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Comment on “Phenomenological damping in optical response tensors”
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Damping factors arise from static as well as dynamic perturbations. These must appear with constant sign in
the perturbation theory denominators for compatibility with quantum mechanics, conformity with time-reversal
symmetry, and agreement with experiment.
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[. INTRODUCTION BF choice of sign for damping factors fails to satisfy time-
reversal symmetry, while the quantum formalism honors it
In the course of an analysis of electro-optic rotation inthrough its constant-sign rule. We also give reasons why the
fluids, a paper by Buckingham and Fischét (which we  removal by BF of damping terms for low-frequency fields
refer to as BF gives a perspective on the phenomenologicalwhich has the effect of short-circuiting the matter under
damping of optical response tensors differing from our eardiscussiohis unjustified.
lier work [2] (which we refer to as ANBon the same topic. As a context for addressing the major points, we first note
Both groups of authors agree on the final result and its ditpat in all of guantum theory, formally imaginary constants
rectly measurable implications, namely that a linear electrogg have physical importance. Taé hocphenomenological
op.tical response cannot occur in an isotropic liquid, WhetheEiamping of excited states for a molecule mediating an opti-
chiral or not(see also Dsala—Romeroet al. [3]). However, cal process reflects the interaction of that molecule with its
there are several open issues. Pcal radiative and material surroundings,l@ath Phenom-

At the heart of these issues is the basic guestion Oﬁanological damping is the pragmatic means of representing

whether the fully quantum-mechanical or the semiclassicat o . :
o ; P o . he stochastic influence of the bath, in particular the effects
polarization (optical susceptibility traditionformulation of of higher-order perturbations including Fadiative and nonra-

the problem is correct. BF simply states that our fully . d N f the ei f th bed
quantum-electrodynamical formula for the Pockels effect, foidiative decay. None of the eigenstates of the unperturbe
dnolecular Hamiltonian is a stationary state. Time-evolution

example, is incorrect. The history of confrontations betwee . P e . i
quantum theory and semiclassical theory is remarkably ond@ctors thereby acquire dissipative corrections which, al-
sided and it would be strange if at this stage a fully quantumthough formally imaginary in frequency or energy space, are
based theory were to prove vulnerable to a semiclassic@ssociated physically with exponential decay. We also note
analysis. In fact, we can identify the origin of such conflictsthat it is legitimate to require time-reversal symmetry in the
as intrinsic within the semiclassical polarization formalism.fundamental quantum amplitudématrix elements, whose
The latter is not demonstrably in agreement with observasquare modulus is directly related by the Fermi golden rule
tion, and is not directly related to quantum-theoretic observio the corresponding observable transition ravesen a sub-
ables. This much is obvious when the optical states are nunsystem is damped through contact with a thermal reservoir.
ber stategsee ANS. We show hereinter alia, that even for  The requirement for temporal symmetry remains valid, de-
coherent states, when quantum and semiclassical formalisnapite thede factoviolation of time reversal invariance by the
most often make equivalent predictions, the polarization forsystem itself(through molecular interaction with the bath
malism adopted by BF and some others is inadequate.  and ensuing state dedaly explicit accommodation of the
imaginary damping factors as above.

The equality of amplitudes for processes related by time-
reversal was proved by ANS from this time-reversal invari-
The primary issue is the correct prescription for assigningance of the matrix elements; see their Edl). These invari-
the damping terms in optical response tensors. Here we enances are honored by the constant-sign rule and not by the
phasize that the variable-sign rule favored by BF can be apvariable-sign convention. They should not be confused with

propriate only within the semiclassical polarization or sus-such reciprocity relations as E() of BF, which are not in
ceptibility theory used in BF, and that the constant-sign  general true. To prove this we simply note, writing the evo-
equal-sigh rule which ANS verified is essential for physical lution operator for the full system dd=exp(—iz~1fHdt),
results within a fully quantum-mechanical formalism. In par-that from Hermitian conjugation  (F|U|I)
ticular connection with the current matters, we show that the=(I|exp(%~*fHdt)|F)*. Since the second operator is not
equal toU, the associated matrix element is not a physically
meaningful (time-forward transition amplitude. Hence a
*Corresponding author. Email address: d.l.andrews@uea.ac.uk reciprocity relation of the form{(F|U|1)|=|(I|U|F)| does

II. ANALYSIS
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not hold in general. Berg¢#] states that no special reason is the semiclassical polarization approach is inadequate in the
needed for microscopic inversibilitiour reciprocity viola- problem which is at the center of the present discussion.
tion and exhibits several such violations, noting that wherFollowing ANS, the fully quantum electrodynamical picture
damping is neglected the Fermi golden rule delivers expreswill involve electronic Green’s functions of the form
sions that satisfy reciprocity—but that this is an exceptional T{a;(7)a](0)}) (T here represents the time-ordered prod-
case, not the rule. uct, anda; the fermion annihilation operator for electronic

In Eqg. (1) of BF, semiclassical expressions for nonlinearstatei). Upon expansion of the Heisenberg operators in an
electric polarization are assumed. Such expressions are nghcoupled basis, the perturbation effects appear through the
derived from quantum fiel_d theory, and can be incor)sis.tenmsertion of evoluton or S-matrix operatordJ(r)
with it. The electric polarization represents the oscnlatlng:-l—exq_m—lfav(t,)dt,]. Photon annihilation and creation

moment O.f a semiclas_sical radiating dipole Whi.Ch’ Wh.enoperatorsbk,bl appear in such expressions within the per-
coupled with the electric-field vector of the ensuing radia- . iltoniary/. in bilinear form for linear counlin
tion, casts the signal amplitude in the form of a sum of Con_turba_tlon_Haml oniafy, in earto ping
tributions associated with physically distinct processes. Thi§md in_higher-order form for non_Imear effects. Whe_n the
is fundamentally incompatible with quantum theory: it would numerator operators in each matrix element are manlpul_ated
violate the superposition principle to sum the amplitudes offY cOmmutation to normal ordered form, the effect of using
transitions between nonidentical sets of initial and final ra-coherent radiation state$ay}) is to discharge all photon
diation states. Also the polarization formalism by its naturennihilation operators as the correspondmgumbersay,
fails to honor the symmetry of the full theory when incident and the corresponding creation operatorsygsthroughout.
and emergent radiation fields are exchanged, as for examplghis substitution will not affect the requirements of the spec-
the symmetry between second-harmonic generation anal theorem of ANS, that the observable be the discontinuity
parametric down-conversion. Similarly, the constant-signof the Green’s function across the real axis, so delivering the
rule is needed to give the relationshigy= — a® between  constant-sign rule and fixing the signs of all imaginary fac-
the optical polarizabilities of two-level molecules in their tors in the perturbation denominators. Hence, because the
ground and excited states, 0 andrespectively—a form of polarization formalism has to violate this sign rule to predict
relationship which equally applies to all higher-ordepn-  real observables, even its transposition into a quantum de-
linean polarizabilities, but only under the jurisdiction of the scription cast in terms of coherent states is
constant-sign rule. Again, the semiclassical polarization forinadequate.
malism does not allow the full incorporation of magnetic and The abstract of BF states that the ANS constant-sign rule
diamagnetic interactions. For example, in a general threds “inconsistent” and “yields an unphysical material re-
wave interaction mediated by a molecular species which sumsponse.” This seems to reflect a twofold misunderstanding.
portsE1?M 1 but notE1® channels, the magnetic dipole in- We have never proposed that the constant-sign rule should
teraction in the former can be associated with each of thée incorporated in the polarization formalism; that would
three waves, yet for obvious reasons only two are accommalearly make that formalism unusable, as already indicated in
dated in the electric polarization. Any prescription with vari- ANS and for the reasons indicated in BF. But far less should
able assignment of signs can also introduce significant ama sign convention that is required to salvage the physical
biguities in connection with processes entailing two or morecredibility of a deficient formalism be deemed obligatory in
outgoing waves, as for example in four-wave mixing. the full quantum-mechanical formalism. The quantum spec-
Although this discussion centers on parametric processesal theorem of ANS allows no freedom of choice or conven-
the same issues have been rehearsed in the more geneiah in the matter; quantum amplitudes for optical processes
context of inelastic processes. Accepted quantum theories @fiust use the constant-sign rule for damping factors. It is only
Raman and hyper-Raman scatteribg 9] deliver the correct then that the observables are real and that rigorous time-
form of the associated scattering tensors with constant signeversal symmetry is satisfied. In particular, only then can it
ing of the damping terms. These expressions respect timée proved(see ANS that, in the presence of damping ef-
reversal symmetry and subsume the expressions for molecéects, electro-optic rotation is forbidden in isotropic fluids.
lar polarizability and hyperpolarizability which follow as the By discarding any damping from static field effects, BF has
corresponding inelastic counterparts. In particular, Behringfailed to provide any such proof.
er's detailed wor 7] on the relationship between resonance We now address the consequent issue, which can be
Raman scattering and resonance fluorescence vindicates thesed as the following question: should denominators asso-
application of constant signing in every case. ciated with static field effects have finite damping factors, of
The semiclassical polarization formalism obviously fails whatever sign? In the ansatz of BF this damping factor is
to correctly describe nonlinear optical phenomena when theotally removed for static fields. This dramatically short cir-
optical input takes the form of photon number states. Focuits the debate in ANS on electro-optical rotation in fluids,
example, it predicts a finite probability of second-harmonicbecause selective removal of the damping factor permits the
generation when a one-photon state is incideae ANS. In BF optical tensor to display the same index symmetry as that
some situations, when optical input is closer in form to arevealed by our fixed sign convention for nonzero damping.
quantum coherent stater), a semiclassical description can BF gives several arguments in support of this approach.
emerge as an asymptotic linfis|«| tends to infinity of the  First, BF states that “care has to be taken to correct the
fully quantum approach. However, even for coherent states;orresponding relaxation terms” for low-frequency fields,
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and they refer to Van Vleck and Weissko[#0] and to The attempted proof in BF that damping vanishes for a
Bloembergen[11]. Van Vleck and Weisskopf discuss the static electric-field perturbation fails because BF has over-
higher-order effects of the perturbatidéon state population played the reality requirement on the wave functions. Reality
in thermal equilibrium for low-frequency fields. However, of an eigenstate under the conditions stated in BF is a pos-
the differing approaches to electro-optical rotation under dissible choice, as is indeed stated in BF, but reality of a
cussion here are all of lowest order in perturbation. The efdamped state is not the requirement that BF assumes will
fects discussed by Van Vleck and Weisskopf do not pertaifollow in practice. By definition of the problem we must treat
to the signs of damping in denominators, but to the effects othe static field as a perturbation; otherwise there would be no
static fields in higher order upon the numerators. Bloemberpossibility of finding a transition rate associated with an
gen generally subjects applications to a semiclassical analylectro-optic response as such. In that case even a static real
sis, on account of its familiarity. Although the questions cen-field limits the lifetime of the basis statgge., it damps

tral to the present discussion did not arise in thosehem. In the context of a damping formalism, once this field
applications, similar questions are nonetheless discussefd switched on and its physical effects incorporated in the
Bloembergen enlarges on Van Vleck and Weisskopf's workiormalism, these states are no longer eigenstates of the un-
and comments in several places on the unphysical assUMBarturbed Hamiltonian; their algebraic expression is

tions of the semiqllgs_sical model in Legardhto aslsumed ®Mhanged. This change to the eigenstates of the unperturbed
perature and equilibrium. We note that, when I3Oembergerl‘—|amiltonian should not be confused with the perturbative

points out that his expression 2-28 becomes real for 281 nstruction of new eigenstates of the combined Hamil-

fr_equency,_ his damping terms still contribute n that limit. tonian, which are not of concern here and which in fact have
His analysis therefore does not support the notion that damp-

ing factors with constant sign introduce unphysical imagi—?f.d';fer(.:‘t?]t algebtrr?lcffortm. ;he dartnpgdt_states Ca”T‘O‘ k;e |dten—
nary parts into observables, or that damping must be nelied with even the nrst-order perturbation approximation to

glected for zero-frequency fields. When Bloembergen uses &€S€ combined-Hamiltonian eigenstates; rather, they repre-
quantum density-matrix approach, in each analysis of nons€nt the effect, on the eigenstates of the unperturbed Hamil-

linear optical effects the results are compatible with the contonian, of the correspondingly finite lifetime those states ac-
stant sign damping rule, and incompatible with BF. Otherduire. In brief, an eigenstate, which has an infinite lifetime,
independent quantum developments also deliver this corshould not be confused with a damped state, which has a
stant sign rulgsee ANS. finite lifetime. This distinction is fundamental to the intro-
Next, BF argues that in the presence of a static electrigluction of damping terms in a perturbation-theoretic context.
field, nondegenerate states can be chosen to have real eigdtence damped states are not constrained by the proof of
functions, and that this leads to an inconsistency if we alloweality offered by BF. For these various reasons, the BF
an imaginary part within a perturbation denominator. Theanalysis has not advanced the matter, and there remains no
possibility of choosing a nondegenerate wave function of gustification for intentionally disregarding these associated
real and statici.e., time-reversal-symmetji¢damiltonian it-  damping factors.
self to be reali.e., its own time revergeis a simple appli- It may be helpful to explain more fully, from a quantum
cation of time-reversal symmetry. In amplifying this argu- field-theoretic viewpoint, why static perturbations induce
ment, BF states that “the lifetime of the excited state cannofamping. All electromagnetic interactions are fundamentally
be relevant to théperturbed state|gg)—we could use any mediated through the exchange of virtual photéihe gauge
complete basis set. .” This position fails to recognize that o50n3, A static field involved in an electro-optical process

damping is inevitable from any perturbation, including @i, any given molecule is mediated in the same way. It owes
static field. Indeed this would deny the relevance of damping,q origin to the coupling between the charges within that

?n any perturbation th'eoretic cpntext. Th_e Crux of.the matterr’nolecule and those comprising the source of the static field
is this: any perturbatioriincluding a static onewhich en-

genders an interaction Hamiltonian that does not commutgs]' This coupling is expressed through the accommodation

with the unperturbed Hamiltonian necessarily renders eigengf interactions with virtual photons from modes of an infinite

states of the unperturbed Hamiltonian no longer stationary?19¢: as with any electrodynamic interaction, and summa-

states. As with bath-induced damping, the unperturbed statd®" OVer the virtual photon wave vectors and polarizations

acquire a finite lifetime and, insofar as the received phenomth€reby ensures a result which properly reflects the conser-

enological treatment of damping admits only time- vgtion of energy. Conseque_ntly, the_case_of a static field is no
independent rates, a corresponding damping. In short, all ulifférent in type from a time-varying field—except that,
perturbed eigenstates are damped by any perturbatiyhilst causality is of course satisfied, explicit retardation fea-
coupling to any other state. A static field perturbation is periures disappear. Hence the damping associated with any mo-
fectly effective in generating time-dependent transitigms  lecular excited state, whose wave function contributes to the
in the Fermi golden rulebetween virtual states and so lim- perturbed state vector of the system, must be vulnerable to
iting their lifetimes. Such a lifetime is constrained to a time damping irrespective of the frequency of the electric field
scale determined by the inverse of the energy mismdtrh  responsible for the perturbation. Damping factors are not fre-
a static perturbation, the inverse of the state frequencguency dependent in this sense; each excited state has a
changg. On that time scale there is a finite probability for damping of a characteristic magnitude, irrespective of the
the decay of those levels. frequency of the perturbation with which it is associated.
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1. CONCLUSION the offered proof invalid. Rather, proof that linear electro-
optic effects vanish in fluids requires the full quantum
eory, including its constant-sign rule for the damping
ctors.

In summary, the BF analysis based on the poIarizatioq
formalism has made a number of untenable assertions, elqu
ing the variable-sign convention for excited-state damping
and assuming that virtual states coupled by the static field in
linear electro-optic response are undamped. That strategy
places the static field on a different footing from the electro-
magnetic fields, illegitimately disengaging it from full in- The authors thank Professor Buckingham for sending
volvement in the dynamics of scattering, and so renderind>.L.A. a preprint of their paper.
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