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Comment on ‘‘Phenomenological damping in optical response tensors’’
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Damping factors arise from static as well as dynamic perturbations. These must appear with constant sign in
the perturbation theory denominators for compatibility with quantum mechanics, conformity with time-reversal
symmetry, and agreement with experiment.
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I. INTRODUCTION

In the course of an analysis of electro-optic rotation
fluids, a paper by Buckingham and Fischer@1# ~which we
refer to as BF! gives a perspective on the phenomenologi
damping of optical response tensors differing from our e
lier work @2# ~which we refer to as ANS! on the same topic
Both groups of authors agree on the final result and its
rectly measurable implications, namely that a linear elec
optical response cannot occur in an isotropic liquid, whet
chiral or not ~see also Da´vila-Romeroet al. @3#!. However,
there are several open issues.

At the heart of these issues is the basic question
whether the fully quantum-mechanical or the semiclass
polarization~optical susceptibility tradition! formulation of
the problem is correct. BF simply states that our fu
quantum-electrodynamical formula for the Pockels effect,
example, is incorrect. The history of confrontations betwe
quantum theory and semiclassical theory is remarkably o
sided and it would be strange if at this stage a fully quantu
based theory were to prove vulnerable to a semiclass
analysis. In fact, we can identify the origin of such conflic
as intrinsic within the semiclassical polarization formalis
The latter is not demonstrably in agreement with obser
tion, and is not directly related to quantum-theoretic obse
ables. This much is obvious when the optical states are n
ber states~see ANS!. We show here,inter alia, that even for
coherent states, when quantum and semiclassical formal
most often make equivalent predictions, the polarization f
malism adopted by BF and some others is inadequate.

II. ANALYSIS

The primary issue is the correct prescription for assign
the damping terms in optical response tensors. Here we
phasize that the variable-sign rule favored by BF can be
propriate only within the semiclassical polarization or su
ceptibility theory used in BF, and that the constant-sign~or
equal-sign! rule which ANS verified is essential for physic
results within a fully quantum-mechanical formalism. In pa
ticular connection with the current matters, we show that
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BF choice of sign for damping factors fails to satisfy tim
reversal symmetry, while the quantum formalism honors
through its constant-sign rule. We also give reasons why
removal by BF of damping terms for low-frequency field
~which has the effect of short-circuiting the matter und
discussion! is unjustified.

As a context for addressing the major points, we first n
that in all of quantum theory, formally imaginary constan
can have physical importance. Thead hocphenomenological
damping of excited states for a molecule mediating an o
cal process reflects the interaction of that molecule with
local radiative and material surroundings, orbath. Phenom-
enological damping is the pragmatic means of represen
the stochastic influence of the bath, in particular the effe
of higher-order perturbations including radiative and non
diative decay. None of the eigenstates of the unpertur
molecular Hamiltonian is a stationary state. Time-evoluti
factors thereby acquire dissipative corrections which,
though formally imaginary in frequency or energy space,
associated physically with exponential decay. We also n
that it is legitimate to require time-reversal symmetry in t
fundamental quantum amplitudes~matrix elements, whose
square modulus is directly related by the Fermi golden r
to the corresponding observable transition rates! when a sub-
system is damped through contact with a thermal reserv
The requirement for temporal symmetry remains valid, d
spite thede factoviolation of time reversal invariance by th
system itself~through molecular interaction with the bat
and ensuing state decay! by explicit accommodation of the
imaginary damping factors as above.

The equality of amplitudes for processes related by tim
reversal was proved by ANS from this time-reversal inva
ance of the matrix elements; see their Eq.~11!. These invari-
ances are honored by the constant-sign rule and not by
variable-sign convention. They should not be confused w
such reciprocity relations as Eq.~6! of BF, which are not in
general true. To prove this we simply note, writing the ev
lution operator for the full system asU5exp(2i\21*Hdt),
that from Hermitian conjugation ^FuUuI &
5^I uexp(i\21*Hdt)uF&* . Since the second operator is n
equal toU, the associated matrix element is not a physica
meaningful ~time-forward! transition amplitude. Hence a
reciprocity relation of the formz^FuUuI & z5 z^I uUuF& z does
©2001 The American Physical Society01-1
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not hold in general. Berger@4# states that no special reason
needed for microscopic inversibility~our reciprocity! viola-
tion and exhibits several such violations, noting that wh
damping is neglected the Fermi golden rule delivers exp
sions that satisfy reciprocity—but that this is an exceptio
case, not the rule.

In Eq. ~1! of BF, semiclassical expressions for nonline
electric polarization are assumed. Such expressions are
derived from quantum field theory, and can be inconsist
with it. The electric polarization represents the oscillati
moment of a semiclassical radiating dipole which, wh
coupled with the electric-field vector of the ensuing rad
tion, casts the signal amplitude in the form of a sum of co
tributions associated with physically distinct processes. T
is fundamentally incompatible with quantum theory; it wou
violate the superposition principle to sum the amplitudes
transitions between nonidentical sets of initial and final
diation states. Also the polarization formalism by its natu
fails to honor the symmetry of the full theory when incide
and emergent radiation fields are exchanged, as for exam
the symmetry between second-harmonic generation
parametric down-conversion. Similarly, the constant-s
rule is needed to give the relationshipauu52a00 between
the optical polarizabilities of two-level molecules in the
ground and excited states, 0 andu, respectively—a form of
relationship which equally applies to all higher-order~non-
linear! polarizabilities, but only under the jurisdiction of th
constant-sign rule. Again, the semiclassical polarization
malism does not allow the full incorporation of magnetic a
diamagnetic interactions. For example, in a general th
wave interaction mediated by a molecular species which s
portsE12M1 but notE13 channels, the magnetic dipole in
teraction in the former can be associated with each of
three waves, yet for obvious reasons only two are accom
dated in the electric polarization. Any prescription with va
able assignment of signs can also introduce significant
biguities in connection with processes entailing two or m
outgoing waves, as for example in four-wave mixing.

Although this discussion centers on parametric proces
the same issues have been rehearsed in the more ge
context of inelastic processes. Accepted quantum theorie
Raman and hyper-Raman scattering@5–9# deliver the correct
form of the associated scattering tensors with constant s
ing of the damping terms. These expressions respect t
reversal symmetry and subsume the expressions for mol
lar polarizability and hyperpolarizability which follow as th
corresponding inelastic counterparts. In particular, Behri
er’s detailed work@7# on the relationship between resonan
Raman scattering and resonance fluorescence vindicate
application of constant signing in every case.

The semiclassical polarization formalism obviously fa
to correctly describe nonlinear optical phenomena when
optical input takes the form of photon number states.
example, it predicts a finite probability of second-harmo
generation when a one-photon state is incident~see ANS!. In
some situations, when optical input is closer in form to
quantum coherent stateua&, a semiclassical description ca
emerge as an asymptotic limit~asuau tends to infinity! of the
fully quantum approach. However, even for coherent sta
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the semiclassical polarization approach is inadequate in
problem which is at the center of the present discuss
Following ANS, the fully quantum electrodynamical pictu
will involve electronic Green’s functions of the form
^T$ai(t)ai

†(0)%& (T here represents the time-ordered pro
uct, andai the fermion annihilation operator for electron
statei ). Upon expansion of the Heisenberg operators in
uncoupled basis, the perturbation effects appear through
insertion of evolution or S-matrix operatorsU(t)
5T exp@2i\21*0

tV(t8)dt8#. Photon annihilation and creatio
operatorsbk ,bk

† appear in such expressions within the pe
turbation HamiltonianV, in bilinear form for linear coupling
and in higher-order form for nonlinear effects. When t
numerator operators in each matrix element are manipul
by commutation to normal ordered form, the effect of usi
coherent radiation statesu$ak%& is to discharge all photon
annihilation operators as the correspondingc numbersak ,
and the corresponding creation operators asak* throughout.
This substitution will not affect the requirements of the spe
tral theorem of ANS, that the observable be the discontinu
of the Green’s function across the real axis, so delivering
constant-sign rule and fixing the signs of all imaginary fa
tors in the perturbation denominators. Hence, because
polarization formalism has to violate this sign rule to pred
real observables, even its transposition into a quantum
scription cast in terms of coherent states
inadequate.

The abstract of BF states that the ANS constant-sign
is ‘‘inconsistent’’ and ‘‘yields an unphysical material re
sponse.’’ This seems to reflect a twofold misunderstand
We have never proposed that the constant-sign rule sh
be incorporated in the polarization formalism; that wou
clearly make that formalism unusable, as already indicate
ANS and for the reasons indicated in BF. But far less sho
a sign convention that is required to salvage the phys
credibility of a deficient formalism be deemed obligatory
the full quantum-mechanical formalism. The quantum sp
tral theorem of ANS allows no freedom of choice or conve
tion in the matter; quantum amplitudes for optical proces
must use the constant-sign rule for damping factors. It is o
then that the observables are real and that rigorous ti
reversal symmetry is satisfied. In particular, only then ca
be proved~see ANS! that, in the presence of damping e
fects, electro-optic rotation is forbidden in isotropic fluid
By discarding any damping from static field effects, BF h
failed to provide any such proof.

We now address the consequent issue, which can
posed as the following question: should denominators a
ciated with static field effects have finite damping factors,
whatever sign? In the ansatz of BF this damping factor
totally removed for static fields. This dramatically short c
cuits the debate in ANS on electro-optical rotation in fluid
because selective removal of the damping factor permits
BF optical tensor to display the same index symmetry as
revealed by our fixed sign convention for nonzero dampi
BF gives several arguments in support of this approa
First, BF states that ‘‘care has to be taken to correct
corresponding relaxation terms’’ for low-frequency field
1-2
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and they refer to Van Vleck and Weisskopf@10# and to
Bloembergen@11#. Van Vleck and Weisskopf discuss th
higher-order effects of the perturbation~on state population
in thermal equilibrium! for low-frequency fields. However
the differing approaches to electro-optical rotation under d
cussion here are all of lowest order in perturbation. The
fects discussed by Van Vleck and Weisskopf do not per
to the signs of damping in denominators, but to the effect
static fields in higher order upon the numerators. Bloemb
gen generally subjects applications to a semiclassical an
sis, on account of its familiarity. Although the questions ce
tral to the present discussion did not arise in tho
applications, similar questions are nonetheless discus
Bloembergen enlarges on Van Vleck and Weisskopf’s w
and comments in several places on the unphysical assu
tions of the semiclassical model in regard to assumed t
perature and equilibrium. We note that, when Bloember
points out that his expression 2-28 becomes real for z
frequency, his damping terms still contribute in that lim
His analysis therefore does not support the notion that da
ing factors with constant sign introduce unphysical ima
nary parts into observables, or that damping must be
glected for zero-frequency fields. When Bloembergen us
quantum density-matrix approach, in each analysis of n
linear optical effects the results are compatible with the c
stant sign damping rule, and incompatible with BF. Oth
independent quantum developments also deliver this c
stant sign rule~see ANS!.

Next, BF argues that in the presence of a static elec
field, nondegenerate states can be chosen to have real e
functions, and that this leads to an inconsistency if we all
an imaginary part within a perturbation denominator. T
possibility of choosing a nondegenerate wave function o
real and static~i.e., time-reversal-symmetric! Hamiltonian it-
self to be real~i.e., its own time reverse! is a simple appli-
cation of time-reversal symmetry. In amplifying this arg
ment, BF states that ‘‘the lifetime of the excited state can
be relevant to the~perturbed! stateugF&—we could use any
complete basis set. . . .’’ This position fails to recognize tha
damping is inevitable from any perturbation, including
static field. Indeed this would deny the relevance of damp
in any perturbation theoretic context. The crux of the ma
is this: any perturbation~including a static one! which en-
genders an interaction Hamiltonian that does not comm
with the unperturbed Hamiltonian necessarily renders eig
states of the unperturbed Hamiltonian no longer station
states. As with bath-induced damping, the unperturbed st
acquire a finite lifetime and, insofar as the received pheno
enological treatment of damping admits only tim
independent rates, a corresponding damping. In short, all
perturbed eigenstates are damped by any perturba
coupling to any other state. A static field perturbation is p
fectly effective in generating time-dependent transitions~as
in the Fermi golden rule! between virtual states and so lim
iting their lifetimes. Such a lifetime is constrained to a tim
scale determined by the inverse of the energy mismatch~for
a static perturbation, the inverse of the state freque
change!. On that time scale there is a finite probability f
the decay of those levels.
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The attempted proof in BF that damping vanishes fo
static electric-field perturbation fails because BF has ov
played the reality requirement on the wave functions. Rea
of an eigenstate under the conditions stated in BF is a p
sible choice, as is indeed stated in BF, but reality of
damped state is not the requirement that BF assumes
follow in practice. By definition of the problem we must tre
the static field as a perturbation; otherwise there would be
possibility of finding a transition rate associated with
electro-optic response as such. In that case even a static
field limits the lifetime of the basis states~i.e., it damps
them!. In the context of a damping formalism, once this fie
is switched on and its physical effects incorporated in
formalism, these states are no longer eigenstates of the
perturbed Hamiltonian; their algebraic expression
changed. This change to the eigenstates of the unpertu
Hamiltonian should not be confused with the perturbat
construction of new eigenstates of the combined Ham
tonian, which are not of concern here and which in fact ha
a different algebraic form. The damped states cannot be id
tified with even the first-order perturbation approximation
these combined-Hamiltonian eigenstates; rather, they re
sent the effect, on the eigenstates of the unperturbed Ha
tonian, of the correspondingly finite lifetime those states
quire. In brief, an eigenstate, which has an infinite lifetim
should not be confused with a damped state, which ha
finite lifetime. This distinction is fundamental to the intro
duction of damping terms in a perturbation-theoretic conte
Hence damped states are not constrained by the proo
reality offered by BF. For these various reasons, the
analysis has not advanced the matter, and there remain
justification for intentionally disregarding these associa
damping factors.

It may be helpful to explain more fully, from a quantum
field-theoretic viewpoint, why static perturbations indu
damping. All electromagnetic interactions are fundamenta
mediated through the exchange of virtual photons~the gauge
bosons!. A static field involved in an electro-optical proces
in any given molecule is mediated in the same way. It ow
its origin to the coupling between the charges within th
molecule and those comprising the source of the static fi
@3#. This coupling is expressed through the accommoda
of interactions with virtual photons from modes of an infini
range, as with any electrodynamic interaction, and sum
tion over the virtual photon wave vectors and polarizatio
thereby ensures a result which properly reflects the con
vation of energy. Consequently, the case of a static field is
different in type from a time-varying field—except tha
whilst causality is of course satisfied, explicit retardation fe
tures disappear. Hence the damping associated with any
lecular excited state, whose wave function contributes to
perturbed state vector of the system, must be vulnerabl
damping irrespective of the frequency of the electric fie
responsible for the perturbation. Damping factors are not
quency dependent in this sense; each excited state h
damping of a characteristic magnitude, irrespective of
frequency of the perturbation with which it is associate
1-3
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III. CONCLUSION

In summary, the BF analysis based on the polarizat
formalism has made a number of untenable assertions, e
ing the variable-sign convention for excited-state damp
and assuming that virtual states coupled by the static fiel
linear electro-optic response are undamped. That stra
places the static field on a different footing from the elect
magnetic fields, illegitimately disengaging it from full in
volvement in the dynamics of scattering, and so render
y

n

ya
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the offered proof invalid. Rather, proof that linear electr
optic effects vanish in fluids requires the full quantu
theory, including its constant-sign rule for the dampi
factors.
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