 F 1
1

~b21s2!2/3

1

~b21s2!2/3
21

G . ~22!

In the ‘‘magnetic field’’ language we have of cours
B(sT,T)5„(b21s2)23/2,0,1…De/m so that all the assump
tions ~1!–~6! above are satisfied withB6(T)5B6(6`,T)
5(0,0,1)De/m. Since in the considered casef(s)[0 then
for the corresponding quantities defined by Eqs.~6! and~12!
we get,

c5
3

2

s~b21s2!1/2

11~b21s2!3
, v5TDeS 11

1

~b21s2!3D 1/2

, ~23!
1-5
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q6~s,T!5FDe

2 S 11
1

~b21s2!3D 1/2

6
i

2T S 6s~b21s2!2

11~b21s2!3
2

s

b21s2
2

1

sD G 2

2
3

2

iDe

T

s

@11~b21s2!3#1/2~b21s2!5/2

2
1

2T2 F2s21b2~b21s2!

s2~b21s2!
2

3

2

4~b21s2!4~s22b2!24~b21s2!~b215s2!13s2~b21s2!

@11~b21s2!3#2 G .
n
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Equations~23! show that in the limitT→1` the Stokes
graph for the considered problem is determined by the fu
tion

q(0)~s,T!5
~De!2

4 S 11
1

~b21s2!3D . ~24!

The graph is shown in Fig. 1.
Each q6(s,T) has 40 roots, five branch points ats

56 ib and ats5sk56(e[(2k11)p i /3]2b2)1/2, k51,2,3, as
well as two poles ats50. Therefore only six roots o
q(0)(s,T) at s5sk , k51,2,3 and its two poles ats56 ib
look encouraging. Nevertheless, we shall consider first
case without any approximations.

At first glance the Stokes graphs corresponding to
functionsq6(s,T) seem to be quite complicated. However
can be handled in the following way.

Functionsq6(s,T) are determined on two sheeted Ri
mann surfacesR6 , respectively, with the branch points
s56 ib and ats5sk , k51,2,3 and with 40 roots distribute
into halves on each sheet of the surfaces. Therefore the
mann surfacesAR6 corresponding toAq6(s,T) ~it will turn
out that it is not necessary to introduce to the latter functi
the corresponding Langer terms! are four sheeted with thes
40 roots being square root branch points on them. WheT
→1` only six of these branch points survive coincidin
with the six roots ofq(0)(s,T) at s56sk , k51,2,3 whereas
R6 transforms into the complexs plane since the branc
points of q6(s,T) at s56 ib disappear, being transforme
into the second-order poles ofq(0)(s,T). It is easy to check,

FIG. 1. The Stokes graph corresponding to ‘‘potential’’~24!.
05210
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e
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however that for finite but largeT these six roots of
q(0)(s,T) are each split initially into two. The split is the
result of the square root branch points ats56 ib to which
the recovering of the finiteT transforms the poles o
q(0)(s,T) at the same points. The two copies of each of th
six roots lie of course on different sheets ofR6 . Next, each
of these 12 roots is still split into three by the same reason
finiteness ofT. In this way, on each of the two sheets ofR6

there are 36 roots grouped by three around their limis
56sk , k51,2,3 achieved forT→1`.

The remaining four roots ofq6(s,T) are displaced in two
pairs, one pair on each sheet ofR6 , close to the pointss
50 at which the second-order poles ofq6(s,T) are local-
ized. WhenT→1` the roots in each pair collapse intos
50 multiplying the corresponding second-order poles a
thus causing mutual cancellations of the latter and the
selves in this limit.

Now we shall focus our attention on the Stokes graphG2

generated byq2(s,T) on the first sheet ofR2 as well as on
the remaining ones. It looks as in Fig. 2. The Stokes gra
G1 corresponding toq1(s,T) can be obtained fromG2 by
complex conjugation of the latter. On the figure the wa
lines denote the cuts corresponding to the branch point
the fundamental solutions defined onR2 . The sheet on Fig.
2 cut along the wavy lines defines a domain where all
fundamental solutionsb2,1(s,T), . . . ,b2,2̄(s,T) defined in
the corresponding sectorsS1 , . . . ,S2̄ ~shown in the figure!
are holomorphic.

According to our earlier description of the behavior of t
Riemann surfaceAR1 whenT→1` the setS2

in f correspond-

FIG. 2. The Stokes graph corresponding to ‘‘potentia
q2(s,T) of Eq. ~23!.
1-6
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ing to the considered case is empty,S2
van contains four points

at s50 on each of the four sheets ofAR2 @these four points
correspond to the second-order poles ofq2(s,T)# and the
four branch points close tos50, while S2

f contains all the
remaining singular points ofAq2(s,T). Now, for our case,
the solution of the problem stated in this paper is simp
Namely, it can be found in the following steps.

~i! Take a linear combination of the fundamental solutio
b2,1(s,T) andb2,1̄(s,T) to construct the amplitudea2(s,T)
with the desired property at s52`, i.e.,
lims→2`ua2(s,T)u50. This amplitude is defined in this wa
up to a multiplicative constant.

~ii ! Use Eq.~5! to constructa1(s,T) and adjust the con
stant mentioned earlier so that the limit lims→2`ua1(s,T)u
51 can be satisfied.

~iii ! Continue canonicallya2(s,T) along the real s axis
with the help of the solutionsb2,1(s,T) andb2,1̄(s,T) using
to this goal the remaining fundamental solutions if necess

~iv! Calculate the limits→1`.
~v! Calculate the adiabatic limitT→1`.
According to Eq.~9! and to the first of the above steps w

have,

a2~s,T!5Aq2
21/4~s,T!expF E

s8

s 1

2
S ċ

c
2 iv D ~s,T!ds

1 iTE
s0

s

q2
1/2~s,T!dsGx 1̄~s,T!

1Bq2
21/4~s,T!expF E

s8

s 1

2
S ċ

c
2 iv D ~s,T!ds

2 iTE
s0

s

q2
1/2~s,T!dsGx1~s,T!, ~25!

wheres8 is any point on the real axis that is regular for t
integrand whiles0 is the one from the infinite strip bounde
by the Stokes lineabcdefrom one side and bya8b8c8 from
the other~see Fig. 2!, being also an arbitrary but regula
point for all the integrands. The choice of signatures in E
~25! was done due to the fact that Re(iT*s0

s q2
1/2ds) is posi-

tive ~for s sufficiently large! for the sectorS1 and negative
for S1̄ . The latter property follows from the fact that accor
ing to Eq.~25! and the Stokes graph on Fig. 2 we have on
first sheet of AR2: sgn(ReAq2

1/2(s,T))5sgn(s) for s→
6` along the real axis.

If further we take into account the following asymptot
behavior of the relevant quantities on the real axis,

1

2
F ċ

c
2 ivG1 iTAq2;2 iTDe2

4

s
, s→2`,

~26!

1

2
F ċ

c
2 ivG2 iTAq2;OS 1

s8D , s→2`
05210
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then we can conclude thatB50 in Eq. ~25!.
To fix the value of the constantA in Eq. ~25! we can use

the second of relations~5! and apply the condition mentione
in the second step of the procedure, i.e.,

lim
s→2`

F2
1

c~s,T!
•expS i E

s8

s

vds D ȧ2~s,T!G51

to get,

A5
1

TDe
ADe

2
expH 2E

s8

s0
ivds1E

2`

s0 F2
1

2
S ċ

c
2 iv D

1 iTAq2Gds1 ln c~s0!J . ~27!

Therefore, for the amplitudea2(s,T) we obtain finally

a2~s,T!5
1

TDe
ADe

2
q2

21/4~s,T!expH 2E
s8

s0
ivds

1E
2`

s0 F2
1

2
S ċ

c
2 iv D 1 iTAq2Gds1 ln c~s0!

1E
s0

s F1

2
S ċ

c
2 iv D 1 iTAq2GdsJ x 1̄~s,T!.

~28!

Now we can take the limits→1` in the above formula,
continuing along the canonical pathg 1̄→2 shown in Fig. 2, to
get,

a2~1`,T!5
1

iTDe
expH 2E

s8

s0
ivds1E

2`

s0 F2
1

2
S ċ

c
2 iv D

1 iTAq2Gds1 ln c~s0!1E
s0

1`F1

2
S ċ

c
2 iv D

1 iTAq2GdsJ x 1̄→2~T!. ~29!

The apparents0 dependence in the above formula is illu
sive. We can use this fact to calculate the integrals in
exponent most accurately. First let us note that we can
disjoint totally the integrations in the two infinite integra
since the diverging contributions of the three terms in both
these integrals cancel mutually at the corresponding infi
ties, making the integrals convergent. We can, however, t
as the integration paths for these two integrals the Sto
lines abc on Fig. 1 andabcdeon Fig. 2. Namely, let the
pointssL on linea andsR on linee be arbitrarily close to the
corresponding infinities of the real axis. Let further pointssL8
and sR8 be the points on the Stokes linesa and c of Fig. 1,
respectively. We choose the latter points to lie on the a
1-7
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Stokes lines of Fig. 1 that pass by the respective pointssL
andsR . Then the integral in the exponential of formula~30!
can be rewritten as

I[2E
s8

s0
ivds1E

2`

s0 F2
1

2
S ċ

c
2 iv D 1 iTAq2Gds1 ln c~s0!

1E
s0

1`F1

2
S ċ

c
2 iv D 1 iTAq2Gds

52E
s8

s9
ivds1E

2`

sL F2
1

2
S ċ

c
2 iv D 1 iTAq2Gds

1 1
2 E

sL

sL8 ivds1
1

2
ln c~sL!1E

sR

1`F1

2
S ċ

c
2 iv D 1 iTAq2G

1 1
2 E

sR

sR8 ivds1
1

2
ln c~sR!1E

sL

sR
iTAq2ds1 1

2 E
sL8

s9
ivds

2E
s9

sR8 ivds, ~30!

where the last three integrals run along the respective St
lines and, therefore, are purely imaginary. Points9 in the
above formula is an arbitrary point of the Stokes lineabc in
Fig. 1.

We are interested mainly in the transition probability d
fined by amplitudea2(1`,T) for which only the real part
of the integralI is important. Formula~30! gives for it,

ReI52ReE
s8

s9
ivds1ReE

2`

sL F2
1

2
S ċ

c
2 iv D 1 iTAq2Gds

1 1
2 E

sL

sL8 ivds1
1

2
Re lnc~sL!1ReE

sR

1`F1

2
S ċ

c
2 iv D

1 iTAq2Gds1 1
2 E

sR

sR8 ivds1
1

2
Re lnc~sR!. ~31!

We can now calculate ReI taking in Eq.~32! the limits
sL→2` andsR→1` along the corresponding Stokes line
We get in this way,

ReI52ReE
s8

s9
ivds1

1

2
lim

sL→2`
S E

sL

sL8 ivds1Re lnc~sL! D
1

1

2
lim

sR→1`
S E

sR

sR8 ivds1Re lnc~sR! D
52ReE

s8

s9
ivds1 ln

3

2
. ~32!

The limits in Eq.~32! can be obtained by estimating th
asymptotic behavior of the differencessL,R8 2sL,R and the
corresponding functions whenusu→` along the Stokes lines
for which direct calculation gives
05210
es

-

.

sL,R8 2sL,R;2
4i

TDe
lnusu2

5b2i

2TDeusu2
2

i ln aL,R

TDe
,

iv; iTDeS 11
1

2s6D , ~33!

Re lnc~s!; ln
2

3
24 lnusu2

5b2

2usu2
,

where constantsaL,R are also independent of T and can
estimated exactly only when the exact equations of
Stokes linesabc of Fig. 1 andabcdeof Fig. 2 are known.

The imaginary part of the integralI can be calculated a
the following limit,

g~T![Im I5 lim
sL,R→7`

ImS 1

2
ln c~sL!1

1

2
ln c~sR!

1E
sL

sR
iTAq2ds1 1

2 E
sL8

s9
ivds2 1

2 E
s9

sR8 ivds

2E
s8

s9
ivdsD . ~34!

Therefore, the finalexactformula for the transition ampli-
tude is

a2~1`,T!5
3aLaR

2TDe
expS 2E

s8

s9
iv~s,T!ds1 ig~T! D

3x 1̄→2~T! ~35!

and the probabilityP reads,

P5
9aL

2aR
2

4T2~De!2
expS 22E

s8

s9
ivdsD ux 1̄→2~T!u2, ~36!

where in the last two formulas points8 is an arbitrary point
on the real axis while points9 being the one of lineabc of
Fig. 1 is taken to lie simultaneously on the anti-Stokes l
passing by points8.

The adiabatic limit of the transition probability is there
fore,

P5
9aL

2aR
2

4T2~De!2
expF22 ReS iTE

s8

s9
mB0~s!dsD G , ~37!

wheres9 is now an arbitrary point of the continuous Stok
line passing by roots ofB0(s) closest to the real axis.
1-8
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VI. THE GENERAL CASE OF ALGEBRAIC
MAGNETIC FIELD

The result given by the formula~35! can be easily gener
alized. From the way of obtaining formula~30! it follows
that the most important is the existence of the continu
Stokes lineabcdeon Fig. 2 and itsT→1`-limit, i.e., the
Stokes lineabc of Fig. 1, which link the respective infinitie
Res52` and Re51` on both Stokes graphs. Another im
portant property was the way fieldB approached the limits
B6 when Ret→6`, respectively, in the stripS mentioned
in the assumption~3!. Let us therefore accept the followin
two additional assumptions.

~7! There are two Stokes lines on each of the Sto
graphs corresponding toiTAq6 that can be taken as th
boundaries of the stripS. Each of these two Stokes line
links continuously both infinities of the stripS, see Fig. 3;

~8! Inside the stripS the fieldB approaches the infinitie
of the strip according to the following asymptotic formula

B~sT,T!;B0
6~T!1

B1
6~T!

sa1
6 1

B2
6~T!

sa2
6 1•••1

Bk
6~T!

sak
6

1•••, Res→6`,
~38!

1

2
,a1

6,a2
6,•••,ak

6,•••,

where a1
6 , . . . ,ak

6 , are rational if B2 is a meromorphic
function of s.

If the Stokes graph corresponding toiTAq2 satisfies the
conditions of being a graph of the ALR system described
Sec. IV, then we can claim that there are four sect
S1 ,S1̄ ,S2 ,S2̄ of the graph and the corresponding fundame
tal solutionsx1 ,x 1̄ that can be used in exactly the same w
as it was done in the case of the Nikitin model to solve
problem stated in Sec. II, see Fig. 4.

FIG. 3. The Stokes graph corresponding to generalq(0)(s) con-
sidered in Sec. VI.
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Let us choose thexyz axes in the space of vectorB in
such a way that one of its limit componentsBx,0

6 and By,0
6

does not vanish in the corresponding infinities. Let us a
assume that vectorsB0

6(T) andB1
6(T) of expansion~38! are

not parallel to each other in the respective infinities@other-
wise we should take another pair of vectors appearing in
~38! satisfying the last property and having the smallest s
of the power exponents by which they are accompanie#.
Then, if we take into account the following asymptotic th
comes out of Eq.~6! and of the above assumptions whe
Res→6` inside the strip,

c;S 2
1

2

@B0
63~B0

63B1
6!#z

B0
62ABx,0

621By,0
62

1
i

2

~B0
63B1

6!z

B0
6ABx,0

621By,0
62D 1

sa1
6

[
D6

sa1
6 ,

v;mTB0
61S mTB0

6
•B1

62
Bz,0

6

B0
6

~B0
63B1

6!z

ABx,0
621By,0

62D 1

sa1
6 [

G6

sa1
6 ,

1

2 S ċ*

c*
2 iv D 1 iTAq2;5 2 imTB0

2
a1

1

s

D2~D2!*

imTB0
2

1

s2a1
2 ,

~39!

1

2 S ċ*

c*
2 iv D 2 iTAq2;5 2

D1~D1!*

imTB0
1

1

s2a1
1

2 imTB0
2

a1
2

s
,

ċ

c
;2

a1
6

s
,

FIG. 4. The Stokes graph corresponding to generalq2(s,T)
considered in Sec. VI.
1-9
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then we can repeat the procedure of the previous sectio
get the analog of formulas~30! and ~34!. Namely, we have
for them,

a2~1`,T!5
1

mTAB0
2~T!B0

1~T!
expH E

2`

s0 F2
1

2
S ċ

c
2 iv D

1 iTAq2Gds1 ln c~s0!2E
s8

s0
ivds

1E
s0

1`F1

2
S ċ

c
2 iv D 1 iTAq2GdsJ x 1̄→2~T!

~40!

5
aLaR

mT AuD2~T!D1~T!u

B0
2~T!B0

1~T!

3expS 2E
s8

s9
iv~s,T!ds1 ig D x 1̄→2~T!,

where pointss8 ands9 have been chosen again on the sa
anti-Stokes line of the graph corresponding toiv(s,T) and

P~T!5
aL

2aR
2 uD2~T!D1~T!u

~mT!2B0
2~T!B0

1~T!

3expS 22 ReE
s8

s9
iv~s,T!dsD ux 1̄→2~T!u2,

~41!

whereD6 are given by

D652
1

2

@B0
63~B0

63B1
6!#z

B0
62ABx,0

621By,0
62

1
i

2

~B0
63B1

6!z

B0
6ABx,0

621By,0
62

~42!

so that

uD6u5
B1

6sinf6

2B0
6

, ~43!

where f6(T) are the angles between fieldsB0
6 and B1

6 ,
respectively.

Again, the exact form of the coefficientsaL,R can be
found if the exact equations of the Stokes lines correspo
ing to v(s,T) andq2(s,T) are known.

Therefore, the final forms of the transition probability a
its adiabatic limit are
05210
to

e

d-

P~T!5
aL

2aR
2B1

2~T!B1
1~T!sinf2~T!sinf1~T!

~2mTB0
2~T!B0

1~T!!2

3expS 22 ReE
s8

s9
iv~s,T!dsD ux 1̄→2~T!u2 ~44!

and

Pad5
aL

2aR
2B1,0

2 B1,0
1 sinf0

2sinf0
1

~2mTB0,0
2 B0,0

1 !2

3expF22 ReS iTE
s8

s9
mB0~s!dsD G , ~45!

where to get the last formula, the asymptotic expansion~1!
has been applied to fieldsB0

6(T) andB1
6(T) as well as tov

given by Eq.~6!. Point s9 is now an arbitrary point of the
continuous Stokes linea1a2•••anan11 passing by the roots
of B0(s) closest to the real axis, as it is shown on Fig.
Note that because of our assumption the angles in Eqs.~44!
and ~45! are different from 0 andp.

VII. OTHER TWO EXAMPLES WITH EXPONENTIALLY
DECREASING MAGNETIC FIELDS

We consider here another two examples of magn
fields depending exponentially on time. The main differen
between these cases and those considered in the pre
sections lies in the number of level crossings that in
exponential cases is, of course, infinite.

We consider the following two cases of the fields:

~a! B~ t,T!5B01
B1

coshS t

TD , B0•B150,

B05uB0uÞuB1u5B1 ,
~46!

~b! B~ t,T!5B01B1tanhS t

TD , B0•B150, uB0u5B1u5B0 .

Case ~a!. The relevant quantities for this case have t
forms
1-10
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c~s,T!5
1

2

B0B1 sinhs

B1
21B0

2 cosh2 s
,

v~s,T!5mTAB0
21

B1
2

cosh2 s
, ~47!

q2~s,T!52
1

4T2 S coths2
B0

2 sinh~2s!

B1
21B0

2 cosh2 s

2 imTAB0
21

B1
2

cosh2 s
D 2

1
im

2T

B1
2 sinh 2s

sinh2 s~B1
21B0

2 cosh2 s!1/2

1
1

4T2

B0
2B1

2 sinh2 s

~B1
21B0

2 cosh2 s!2
2

1

2T2

3S 1

sinh2 s
1

2B0
2 cosh 2s

B1
21B0

2 cosh2 s

2
B0

4 sinh2 2s

~B1
21B0

2 cosh2 s!2D
and the Stokes graphs defined byv(s,T) and q2(s,T) are
shown on Figs. 5 and 6, respectively.

The procedure leading us to formula~30! is still valid but
the corresponding sectorsS1 ,S1̄ ,S2 ,S2̄ are now less ex-
posed. Namely, the first two lie on the left of the imagina
axis, S1 above andS1̄ below the real axis whereas the ne
two lie on the right of the imaginary axis and, respective
above and below the real axis. A peculiarity of this and
next case is that these sectors are cut by the infinite num
of the Stokes lines parallel to the real axis and distributed
and down to the imaginary infinities, see Figs. 3 and 4. T

FIG. 5. The Stokes graph corresponding toq(0)(s) of case~a! of
Eq. ~46!.
05210
;
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fundamental solutions defined in these sectors vanish in t
imaginary infinities. Therefore, the corresponding transit
amplitudea2(s,T) from level E1 to E2 looks as follows:

a2~T!5
2iB1aLaR

mB0A11m2T2B0
2

3expS 2E
s8

s9
iv~s,T!ds1 ig~T! D x 1̄→2~T!.

~48!

To get the above formula we have taken into account
following asymptotic behavior of the quantities determini
it.

c~x1 iy !;H 1
B1

B0
e2x2 iy,x→1`

2
B1

B0
e1x1 iy,x→2`,

ċ~s!

c~s!
;H 21,Res→1`

11,Res→2`,
~49!

v~x1 iy ,T!;2mTB0 , uxu→`,

yL,R8 2yL,R;
2 lnaL,R

mTB0
1

uxL,Ru
mTB0

, uxL,Ru→`,

where sL,R5xL,R1 iyL,R and sL,R8 5xL,R8 1 iyL,R8 have the
same meaning as previously, i.e., lie on the correspond
Stokes lines defined byq2(s,T) and v(s,T), respectively,
whilst aL,R measure~together with the terms linear inxL,R)
the deviations of these lines at the corresponding infinitie

Therefore, for the exact-transition probability and its ad
batic limit, we obtain from Eq.~48!,

FIG. 6. The Stokes graph corresponding toq2(s,T) of Eq. ~47!.
1-11
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P~T!5
~2B1aLaR!2

m2B0
2~11m2T2B0

2!2

3expS 22 ReE
s8

s9
iv~s,T!dsD ux 1̄→2~T!u2 ~50!

and

Pad5S 2B1aLaR

m2TB0
2 D 2

3expS 22mT ReE
s8

s9
iAB0

21
B1

2

cosh2 s
dsD ,

~51!

respectively.
Case~b!. In this case we have,

c~s,T!52
1

2 cosh~2s!
,

ċ~s,T!

c~s,T!
522 tanh~2s!,

v~s,T!5mTB0

Acosh~2s!

coshs
,

~52!

q2~s,T!52
1

4T2 S 2 tanh~2s!1 imTB0

Acosh~2s!

coshs D 2

2
imB0

2T

tanh~2s!2tanhs

coshs
Acosh~2s!

2
7

4T2

1

cosh2~2s!

and the Stokes graphs corresponding tov(s,T) andq2(s,T)
are shown in Figs. 7 and 8, respectively.

Again, the transition amplitude can be calculated tak
into account the following asymptotic.

FIG. 7. The Stokes graph corresponding toq(0)(s) of case~b! of
Eq. ~46!.
05210
g

c~x1 iy !;H 2e22x22iy,x→1`

2e12x12iy,x→2`,

ċ~s!

c~s!
;H 22,Res→1`

12,Res→2`,

v~x1 iy ,T!;2A2mTB0 , uxu→`, ~53!

yL,R8 2yL,R;
2 lnaL,R

A2mTB0

1
uxL,Ru

A2mTB0

, uxL,Ru→`,

so that we get for it,

a2~T!5
2aLaR

mA412m2T2B0
2

expS 2E
s8

s9
iv~s,T!ds1 ig~T! D

3x 1̄→2~T!. ~54!

Therefore, for the corresponding transition probabiliti
we obtain

P~T!5
~2aLaR!2

m2~412m2T2B0
2!

expS 22 ReE
s8

s9
iv~s,T!dsD

3ux 1̄→2~T!u2 ~55!

and

Pad5S A2aLaR

m2TB0
D 2

expS 22mTB0 ReE
s8

s9
iAcosh~2s!

coshs
dsD .

~56!

VIII. NONVANISHING CONTRIBUTION
OF THE BERRY PHASE

The previous sections have provided us with the examp
of Hamiltonians in which the corresponding transition pro

FIG. 8. The Stokes graph corresponding toq2(s,T) of Eq. ~52!.
1-12
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abilities have had no contributions from the term

2
Bz

B

~B3Ḃ!z

Bx
21By

2

of v @see Eq.~6!# representing~at least! a part of the Berry
phase of the transition amplitudes. The Hamiltonian defin
by the field

B5
B0

11s2
@1,as,s2#, a.A2, ~57!

provides us with the corresponding positive example of s
a contribution. Namely, for this case we have

v5mTB0

A~11s2!21a222

11s2

2
1

A~11s2!21a222

s2

11a2s2
. ~58!

From Eq.~57! it follows easily that for this case the tran
sition probability~44! takes the form

P~T!5
aL

2aR
2

~2mTB0!2
expS 22 ReE

s8

s9
iv~s,T!dsD ux 1̄→2~T!u2.

~59!

It is the second term of Eq.~58! that is responsible for the
Berry phase contribution to the transition probability~59!.
We shall calculate this contribution in the adiabatic lim
only and fora close toA2. This assumption allows us t
calculate the corresponding path integral,

Ig52 i E
g

1

A~11s2!21a222

s2

11a2s2
ds, ~60!

from point s50 to the closest roots05 i (11 iAa222)1/2 of
the polynomial (11s2)21a222, lying in the second quad
rant of thes plane. Fora close toA2 we can simplify the
integration expanding suitably the square root in the in
grand of Eq.~60! and the roots0 as well. It is easy to check
that under the above assumptions the net result of such
culations is,

22 ReIg5 ln
~a2A2!1/2

21/4~A221!A2
1O~Aa2A2!. ~61!

Obviously, the above Berry phase contribution to the tr
sition probability~59! modifies its prexponential factor mu
tiplying it by the following additional one,

C5
~a2A2!1/2

21/4~A221!A2
. ~62!
05210
d

h

-

al-

-

IX. CONCLUSIONS AND DISCUSSION

We have shown in this paper that the fundamental so
tion method has turned out to be very effective also in
application to the problems of the transition amplitudes
two-energy-level systems. In particular, it has enabled u
obtain compact and exact formulas for these amplitudes
to get easily their adiabatic approximations as well. Due
the clear way of their obtaining and their compact forms,
formulas allow us to claim that there are no particular effe
coming out of the many-complex level crossings, i.e., th
are no individual contributions of any kind to the transitio
amplitude from each such crossing leading to any particu
interference effects in these amplitudes. Just the oppo
such a contribution is controlled totally by the Stokes li
closest to the real axis of thet plane that is however built by
these crossing points of the two energy levels. This resu
independent of both the number of complex level crossi
~i.e., finite or infinite! and of the particular type of thet
dependence of the effective magnetic field~i.e., algebraic or
exponential!. In this way the respective results of Joye, M
leti, and Pfister@4# have not been confirmed by our approac
This last difference seems to be rather dramatic and, a
seems to us, its origin lies in an erroneous calculation of
transition amplitude by the authors mentioned. Namely, i
the formula~6.21! of their paper@4# for the transition matrix
X(z1) that is wrong, particularly if applied further in thei
Lemma 6.1to get the general formula of it. This can be se
if we rewrite our results in terms of the transition matrix.

Namely, let us denote the rhs of the formula~28! by
U21(s,T) and the result we obtain calculatinga1(s,T) with
the help of the second of Eqs.~5! and of Eq. ~28! by
U11(s,T).

Reversing the problem we have solved in our paper
assuming that fors52` the vanishing amplitude is rathe
a1(s,T) thana2(s,T) we obtain by exactly the same meth
ods as used in Sec. III and the further ones the remain
elementsU12(s,T) andU22(s,T) that construct the transition
matrix U(s,T). For the choice we have done in our paper w
have of course,

a~s,T![Fa1~s,T!

a2~s,T!
G5FU11~s,T! U12~s,T!

U21~s,T! U22~s,T!
GF1

0G . ~63!

Matrix U(s,T) is of course unitary~for real s) and U
(2`,T)5I .

It should be clear that the order ofU12(s,T) as a function
of its arguments is thesameas that ofU21(s,T), the latter
element being given by the rhs of Eq.~28! so that the adia-
batic limit of U(s,T) is given by

Uad~s,T!5F 1 U12
ad~s,T!

U21
ad~s,T! 1 G . ~64!

Therefore this matrix isnot a triangular one in this limit,
as it is the case ofX(z1) mentioned earlier, which doesnot
contain thenon vanishingelementU12

ad(s,T).
Moreover we can not apply matrixU(s,T) directly to

continue the solution~63! along the central strip of the cor
1-13
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responding Stokes graph from points to another ones8. The
proper continuation is of course

a~s8,T!5U~s8,T!U21~s,T!a~s,T!. ~65!

In particular, if it is possible to continue the solutio
a(s,T) along, say, the upper Stokes line limiting the cent
strip ~i.e., the level crossingss1 ,s2 , . . . ,sn met along this
line are not an obstacle to such a continuation! then continu-
ing a(s,T) in this way tos51` we get

a~1`,T!5U~1`,T!U21~sn ,T!

3U~sn ,T!U21~sn21 ,T!•••,
~66!

U~s2 ,T!U21~s1 ,T!U~s1 ,T!F1

0G5U~1`,T!F1

0G .
The above results show thatnone of the contributions

from the individual level crossings lying on the considere
Stokes line survive on the way of continuation.

On the other hand, writing both formula~6.21! and the
respective result ofLemma 6.1of @4# in terms of the quanti-
ties introduced above, we get,

X~s1!5F 1 0

U21
ad~s1 ,T! 1G ~67!
-

I

-

05210
l

and

aad~1`,T!5X~sn!X~sn21!•••X~s2!X~s1!F1

0G . ~68!

Comparing the last two formulas with the respective E
~64! and ~66! ones we see that formulas~67! and ~68! are
wrong. Particularly, it is the incorrect formula~68! that gives
rise to the interference effects in the amplitudes of Jo
Mileti, and Pfister@4#.

Finally, we would like to mention that, as we have show
this in Sec. VIII there are contributions to the transition pro
abilities originating from the geometrical~Berry! phase@16#
although their geometrical meaning in the context of t
transition amplitudes is not clear.
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~S.G.! and the Ło´dź University Grant No. 795~C.G.!.
@1# L.D. Landau and E.M. Lifshitz,Quantum Mechanics: Nonrel
ativistic Theory~Pergamon, New York, 1965!.

@2# L. Davidovich, in Latin-American School of Physics XXX
ELAF, edited by Shahen Hacyan, Rocı´o Jáuregui, and Ramon
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