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Schmidt-number witnesses and bound entanglement
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The Schmidt number of a mixed state characterizes the minimum Schmidt rank of the pure states needed to
construct it. We investigate the Schmidt number of an arbitrary mixed state by studying Schmidt-number
witnesses that detect it. We present a canonical form of such witnesses and provide constructive methods for
their optimization. Finally, we present strong evidence that all bound entangled states with positive partial
transpose i€ 2®C2 have Schmidt number 2.
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Characterization of entanglement is one of the key feaversa mapsp onto a positive operator. This criterion, how-
tures related to quantum information thedrd/]. The re- ever, involves the characterization of the set of all PM’s,
sources needed to implement a particular protocol of quanwhich is per sea formidable task. Similarly, the character-
tum information processinge.g.,[2]) are closely linked to ization of the set ok-positive mapg$7] is a completely open
the entanglement properties of the states used in the protoc@roblem. A complementary approach to study entanglement,
Although recently a great effort has been devoted to detecintroduced by Terhdl12], is based on the so-called entangle-
ing the presence of entanglement in a given staée, for ment witnesse$EW'’s). An entanglement witnes#/ is an
instance,[3,4]) and also to characterize multipartite en- ghservable that reveals the entanglement of some entangled
tangled systemg5], many questions concerning bipartite statep, i.e., W is such that TiVo)=0 for all separabler,
mixed systems remain unanswered. _ ~ but Tr(Wp)<0. The Hahn-Banach theorem implies that a

A bipartite pure stat¢y) can always be described by its giate, is entangled iff there exists a witness that detects it

Schmidt decomposition_; i.e_., thg r_epresentatiorhz,f)fin an_ [11]. There is an isomorphism between positive maps and
orthogonal product basis with minimal number of terms. Theentanglement witnessés3]
Schmidt rank is the number of nonvanishing terms in such an A well-known example .of a positive map is the transpo-
expansion. This decomposition gives a clear insight into the

number of degrees of freedom that are entangled betwe«elsﬂtlon T: its tensor extension is the partial transpositi®T)

both parties, and its coefficients provide a measure of e & T (566[14],)' This map is positive on all separable states
tanglement. rtlS], an_d_ obwou_sly detects a_ll_l the entangled states that have

The characterization of mixed states is a much hardePOnPOsitive partial transpositiofiermed NPPT. However,
task, and despite the fact that many entanglement measuréen @ PPT entangled stafePTES, i.e. a state with bound
have been introduce®], there is not a “canonical” way of ~entanglemenl6(a], itis in general very difficult to find an
quantifying the entanglement. Nevertheless, in the context gEW that detects it. A major step in the characterization of
mixed bipartite states it is legitimate and meaningful to askPoth, EW’s and the minimal set of them that are needed to
what is the minimum number of degrees of freedom that aréletect all entangled states, has been presentg7in _
entangled between both parties? Terhal and Horodgtki In this paper we extend the notion of entanglement wit-
have recently addressed this question by introducing the coMleSSes(EW’s) to Schmidt-numberk witnesses K-SW's),
cept of theSchmidt numbeof a density matrix. This number Wherek=2. To this aim we define an observable which is
characterizes the minimum Schmidt rank of the pure state8on-negative(negative for all (at least ongp of Schmidt
that are needed to construct such a density matrix. Furthepumberk—1 (k). Following[17], we express such operators
more, they proved that the Schmidt number is nonincreasin! their canonical form, and show how to optimize them.
under local operations and classical communication, i.e., i¥Sing this approach we obtain insight into the structure of
provides a legitimate entanglement measure, or more préhe set of PPT-bound entangled states, determining the mini-
cisely a monotoné8]. Finally, they introduced also the con- Mum number of degrees of freedom that must be entangled
cept ofk-positive maps that witness the Schmidt number, inin order to prepare them. We present strong evidence that all
the same way that positive maps witness entanglement. REPTES’s in 3<3 systems have Schmidt number 2. N
cently, the concept of Schmidt rank and mean Schmidt numxXM systems =M) we expect PPTES states to have a
ber has been extended to piigd and mixed stategl0] of ~ Schmidt numbek<M in contrast with non-PPT entangled
multipartite systems. states that can have any Schmidt numberk= M. Before

Let us recall that a map is called positi(@M) if it maps ~ going into the details of the paper we recall the definitions of
positive operators into positive operators. A necessary anthe Schmidt rank of a pure stag), and the Schmidt num-
sufficient criterion for separability of a density matgpxwas ~ ber of a density matriy:
introduced by the Horodeckid 1] in terms of PM’s. Their Definition 1.A bipartite pure stat¢y) e Ho® Hg, where
criterion asserts that a stapeacting on a composite Hilbert dimH,=M and dimHg=N=M, has Schmidt rank if its
spaceH,®Hg is separable iff the tensor product of any Schmidt decomposition readg)==>/_,a;|e;)|f;), wherer
positive map acting oA and the identity acting oB (or vice <M, E{aizz 1, anda;>0.
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Definition 2. Given the density matriyp of a bipartite able state. It is straightforward to see that every SW that
system and all its possible decompositions in terms of pureletectsp given by Eq.(1) also detects the edge statesince
states, namelyp=S;p;|#:")(¢;'|, where r; denotes the if Tr(Wp)<0 then necessarily TW)<0, too. Thus, the
Schmidt rank of lﬁiri% the Schmidt number of, k, is defined knowledge of all SW'’s ok-edge states fully characterizes all
ask=min{r...}, wherer . is the maximum Schmidt rank peS,. Below, we show how to construct_for any edge state
within a decomposition, and the minimum is taken over all? SW that detect_s It Most O.f thg technical proofs gs_ed to
decomposition§7]. construct and op§|m|ze Schmidt withesses are very similar to

Let us denote the whole space of density matriceslin those presented in RefL7] for entanglement qutnesses.

XM by Sy, and the set of density matrices that have Let & be ak-edge stateC an grbltrary positive operator
Schmidt numbelk or less byS,. S, is a convex compact such that Tr¢C) >0, andP a positive operator whose range

: _ : —infi ol =K <k
subset ofSy [7]; a state fromS, will be called a state of fulfils R(P)=K(2). We define e=infj,<(4™|P|4~

. . . ; and c=sup ¢|C|#). Note thatc>0 by construction and
Schmid} classk. Sets of increasing Schmidt number are .
(embeddzzd into _each other ?.e.,slcszc- ..CS, >0, becauser(P)=K(6) and therefore, sinc®(5) does

C---CSy. In particular,S; is the set of separable states not contain anyy™") by the definition of edge staté(P)

(i.e., those that can be written as a convex combination o?annot contam any)~f) either. This implies:

product states S, containsS; plus the set of entangled Lemma 1Given ank-edge state, then

states of Schmidt number 2, i.e., those with only two degrees

of freedom between the two parties being entangled, etc. To W=pP— EC 2)
determine which is the Schmidt number of a density matrix c

p, notice that due to the fact that the s&sare convex and

compact, any arbitrary density matrix of cldsgan be de- is ak-SW that detects.

composed as a convex combination of a density matrix of The simplest choice dP andC consists in taking projec-
classk—1 and a remaindes [20]: tions ontoK(8) and the identity operator, respectively. As

Proposition 1.Any state of clas¥, py, can be written as We will see below, this choice provides a canonical form for
a convex combination of a density matrix of cldss1 and & k-SW. N ) ) ) )
a so-calleck-edge states: Proposition 2.Any k-Schmidt witness can be written in
the canonicalform:
pk=(1-p)pk-1tpPs, 1=p=>0, ()
W=W-—el, 3
where the edge stai® has Schmidt numberk. B
The decompositioril) is obtained by subtracting projec- such thatR(W)=K(5), wheres is ak-edge state andQe
tors onto pure states of Schmidt rank inferior kp P <inflyes (| W] )
€-1 ’

=]y~ (¢, such thatp,—\P=0. Here|4~*) stands for : : i
pure states of Schmidt ramkek. Denoting byK (p), R(p). Proof. AssumeW is an arbitraryk-SW soW has at least

andr(p) the kernel, range, and rank pf respectively, we ©N€ negative eigenvalue. Constribt+ el=W, so W is~ a
observe thap’ocp—)\|¢<k><¢<k| is non-negative iff 4/;<k> positive operator, but it does not have a full ram{W)
eR(p) and\<(y~¥p Y y~") ! (see[20]). The idea be- #0 (by continuity this construction is always possiblBut
hind this decomposition is that the edge statghat has (y~W|y=¥)=€e>0 sinceW is a k-SW, ergo no|y=¥)

generically lower rank contains all the information concern- ¢ k (). u
ing the Schmidt numbek of the density matrixpy . Let us now introduce some additional notations.
There exists an optimal decomposition of the fofi) Definition 5.A k-Schmidt witnesaV is tangentto S,_; at

with p minimal. Also restricting ourselves to decompositions , i 3 3 statep e S,_; such that Tr{Vp)=0.

pi=Zipil ] )(y'| with all r;<k, we can always find a de- ~ Observation 1The statep is of Schmidt clask— 1 iff for
composition of the form1) with §e S,. We define below all k-SW’s tangent td&5,_;, Tr(Wp)=0.

precisely what an edge state is. Proof (see[17]). (Only if) if p is of classk, then from the
Definition 3. A k-edge states is a state such thab  Hahn-Banach theorem, theegistsa k-SW W that detects it.

— €|y~ (y~¥ is not positive, for any>0 and|y~¥). We can subtractl from W, makingW— €l tangent toS,_ ;
Criterion 1. A mixed stated is a k-edge state iff there at someo, but then Tfp(W—€l)]<0. |

exists no| =% such that =*) e R(5). We will now discuss the optimization of a Schmidt wit-
Let us now define a Schmidt numblemitness k-SW): ness. As proposed ifl7(a)] an entanglement witness W is

Defintion 4.A Hermitian operatolV is a Schmidt witness optimal if there exists no other EW that detects more states
of classk iff Tr(Wo)=0 for all o e S,_;, and there exists at than it. The same definition can be applied to Schmidt wit-
least onep € S such that Tr{Vp)<O0. nesses. We say that a Schmidt numkeritnessW, is finer

Notice that detecting inseparability is, thus, equivalent tothan a Schmidt numbet witnessW,, if W, detects more
searching for witnesses of Schmidt class 2. Also, the probstates thaWw,. Analogously, we define a Schmidt number
lem of distillability [4,16,18,19 can be recast in the lan- witnessW to be optimal when there exists no finer witness
guage of witnesses of Schmidt number 2 and 3, i.eadfis  than itself. Let us define the set pf~*) for which the ex-

a 2-SW(3-SW) thenp is a distillable(one-copy nondistill-  pectation value of the Schmidt numbewitnessW vanishes:
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Tw={l¢=" =K Wly=F) =0}, (4)  local transformations to fulfill it. These observations allow us
to formulate the following conjecture:
i.e., the set of pure tangent states of Schmidt rark W is Conjecture 1.In ¢3®C? all PPT entangled states have

an optimalk-SW iff W— eP is not ak-SW, for any positive ~ Schmidt number 2, i.e., all Schmidt witnesses of class 3 are
operatorP. If the setT,y spans the whole Hilbert space, then decomposable.

W is an optimalk-SW. If T\, does not spaf{,®Hg, then Evidence.Obviously, it suffices to prove the conjecture
we can optimize the witness by subtracting from it a positivefor the edge states. First we prove it rigorously for rank-4
operatorP, such thatPT,y,=0. Fork= 3, for instance, this is edge states, such as those constructed from unextendible
possible, provided i'\"@(ﬁ,\ez)eHA[P_y JY2) >0, product basef22(a)], chessboard states of Rg22(b)], and

€18, " "€18" €6

where for anyX acting on,® Hg generalized Choi matricd22(c)].
Lemma 3.All PPT entangled states of rank 4 have
(elXley)  (ey]X|ey) Schmidt number 223]. _
oo = , (5) Proof. If r(8)=4 then there exists a product vector
%2 [ (eglXler) (el X|ey) le;,f) eK(8) [21(b)]. From 6§"A=0 we see thate} ,f)

o ) o ) eK(6™A). Let le;), i=1,2,3 form an orthonormal basis in
acts inC“® Hg, and[X] i, denotes its minimal eigenvalue H,. We have then(e,|dle,f)=0 for i=2,3. Thus,

(see[17]). An example of an optimal witness of Schmidt sle,, fy=|T2)=|e,,g)+|es,h), ie. |¥2) has Schmidt

numberk in C"®C™ is given by rank 2. We can write thed= 8"+ A|W2)(V?|, where §'
=0, A 1=(¥25 ¥ =(V?e,,f). Note thatr(s")
W=1- %7?, 6 =3 and &'le.H=0 for i=12 while 5'les f)=(5

— A[W2)(W?))|ey,t)=|D%)=|e,,9)+|es,h), and|®?) has
at most Schmidt rank 2. This allows us to wrigg ="
+A|®2)(P?|, wheres"=0, r(8")=2, andd"|e; ,f)=0 for
i=1,2,3. But, that means tha’ acts in a 3<2 space(or-

where P is a projector onto a maximally entangled state
| )=3MYii)/\m. The k-positive map corresponding to

Eq. .(6) has been discussed ﬁﬁ]_- Fork=3 andm=3, the thogonal to|f) in Hg), ergo &” (and therefores’ and &)
partial transpose of Eq6) provides an example of a one- have Schmidt number 2. n

copy nondistillable state with nonpositive partial transpose From [21] we know that the edge states @i® C3 have
[}!ﬂ. Note thatW is decomposable, i.eW=P+Q'», where  ranks r(8)+r(8'A)=<13. Considering pairgr(5),r(8™4)),
P,Q=0, and therefore it cannot detect any PPTE%@a)].  we observe:

This can be seen by rewriting Eq6) as W=[1—1/(k Lemma 4. Typically, for any decomposabM/, tangent to
—1)]1+2P*/(k— 1), whereP* is the partially transposed the set of PPTES at the edge statewith (r(5),r(8™))
projector onto the antisymmetric subspace’8%2C™. =(5,7),(5,8),(6,6),(6,7),(7,6), or (8,5), for any>0, the
Let us now focus on the cas®®®C? (two qutrity. We  nondecomposable witne¥g.=W— el is not a Schmidt wit-
summarize below the following observations: ness ofS;, i.e., there exists a vect{¥?) of Schmidt rank 2,

(i) Any 2-SW (entanglement witnesshas the formw  Such tha{ W W |¥?)<0. _
= Q- el, whereK(Q) does not contain any product vector, 10 Prove it, we first writeW=P+QTAwith P,Q=0,
i.e.,r(Q)=5 [21(b)]. whereR(P)=K(4), R(Q)=K(5"A) [17]. We then consider
(i) Any 3-SW has the formW=Q— el, wherer(Q)=8.  |¥)=le1.f1)+Ble,,f5), such thatP|¥)=0, Qle;,f;)=0
This follows from the fact that any two-dimensional sub-for i=1,2. Then, (¥|W|¥)=2 Re(3(e; ,f1|W|eT ,f,)).
space ofC3®C? contains a vector of Schmidt rank 2. Note Choosing the phase g8 appropriately, we can always get
that thus we havav=0— eP, whereP is a projector on a (¥|W|¥)=<0, i.e., W— €l cannot be a 3-SW. Let us check if

3 . ~  such|V) exists. The set of¥')’'s can be parametrized by
\iector|‘l' > of S.C.hm'dt rank 3 ortﬂogongl |R(Q), andQ nine complex parameters. The vectdr) has to fulfill L
=Q~elg Is positive[ 1o denotes the projector dR(Q)]. =r(P)+2r(Q)=27—r(48)—2r(8") equations, and one in-

(iii) Let A be a local transformation in Alice’s space that / . '

. 3 equality for the phase ofB. Obviously, L<9 for

transforms the maximally entangled Bstdwg to | W), (1(8),1(5))=(5.7).(5.8).(6.7). and (7,6). S0 that we ex-
> 1 1 L 1 L 1 L 1 1

and let the Schmidt .coeff|C|(ajwts ") be al;az/,(% pect to have an infinite family of solutions, and in particular
>0. We can write W=Q+ (Amin— €)1=AmirAA'/3  those with the desired phase Bf While examples of edge
2N min(APRAT) 813, WIth Apyin=[Qlmin - ThiS implies that  states with ranks (5)8(5,7) are not known, the Horodecki
if (Q‘min_ €)l=AmirAA'/3 is positive definite, i.e.Amn(l  matrix of Ref.[24], and the matrix from thex family of
—aj)=e, thenW |52dec0mposab|e.20n3thze otger gand, Westates of Ref[16(b)] with a=4 have ranks (6,7). We have
observe that fofWw?) such 2that|(\If |We)[*=ai+a; we  checked that for those matrices the desif#) exists. For
have 0s(W2|W|¥2)<\ 085~ €, WhereX o =[Qlmax- IN (1 (8),r(6™))=(6,6), and (8,5),L=9 and we expect a fi-

turn, these two observations imply: nite number of solutions, but still some of them fulfilling the
Lemma 2If )\max/)\min$1+a§/a§, thenW is decompos- requirements foB. We conclude that if a Schmidt witness of
able. the class 3 were nondecomposable, then it could not be of

Note that if W does not fulfill the assumption of this the form W=P+QTA— ¢l, whereP is supported orR(5)
Lemma, it is very likely that it can be transformed using andQ onR(48'2), for & of the category considered in Lemma
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4. The only possibility is that (r(8),r(8")) +r(6"2)=<13 did not belong tcS,, then there would be a
=(5,5),(5,6),(6,5), or (7,5). To investigate these cases wetated with r(d)+r(374) =13 arbitrarily close tos, which
prove: would not belong t&, neither. But, that contradicts Lemma
Observation 2.For any edge staté with r(8)+r(5'A) 4. In effect, if Lemma 4 is rigorous, then the conjecture is
<13, there exists an edge stagewith r(3)+r(3™)=13 tue. . _
arbitrarily close tod (in any norm. . Summarlzmg, we have.presented a general characteriza-
Proof. Let us consider for instance the case (5,5). We cafon O.f yvnn?]sses_ﬁl: SChmI'dt nIlImeE,r and the.(;'nethods of .
add toé an infinitesimally small separable state composed ofPtimizing them. The results allow us to provide s.,t.rong evi-
two projectors on product vectors froR(8) and two from dence that all bound entangled states with positive partial

R(5"A), making the resulting state of the category (7,7). transpose in two qutrit systems have Schmidt number 2, i.e.,

For such a state there exists a finite number of product vedan be prepared using a two qubit entangled state, local op-

tors |, fy e R(8), |e*,f) e R(5TA). We subtract a projector erations, and classical communication.

on one such vector, keeping the remainder non-negative and We thank I. Cirac, P. Horodecki, B. Kraus, M. Nielsen,
PPT[21]. We choose a vector different from the ones used taand M. Plenio for discussions. This work has been supported
constructd. Generically, the resulting state will be arbitrarily by the DFG(SFB 407 and Schwerpunkt “Quanteninforma-

close toéd, but will have ranks (6,7), of7,6). |
From Observation 2 we get that & with ranksr(6)

tionsverarbeitung), the ESF PESC Programme, Benasque

Workshop 2000, and EU IST Programme EQUIP.
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