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The repulsive Coulomb barrier~RCB! for electron emission is a general property of multiply charged anions.
When an electron is emitted from a multiply charged anion, the electron experiences short-range attraction by
the nuclei and long-range repulsion from the remaining negatively charged system giving rise to the RCB.
Although the RCB is dominated by the electrostatic forces present, it is argued that the exact potential, which
the electron experiences, is nonlocal and energy-dependent. The theory of the RCB is outlined and related to
the theory of Green’s functions. Since it is complicated to compute the nonlocal and energy-dependent poten-
tial, approximation schemes are introduced that conveniently allow for calculation of local energy-independent
RCB potentials. Three approximation schemes of complementary nature are proposed. The physical meaning
of these schemes, the underlying approximations, and their possible weaknesses are discussed in detail. The
local approximation schemes are used to calculate the RCB of atomic dianions, F22 and O22, and of the linear
carbon cluster dianions Cn

22(n52,4,6,8). The atomic dianions serve as objects with which to study the basis
set dependence of the local approximation schemes. The computed local potentials of the carbon dianions are
used to calculate their lifetimes in the framework of Wentzel-Kramer-Brioullin theory. We have found that the
lifetime of the linear carbon dianions grows markedly when going from C2

22 to C8
22, and that the latter

should be the only observable species in a mass spectrometer. This agrees with the available experimental
findings.
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I. INTRODUCTION

When an electron is detached from a neutral atom or m
ecule, a positively charged ion is formed, and thus the in
action between the outgoing electron and the residual ca
is attractive due to their strong Coulomb attraction. Deta
ment of a singly charged anion results in an electron an
residual neutral system, whose long-range interactions
usually weak but also mainly attractive in nature. The sit
tion is different for detachment of multiply charged anion
When an electron is detached from a multiply charged an
the residual system is still negatively charged and, theref
the long-range interaction between the outgoing electron
this system is dominated by electrostatic repulsion. Comb
ing this long-range electrostatic repulsion with the sho
range binding energy of the electron, a repulsive Coulo
barrier~RCB! emerges that has to be passed by the outgo
electron during its detachment process.

The existence of a repulsive barrier can also be ratio
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ized from the different point of view of electron scatterin
from a negatively charged target, a point of view that w
play a role in the present work. Being spatially far away fro
the target, the projectile electron experiences only the t
charge of the target, which is negative. Since their lon
range interaction is mainly electrostatic repulsion, the pot
tial energy increases as the electron approaches the ta
From a certain distance on the electrostatic attraction
tween the nuclei of the target and the scattered electron o
comes the above described repulsion, and the potential
ergy of the system decreases. Combining the long-ra
repulsion and short-range attraction, the scattering poten
that the electron experiences is a repulsive Coulomb bar

Repulsive Coulomb barriers play a role in other proces
as well, for instance, ina decay of nuclei~see, for example
@1#!. An a particle that departs from a radioactive nucle
experiences a potential barrier analogous to that descr
above, although the energy scales and lengths are ent
different. The short-range binding of thea particle is due to
the strong interaction and at large distances the electros
repulsion between the residual nucleus and thea particle
dominates.
©2001 The American Physical Society04-1
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Multiply charged anions are well known in solids an
solutions. The question of whether small multiply charg
anions exist as free entities, i.e., in the gas phase, and
electronic and structural properties they may exhibit h
been attracting attention for a long time. New experimen
techniques and theoretical considerations have resulted in
discovery of various kinds of free multiply charged anio
and given birth to an attractive and active field of resea
@2–11#.

In the context of multiply charged anions, the RCB a
peared in the literature for the first time, when Compton a
others examined multiply charged fullerene anions@3,12–
15#. Although the theoretically predicted values for the ele
tron affinity of C60

2 have negative values@14–17#, i.e., C60
2

cannot bind a second electron, C60
22 has been found to be

long-lived gas phase dianion with a lifetime longer th
1023 s @18–20#. This inconsistency between experiment a
theory could be qualitatively explained by the existence
the repulsive Coulomb barrier, which the outgoing electr
has to pass during its emission. In the case of the fuller
dianion, the energy of the electron lies above the thresh
for detachment but far below the top of the RCB, thus d
tachment of this electron embodies an unlikely tunnel
process. The fullerene C60

22 is therefore a metastable long
lived dianion.

Recently, very important and fundamental progress in
experimental examination of multiply charged anions w
made by Wanget al., who managed to measure the first ph
toelectron spectra~PES! of multiply charged anions. They
used the electrospray ionization technique to generate
free anions, and after mass selection the negative ions w
intercepted by a laser beam, and the kinetic energy of
photodetached electron was measured with a magnetic-b
photoelectron analyzer@21#. Using this new technique, the
investigated, for example, dicarboxylate dianions2OOC-
(CH2)n-COO2 (n52 –6! @22–24#, ML6

22 dianions (M
5Re, Os,Ir, Pt;L5Cl, Br! @25#, and the tetra-anion of the
copper phthalocyanine tetrasulfonate@26,27#. When examin-
ing the PES of the copper phthalocyanine tetrasulfonate
raanion, Wanget al. observed a negative binding energy
the excess electrons, i.e., they measured photodetached
trons with higher kinetic energy than the energy of the la
beam. This observation is direct experimental proof of
existence of the RCB, since the excess electrons of the t
anion are unbound but metastable with respect to emiss
Their emission is hindered by the repulsive Coulomb barr
A similar observation of a negative binding energy may
course also be possible when the PES of the above desc
fullerene dianion is measured.

From a theoretical point of view, the appearance of
RCB is clearly dominated by the electrostatic interaction
tween the outgoing electron and the residual anion. Ne
theless, the exact potential is, in analogy to scattering po
tials, a nonlocal energy-dependent potential and, for
reason, neither straightforward to compute nor depictabl
nature. The aim of this work is to illuminate the nature of t
repulsive Coulomb barrier of multiply charged anions, to d
cuss its general appearance, and to introduceab initio calcu-
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lation schemes, which allow one to compute local appro
mations of the exact RCB.

This paper is organized as follows. In Sec. II we w
outline the theory of the RCB, where we first consider t
interaction energy between a point charge and a char
model sphere to illustrate the above-described qualitative
guments for the existence of the RCB. Then we will pres
an exact theory for the RCB, based on the Green’s func
formalism. In the subsequent subsections we will introdu
local approximation schemes with the help of which one c
straightforwardly compute energy-independent local R
potentials. A theoretical analysis of these potentials will
given in terms of multichannel scattering of distinguishab
particles. These local approximation schemes are use
Sec. III to calculate the repulsive Coulomb barrier of atom
and molecular dianions. We focus here on the atomic di
ions of fluorine and oxygen, as well as on the molecu
dianions of the linear carbon clusters Cn

22 (n52,4,6,8).
Furthermore, we make use of the computedab initio RCB
potentials to estimate the lifetimes of the metastable spec

II. THEORY OF THE REPULSIVE COULOMB BARRIER
POTENTIAL

A. Preliminary considerations

In the introduction we have rationalized the existence
the RCB by considering the electrostatic forces that an e
tron experiences, which is emitted from a multiply charg
anion or, equivalently, scattered from an anion. These for
are long-range repulsion and short-range attraction com
ing to the repulsive Coulomb barrier. To corroborate th
simple qualitative arguments and to get an idea of the hei
width, and shape of the RCB, we preliminarily examine t
interaction energy between a negative point charge and
N-fold negatively charged sphere, the center of which
Z-fold positively charged (N.Z). This primitive model sys-
tem roughly reflects the electrostatic characteristics of
above-described electron-anion system, especially when
target anion is atomic.

The interaction potential between a negative point cha
and the above-described model sphere is given by

V~r !52
Z

r
1E r~r 8!

ur 2r 8u
d3r 8, ~1!

where the first term describes the electrostatic attraction
tween theZ-fold positively charged nucleus of the spher
while the second is the interaction energy between the p
charge and the exact charge distribution of theN negative
charges of the sphere. Obviously,V(r ) depends on the
choice of the charge distribution, and there are several p
sible distribution models, but here we concentrate on
following two.

The first model is a ‘‘hard’’ sphere in which theN nega-
tive charges are homogeneously distributed over the volu
of a sphere with the radiusR. Its charge distributionrh(r )
reads
4-2
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ERRATA PHYSICAL REVIEW A 63 049904~E!
rh~r !5
3N

4pR3
Q~R2r !, ~2!

whereQ(R2r ) is the well known step function.
A second and more realistic model for the charge dis

bution is a ‘‘soft’’ sphere, in that the charge distributio
decreases exponentially. This charge distributionrs(r ) is
given by

rs~r !5
N

8pa3
expS 2

r

a D . ~2’!

Herein,a represents a strength parameter of the expone
decrease of the charge. Substituting these two equation~2!
and~28) into Eq. ~1! and solving the integration, one readi
obtains the potentials the point-charge experiences in b
model cases. They read

Vh~r !5H N2Z

r
: r>R

2
Z

r
2

N

2R S r

RD 2

1
3N

2R
: r<R

~3a!

for the ‘‘hard’’-sphere case and

Vs~r !5
N2Z

r
2N expS 2

r

a D H 1

r
1

1

2aJ ~3b!

for the ‘‘soft’’-sphere case.
To plot these analytical potentials, we have chosenZ58

andN59, which are the nucleus charge and electron num
of an oxygen anion. The potentials that we obtain are t
approximate pictures for the RCB of detaching an elect
from an atomic oxygen dianion. Furthermore, we have ta
R as the experimental value of the radius of O22, which is
known from crystallography to be 140 pm, i.e., 2.65 a
Introducing this radiusR into the ‘‘hard’’-sphere model and
adjusting the strength parameter of the ‘‘soft’’-sphere mo
a such that the maxima of both potentials are at the sa
position, one obtains the potentials shown in Fig. 1. T
model potentialsVh(r ) and Vs(r ) are plotted together with
the local staticab initio RCB of O22, which will be intro-
duced later and discussed in detail in Secs. II D 1 and III

While the positions of the maxima of the model potenti
and of theab initio static potential are in good agreemen
the barrier heights are markedly different. It is clear that
barrier of the ‘‘hard’’-sphere model must be higher than t
barrier of the ‘‘soft’’-sphere model, since the negati
charges are strongly localized around the nucleus in the
of the ‘‘hard’’ sphere. Thus, the attraction of the nucleus
shielded more strongly by the negative charges of
‘‘hard’’ sphere than by the ‘‘soft’’ sphere. The barrier heig
of the staticab initio potential is even smaller than that of th
barrier of the ‘‘soft’’-sphere model due to the high diffus
ness of the charge distribution of the oxygen anion.

Summarizing our short preliminary considerations,
have obtained analytical expressions for the interaction
ergy of a negative point charge with a charged sphere. Th
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potentials are only simple approximations of the RCB
multiply charged anions, but give us an idea of the hei
and width that we have to expect when we investigate
RCB usingab initio approaches.

B. The exact potential

Green’s functions~GF! provide powerful tools to investi-
gate properties of many- and several-body systems@28–30#.
Numerous successful applications have been performed
solids @31,32#, nuclei @33,34#, and atoms, molecules, an
clusters@35–38#. In connection with the scattering theory,
particularly useful result has been obtained for the o
particle Green’s function, which is the simplest in the hie
archy of the Green’s functions. The kernel of this functi
~see below! is anexactone-particle potential for a scatterin
electron @39#. As we have argued in the Introduction, th
RCB can also be seen as the potential that an electron e
riences, which is scattered from a negatively charged tar
For this reason, we can use the one-particle Green’s func
to evaluate the RCB.

The Green’s functions are defined as theN-electron
ground state expectation value of a time-ordered produc
creation and annihilation operators. The one-particle GF
describes an elastic scattering process reads

Gab~ t,t8![2 i ^C0
NuT$ba~ t !bb

1~ t8!%uC0
N&, ~4!

whereC0
N is the exactN-electron ground state of the targ

and ba(t) and bb
1(t8) denote annihilation and creation op

erators for projectiles in projectile stateswa andwb , respec-
tively. T represents Wick’s time ordering operator@28,29#.
This one-particle GF is subject to the well known Dys
equation, which after Fourier transformation from time in
energy space reads in matrix notation

G~E!5G(0)~E!1G(0)~E!S~E!G~E!. ~5!

FIG. 1. Analytical RCB potentials of the ‘‘hard’’-sphere an
‘‘soft’’-sphere models for O22 are shown together with theab initio
local static RCB potential of O22 ~obtained with the LSA at the
level of CCSD; see Sec. III!. The zero point of the energy scal
corresponds to the energy of the free monoanion O2.
4-3
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ERRATA PHYSICAL REVIEW A 63 049904~E!
Here, G(0)(E) is the GF calculated with the unperturbe
Hamiltonian, i.e., the Hamiltonian without particle-target i
teraction. E is the energy of the scattering system. T
Dyson equation~5! relates the GFs for inelastic scatterin
G(E) to the free GFs via its kernelS(E), which is called
self-energy. The Dyson equation can be formally solved
actly by inversion giving

G~E!5@E12e2S~E!#21. ~6!

The unit matrix1, the diagonal matrix of projectile energie
e andS(E) are matrices in projectile space.

The self-energy represents an effective, in general c
plex, energy-dependent one-particle potential caused by
relation effects@39#. If we neglect these correlation effect
the self-energy reduces to the well known static-excha
potential @40# evaluated with respect to the Hartree-Fo
~HF! potential. The self-energy consists of a static partS(`)
not depending onE and a dynamic part depending onE @37#:

S~E!5S~`!1M ~E!. ~7!

The static part has a simple interpretation. In spatial rep
sentation it can be written as

S~r ,r 8,`!5W1d~r 2r 8!E r~ r̄ , r̄ !

ur 2 r̄ u
dr̄2

r~r ,r 8!

ur 2r 8u
, ~8!

wherer is the exact one-particle density of the ground st
of the target~here, of the anion! and W is the interaction
potential of the projectile with the nuclei. The static part c
thus be seen as the static-exchange interaction of the inc
ing electron with thecorrelated target. An analysis of the
physical origin of the dynamic part of the self-energy h
been given in Ref.@41#. The self-energyS(E) represents an
exact potential which a projectile, e.g., an electron, exp
ences when it is elastically scattered from a target, e.g.
anion. All inelastic scattering channels are contained in
elasticS(E) by losses of the elastic scattering cross sect
@42#. In the case of the anionic targets, we can obviou
identify the self-energy with the repulsive Coulomb barr
~RCB!. Applications of the self-energy to scattering of ele
trons by neutral molecules can be found in Refs.@43–45#.

In conclusion, there exists an exact theory for the R
based on the one-particle Green’s functions. Unfortunat
the exact self-energy, i.e., an exact RCB, is not straight
ward to compute. Furthermore,S(E) is energy-dependent
nonlocal and probably complex, and, for these reasons,
easily depictable. Calculations ofS(E) are, of course, desir
able, but out of range at the moment. Since we want to ill
trate here the nature of the RCB and make first systematiab
initio calculations, we have to introduce some approxim
tions to circumvent the energy-dependence and the nonl
character of the RCB.

C. Local approximations of the RCB potentials

In this section we discuss three local approximat
schemes with the help of which one can easily compute
proximateab initio RCB potentials. Two of these schem
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have been introduced very recently and applied to comp
the RCB of the dianion BeC4

22 @46#. See also an application
of the second scheme to the metastable PtCl4

22 dianion in
Ref. @11#. All three schemes possess the great advantag
yielding local potentials that are depictable. These local
tentials will help us to get a better understanding of the
ture of the repulsive Coulomb barrier.

In the first approach, the RCB is calculated directly
using the Hartree-Fock ground-state wave function of
dianion. Let the dianion haveN11 electrons. We use the
molecular orbitals of the dianion and take out one elect
from the highest occupied orbital, the orbital from which t
electron is emitted. Then we calculate the electrostatic po
tial by summing up the nucleus-electron attraction a
electron-electron repulsion via

VDFOSA~r !52 (
a51

K
Za

ur 2Rau
1(

i 51

N E f i* f i

ur 2r i u
dt. ~9!

In this equation the first term of the right-hand side descri
the electrostatic attraction betweenK nuclei and the outgoing
electron, while the second term corresponds to the elec
static repulsion between the outgoing electron and theN re-
maining electrons in their molecular orbitals of the dianio
Using this approach we make several approximations.
circumvent the energy dependence of the exact RCB by
mally setting the energy of the outgoing electron to the ne
tive of the electron detachment energy. Furthermore, we
glect the exchange interaction between the outgoing elec
and those of the residual anion. Since we use the molec
orbitals of the dianion that do not interfere with the emitt
electron, we call this method of calculating the RCB t
dianion frozen orbital static approach~DFOSA!. This ap-
proach is closely related to the static without exchange
polarization approximation, which is widely used in scatte
ing theory. Strictly speaking, if we were to use in Eq.~9! the
optimized orbitals of the monoanion instead of those of
dianion, we would exactly make such a static calculation
the scattering of an electron from the corresponding mono
ion.

A second possible method of calculating the RCB in
straightforward and natural way is to compute the total
ergy of the monoanion in the presence of a negative p
charge, which may represent the outgoing electron. If
negative point charge is placed at varying distancesr to the
monoanion, one readily obtains a complete potential ene
surface, which reflects the repulsive Coulomb barrier. T
RCB is then given by the simple equation

VPCM~r !5E0~r !2E0 . ~10!

Here,E0(r ) corresponds to the total energy of the monoa
ion in the presence of the negative point charge at the
tancer, while E0 is the total energy of the free monoanio
i.e., in the absence of the negative point charge. Using
approach to calculate the RCB, one takes into account e
tron relaxation and can easily applyab initio methods be-
yond Hartree-Fock. It is, for example, possible to use
coupled clusters single and doubles~CCSD! method, which
4-4
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ERRATA PHYSICAL REVIEW A 63 049904~E!
makes correlation between theN electrons of the monoanio
accessible. Furthermore, the exchange energy between
N electrons are also taken into account. Based on th
grounds it is clear that theN electron system is describe
correctly by the point charge model~PCM! at large distances
between the point charge and the monoanion. The PCM
veals the correct shape of the RCB far away from
monoanion. At short distances this method, of course, p
sesses weaknesses~see also Sec. III A!. For example, the
monoanion is allowed to statically polarize when the elect
approaches. This is only appropriate, if at all, when the
taching electron moves very fast, which may not be nec
sarily correct. Thus, the quality of the RCB can be low
shorter distances.

Comparing the DFOSA method and the PCM, the lat
reveals the correct shape of the RCB at large distances
tween the residual anion and the outgoing electron, beca
the anion is described correctly for this situation. DFOS
yields a more reliable RCB in the inner region, when t
detaching electron is close to the anion, since the orbital
the dianion are used within the DFOSA approach. B
methods seem to complement one another to give a com
picture of the repulsive Coulomb barrier.

The third approach to the RCB consists of directly co
puting the local contribution of the static self-energy. N
glecting in Eqs.~7! and ~8! the dynamic part and the ex
change of the electron with the target anion, one obtains
local staticpotential

VLSA~r !52 (
a51

K
Za

ur 2Rau
1E r~ r̄ , r̄ !

ur 2 r̄ u
dr̄. ~11!

The one-particle densityr of the anion can be compute
with any ab initio method ~see also Sec. II D 2!. The re-
sponse of the target’s density to the projectile electron
cluded in the PCM is, of course, absent inVLSA~r!. However,
it will be shown below that the latter potential has adva
tages in that it does not suffer from some of the basic we
nesses of the other schemes.

Finally, we would like to mention that in all three loca
approaches discussed above, the exchange interaction
tween the electron and the anion can, in principle, be ta
into account by using local approximations like those done
density functional theories. To be specific, we have refrai
from applying these approximations in the present work.

D. Analysis of the point charge potential

In the following subsections, we analyze in detail t
PCM discussed in the preceding subsection and outline
relation to multichannel Green’s function theory to obta
insight into the physical meaning of this attractive approa
Correlations to the local static potential will be made. W
will show how the latter can be computed withab initio or
other methods that do not provide the one-particle densitr.
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1. The point charge matrix and point charge potential

Within a local theory it is assumed that when an electr
is emitted by a multiply charged anion, say dianion, t
Hamilton operator for the outgoing electron reads

H5h~r !1V~r !, ~12!

whereh(r) represents the kinetic energy of the electron a
V(r) is the potential that the electron experiences, which c
responds to the repulsive Coulomb barrier. In the po
charge model the RCB is calculated via the equation~see
Sec. II C!

VPCM~r !5E0~r !2E0 , ~13!

where E0(r ) denotes the energy of the monoanion in t
presence of the point charge, whileE0 corresponds to the
energy of the free monoanion. Multiplying by the groun
state wavefunctionuC0 ;r & of the monoanion in the presenc
of the point charge atr from the right gives

VPCM~r !uC0 ;r &5@E0~r !2E0#uC0 ;r &. ~14!

SinceuC0 ;r & obeys the following Schro¨dinger equation:

@HT1vele~r !1vK~r !#uC0 ;r &5E0~r !uC0 ;r &, ~15!

whereHT is the Hamiltonian of the target anion, one can u
this equation to eliminateE0(r ) in Eq. ~13!, which now takes
on the following appearance:

VPCM~r !uC0 ;r &5@HT1vele~r !1vK~r !2E0#uC0 ;r &.
~16!

Herein, vele(r ) and vK(r ) are the electrostatic interactio
energies between the point charge at positionr and theN
electrons andK nuclei of the monoanion, respectively. The
read

vele~r !5(
i 51

N
1

ur i2r u
, vK~r !52 (

a51

K
Za

uRa2r u
. ~17!

ExpandinguC0 ;r & in the states$F j% of the free monoanion,
i.e., in the eigenstates ofHT ,

uC0 ;r &5(
j

cj 0uF j& ~18!

and inserting into Eq.~15! gives

VPCM~r !(
j

cj 0uF j&5@HT1vele~r !1vK~r !

2E0#(
j

cj 0uF j&. ~19!

By multiplying by ^F i u from the left and integrating over th
target electrons, we obtain the matrix eigenvalue equatio

~P2VPCM1!c50 ~20!
4-5
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for the eigenvaluesVPCM(r ). Obviously, there is a poin
charge potential associated with each of the target electr
states. In Eq.~20! 1 represents the unit matrix,c is the matrix
of expansion coefficients, and the matrix elements ofP are
defined by
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Pi j ~r !5^F i uHT1vele~r !1vK~r !2E0uF j&. ~21!

The matrixP, which we refer to as thepoint charge matrixin
the following, takes on the following appearance:
P5S A00 A01 A02 ••• A0M •••

A10 A111~E12E0! A12

A20 A21 A221~E22E0!

A �

AM0 AMM1~EM2E0!

A �

D . ~22!
ory,

-

rm-
e.
t

ry
n to
ate.
as

y

The point charge matrixP can be split into two matrices,

P5A1E. ~23!

E is a diagonal matrix with the elementsEi2E0 along the
diagonal, whereEi is the i th energy of the free anion. Th
matrix elementsAi j (r ) of the matrixA are defined as

Ai j ~r !5^F i uvele~r !1vK~r !uF j&. ~24!

The diagonal elementsAii (r ) are the so-calledlocal static
potentials. Aii (r ) is the interaction energy between a po
charge and the exact charge density of the monoanion in
stateF i . In particular,A00(r ) is identical to the local static
potential introduced in the preceding subsection@see also Eq.
~8!#: VLSA(r )5A00(r ). These potentials correspond to th
exact static potentials for scattering an electron from th
monoanion including the exchange and correlation of
electrons of the monoanion but without the exchange
tween the scattered electron and the target electrons.

When diagonalizing the point charge matrixP, we obtain
the eigenvaluesVPCM(r ), which are the result of the poin
charge model calculation, one RCB for each state of
monoanion. These potentials take into account the resp
of the monoanion on the presence of the point charge,
the monoanion is allowed to polarize. The matrixP connects
the static potentials to the point charge model potentials

2. The point charge matrix and static potential

The evaluation of the static potentials is straightforwa
when the one-particle density of the target anion is know
However, this density is not explicitly available in som
computer codes forab initio methods beyond Hartree-Foc
One can easily circumvent this difficulty with a tricky mod
fication of the point charge model. When we use not a
point charge in the PCM calculation but an infinitesim
point chargeh, no response of the monoanion is expect
The interaction potentialVh(r ) between the infinitesima
point charge and the monoanion then reads
he

ll
-

e
se
.,

.

ll
l
.

Vh~r !5hF(
i 51

N
1

ur i2r u
2 (

a51

K
Za

uRa2r uG . ~25!

Thus, the point charge matrixP takes on the following ap-
pearance@see Eq.~20!#:

Ph5S hA00 hA01 hA02 •••

hA10 hA111~E12E0! hA12

hA20 hA21 hA221~E22E0!

A �

D .

~26!

Its eigenvalues can be evaluated using perturbation the
and the first eigenvalue, for example, is given by

VPCM
h ~r !5hA00~r !1h2(

n

M
A0n~r !An0~r !

~En2E0!
1O~h3!.

~27!

Dividing by h, the equation reads in the limit ofh→0

lim
h→0

1

h
VPCM

h ~r !5A00~r !. ~28!

The local static potentialA00(r ), which describes the inter
action between a full point charge at positionr and the free
monoanion in its ground state, can be calculated by perfo
ing a PCM calculation using an infinitesimal point charg
For brevity, we call this tricky modification of the poin
charge model thelocal static approach~LSA! in the follow-
ing. This approach is of general applicability, since eve
electronic state of the target can be used in the calculatio
generate the local static potential for the corresponding st
The infinitesimal point charge can be negative as well
positive, and everyab initio method that yields a total energ
can be applied.
4-6
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3. Relation to multichannel scattering Green’s function theory

In Sec. II B the one-particle Green’s function for elas
scattering was introduced and an exact theory for the re
sive Coulomb barrier was outlined. Since we use a po
charge in the PCM to approximate the outgoing or, equi
lently, the scattered electron, this ‘‘electron’’ is distinguis
able from the electrons of the target. To analyze the PCM
terms of Green’s functions, we have to compare the po
charge model with the Green’s function theory for scatter
of nonelectronic particles from electronic targets@42#, i.e.,
the scattered particle is distinguishable from the electron
the target.

As usual, the total Hamiltonian for a scattering proce
reads

H5HT1h1HTP , ~29!

whereHT is the target~free monoanion! Hamiltonian,h rep-
resents the projectile Hamiltonian, and the interaction
tween projectile and target electrons is@see Eq.~16!#

HTP5vele~r !1vK~r !. ~30!

Using this total Hamiltonian and the inelastic one-parti
GF, it has been shown in Ref.@42# that a generalized Dyso
equation can be obtained that reads in matrix notation

G~E!5G(0)~E!1G(0)~E!AG~E!. ~31!

This generalized Dyson equation relates the inelastic G
G(E) to the free GFsG(0)(E) via a super matrixA, which is
given by

Ai j ~r !5^F i u2 (
a51

K
Za

uRa2r u
1(

i 51

N
1

ur i2r u
uF j&. ~32!

The scattering amplitudesf jk(r ), which fully describe the
inelastic scattering processFk→F j , are given by the fol-
lowing set of equations:

(
j

$@E2h2~Ei2E0!#d i j 2Ai j % f jk~r !50, ~33!

where E is the total energy of the projectile plus target s
tem. In analogy to Eq.~19!, this set of equations can b
written as a matrix vector multiplication and takes on t
following appearance:

~R21E!F50, ~34!

where1 is the unit matrix,F is the matrix of scattering am
plitudes, and the elements of the matrixR are defined as

Ri j ~r !5Ai j ~r !1@h1~Ei2E0!#d i j . ~35!

Equation~33! is an exact equation, i.e., its solutions are ex
scattering amplitudes that give exact elastic and inela
scattering cross sections. Comparing the matrixR with the
point charge matrixP of Eq. ~19!, we easily see that thes
matrices are identical apart from h, which appears only inR.
h represents the Hamiltonian of the projectile particle a
04990
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loosely speaking, corresponds to its kinetic energy. Settinh
formally equal to 0, i.e., neglecting the kinetic energy of t
scattered electron, the matrixR is equal to the point charge
matrix P. We have thus shown that the PCM represents
adiabatic approximation of the exact theory for scatterin
distinguishable particle from an electronic target. In rever
the PCM can be used to calculate the eigenvalues and ei
states of the exact multichannel matrix in the adiabatic
proximaton. Subsequently, the Hamiltonianh of the free par-
ticle can be added and a multichannel scattering calcula
beyond the adiabatic approximation can be performed.

III. CALCULATION OF THE REPULSIVE COULOMB
BARRIER POTENTIALS

In this section we present our results obtained fromab
initio calculations on the repulsive Coulomb barrier of mu
tiply charged anions. Here, we want to make first estima
of the barrier potentials in the framework of the local a
proximations introduced in the preceding sections, althou
we know that the exact barrier potentials are nonlocal a
energy dependent. As we have shown above, the exact
tentials can be obtained from Green’s function methods,
these are, unfortunately, so far not straightforward to co
pute. For this reason, we use the DFOSA, the PCM, and
LSA introduced in Sec. II C and analyzed in Sec. II D
calculate the RCBs of various dianions.

Results on the atomic dianions F22 and O22 and on the
linear series of the carbon cluster dianions Cn

22 (n
52,4,6,8) are shown. In Sec. III A we study the atomic d
anions, discuss the basis set dependence of the local app
mation schemes, and outline their possible weaknesses.
tion III B deals with the examination of the molecular Cn

22

dianions. Therein, we use the local RCB potentials to cal
late detachment lifetimes for the carbon dianions in
framework of WKB theory.

A. Atomic dianions and the induced electron detachment by
the point charge

As a first step we have studied the RCB of the atom
dianions F22 and O22 with special emphasis on the basis s
dependence of the local approximation schemes. We h
chosen atomic dianions merely as practical objects. The
culation times are short, and highly diffuse basis sets
easily employed.

We have computed the repulsive Coulomb barrier of
F22 and O22 dianions with the help of the DFOSA metho
at the level of restricted open-shell Hartree-Fock~ROHF!
and restricted Hartree-Fock~RHF!, respectively. The PCM
and the LSA calculations have been performed using
coupled cluster singles plus doubles~CCSD! method@47#.
The basis set dependence of the RCB of the dianions
been checked by starting with the standard double-zeta
polarization basis set~DZP! comprising Dunning’s@48# con-
tractions of Huzinaga’s primitive sets@49#, which have been
gradually augmented with one (DZP1sp), two (DZP
12s2p), and three (DZP13s3p) sets of diffuses- and
p-type functions. The initial exponents for the diffuses- and
4-7
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p-type functions for fluorine have been 0.085 and 0.074,
spectively, and 0.068 and 0.045 for oxygen. The second
third sets of diffuse functions were added in accordance w
the even scaling rule@50#. The use of basis sets of triple-ze
quality is not necessary, since their effect on the RCB
negligible.

The local static RCB potentials that have been obtai
using the local static approach as described in Sec. II D
displayed in Fig. 2. To plot the actually three dimension
spherically symmetric potentials in one dimension, one
to respect the angular momentum of the outgoing elect
Since the outgoing electron from the O22 dianion is ap
electron, one has to add the angular-momentum barrier to
RCB potential to obtain the correct one dimensional R
plot. For the fluorine dianion there exists no angul
momentum barrier, as the departing electron is ans electron.

One can see in Fig. 2 that the static potentials for F22 and
O22 have already essentially converged as a function of
sis set, when the DZP1sp basis set is used. From a theore

FIG. 2. Basis set study of the local static RCB potentials of F22

~upper part! and O22 ~lower part! obtained with the LSA. Both
RCB potentials are essentially converged as a function of basi
when the DZP1sp basis set is used. The energy of the fr
monoanion is set to zero. Note that the angular-momentum ba
has been added to the O22 potentials~see text!.
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ical point of view, the local static RCB potential has to b
basis set independent once the target anion is properly
scribed, because the static RCB depends only on the ch
distribution of the target anion@see Eq.~11! in Sec. II C#.
Obviously, this is already the case for these atomic diani
when the DZP1sp basis set is used.

In Fig. 3 the RCB potentials for F22 and O22 are dis-
played, which have been calculated using the point cha
model. The RCBs of both atomic dianions decrease w
increasing diffuseness of the basis sets and seem to disap
in the limit of an infinite basis set. In the PCM a negati
point charge is brought up to the target anion, and for t
reason, the height and width of the RCB is determined by
ability of the monoanion to react on the presence of the po
charge. When an electron approaches an anion, the ta
anion polarizes and a weakly bound anion may also be
ized. Due to the strong electrostatic repulsion between
point charge and the extra electron of the anionic targ
electron detachment of the anionic target electron isalways
induced within a PCM calculation below some positionr of
the point charge. This is, of course, physically not corr

et

er

FIG. 3. Basis set study of the RCB potentials of F22 ~upper
part! and O22 ~lower part! obtained with the PCM. The RCB gradu
ally decreases with increasing diffuseness of the basis set within
PCM calculations, i.e., the PCM is strongly basis set dependen
4-8
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and is the major weakness of the point-charge model.
To make this induced electron detachment by the po

charge more clear, we consider the PCM calculation for2

as the target. O2 possesses a bound2P3/2 ground state tha
has an electron detachment energy~EDE! of 1.461 eV@51#.
When approaching the O2 ground state with a point charge
the state gets unbound due to the electrostatic repulsion
tween the excess electron of the anionic target and the p
charge. This happens when the Coulomb repulsion is gre
than the binding energy of the electron. For the oxygen
ion, this is the case when the distance between anion
point charge is smaller than about 10 Å, according tor @Å #
<14.395/EDE@eV#. Clearly speaking, we detach the exce
electron of O2 by approaching it with the point charge. Th
detachment of O2 can be ‘‘observed’’ during a PCM calcu
lation at the level of Hartree-Fock by the orbital energy
the anionic electron. When the point charge is farther aw
than 10 Å , the orbital energy is negative, i.e., the electron
bound, and when the distance becomes shorter, the or
energy gets positive, i.e., the electron is unbound. This
duced electron detachment is the major weakness of
point charge model, because independently of how strong
anionic electron is bound, i.e., what kind of system we
amine, the detachment of the anionic electron is always
duced when the point charge is spatially close enough to
anionic target. Then the anion–point-charge system re
sents an unbound resonance state. Returning to the bas
dependence of this model, it is now clear that the greater
detail in which the basis set can describe this unbound r
nance state, i.e., the more diffuse the basis set is, the he
of the barrier decreases.

Finally, we have examined the basis set dependence o
DFOSA method, and the DFOSA potentials that have b
obtained for F22 and O22 are displayed in Fig. 4. The RCB
of F22 decreases markedly when the first set of diffuse fu
tions is added, but increases again with the addition of
second and third set. This behavior of the RCB can be
derstood when one analyzes the DFOSA method and the22

dianion. In the DFOSA calculation, which has been d
scribed in Sec. II C, we use the Hartree-Fock orbitals of
dianion to sum up the electron-electron repulsion and
nucleus-electron attraction. The Hartree-Fock orbitals
generated in the framework of the ROHF method, beca
F22 is an open-shell system. When the unbound F22 dianion
is calculated with the bound-state ROHF method and
employed basis set is getting more and more diffuse,
method tends to describe a bound F2 anion and an unbound
electron. Hypothetically using an infinite basis set, we wo
exactly get the HF orbitals of F2 and an unbound electro
with zero kinetic energy. Using these orbitals of the mono
ion, i.e., its correct one particle density at the level
Hartree-Fock, in the DFOSA calculation, we would,
course, obtain the local static RCB at the theoretical leve
HF. That means that the RCB of an open-shell multip
charged anion calculated with the DFOSA method conver
towards the local static RCB with increasing diffuseness
the basis set.

In contrast to the open-shell F22 dianion, the RCB of the
closed-shell O22 dianion vanishes~Fig. 4! in the framework
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of DFOSA when more and more diffuse basis sets are u
Again, we describe an unbound resonance state with
bound-state RHF method. Because the RHF method tr
electrons witha and b spin equally, i.e., all orbitals are
doubly occupied, the bound-state calculation can only c
verge to solutions in which electron pairs are retained. The
fore, the solution of the RHF calculation for O22 using an
infinite basis set can only be a neutral O atom and two
bound electrons with zero kinetic energy. Consequently,
RCB disappears when we use these orbitals in the DFO
calculation.

Summarizing the basis set dependence of the local
proximations, only the LSA is basis set independent once
basis set is sufficiently large to appropriately describe
anionic target. The PCM and the DFOSA methods
strongly basis set dependent, since within these scheme
bound states are calculated with bound-state methods. B
on these grounds, the use of the PCM and the DFOSA m
ods makes sense only when not too diffuse basis sets
employed. A good choice of the basis set is of general
portance in any quantum chemical calculation, and thus

FIG. 4. Basis set study of the DFOSA potentials of F22 ~upper
part! and O22 ~lower part!. While the F22 potentials converge to
the local static RCB with increasing diffuseness of the basis set,
RCB of O22 vanishes.
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has to define a basis set selection criterion for the appr
mation schemes. The only reasonable criterion is the b
set independence of the local static approach. For this rea
the first basis set for which the local static approach is c
verged should be the basis set in all further RCB calcu
tions. Here, it has been the DZP1sp basis set, since this i
the smallest basis set for which the local static RCBs of F22

and O22 have converged~see Fig. 2!.
To apply the local approximation schemes successfu

one has to reflect the underlying approximations and the
tems that are to be examined with these methods. Bec
we neglect exchange between the extra electron and the
get ~monoanion! in all three schemes and exchange is imp
tant for the spatially small atomic systems, we may not
pect quantitative accuracy in our calculations on atom
dianions. But nonetheless, atoms are reasonable objec
which to study the weaknesses and the limits of applicab
of the local approximation schemes. Furthermore, we m
suggest the use of the density-functional theory~DFT! within
the models, because exchange is approximately containe
the DFT method.

In view of the above findings concerning the PCM a
DFOSA, one may ask whether these actually physically
pealing methods make any sense at all. As discussed ab
the system can be viewed to be in an unbound resona
state and several techniques are available to compute
resonances@52–54#. By analytic continuation into the com
plex energy plane, the energy of the resonance beco
Eres5Er2 iG/2, whereEr is the real part of the resonanc
energy andG the decay width (t5\/G is the lifetime of the
resonance! @52,53#. In the present context the appropria
technique will lead to complex DFOSA and PCM potentia
to take into account the possible losses due to the indu
ionization by the point charge. Another possibility is to vie
the resonance as a discrete state embedded in the contin
This discrete state can be computed using stabilization t
niques employing compact basis sets@54#. In the present
context the scheme to choose an appropriate compact
set for DFOSA and PCM calculations is in line with th
stabilization technique.

B. Molecular dianions: Cn
2À

„nÄ2,4,6,8…

In the preceding subsection we have seen that exchan
important for the spatially small atomic systems and sin
exchange is neglected in the local approximation schem
the obtained RCBs provide only crude estimates of
‘‘true’’ RCBs. In this subsection we turn to the examinatio
of molecular dianions. These systems are more extended
exchange plays a minor role, and we expect that the us
the local approximation schemes yields reliable RCBs
molecular dianions.

We have examined the repulsive Coulomb barrier of
linear carbon dianions Cn

22 (n52,4,6,8), of which C8
22

was observed experimentally in 1990 by Schaueret al. @55#.
We have chosen these dianions for two reasons. On
hand, they are experimentally and theoretically well stud
and ample data is available in the literature@38,56–58#. On
the other hand, there is still a puzzle concerning C8

22. Al-
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though the peak of C8
22 is one of the most abundant pea

in the mass spectrum of the carbon dianions, the dianion
been found to be adiabatically unstable with respect to e
tron emission by about 0.1 eV@56#. In contrast, C7

22, which
is the smallest observed carbon dianion, possesses a3h

starlike structure and is electronically stable@57,58#, but its
peak in the mass spectrum is less intense than that of C8

22.
The RCB potentials of the linear carbon dianions ha

been calculated using all three methods discussed in
II C. PCM and LSA have been employed at the CCSD le
and DFOSA at the level of restricted Hartree-Fock. All g
ometries of the examined carbon dianions have been o
mized at the CCSD level using the DZP1sp basis set and
have been held fixed in the RCB calculations. In analogy
the atomic dianions~Sec. III A!, we have checked the bas
set dependence of the RCB of the molecular dianions. As
example, we have computed the RCB of C4

22 using all three
local approximation schemes starting with the DZP basis
The basis set has then been gradually augmented with
(DZP1sp) and two (DZP12s2p) sets of diffuses- and
p-type functions, the exponents of which have be
0.040 893 and 0.027 188, respectively.

In analogy to the atomic dianions, the local static a
proach has already converged when the DZP1sp basis set is
used, i.e., the monoanion is appropriately described by
basis set. The DZP1sp basis is therefore chosen to be th
standard basis set for the calculations of the RCBs of
examined carbon dianions. As expected, the RCB of
closed-shell C4

22 gradually decreases when the DFOS
method and the point-charge model are applied and more
more diffuse basis sets are used. It is worth noting that
basis set dependence of these local approximation schem
much less significant for the molecular C4

22 than for the
atoms. While the RCB of O22 has decreased by about 5 e
and 3.5 eV in the DFOSA and PCM calculations, resp
tively, when going from the DZP to the DZP1sp basis set, it
is only 0.55 eV and 0.3 eV for C4

22. This gives us confi-
dence that we can obtain reliable potentials for extended
tems like molecular dianions with the help of local calcu
tion schemes.

The RCB potentials are, of course, three dimensional,
rotationally symmetric for the linear Cn

22 dianions. For il-
lustration, a two dimensional picture of the RCB of C6

22

obtained using the DFOSA method is shown in Fig. 5. T
RCB is highly anisotropic. The maxima of the potential a
at the ends of the C6

22 molecule, where the excess charg
are located. The minima are placed along the horizontal m
ror plane of the molecule. These minima correspond to
minimum energy path for electron emission from the C6

22

dianion. The RCBs of all linear even-numbered carbon di
ions possess this typical shape, but the shorter the c
length, the higher the RCB in all directions due to the
creased electrostatic repulsion between the excess charg
comparison of the RCB potentials of the linear carbon clus
dianions along the minimum energy path for electron em
sion is shown in Fig. 6. These potentials have been ca
lated with the DFOSA method using the DZP1sp basis set.
As expected, the height of the RCB decreases systematic
4-10
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with the size of the system. We find a decrease of about
eV from C2

22 to C8
22.

We have used the RCB potentials of the carbon diani
to calculate the tunneling probability and the lifetime

FIG. 5. Two-dimensional picture of the RCB of C6
22 calculated

in the framework of DFOSA. The potential is strongly anisotrop
and, as one can easily see, the minimum energy path for elec
emission from the dianion is along the horizontal mirror plane
the D`h symmetric dianion. Contour lines are projected on thexy
plane for several heights of the barrier~see legend!. The energy is
given in eV, and the lengths are given in Å .

FIG. 6. Comparison of the RCB potentials of the linear carb
dianions Cn

22 (n52,4,6,8) along the minimum energy path fo
electron emission calculated with the DFOSA method using
DZP1sp basis set. The vertical electron detachment energies o
dianions computed at the level of CCSD/DZP1sp are indicated by
horizontal bars on which the corresponding calculated lifetimes
vertical electron detachment of the respective dianions are give
seconds. The lifetimes have been calculated in the framewor
semiclassical WKB theory~see text!. The zero point of the energy
scale corresponds to the energy of the respective monoanions
04990
.5

s

these systems in the framework of the semiclassical W
theory. The tunnel probability is given by the formula

P5expS 2
2

\Er1

r2
A2m@E2V~r !#dr D ,

whereE is the energy of the electron,V(r ) the RCB, andr1
and r2 define the width of the barrier at energyE. The life-
time of the dianion can finally be calculated using the fo
mula

t5
2p

Pv
,

wherev is the frequency with which the electron hits th
RCB. This frequency can be obtained by solving the eq
tion of motion for the electron with the assumption that t
potential in the inner region is dominated by the electrosta
attraction between the nucleus and the outgoing electron,
the potential has the shape ofr 21. The use of this semiclas
sical approach is limited to one-dimensional potentials a
actually the RCB are, as already mentioned, thr
dimensional. We solve this conceptual problem by assum
that the electron leaves the dianion via the minimum ene
path outlined above. A three dimensional calculation of
lifetime would be desirable to improve the reliability of th
numbers, but this is beyond the scope of this work. Here,
are only interested in estimating the lifetimes and investig
ing their dependence on the chain size. A tedious three
mensional calculation would certainly be justified when u
ing a more accurate potential such as the one discusse
Sec. II B.

To study the influence of the potential on the lifetime, i.
how the lifetime depends on the approximation schem
used to compute the potential, we have calculated the
time of C8

22 for energies between 0.1 and 2.0 eV using t
LSA, DFOSA, and PCM potentials. The calculated lifetim
are displayed together with the corresponding potentials
Fig. 7. The investigation shows that the lifetime depen
much more on the energy of the outgoing electron than
the potential. Although the shapes of all three potentials
quite different, the results for the lifetime at a given ener
are quite similar and vary at most by a factor of 2. It see
that the errors embodied in the different approximati
schemes are canceling each other when calculating the
time. This encourages us to assume that the obtained
times are more reliable than the potentials themselves.
thermore, one can see that for electron energies below
eV, which corresponds to an electron detachment energ
20.35 eV, the dianion lives markedly longer than 1025 s,
which is the limit for experimental observation in a ma
spectrometer.

Watts and Bartlett have found that the C8
22 dianion is

vertically stable with respect to electron emission, but ad
batically unstable by about 0.1 eV. Assuming 0.1 eV to
the energy of the outgoing electron, we obtain a tunnel
lifetime of about 231011 s for the C8

22 system, thus no
significant electronic decay should be observed in the exp
ment. Since the linear isomers of the carbon dianions
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thermodynamically more favorable than the branched
mers such as C7

22, it is now clear that the abundance of th
peaks of C7

22 and C8
22 in the mass spectrum is determine

by the thermodynamically committed generation rate and
by the electronic stability of these dianions.

For completeness, we have calculated the tunneling
times for C2

22, C4
22, and C6

22. Since the specific loca
approximation scheme used plays only a minor role in de
mining the lifetime, we have used the DFOSA potential~Fig.
6!. In contrast, the quality of the energy of the outgoi
electron is of great importance, thus we have used the v
cal electron detachment energy calculated at the leve
CCSD (DZP1sp) by substracting the computed total ener
of the dianion from that of the monoanion. These verti

FIG. 7. In the upper part the computed lifetimes of the C8
22

dianions are displayed as a function of the energy of the emi
electron. For the calculation of the lifetime we have used the L
~full line!, DFOSA ~dotted line!, and PCM~dashed line! potentials.
These potentials are displayed in the lower part. Although the
tentials are quite different, the computed lifetimes are quite sim
and vary at most by a factor of 2. For electron energies below 0
eV ~indicated by the horizontal line in the lower part!, the lifetime
of the C8

22 dianion has been found to be longer than 1025 s for all
three potentials. A lifetime of about 1025 s is typically needed to
observe a system in a mass spectrometer experiment.
04990
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ot
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ti-
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detachment energies of C2
22, C4

22, and C6
22 are 23.81

eV, 22.12 eV, and20.77 eV, respectively. The correspon
ing vertical energy of C8

22 has been calculated to be 0.3
eV at the CCSD level of theory, i.e., C8

22 is stable with
respect to vertical electron emission and has an infinite l
time ~in contrast to the case of adiabatic electron emissi
see above!. The obtained lifetimes of the linear carbon dia
ions for vertical electron emission are 9310215 s, 1.5
310213 s, and 1.731029 s for C2

22, C4
22, and C6

22, re-
spectively. From that point of view, all three dianions are t
short lived to be observable in a mass spectrometer, whic
in agreement with the experiments.

IV. SUMMARY AND CONCLUSIONS

In this paper we have examined the repulsive Coulo
barrier for electron emission of multiply charged anions. T
RCB is a general phenomenon in multiply charged anions
arises due to the combination of long-range repulsion
tween the emitted electron and the residual anion and sh
range attraction of the nuclei. Although the RCB is dom
nated by the electrostatic forces present, it is a nonlo
energy-dependent potential, which is neither easy to comp
nor depictable in nature. Since the RCB is closely related
scattering potentials, there exists an exact theory for the R
that is founded on the Green’s function formalism for sc
tering processes. We have shown that the RCB can be
related with the self-energyS(E). The self-energy is an op
tical potential connecting the Green’s function for scatter
with the free one according to the well known Dyson equ
tion.

SinceS(E) is so far not straightforward to compute, w
have introduced local approximation schemes. These are
dianions frozen orbital static approximation~DFOSA!, the
point charge model~PCM!, and the local static approac
~LSA!. In a DFOSA calculation, the nuclei-electron attra
tion and the electron-electron repulsion are summed up u
the frozen orbitals of the respective dianion. In the PC
calculation, a full point charge is brought up to the anion
the PCM calculation, and the total energies of the ani
point charge system and the free anion are subtracted to
tain the RCB. In contrast, the local static potential is o
tained as the interaction of a point charge with the correla
electron density of the anion. Technically, this potential c
be obtained within the derived LSA. In the LSA method
infinitesimal point charge approaches the anion and af
wards the obtained potential is scaled up to a full po
charge.

A thorough theoretical analysis of the PCM and the LS
methods has proven their relation to the multichannel s
tering Green’s function theory. While the PCM represents
adiabatic approximation to the exact theory of scatterin
distinguishable particle from an electronic target, the LS
method yields the local static potential of the target ani
which corresponds to a diagonal element of the scatte
matrix. These approaches are of general applicability, si
every ab initio method can be employed, including tho
methods that do not compute or do not explicitly provide t
one-particle density of the monoanion.
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We have applied the local approximation schemes to
vestigate atomic and molecular dianions. The atomic F22

and O22 dianions are reasonable objects by which to stu
the basis set dependence of the local schemes. While
DFOSA and PCM potentials strongly depend on the e
ployed basis set, the LSA has been found to be basis
independent at sufficiently large basis sets. We have use
LSA to define a criterion for basis set selection for the ot
methods. The smallest basis set for which the LSA has c
verged is chosen to be the one in all other local RCB ca
lations. This criterion, as well as the behavior of the vario
potentials as a function of basis set size, are understood
discussed theoretically.

The atomic dianions serve merely as study objects. S
exchange between the electron and the target anion is
glected in the local schemes, and this interaction is impor
for the spatially compact atomic systems, the calculated R
potentials for F22 and O22 are only crude estimates of th
exact RCB. To remedy the situation, we suggest usin
local approximation to the exchange as is common in D
calculations.

Turning to larger systems, the underlying local appro
mations become less severe, since the exchange intera
of the electron with the extended target plays a less sig
cant role. This makes us confident that we can obtain lo
potentials that are more reliable estimates of the exact R
The examination of the RCB potentials of the linear carb
dianions Cn

22 (n52,4,6,8) has shown that the molecul
DFOSA and PCM potentials are much less basis set de
nc
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dent than those of the atomic systems. Not surprisingly,
repulsive Coulomb barrier decreases as the carbon dia
grows due to the decreasing electrostatic repulsion of
excess charges. This lowering of the barrier is accompan
however, by an increase in the electron binding energy of
excess electron. Using the calculated RCB potentials,
have estimated the lifetimes of the metastable carbon d
ions with the help of the semiclassical WKB theory. W
have calculated the tunneling lifetime along the minimu
energy path for electron emission, which is along the ho
zontal mirror plane of the D̀h symmetric systems. We hav
found that the lifetime for vertical electron emission grow
markedly from 9310215 s to 1.5310213 s and 1.731029

when going from C2
22 to C4

22 and C6
22. The dianion C8

22

is vertically stable, but adiabatically unstable. We have e
mated its lifetime with respect to adiabatic electron emiss
to be very long (231011 s!, however. Based on thes
grounds, only C8

22 should be experimentally accessible
mass spectrometer research, and no relevant electronic d
should be observed. This is in agreement with the exp
mental findings.
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