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Cavity-assisted quasiparticle damping in a Bose-Einstein condensate
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We consider an atomic Bose-Einstein condensate held within an optical cavity and interacting with laser
fields. We show how the interaction of the cavity mode with the condensate can cause energy due to excitations
to be coupled to a lossy cavity mode, which then decays, thus damping the condensate. We show how to
choose parameters for damping specific excitations, and how to target a range of different excitations to
potentially produce extremely cold condensates.
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The breakthrough success, largely due to improved c
ing techniques@1#, of producing atomic Bose-Einstein con
densates~BEC’s! @2#, has created an exciting new area
investigative study@3,4#. Within the field of cavity quantum
electrodynamics, one is able to precisely control the inter
tion of the electromagnetic field with an atom@5#; the trap-
ping and cooling of a single atom in an optical cavity h
also been successfully experimentally demonstrated@6#.
Here we combine@7# the use of a cavity to cool atoms@8#
with the ever present goal of producing colder condens
@9#, particularly relevant to controlling quasiparticle excit
tions @10–12# produced in the course of other experimen
investigations@13#.

We consider a Fabry-Perot optical cavity with decay r
k, and a pump laser, with a BEC held in a harmonic poten
of frequencyv inside the cavity, driven by a separate las
V, as shown in Fig. 1. We generally consider only one s
tial dimension, considering the radial motion to be frozen
by a tight harmonic potential of frequencyv r ~cigar-shaped
configuration @14#!. The laser-cavity superposition field
Ê( x̂,t)5V( x̂)e2 ivLt1gâ cos(kx̂), where â is the cavity
mode annihilation operator; interacting with this are the B
atoms, considered to have two levelsug& and ue&, with tran-
sition frequencyv0. We initially consider a single particle
and ignore the degrees of freedom due to the free cavity fi
and the atomic motion. In a rotating frame„Û5 exp@2i(see

1â†â)vLt#…, the Hamiltonian describing the internal atom
level dynamics is Ĥat5\@Dasee1Ẽ( x̂)seg1Ẽ†( x̂)sge#,
where seg5ue&^gu, Da5v02vL, and Ẽ( x̂)5V( x̂)
1gâ cos(kx̂). Assuming Da@Ẽ, Da@g where g is the
atomic spontaneous emission rate, anduDu, where D5vc
2vL, by far exceeding the frequency scales govern
atomic motion and the cavity dynamics, we may adiab
cally eliminateue& to derive a closed time-evolution equatio
for the ug& wave function component@15#, using this to re-
construct an effective Hamiltonian:

Ĥeff52
\Da

g21Da
2
Ẽ†~ x̂!Ẽ~ x̂!1

i\g

g21Da
2
Ẽ†~ x̂!Ẽ~ x̂!. ~1!

Assumingg!V and ^â†â&<1, we can neglect the term
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}g2, and asg!Da , we ultimately consider only the Hermit
ian terms. The light field thus provides: a term}uV( x̂)u2,
which, assumingV( x̂)}eikLx̂, contributes only a shift; and a
contribution linear inâ andâ†, which acts like a driving field
for the cavity mode. It thereby implements a mechanism
transfer energy to the cavity, which in turn will shed th
energy to the environment by means of cavity damping. T
effective single-particle Hamiltonian~including the free dy-
namics of the particle motion and the cavity! is now

Ĥeff5
p̂2

2m
1

mv2x̂2

2
1\~D2 ik!â†â1\@ f ~ x̂!â1H.c.#,

~2!

where f ( x̂)52V( x̂)g cos(kx̂)Da /(Da
21g2), andm is the par-

ticle mass. We now consider a BEC-cavity system. The o
dimensional atomic interaction potential5ud(x2y), where
u52\v ras andas is thes-wave scattering length@4#. Thus,
in second quantized form,

Ĥeff5E dxĈ†~x!H \@ f ~x!â1 f * ~x!â†#2
\2

2m

]2

]x2

1
mv2x2

2
1

u

2
Ĉ†~x!Ĉ~x!J Ĉ~x!

1\@~D2 ik!â†â2apâ†2ap* â#, ~3!

whereĈ(x) and Ĉ†(x) are atomic field operators, and th
ap terms are provided by the pump laser. We treatĈ(x) and
â semiclassically, replacing them with the scalar quantit

FIG. 1. Proposed configuration: a BEC held in a cavity, driv
by a laserV and a pump laser, and losing cavity photons with
decay ratek.
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w(x) and a, respectively. It is convenient to rescale to d
mensionless harmonic units (\5m5v51); this scaling is
assumed from now on. The resulting equations of motion
a Gross-Pitaevskii-like~GP! equation

i ẇ~x!5$HGP1@ f̃ ~x!ã1 f̃ * ~x!ã* #%w~x!, ~4!

whereHGP52]2/2]x21x2/21yuw(x)u2 is the unperturbed
GP ‘‘Hamiltonian,’’ with y5uNAm/\v/\, f̃ (x)
5AN f(x)/v, andã5a/AN, whereN is the particle number
and the semiclassical cavity mode equation

i ȧ̃5~D2 ik!ã1E dxuw~x!u2 f̃ * ~x!2ãp . ~5!

We set ãp to be 5*dxuw0(x)u2 f̃ * (x), so that whenw(x)
approachesw0(x) ~the ground state ofHGP), ã will simply
decay, without feeding into Eq.~4!. The cooling mechanism
thus switches off upon reaching the desired steady s
w(x)5w0(x) and ã50.

We now consider linearized perturbationsdw(x), da,
around the steady state. Linearizing Eq.~4! produces
Bogoliubov-like equations@10#. Note in Eq.~5! for w0(x),
no distinction is made between different global phases
calculations the final phase ofw0(x) is determined by the
chosen initial conditions, and is not relevant. We consi
only perturbations orthogonal tow0(x), and can implicitly
assume a U(1) gauge transformation@16# such thatw0(x) is
always real. Having defineddw(x) as orthogonal tow0(x),
i.e., dw(x)5*dyQ(x,y)dw(y), where Q(x,y)5d(x2y)
2w0(x)w0(y), we can state that

i S dẇ~x!

dẇ* ~x!
D 5E dyL~x,y!S dw~y!

dw* ~y!
D 1E dyQ~x,y!

3@ f̃ ~y!da1 f̃ * ~y!da* #S w0~y!

2w0~y!
D , ~6!

where L(x,y)5**dzdwQ(x,z)HBog(z,w)Q(w,y) @12#, in
terms of the usual Bogoliubov Hamiltonian@10#:

HBog5S HGP1yw0~x!22m yw0~x!2

2yw0~x!2 2HGP2yw0~x!21m D ,

~7!

wherem is the ground-state chemical potential; and

Q~x,y!5S Q~x,y! 0

0 Q~x,y!
D . ~8!

It is convenient to expand„dw(x),dw* (x)… as

S dw~x!

dw* ~x!
D 5(

k
zkS uk~x!

vk~x!
D 1zk* S vk~x!

uk~x!
D , ~9!

where $„uk(x),vk(x)…,„vk(x),uk(x)…% are eigenstates o
L(x,y), with eigenfrequencies6vk @these may be deter
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mined numerically by diagonalizingL(x,y) @17##. As w0 is
assumed real, these are also real. We similarly expand

E dyQ~x,y! f̃ ~y!S w0~y!

2w0~y!
D

5(
k

xkF S uk~x!

vk~x!
D 2S vk~x!

uk~x!
D G , ~10!

where the coefficients can obviously be defined by

xk5E dx@uk~x!1vk~x!# f̃ ~x!w0~x!. ~11!

Note that treating the evolution of perturbations orthogo
to w0(x) is equivalent to a number-conserving formalis
@11,12#. The uk(x) and vk(x) are orthogonal tow0(x), and
the $„uk(x),vk(x)…,„vk(x),uk(x)…% are used as a convenien
time-independent basis. All time dependence in Eq.~9!
is thus in the zk ,zk* coefficients, in contrast to
Refs. @11,12,16#. We now transform Eq.~6! to an inter-
action picture. We thus set „dw̃(x),dw̃* (x)…
5eiLt(dw(x),dw* (x)) and dã5eiDtda. Substituting Eqs.
~9! and ~10! into an appropriately transformed Eq.~6!, and

then making the integration*dxul(x)dẇ̃(x)2v l(x)dẇ̃* (x),
we end up with

i ż̃ l5dãx le
i (v l2D)t1dã* x l* ei (v l1D)t, ~12!

where z̃ l5eiv l tz l . From Eqs.~5! and ~10!, the linearized
equation of motion fordã, after adiabatic elimination~as-
sumingk@uzkxku), produces

dã52
i

k (
k

@ z̃ke
2 i (vk2D)t1 z̃k* ei (vk1D)t#xk* . ~13!

We assume that due to our choice off̃ (x), ux l u dominates
uxkÞ l u, neglecting terms wherekÞ l , and chooseD5v l to
match it. Applying the rotating wave approximation~RWA!

to Eqs. ~12! and ~13!, we neglect terms involvingz̃ l* and

dã* (2v l should therefore describe the fastest time sca!.
Combining the resulting expressions, we end up with
simple damping equation:

ż̃ l52
ux l u2

k
z̃ l . ~14!

As V(x)}eikLx, we set f̃ (x)5g0@eikexx1ei (kex62k)x#, where
kex5k6kL , andk is the wave number of the cavity mode
Taking only theeikexx term, we see in Fig. 2~a! that each
ux l u2 peaks for somekex at a point whereux l u2.uxkÞ l u2.
Assumingv l is chosen to match, for sufficiently largek the
ei (kex62k)x term can be ignored, as those modes to which
couples most strongly~i.e., largex l) can, by the RWA, be
neglected. From now on we considerf̃ (x)5g0eikexx. As
eikexxw0(x) is equivalent to a momentum-kicked ground sta
with mean additional energy5kex

2 /2, the inner product of
3-2
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f̃ (x)„w0(x),2w0(x)… with eigenstates ofL(x,y) should be
large with those eigenstates of similar energy; one wo
thus simplistically expectux l u2 to peak whenkex

2 /25v l . In
Fig. 2~b! we see that this prediction is a little crude for sm
vL , although it converges to the true values for higher f
quencies, as expected. Also correctly predicted is that
optimal kex values tend to converge for largel. From Fig.
2~a! we see that theux l 61u2 ~at least! can be significant com
pared toux l u2 at the optimal value ofkex, but the fact that
these terms are both smaller and rotating means that thl th
term will still dominate. For largel, as the peak values ofkex
converge and the peaks become less well resolved, Eq.~14!
will become less reliable.

Numerically we monitor the damping via the ener
E5*dxw* (x)@2]2/]x21x21yuw(x)u2#w(x)/2. We define
E0 equivalently, withw(x)5w0(x). Within the linearized
approximationE5E01(kvkuzku2, and thus, if initially only
z lÞ0, from Eq.~14! we have

dĖ52
2ux l u2

k
dE, ~15!

wheredE5E2E0. The energy damping time scale is th
52g0

2A/k, whereA5ux l u2 for g051. In Fig. 3 we compare
Eq. ~15! with numerical integrations of Eqs.~4! and~5!. The
initial conditions arew(x)}w0(x)10.1@ul(x)1v l(x)#, a
50; y is always510. In Fig. 3~a! we see qualitative agree
ment of the analytical estimate given by Eq.~15! with the
numerical results for differentg0, which, in view of the num-
ber of approximations made, is remarkably good. In Fig. 3~b!
we see the convergence of the position densityr(x)
5uw(x)u2 to uw0(x)u2. In Fig. 3~c! we see good qualitative
agreement in the damping rates forg0

2 andk51, 10 with the
analytical prediction~which is the same for each!. In Fig.
3~d!, wherel 51 rather than 12, but the parameters are o
erwise the same, we see heating for thek510 case;v151 is
dominated byk, and the RWA is therefore not valid. Mos
significant about Eqs.~14! and~15! is that the procedure fo
deriving them provides a recipe for determining parame
optimal for the damping of specific excitations.

In the case of a finite temperature BEC, where there
range of populated quasiparticle~QP! excitations, these can

FIG. 2. ~a! Plots ofux l u2 for l 51 –15 as functions ofkex, where

x l is as defined in Eq.~11!, and f̃ (x)5eikexx. The vertical lines
mark the numerically determined optimal values forkex. ~b! Plots
of kex5A2v l , i.e., approximately optimal value ofkex ~plusses!,
and numerically determined optimal vales ofkex ~circles!, against
v l for l 51 –25. Units are dimensionless (\5m5v51).
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be individually targeted, resulting in cooling of the BEC
There is a well-known correspondence between lineari
perturbations ofw(x) and QP excitations@11,12#. Assuming
â0

†â0'N̂, whereâ0 is the annihilation operator for a particl

in statew0(x) and N̂ is the total particle number operato
then

Ĉ~x!5â0Fw0~x!1
1

AN̂
(

k
b̂kuk~x!1b̂k

†vk~x!G , ~16!

where theb̂k
† , b̂k are QP creation and annihilation operato

respectively. If the state of the system is assumed therm

then ^b̂k
†b̂k&5@exp(vk /t)21#21 and ^b̂k&5^b̂k

†&50, where
t5kBT/\v. Semiclassically, one can regard these expe
tion values as describing the statistics of Gaussian rand

variablesbk , with mean 0 and variancêb̂k
†b̂k& @18#. One

can make use of the linearized perturbation-QP corresp
dence by taking a random initial condition:

w~x!5w0~x!1
1

AN
(

k
bkuk~x!1bk* vk~x!, ~17!

with a50, and simulating the cooling process numerica
with Eqs. ~4! and ~5!. As we must target a range of excita
tions, we employ a procedure so that whenevert is a multiple
of 4, kex and D are changed~by adjusting the laserV),
initially targeting l 525 ~as described above!, and then
through each ofl 524–1. We chooseg0

2, k51 ~to ensure
cooling takes place for smallv l), N51000, andy510. In
Fig. 4~a! we show damping of states of the formw(x)
}w0(x)10.1@ul(x)1v l(x)#, for a range of relevantl. For l
524 there are deviations from Eq.~15!, as expected; signifi-

FIG. 3. ~a! Plots ofdE/E0 for different g0
2 against time, where

l 512, k510. Solid lines, numerical calculations; dotted lines, p
diction of Eq.~15!. ~b! Time evolution ofr(x)5uw(x)u2 ( l 512, k,
g0

2510). ~c! Plots ofdE/E0 against time, wherel 512. Solid line,
k, g0

2510; dashed line,k, g0
251; dotted line, prediction of Eq.~15!

for both cases.~d! Plots ofdE/E0 against time, wherel 51. Solid
line, k, g0

2510; dashed line,k, g0
251; dotted line, prediction of

Eq. ~15!. Units are dimensionless (\5m5v51).
3-3
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cant damping nevertheless takes place for eachl. In Fig. 4~b!
we observe significant damping for initial states wheret
55,10. Note that the energy separation between thet510
state and the ‘‘cutoff’’ state@k51 –25 in Eq.~17!, rather
than 1–100#, remains relatively static, implying that dampin
is taking place in a targeted manner on the low-lying exc
tions. Note also from Fig. 4~c! that, although the relative

FIG. 4. ~a! Damping of states perturbed by a single excitatio
for k, g0

251. Solid lines, numerical calculation; dotted lines, an
lytical estimates.~b! Plots of dE/E0 against time: solid line,t
510; dashed line, same initial condition, but with a cutoff forl

.25; dotted line,t55. ~c! White, ^b̂l
†b̂l& for t510. Data corre-

sponding to the solid line of~b!: gray, ub l u2 for t50; black, ub l u2

for t5100. Units are dimensionless (\5m5v51).
s
,

05160
-

population fork.25 is miniscule, the relative energy contr
bution is significant. Although the cutoff state was prop
gated for the sake of comparison, it could conceivably ap
to a physical situation, such as occurs in evaporative coo
@1#. In Fig. 4~c! we see clear suppression of theub l u2, where
b l is determined byAN*dxw* (x)ul(x)2w(x)v l(x). By our
semiclassical analogy, it follows that QP populations w
similarly decrease, potentially providing a method to obta
extremely cold condensates. Note that some spontan
emission is inevitable, and the resulting heating must
slower than the overall cooling rate. The effect of sponta
ous emission on BEC temperature is addressed in Ref.@19#;
note however, that, within a highQ optical cavity, in the
presence of a driving field there can be some quite nontri
effects on atomic spontaneous emission@20#.

We have presented a cavity-laser-BEC configurat
whereby, through astute choice of parameters, specific e
tations of the BEC can be rapidly damped. We have sho
the derivation of a simple equation, which explains all ma
features of the damping process, and provides a recipe
determining optimal parameters. We have demonstrated
this damping procedure can in principle be used to prod
extremely cold condensates.
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