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Schmidt-number witnesses and bound entanglement
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The Schmidt number of a mixed state characterizes the minimum Schmidt rank of the pure states needed to
construct it. We investigate the Schmidt number of an arbitrary mixed state by studying Schmidt-number
witnesses that detect it. We present a canonical form of such witnesses and provide constructive methods for
their optimization. Finally, we present strong evidence that all bound entangled states with positive partial
transpose inC 3

^ C 3 have Schmidt number 2.
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Characterization of entanglement is one of the key f
tures related to quantum information theory@1#. The re-
sources needed to implement a particular protocol of qu
tum information processing~e.g., @2#! are closely linked to
the entanglement properties of the states used in the prot
Although recently a great effort has been devoted to det
ing the presence of entanglement in a given state~see, for
instance, @3,4#! and also to characterize multipartite e
tangled systems@5#, many questions concerning biparti
mixed systems remain unanswered.

A bipartite pure stateuc& can always be described by i
Schmidt decomposition; i.e., the representation ofuc& in an
orthogonal product basis with minimal number of terms. T
Schmidt rank is the number of nonvanishing terms in such
expansion. This decomposition gives a clear insight into
number of degrees of freedom that are entangled betw
both parties, and its coefficients provide a measure of
tanglement.

The characterization of mixed states is a much har
task, and despite the fact that many entanglement meas
have been introduced@6#, there is not a ‘‘canonical’’ way of
quantifying the entanglement. Nevertheless, in the contex
mixed bipartite states it is legitimate and meaningful to a
what is the minimum number of degrees of freedom that
entangled between both parties? Terhal and Horodecki@7#
have recently addressed this question by introducing the
cept of theSchmidt numberof a density matrix. This numbe
characterizes the minimum Schmidt rank of the pure sta
that are needed to construct such a density matrix. Furt
more, they proved that the Schmidt number is nonincreas
under local operations and classical communication, i.e
provides a legitimate entanglement measure, or more
cisely a monotone@8#. Finally, they introduced also the con
cept ofk-positive maps that witness the Schmidt number,
the same way that positive maps witness entanglement.
cently, the concept of Schmidt rank and mean Schmidt nu
ber has been extended to pure@9# and mixed states@10# of
multipartite systems.

Let us recall that a map is called positive~PM! if it maps
positive operators into positive operators. A necessary
sufficient criterion for separability of a density matrixr was
introduced by the Horodeckis@11# in terms of PM’s. Their
criterion asserts that a stater acting on a composite Hilber
spaceHA^ HB is separable iff the tensor product of an
positive map acting onA and the identity acting onB ~or vice
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versa! mapsr onto a positive operator. This criterion, how
ever, involves the characterization of the set of all PM
which is per sea formidable task. Similarly, the characte
ization of the set ofk-positive maps@7# is a completely open
problem. A complementary approach to study entanglem
introduced by Terhal@12#, is based on the so-called entangl
ment witnesses~EW’s!. An entanglement witnessW is an
observable that reveals the entanglement of some entan
stater, i.e., W is such that Tr(Ws)>0 for all separables,
but Tr(Wr),0. The Hahn-Banach theorem implies that
stater is entangled iff there exists a witness that detect
@11#. There is an isomorphism between positive maps a
entanglement witnesses@13#.

A well-known example of a positive map is the transp
sition T: its tensor extension is the partial transposition~PT!
I ^ T ~see@14#!. This map is positive on all separable stat
@15#, and obviously detects all the entangled states that h
nonpositive partial transposition~termed NPPT!. However,
given a PPT entangled state~PPTES!, i.e. a state with bound
entanglement@16~a!#, it is in general very difficult to find an
EW that detects it. A major step in the characterization
both, EW’s and the minimal set of them that are needed
detect all entangled states, has been presented in@17#.

In this paper we extend the notion of entanglement w
nesses~EW’s! to Schmidt-numberk witnesses (k-SW’s!,
wherek>2. To this aim we define an observable which
non-negative~negative! for all ~at least one! r of Schmidt
numberk21 (k). Following @17#, we express such operato
in their canonical form, and show how to optimize the
Using this approach we obtain insight into the structure
the set of PPT-bound entangled states, determining the m
mum number of degrees of freedom that must be entan
in order to prepare them. We present strong evidence tha
PPTES’s in 333 systems have Schmidt number 2. InN
3M systems (N>M ) we expect PPTES states to have
Schmidt numberk,M in contrast with non-PPT entangle
states that can have any Schmidt number 2<k<M . Before
going into the details of the paper we recall the definitions
the Schmidt rank of a pure stateuc&, and the Schmidt num-
ber of a density matrixr:

Definition 1.A bipartite pure stateuc&PHA^ HB , where
dimHA5M and dimHB5N>M , has Schmidt rankr if its
Schmidt decomposition readsuc&5( i 51

r ai uei&u f i&, wherer
<M , ( i

rai
251, andai.0.
©2001 The American Physical Society01-1
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Definition 2. Given the density matrixr of a bipartite
system and all its possible decompositions in terms of p
states, namelyr5( i pi uc i

r i&^c i
r iu, where r i denotes the

Schmidt rank ofuc i
r i&, the Schmidt number ofr, k, is defined

ask5min$r max%, wherer max is the maximum Schmidt rank
within a decomposition, and the minimum is taken over
decompositions@7#.

Let us denote the whole space of density matrices inN
3M by SM , and the set of density matrices that ha
Schmidt numberk or less bySk . Sk is a convex compac
subset ofSM @7#; a state fromSk will be called a state of
~Schmidt! classk. Sets of increasing Schmidt number a
embedded into each other, i.e.,S1,S2,•••,Sk
,•••,SM . In particular,S1 is the set of separable state
~i.e., those that can be written as a convex combination
product states!; S2 containsS1 plus the set of entangle
states of Schmidt number 2, i.e., those with only two degr
of freedom between the two parties being entangled, etc
determine which is the Schmidt number of a density ma
r, notice that due to the fact that the setsSk are convex and
compact, any arbitrary density matrix of classk can be de-
composed as a convex combination of a density matrix
classk21 and a remainderd @20#:

Proposition 1.Any state of classk, rk , can be written as
a convex combination of a density matrix of classk21 and
a so-calledk-edge stated:

rk5~12p!rk211pd, 1>p.0, ~1!

where the edge stated has Schmidt number>k.
The decomposition~1! is obtained by subtracting projec

tors onto pure states of Schmidt rank inferior tok, P
5uc,k&^c,ku, such thatrk2lP>0. Hereuc,k& stands for
pure states of Schmidt rankr ,k. Denoting byK(r), R(r),
and r (r) the kernel, range, and rank ofr, respectively, we
observe thatr8}r2luc,k&^c,ku is non-negative iffuc,k&
PR(r) and l<^c,kur21uc,k&21 ~see@20#!. The idea be-
hind this decomposition is that the edge stated that has
generically lower rank contains all the information conce
ing the Schmidt numberk of the density matrixrk .

There exists an optimal decomposition of the form~1!
with p minimal. Also restricting ourselves to decompositio
rk5( i pi uc i

r i&^c i
r iu with all r i<k, we can always find a de

composition of the form~1! with dPSk . We define below
precisely what an edge state is.

Definition 3. A k-edge stated is a state such thatd
2euc,k&^c,ku is not positive, for anye.0 anduc,k&.

Criterion 1. A mixed stated is a k-edge state iff there
exists nouc,k& such thatuc,k&PR(d).

Let us now define a Schmidt numberk witness (k-SW!:
Defintion 4.A Hermitian operatorW is a Schmidt witness

of classk iff Tr( Ws)>0 for all sPSk21, and there exists a
least onerPSk such that Tr(Wr),0.

Notice that detecting inseparability is, thus, equivalent
searching for witnesses of Schmidt class 2. Also, the pr
lem of distillability @4,16,18,19# can be recast in the lan
guage of witnesses of Schmidt number 2 and 3, i.e., ifrTB is
a 2-SW~3-SW! then r is a distillable~one-copy nondistill-
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able! state. It is straightforward to see that every SW th
detectsr given by Eq.~1! also detects the edge stated, since
if Tr( Wr),0 then necessarily Tr(Wd),0, too. Thus, the
knowledge of all SW’s ofk-edge states fully characterizes a
rPSk . Below, we show how to construct for any edge sta
a SW that detects it. Most of the technical proofs used
construct and optimize Schmidt witnesses are very simila
those presented in Ref.@17# for entanglement witnesses.

Let d be ak-edge state,C an arbitrary positive operato
such that Tr(dC).0, andP a positive operator whose rang
fulfills R(P)5K(d). We define e[ infuc,k&^c

,kuPuc,k&
and c[sup̂ cuCuc&. Note thatc.0 by construction ande
.0, becauseR(P)5K(d) and therefore, sinceR(d) does
not contain anyuc,k& by the definition of edge state,K(P)
cannot contain anyuc,k& either. This implies:

Lemma 1.Given ank-edge stated, then

W5P2
e

c
C ~2!

is a k-SW that detectsd.
The simplest choice ofP andC consists in taking projec-

tions ontoK(d) and the identity operator, respectively. A
we will see below, this choice provides a canonical form
a k-SW.

Proposition 2.Any k-Schmidt witness can be written i
the canonicalform:

W5W̃2e1, ~3!

such thatR(W̃)5K(d), whered is a k-edge state and 0,e

< infuc&PSk21
^cuW̃uc&.

Proof. AssumeW is an arbitraryk-SW soW has at least
one negative eigenvalue. ConstructW1e15W̃, so W̃ is a
positive operator, but it does not have a full rank,K(W̃)
Þ0” ~by continuity this construction is always possible!. But

^c,kuW̃uc,k&>e.0 since W is a k-SW, ergo nouc,k&
PK(W̃). j

Let us now introduce some additional notations.
Definition 5.A k-Schmidt witnessW is tangentto Sk21 at

r if ' a staterPSk21 such that Tr(Wr)50.
Observation 1.The stater is of Schmidt classk21 iff for

all k-SW’s tangent toSk21 , Tr(Wr)>0.
Proof ~see@17#!. ~Only if! if r is of classk, then from the

Hahn-Banach theorem, thereexistsa k-SW W that detects it.
We can subtracte1 from W, makingW2e1 tangent toSk21
at somes, but then Tr@r(W2e1)#,0. j

We will now discuss the optimization of a Schmidt wi
ness. As proposed in@17~a!# an entanglement witness W i
optimal if there exists no other EW that detects more sta
than it. The same definition can be applied to Schmidt w
nesses. We say that a Schmidt numberk witnessW2 is finer
than a Schmidt numberk witnessW1, if W2 detects more
states thanW1. Analogously, we define a Schmidt numberk
witnessW to be optimal when there exists no finer witne
than itself. Let us define the set ofuc,k& for which the ex-
pectation value of the Schmidt numberk witnessW vanishes:
1-2
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TW5$uc,k&u^c,kuWuc,k&50%, ~4!

i.e., the set of pure tangent states of Schmidt rank,k. W is
an optimalk-SW iff W2eP is not ak-SW, for any positive
operatorP. If the setTW spans the whole Hilbert space, the
W is an optimalk-SW. If TW does not spanHA^ HB , then
we can optimize the witness by subtracting from it a posit
operatorP, such thatPTW50. Fork53, for instance, this is
possible, provided infue1&,ue2&PHA

@Pe1e2

21/2We1e2
Pe1e2

21/2#min.0,

where for anyX acting onHA^ HB

Xe1e2
5F ^e1uXue1& ^e1uXue2&

^e2uXue1& ^e2uXue2&
G , ~5!

acts inC2
^ HB , and@X#min denotes its minimal eigenvalu

~see @17#!. An example of an optimal witness of Schmi
numberk in C m

^ C m is given by

W512
m

k21
P, ~6!

where P is a projector onto a maximally entangled sta
uC1&5( i 50

m21u i i &/Am. The k-positive map corresponding t
Eq. ~6! has been discussed in@7#. For k53 andm>3, the
partial transpose of Eq.~6! provides an example of a one
copy nondistillable state with nonpositive partial transpo
@19#. Note thatW is decomposable, i.e.,W5 P̃1Q̃TA, where
P̃,Q̃>0, and therefore it cannot detect any PPTES@17~a!#.
This can be seen by rewriting Eq.~6! as W5@121/(k
21)#112Pa

TA/(k21), wherePa
TA is the partially transposed

projector onto the antisymmetric subspace ofC m
^ C m.

Let us now focus on the caseC 3
^ C 3 ~two qutrits!. We

summarize below the following observations:
~i! Any 2-SW ~entanglement witness! has the formW

5Q2e1, whereK(Q) does not contain any product vecto
i.e., r (Q)>5 @21~b!#.

~ii ! Any 3-SW has the formW5Q2e1, wherer (Q)58.
This follows from the fact that any two-dimensional su
space ofC 3

^ C 3 contains a vector of Schmidt rank 2. No
that thus we haveW5Q̃2eP, whereP is a projector on a
vector uC3& of Schmidt rank 3 orthogonal toR(Q), and Q̃
5Q2e1Q is positive@1Q denotes the projector onR(Q)].

~iii ! Let A be a local transformation in Alice’s space th
transforms the maximally entangled stateuC1& to uC3&,
and let the Schmidt coefficients ofuC3& be a1>a2>a3

.0. We can write W5Q̃1(lmin2e)12lminAA†/3
12lmin(APaA†)TB/3, with lmin5@Q#min . This implies that
if ( lmin2e)12lminAA†/3 is positive definite, i.e.,lmin(1
2a1

2)>e, then W is decomposable. On the other hand,
observe that foruC2& such thatu^C2uC3&u25a1

21a2
2, we

have 0<^C2uWuC2&<lmaxa3
22e, wherelmax5@Q#max. In

turn, these two observations imply:
Lemma 2.If lmax/lmin<11a2

2/a3
2, thenW is decompos-

able.
Note that if W does not fulfill the assumption of thi

Lemma, it is very likely that it can be transformed usin
05030
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local transformations to fulfill it. These observations allow
to formulate the following conjecture:

Conjecture 1.In C 3
^ C 3 all PPT entangled states hav

Schmidt number 2, i.e., all Schmidt witnesses of class 3
decomposable.

Evidence.Obviously, it suffices to prove the conjectur
for the edge states. First we prove it rigorously for rank
edge states, such as those constructed from unexten
product bases@22~a!#, chessboard states of Ref.@22~b!#, and
generalized Choi matrices@22~c!#.

Lemma 3. All PPT entangled states of rank 4 hav
Schmidt number 2@23#.

Proof. If r (d)54 then there exists a product vect
ue1 , f &PK(d) @21~b!#. From dTA>0 we see thatue1* , f &
PK(dTA). Let uei&, i 51,2,3 form an orthonormal basis i
HA . We have then ^e1uduei , f &50 for i 52,3. Thus,
due2 , f &5uC2&5ue2 ,g&1ue3 ,h&, i.e., uC2& has Schmidt
rank 2. We can write thend5d81LuC2&^C2u, whered8
>0, L215^C2ud21uC2&5^C2ue2 , f &. Note that r (d8)
53, and d8uei , f &50 for i 51,2, while d8ue3 , f &5(d
2LuC2&^C2u)ue3 , f &5uF2&5ue2 ,g̃&1ue3 ,h̃&, anduF2& has
at most Schmidt rank 2. This allows us to writed85d9

1L̃uF2&^F2u, whered9>0, r (d9)52, andd9uei , f &50 for
i 51,2,3. But, that means thatd9 acts in a 332 space~or-
thogonal tou f & in HB), ergo d9 ~and therefored8 and d)
have Schmidt number 2. j

From @21# we know that the edge states inC 3
^ C 3 have

ranks r (d)1r (dTA)<13. Considering pairs„r (d),r (dTA)…,
we observe:

Lemma 4.Typically, for any decomposableW, tangent to
the set of PPTES at the edge stated with „r (d),r (dTA)…
5(5,7),(5,8),(6,6),(6,7),(7,6), or (8,5), for anye.0, the
nondecomposable witnessWe5W2e1 is not a Schmidt wit-
ness ofS3, i.e., there exists a vectoruC2& of Schmidt rank 2,
such that̂ C2uWeuC2&,0.

To prove it, we first writeW5P1QTA,with P,Q>0,
whereR(P)5K(d), R(Q)5K(dTA) @17#. We then consider
uC&5ue1 , f 1&1bue2 , f 2&, such thatPuC&50, Quei , f i&50
for i 51,2. Then, ^CuWuC&52 Re(b^e2* , f 1uWue1* , f 2&).
Choosing the phase ofb appropriately, we can always ge
^CuWuC&<0, i.e.,W2e1 cannot be a 3-SW. Let us check
such uC& exists. The set ofuC& ’s can be parametrized b
nine complex parameters. The vectoruC& has to fulfill L
5r (P)12r (Q)5272r (d)22r (dTA) equations, and one in
equality for the phase ofb. Obviously, L,9 for
„r (d),r (dTA)…5(5,7),(5,8),(6,7), and (7,6), so that we e
pect to have an infinite family of solutions, and in particul
those with the desired phase ofb. While examples of edge
states with ranks (5,8),(5,7) are not known, the Horodeck
matrix of Ref. @24#, and the matrix from thea family of
states of Ref.@16~b!# with a54 have ranks (6,7). We hav
checked that for those matrices the desireduC& exists. For
„r (d),r (dTA)…5(6,6), and (8,5),L59 and we expect a fi-
nite number of solutions, but still some of them fulfilling th
requirements forb. We conclude that if a Schmidt witness o
the class 3 were nondecomposable, then it could not b
the form W5P1QTA2e1, whereP is supported onR(d)
andQ on R(dTA), for d of the category considered in Lemm
1-3
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4. The only possibility is that „r (d),r (dTA)…
5(5,5),(5,6),(6,5), or (7,5). To investigate these cases
prove:

Observation 2.For any edge stated with r (d)1r (dTA)
<13, there exists an edge stated̃ with r ( d̃)1r ( d̃TA)513
arbitrarily close tod ~in any norm!.

Proof.Let us consider for instance the case (5,5). We
add tod an infinitesimally small separable state composed
two projectors on product vectors fromR(d) and two from
R(dTA), making the resulting stater of the category (7,7).
For such a state there exists a finite number of product v
tors ue, f &PR(d), ue* , f &PR(dTA). We subtract a projecto
on one such vector, keeping the remainder non-negative
PPT@21#. We choose a vector different from the ones used
constructd. Generically, the resulting state will be arbitrari
close tod, but will have ranks (6,7), or~7,6!. j

From Observation 2 we get that ifd with ranks r (d)
A

05030
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1r (dTA)<13 did not belong toS2, then there would be a
stated̃ with r ( d̃)1r ( d̃TA)513 arbitrarily close tod, which
would not belong toS2 neither. But, that contradicts Lemm
4. In effect, if Lemma 4 is rigorous, then the conjecture
true.

Summarizing, we have presented a general characte
tion of witnesses of Schmidt numberk, and the methods o
optimizing them. The results allow us to provide strong e
dence that all bound entangled states with positive pa
transpose in two qutrit systems have Schmidt number 2,
can be prepared using a two qubit entangled state, local
erations, and classical communication.
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