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Cavity-assisted quasiparticle damping in a Bose-Einstein condensate
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We consider an atomic Bose-Einstein condensate held within an optical cavity and interacting with laser
fields. We show how the interaction of the cavity mode with the condensate can cause energy due to excitations
to be coupled to a lossy cavity mode, which then decays, thus damping the condensate. We show how to
choose parameters for damping specific excitations, and how to target a range of different excitations to
potentially produce extremely cold condensates.
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The breakthrough success, largely due to improved coolsg?, and asy<A,, we ultimately consider only the Hermit-
ing techniqueg1], of producing atomic Bose-Einstein con- jan terms. The light field thus provides: a temiQ(x)|?,
densatesBEC’s) [2], has created an exciting new area of ey, assumingd)(x) = e'k*, contributes only a shift; and a
investigative study3,4]. Within the field of cavity quantum o LA ot . . L

ceontribution linear ire anda’, which acts like a driving field

electrodynamics, one is able to precisely control the intera o th . h ol hani
tion of the electromagnetic field with an atdi]; the trap- [0 the cavity mode. It thereby implements a mechanism to
transfer energy to the cavity, which in turn will shed this

ping and cooling of a single atom in an optical cavity has ; : )
also been successfully experimentally demonstra@H energy to the environment by means of cavity damping. The
effective single-particle Hamiltoniatincluding the free dy-

Here we combing7] the use of a cavity to cool atoni§] . fth il . d th i
with the ever present goal of producing colder condensated@Mics of the particle motion and the cayitg now
[9], particularly relevant to controlling quasiparticle excita- ~y

- - - . Maw?x? .n =
}lnovr:assgilgcgaéi{plr%duced in the course of other experimental Heff:zp_m+ 5 +ha(A—ix)ata+a[f(x)a+H.cl,
We consider a Fabry-Perot optical cavity with decay rate v

x, and a pump laser, with a BEC held in a harmonic potential - - ~ 5 ,

of frequencye inside the cavity, driven by a separate laservheref(x)=—0Q(x)g COS(‘X)Aa/(Aa“LVZ)a andmis the par-

Q, as shown in Fig. 1. We generally consider only one spalicle mass. We now consider a BEC-cavity system. The one-
tial dimension, considering the radial motion to be frozen ouglimensional atomic interaction potentialus(x—y), where

by a tight harmonic potential of frequenay, (cigar-shaped U=2% w85 andas is thes-wave scattering lengtf#]. Thus,
configuration[14]). The laser-cavity superposition field is N second quantized form,

E(x,t)=Q(x)e "“t'+gacoskx), where a is the cavity

2 2
mode annihilation operator; interacting with this are the BEC ~ f_ — f dx\if’f(x)| Alf()a+f*(x)al— — —
atoms, considered to have two levéds and|e), with tran- 2m px2
sition frequencyw,. We initially consider a single patrticle, b s
and ignore the degrees of freedom due to the free cavity field n Mw~X n E‘i”(x)‘i’(x) ‘i’(x)
and the atomic motion. In a rotating franfe = exd —i(oee 2
+a'a)w,t]), the Hamiltonian describing the internal atomic Comm s -

+h[(A—ik)a'a—apa’~ajal, ©)

level dynamics is Hay=%[Aa0eet E(X)0eq+ ET(X) ogel,
where geg=|e)(g], As=wo—w,, and E(X)=Q(X)
+gacoskx). Assuming A, >E, A,>y where y is the
atomic spontaneous emission rate, did, where A = w, _ _
—w,, by far exceeding the frequency scales governing® Semiclassically,
atomic motion and the cavity dynamics, we may adiabati-

cally eliminate|e) to derive a closed time-evolution equation

for the |g) wave function componerjtl5], using this to re-

where\if(x) and \if’f(x) are atomic field operators, and the
a,, terms are provided by the pump laser. We thEgk) and
3 replacing them with the scalar quantities

construct an effective Hamiltonian: Pump
. WAy~ n e iy — e Q K
=~ (OEGO+ OB,
Y +a3 Y +4;3 FIG. 1. Proposed configuration: a BEC held in a cavity, driven

o by a laser() and a pump laser, and losing cavity photons with a
Assumingg<Q and(a'a)<1, we can neglect the terms decay ratex.
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¢(x) and a, respectively. It is convenient to rescale to di- mined numerically by diagonalizing(x,y) [17]]. As ¢, is

mensionless harmonic unité € m=w=1); this scaling is

assumed real, these are also real. We similarly expand

assumed from now on. The resulting equations of motion are

a Gross-Pitaevskii-likéGP) equation

io(x)={Hept [T @ +T* (x)a*T}e(x), (4)

where Hgp= — d2/20x%+ x?/2+ v] ¢(x)|? is the unperturbed
GP  “Hamiltonian,” with v=uNJm/hw/h, F(x)
= Nf(x)/w, anda= a/\/N, whereN is the particle number;
and the semiclassical cavity mode equation

iZ=(A—iK)Zy+f dx|e(3)|7F* ()~ @, (5)

We seta, to be = [dx|eg(x)|*F*(x), so that wheng(x)
approachespy(x) (the ground state dfigp), a will simply

decay, without feeding into E@4). The cooling mechanism
thus switches off upon reaching the desired steady statg

@(X)=go(x) anda=0.

We now consider linearized perturbatiod®(x), da,
around the steady state. Linearizing E@}) produces
Bogoliubov-like equation$10]. Note in Eq.(5) for ¢g(X),

no distinction is made between different global phases; i

calculations the final phase afy(x) is determined by the

—@o(y)
( uk(X)) - ( Uk(x))
vk(X) Uk(X)

where the coefficients can obviously be defined by

~ (y)
J dyQ(x.y)f(y)( Fo )

=2 X

k

: (10

Xk:f dX[u(X) +v(X) TF(X) @o(X). (11
Note that treating the evolution of perturbations orthogonal
to ¢o(X) is equivalent to a number-conserving formalism
[11,17. Theu,(x) andv,(x) are orthogonal tapy(x), and
the {(u(x),v (X)), W (X),u(x))} are used as a convenient
time-independent basis. All time dependence in E9).
thus in the ¢, ¢{i coefficients, in contrast to
Refs.[11,12,16. We now transform Eq(6) to an inter-

action picture. We thus set (Sg(x),d¢* (X))
=ef(5p(x),8¢* (X)) and Sa=e'*'sa. Substituting Egs.

r](9) and (10) into an appropriately transformed E@), and

then making the integratiofidxu;(x) EZ(X)—U,(X) 8:5*(x),

chosen initial conditions, and is not relevant. We considetve end up with

only perturbations orthogonal tay(x), and can implicitly
assume a U(1) gauge transformat[d®] such thatpy(x) is
always real. Having definedo(x) as orthogonal tapy(x),
e, dp(x)=[dyQ(x,y)de(y), where Q(x,y)=&(x—y)
—oo(X) po(y), we can state that

i 2¢(X) =jd L(X )( oey) +fd A(X,y)
S¢* (X) YRy Se* (y) yeby
X[¥(y) da+T* (y)da*] _‘P"(y) ) ©)
©o(Y)

where L(x,y) = [ [dzdWwQ(X,2)Hgog(z,W) Q(W,y) [12], in
terms of the usual Bogoliubov HamiltonigmO]:

Hept veo(X)?— 1 veo(X)?

H Bog— (

—vgo(x)? —Hgp— veo(x)?+ )’
(7
where i is the ground-state chemical potential; and
_[Qxy) 0 )
Q(x,y)—( 0 axy))” tS)
It is convenient to expan@o(x),d¢* (x)) as
op(X) Uk(X) [ ok(X)
(&o*(x))‘; ’:k(vux))“k(uk(x))’ ©

i7)=Saxe @Vt Sax xrel L (1)
WhereZ:ei“’th. From Egs.(5) and (10), the linearized

equation of motion forsa, after adiabatic eliminatiortas-
suming «>|Zx«l), produces

~ i -~ -
Sa=— ; Zk [é«kefl(wka)t_F g; el(wk+A)t]X: ) (13)

We assume that due to our choice k), |x,| dominates
|xx=il, neglecting terms wherk#1, and choose\ = w, to
match it. Applying the rotating wave approximatiGRWA)

to Egs.(12) and (13), we neglect terms involvin@ﬁ* and

da* (2w, should therefore describe the fastest time Scale
Combining the resulting expressions, we end up with a
simple damping equation:

ZF—EQ-

(14)

K
As Q(x)xektx we setf(x)=gg[ eKe*+ el (kex"20X] ' where
kex=k*xKk_, andk is the wave number of the cavity mode.
Taking only thee'ex term, we see in Fig. (@) that each
|xi|? peaks for somek,, at a point where|x,|?>|xy-il>.
Assumingw, is chosen to match, for sufficiently lardethe
e'(kex"2KX term can be ignored, as those modes to which it
couples most stronglyi.e., largey,) can, by the RWA, be

neglected. From now on we considéfx)=goe'e®. As

where {(u(x),v(x)), (v (X),u(x))} are eigenstates of e'keXpo(x) is equivalent to a momentum-kicked ground state
L(x,y), with eigenfrequencies- w, [these may be deter- with mean additional energy-k2/2, the inner product of
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CAVITY-ASSISTED QUASIPARTICLE DAMPING IN A . ..
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FIG. 2. (a) Plots of|x,|2 for | =1-15 as functions df,,, where
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xi is as defined in Eq(11), andf(x)=e'kex. The vertical lines SE/B. | —
mark the numerically determined optimal values kgg. (b) Plots 015 0
. . . 0.02 0.005¢
of key=+2w,, i.e., approximately optimal value &, (plusseg RNy
and numerically determined optimal vales lqf, (circles, against o redamaees
20 25 0 5 10 15 20 25

w, for | =1-25. Units are dimensionles8 £ m=w=1).

T(X) (0o(X), — @o(X)) With eigenstates of(x,y) should be FIG. 3. (a) P|OFS Qf(SE/EO for Qiﬁerentgg ggainst time,.where
large with those eigenstates of similar energy; one W0u|d_=1_2, x=10. Solid Ime_s, numerlc_:al calculations; dc2>tted lines, pre-
thus simplistically expecty;|? to peak wherk2/2=w,. In  diction of Eq.(15). (b) Time evolution ofp(x) =|¢(x)|* (1 =12, .
Fig. 2(b) we see that this prediction is a little crude for small 902219)' (_C) Plots OT 5E/E°fga_'n5t time, where=_ 1.2' Solid line,

; . k, 5= 10; dashed linex, g5=1; dotted line, prediction of Eq15)
w_, although it converges to the true values for higher fre'for both cases(d) Plots of SE/E, against time, wheré=1. Solid
quencies, as expected. Also correctly predicted is that thg = 92=10; dashed linex 092=l' dottedyline predi.ction of
optimal k., values tend to converge for large From Fig. Eq.'(15’). &nits are dimensionl’ess%érr,1=w=l). '
2(a) we see that thy, - 4|2 (at least can be significant com-
pared to|x||* at the optimal value okey, but the fact that g individually targeted, resulting in cooling of the BEC.
these terms are both smaller and rotating means thdththe There js a well-known correspondence between linearized

term will still dominate. For largé, as the peak values &, perturbations ofs(x) and QP excitationfl1,12. Assuming

converge and the peaks become less well resolved(1By. ~+2 o ~ . .
: 9 Pe ‘ ajap~N, wherea, is the annihilation operator for a particle
will become less reliable.

E=fdxe* ([ — 02 x2+32+ o] 0(x)|2]e(x)/2. We define NN
Eo equivalently, with o(X)= ¢q(x). Within the linearized

L I - - 1 - ~
approximationE = Eq+ = | £,?, and thus, if initially only W(x)=ag| ¢o(X)+ —= 2 bkuk(x)+bf:vk(x) , (16
{1 #0, from Eq.(14) we have \/ﬁ k
) 2 2 Tt . o .
SE= — Xl SE, (15) where theb, , b, are QP creation and annihilation operators,

K respectively. If the state of the system is assumed thermal,

then (biby) =[expwc/n—1]"* and (b)=(b)=0, where
7=kgT/hw. Semiclassically, one can regard these expecta-
tion values as describing the statistics of Gaussian random

variables 8, with mean O and variancéf)EE)k) [18]. One
can make use of the linearized perturbation-QP correspon-
dence by taking a random initial condition:

where SE=E—E,. The energy damping time scale is thus
=2g5A/k, whereA=|y,|? for go=1. In Fig. 3 we compare
Eq. (15) with numerical integrations of Eq$4) and(5). The
initial conditions are @ (X)x@g(X) +0.Ju(x)+v((X)], «
=0; vis always=10. In Fig. 3a) we see qualitative agree-
ment of the analytical estimate given by H45) with the
numerical results for differerg,, which, in view of the num-
ber of approximations made, is remarkably good. In Fi{g) 3
we see the convergence of the position dengifx)
=|eo(x)|? to |@o(X)|. In Fig. 3c) we see good qualitative
agreement in the damping rates g{;andKzl, 10 with the  with =0, and simulating the cooling process numerically
analytical prediction(which is the same for eaghin Fig.  with Egs.(4) and (5). As we must target a range of excita-
3(d), wherel =1 rather than 12, but the parameters are othtions, we employ a procedure so that whenevsra multiple
erwise the same, we see heating for ke10 casew,;=1is  Of 4, ke, and A are changedby adjusting the lasef}),
dominated byk, and the RWA is therefore not valid. Most initially targeting =25 (as described aboyeand then
significant about Eqg14) and (15) is that the procedure for through each of =24-1. We choos@3, «=1 (to ensure
deriving them provides a recipe for determining parametersooling takes place for smaid);), N=1000, andv=10. In
optimal for the damping of specific excitations. Fig. 4@ we show damping of states of the forg(x)

In the case of a finite temperature BEC, where there is a¢y(X)+0.10 u;(x) +v,(x)], for a range of relevant For |
range of populated quasiparticl®P) excitations, these can =24 there are deviations from E(L5), as expected; signifi-
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a)

population fork>25 is miniscule, the relative energy contri-
bution is significant. Although the cutoff state was propa-
gated for the sake of comparison, it could conceivably apply
to a physical situation, such as occurs in evaporative cooling
[1]. In Fig. 4(c) we see clear suppression of th&|?, where

—_— B, is determined by/Nfdxe* (X)u,(x) — ¢(X)v,(X). By our

9 30 100 semiclassical analogy, it follows that QP populations will
similarly decrease, potentially providing a method to obtain
extremely cold condensates. Note that some spontaneous
emission is inevitable, and the resulting heating must be
slower than the overall cooling rate. The effect of spontane-
ous emission on BEC temperature is addressed in[R&¥,
note however, that, within a higl optical cavity, in the
presence of a driving field there can be some quite nontrivial
effects on atomic spontaneous emisdiaq].

FIG. 4. (a) Damping of states perturbed by a single excitation, \We have presented a cavity-laser-BEC configuration
for «, g(z):l. Solid lines, numerical calculation; dotted lines, ana- whereby, through astute choice of parameters, specific exci-
lytical estimate.s.(b) Plots 'o.f .5E/E0 qgainst timg: solid line;r tations of the BEC can be rapidly damped. We have shown
=10; dashed line, same initial condition, but with a cutoff for o yerjyation of a simple equation, which explains all major
>25; dotted line,7=5. (c) White, (bfby) for r=10. Data corre-  features of the damping process, and provides a recipe for
sponding to the solid line ofb): gray, | 3| for t=0; black,|811>  getermining optimal parameters. We have demonstrated how
for t=100. Units are dimensionlesé £ m=w=1). this damping procedure can in principle be used to produce

cant damping nevertheless takes place for éatthFig. 4b)  extremely cold condensates.

we observe significant damping for initial states where ~ We thank R. Dum, T. Felbinger, C.W. Gardiner, D. Jak-
=5,10. Note that the energy separation betweensthd0  sch, P. Horak, and H. Ritsch for discussions, the Austrian
state and the “cutoff’ statdk=1-25 in Eq.(17), rather  Science Foundation, and the European Union TMR network
than 1-100, remains relatively static, implying that damping ERBFMRX-CT96-0002. S.A.G. also thanks R. Gardiner, the
is taking place in a targeted manner on the low-lying excitaEuropean Science Foundation, and the Alexander von Hum-
tions. Note also from Fig. (¢) that, although the relative boldt Foundation.
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