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Characterization of separable states and entanglement witnesses
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We provide a canonical form of mixed states in bipartite quantum systems in terms of a convex combination
of a separable state and a so-called edge state. We construct entanglement witnesses for all edge states, which
allows us to introduce a canonical form of nondecomposable entanglement witnesses and the corresponding
positive maps. We also present a nontrivial necessary condition for entanglement witnesses and positive maps
to be extremal.
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One of the most fundamental open problems of quan
mechanics is the characterization and classification of mi
entangled states of multipartite systems, i.e., states tha
hibit quantum correlations@1#. This problem is of enormous
importance for applications in quantum information proce
ing @2–5#. A density operatorr>0 acting on a finite Hilbert
spaceH5HA^ HB describing the state of two quantum sy
temsA andB is called entangled@6# ~or not separable! if it
cannotbe written as a convex combination of product stat
i.e., as

r5(
k

pkuek , f k&^ek , f ku, ~1!

wherepk>0, anduek , f k&[uek&A^ u f k&B are product vectors
Conversely,r is separable~or not entangled! if it can be
written in the form~1!.

For low-dimensional systems~in H5C2
^ C2 and H

5C2
^ C3!, there exists an operationally simple necessary

sufficient condition for separability, the so-called Pere
Horodecki criterion@7,8#. It indicates that a stater is sepa-
rable if and only if~iff ! its partial transpose is positive, whe
the partial transpose means the transpose with respect to
of the subsystems@9#. However, in higher dimensions this
only a necessary condition; that is, there exist entang
states whose partial transpose is positive~PPTES’s! @10–12#.
Thus, the separability problem reduces to finding whethe
density operator with positive partial transpose is separa
or not @1#.

There exists a complete characterization of separa
states based on entanglement witnesses~EW’s! and positive
maps~PM’s! @8#. Briefly speaking, a stater is entangled iff
there exists a Hermitian operatorW ~an EW! such that
Tr(Ws)>0 for all separables, but Tr(Wr),0. The latter
condition offers the possibility of experimental detection
entanglement via the measurement ofW—an observable tha
‘‘witnesses’’ the quantum correlations inr @13#. Starting
from EW’s one can define PM’s@14# that also detect en
tanglement. An example of a PM is transpositionT @15,16#,
whose tensor extensionI ^ T detects all non-PPT states. Un
fortunately, the characterization of EW’s and PM’s is n
known, and therefore the most challenging open quest
are how to construct EW’s in general, and finding the mi
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mal set of them that allows detection of all entangled sta
First steps toward answering these questions were acc
plished in Ref.@13#. In Ref. @17# we extended these result
and presented a way of creating and optimizing entan
ment witnesses starting from the so-called edge states.
methods that we used to prove most of our results w
based on the technique of ‘‘subtracting projectors on prod
vectors’’ @18,19#.

In this Brief Report we use the methods and results p
sented in Ref.@17# to present a canonical form for a nond
composable EW~ND-EW! and the corresponding PM. W
also provide a characterization of separable states usin
special class of EW’s that are related not necessarily to e
states, but to certain subspaces ofH. Finally, we present a
nontrivial necessary condition for ND-EW’s and PM’s to b
extremal. In order to make this paper self-contained, we w
review some of the results already presented in our prev
paper@17#. We refer the reader to that reference for the te
nical details concerning those results.

We will denote byK(r), R(r), and r (r) the kernel,
range, and rank ofr, respectively. Let us start by defining th
edge states. An ‘‘edge’’ stated is a PPTES such that, for a
product vectorsue, f & ande.0, d2eue, f & ^e, f u is not posi-
tive or does not have a PPT. Obviously, the ‘‘edge’’ states
on the boundary between PPTES’s and not-PPT states
order to characterize them we use the following criteri
@10,19#.

Criterion. A PPTESd is an ‘‘edge’’ state iff there exists
no ue, f &PR(d) such thatue, f * &PR(dTB) @20#.

Note that the edge states violate the range criterion
separability in an extreme manner@10,19#. They are of spe-
cial importance since they are responsible for the entan
ment contained in PPTES’s. In order to see that we gene
ize the method of the best separable approximation@18# to
the case of PPT states.

Proposition 1. Every PPTESr is a convex combination

r5~12p!rsep1pd, ~2!

of some separable statersep and an edge stated.
Note that in the decomposition~2! the weightp can be

chosen to be minimal@i.e., there exists no decomposition o
type ~2! with a smallerp#.
©2001 The American Physical Society04-1
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The decomposition~2! can be obtained using the metho
of subtracting projectors onto product statesue, f &PR(r)
such thatue, f * &PR(rTB). One can show@18# that r8}r
2lue, f &^e, f u is still a PPTES if l
5min$1/(^e, f ur21ue, f &),1/@^e, f * u(rTB)21ue, f * &#%. More-
over, such an operation diminishes the rank of eitherr or
rTB, or both. The construction of the optimal decompositi
is a hard task, but construction of a decomposition with n
minimal p can be obtained in a finite number of steps. T
provides us with a simple method to construct edge state
arbitrary dimensions, and a separability check@19#.

It is natural to ask how to detect PPTES’s, in view of t
decomposition~2!. As mentioned above, one approach is
use EW’s. There exists a class of EW~called decomposable
@17#! that have the formW5P1QTB, whereP and Q are
positive operators. Such witnesses can detect only non-
entangled states@21#. The EW’s that cannot be written a
W5P1QTB are called nondecomposable EW’s. An EW
nondecomposable iff it detects a PPTES@17#. In particular,
every ND-EW detects an edge state since one can imm
ately see from Eq.~2! that if Tr(Wr),0 then Tr(Wd),0.
Despite their importance, it is not known how to character
the class of ND-EW’s. It is thus an important task to stu
the EW’s of the edge states.

One of the important results of this report is that for a
edge state one can explicitly construct a ND-EW that dete
it. To show that, we generalize the method of@13#, which is
restricted to PPTES’s constructed out of unextendible pr
uct bases @11# which, in particular, do not exist fo
(23N)-dimensional systems. Letd be an edge state,C an
arbitrary positive operator such that Tr(dC).0, andP andQ
positive operators whose ranges satisfyR(P)#K(d),
R(Q)#K(dTB). We define

Wd[P1QTB ~3!

and

e[ inf
ue, f &

^e, f uWdue, f &, c[sup
ue, f &

^e, f uCue,f &. ~4!

Note that the properties ofd ensure thate.0. We then have
the following lemma~Lemma 6 of Ref.@17#!.

Lemma 1. Given an edge stated, then

W15Wd2
e

c
C ~5!

is a ND-EW that detectsd.
The simplest choice ofP, Q, andC consists of taking the

projections ontoK(d) andK(dTB) and the identity operator
respectively@23#. As we will see below, this choice provide
us with a canonical form for ND-EW’s. In order to sho
that, let us first introduce some additional notations.

Let S,P denote the convex set~cone! of separable~PPT!
states. LetP',S' be the convex sets~dual cones! of ND-
EW’s ~EW’s!. All those sets are closed.
04430
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Definition. An EW ~decomposable EW! W is tangentto S
~to P! if there exists a staterPS (rPP) such that
Tr(Wr)50. Furthermore, we say thatW is tangent toS ~P!
at rPS (P) if Tr( Wr)50.

Observation 1. The stater is separable iff, for all EW’s
tangent toS, Tr(Wr)>0.

Proof. For ~only if! the proof is trivial. For~if !, let r be an
entangled state, and letW be an EW that detectsr, i.e.,
Tr(Wr),0. We definee>0 as in Eq.~4!. If e50 thenW is
tangent toS. If e.0 thenW85W2e1 is still an EW that
detects the entanglement ofr and it is tangent toS.

Observation 2. If a decomposable EWW is tangent toP
at r, then for any decomposition~2! W must also be tangen
to P at the edge stated.

We can now prove the following proposition.
Proposition 2. If an EW W that does not detect an

PPTES’s is tangent toP at some edge stated, then it is of the
form

W5P1QTB, ~6!

whereP,Q>0 such thatR(P)#K(d), R(Q)#K(dTB).
Proof. As mentioned before, an EWW that does not de-

tect any PPTES’s must be decomposable; that is,W5P
1QTB. From the PPT property ofd and the positivity of
P,Q we have that the rangesR(d) and R(P) @R(dTB) and
R(Q)# must be orthogonal.

We are now in the position to prove one of the ma
results of this paper, regarding our canonical form of N
EW’s.

Proposition 3. Any ND-EW W has the form

W5P1QTB2e1, 0,e< inf
ue, f &

^e, f uP1QTBue, f &, ~7!

where P and Q fulfill the conditions of Proposition 2 for
some edge stated @24#.

Proof. ConsiderW(l)5W1l1. Obviously, for somel
.0, say l0 , W(l0) becomes decomposable~or positive!.
Note that, for anyl,l0 , W(l) is nondecomposable an
therefore it detects some PPTESr. Using continuity we con-
clude thatW(l0) is tangent toP. From Observation 2 there
exists an edge stated to which W(l0) is tangent. From
Proposition 2 we obtain thatW(l0)5P1QTB, whereP and
Q satisfy the needed conditions, and consequentlyW5P
1QTB2e1 with e5l0 . SinceW is an EW,e must not be
greater than infue, f &^e, f uP1QTBue, f &.

Proposition 38. If the assumptions of Proposition 3 hol
thenW is of the form~7! with R(P) andR(Q) orthogonal to
some Hilbert subspacesHa andHb, respectively, where~i!
there exists no ue, f &PHa such that ue, f * &PHb; ~ii !
R@TrB(PHa)#5R@TrB(PHb)#, R@TrA(PHa)#
5R@TrA(PHb)* #, wherePX stands for the projector onto th
subspaceX; ~iii ! dimHx.max$r@TrA(PHx)#,r @TrB(PHx)#%,
x5a,b.

Proof. The point ~i! is clear; ~ii ! and ~iii ! follow from
simple analysis of the ranges of the partial reductions ofd as
well as the properties of the range of PPT states@22,19#.

Remark 1. The formulation presented permits us to r
lease ourselves from dealing with edge states in the can
4-2
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BRIEF REPORTS PHYSICAL REVIEW A 63 044304
cal decomposition~7!. Instead, we may consider only th
pairs of ‘‘strange’’ subspacesHa,b of the Hilbert space.

Remark 2. It is worth recalling that all EW’s are in one
to-one correspondence to PM’s@14#. In particular, any
ND-EW leads to a so-called nondecomposable positive m
~ND-PM!, i.e., a map that cannot be written as a convex s
of a completely positive map and some other complet
positive map followed by transposition. The characterizat
of ND-PM’s is one of the most challenging open problems
mathematical physics. Proposition 3~38! thus provides us
with a canonical form for ND-PM’s. As we mentioned, a P
L ~transforming operators acting onHC to those acting on
HB! provides a separability test that is stronger than its E
counterpartWL acting onHA^ HB . The correspondence be
tween such a PM and EW is given by the following relatio
if uC&5(k51

dA uk&A^ uk&C thenWL51A^ L(uC&^Cu).
As mentioned above, when studying separability we j

have to deal with ND-EW’s. In order to reduce the set
ND-EW’s and ND-PM’s, let us introduce the following defi
nitions. Given two ND-EW’sW1 and W2 , then we say that
W2 is ND finer thanW1 if all the PPTES’s detected byW1
are also detected byW2 . We say thatW is a nondecompos
able optimal EW~ND-OEW! if there exists no ND-EW tha
is ND finer thanW. Thus it is obvious that the ND-EW’s we
are interested in are the ND-OEW’s. Let us call an opera
D5P1QT, with P,Q>0 andT denoting the partial trans
position with respect toA or B, decomposable. Furthermor
let us define the set of product vectors on which the exp
tation value ofW vanishes, i.e.,pW5$ue, f &PH, such that
^e, f uWue, f &50%. This set plays an important role in th
optimization, which can be seen in the following results co
cerning the characterization of ND-OEW’s.

Proposition 4~Theorem 1b of Ref.@17#!. A ND-EW W is
ND optimal iff for all decomposable operatorsD and e.0
the operatorW85W2eD is not an EW.

Corollary. If both pW as well aspWT span the whole Hil-
bert spaceHA^ HB , thenW is a ND-OEW.

Remark 3. The necessary and sufficient conditions for
ND-EW to be ND optimal are presented in Ref.@17#.
Loosely speaking a ND-EW is ND optimal iff either bothpW
and pWT span the whole Hilbert space, or there exist so
nonproduct vectorsuC& related topW ~or pWT! such that both
pW (pWT) jointly with the set ofuC& andpWT (pW) span the
wholeHA^ HB . In our numerical studies, however, we ha
not encountered the latter possibility; it is thus likely that t
converse of the Corollary is true.

Our results allow us now to design a finite-step algorith
to ND-optimize a given EWW, by subtracting decomposab
operators.

~I! Take a decomposable operatorD5P1QT such that
PpW50 andQpWT50 and check if

l0[ inf
ue&PHA

@De
21/2WeDe

21/2#min.0. ~8!

HereWe5^euWue&, De5^euDue&, whereue&PHA , whereas
@X#min is the minimal eigenvalue ofX.

~II ! If l0 is positive construct the new ND finer EWW8
5W2l0D.
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~III ! Iterate the procedure~I! and~II ! as long as there is no
D5P1QT with PpW50 andQpWT50.

After each step the set ofpW ,pWT ~or both of them! in-
creases at least by one element. This new element will no
in K(P) @or in K(Q), or in both#, which automatically im-
plies that it will be linearly independent of either the el
ments ofpW ,pWT or both. So, after a finite number of step
pW andpWT will span the whole Hilbert space, which ensur
that the final ND-EW is ND optimal. In principle, it may
happen thatl050 at some step, beforepW andpWT span the
whole H. Our numerical simulations suggest, however, th
among all possibleD’s one can always find one withl0
.0.

We have applied the methods of finding and optimizi
EW’s to a family rb(bP@0,1#) of PPTES’s in the
(234)-dimensional system from Ref.@10#. Forb50,1 those
states are separable, whereas for 0,b,1 therb’s are edge
states, which can be checked directly as shown in Ref.@10#.
We have applied the following procedure. By virtue of som
symmetries ofrb , one can perform a local change of bas
after which the transformed stater̃b fulfills r̃b

TB5 r̃b . This
step allowed us to construct the ND-EWW15P1PTB

2l0 1, whereP is the projector onK( r̃b), which already
detects the edge state. Following the procedure above
subtracted decomposable operators. In addition we ch
them to be invariant under partial transposition with resp
to systemB. Note that thenW5WTB at any step and there
fore we only had to make sure thatpW spanned the whole
Hilbert space, which automatically ensured that the fi
ND-EW was ND optimal. In Fig. 1 we show how man
members of the whole family ofrb8’s are detected by the
ND-OEW obtained fromrb . We plot here also the efficienc
of the corresponding ND-PM. Here the improvement of
ficiency is less spectacular, but still significant.

It must be stressed that both the EW’s and the PM’s c
structed in a 234 system are examples for a quantum s
tem with a one-qubit subsystem. We have also provided
amples of the setpW that spans the whole Hilbert space. Th

FIG. 1. Values ofb8 for which if b̄<b8r̄ b̃ is detected by the
optimal witness and the positive map obtained fromr̃b .
4-3
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BRIEF REPORTS PHYSICAL REVIEW A 63 044304
set allows us to construct very peculiar separable state
full rank that lie on the boundary ofS. Note also that, in
general, the parameterl0 in the optimization procedure ha
to be found numerically. In Ref.@17# we were able to for-
mulate an analytic method that allows one to detect
whole family of rb’s.

As we remember, the key problem is to find the minim
set of EW’s detecting a PPTES. Obviously, this minimal
will consist of ND-OEW’s. A related problem is to find a s
of extremal points ofP'. Note that a nonoptimal ND-EW is
a convex sum of an optimal one and a decomposable op
tor ~Proposition 4!, so it cannot be an extremal point. No
that Proposition 3~38! combined with the optimality property
provides the necessary form of extremal points of EW’s
well as PM’s. We have thus the following proposition.

Proposition 5. The set of extremal points of the set
EW’s, S', is contained in the setA of all optimal EW’s of
the form ~7! plus projectors and transposed projectors.

Proposition 58. The set of extremal points of the cone
, a

A

s

.

g
ck
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ND-EW’s, P', is contained in the setB of all optimal ND-
EW’s of the form~7!.

Remark 4. Moreover, applying the isomorphism@14# to
the members ofA ~B! we obtain the setA8 ~B8! of PM’s
~ND-PM’s! containing the set of all extreme PM’s. Th
above theorems thus provide the first nontrivial necess
condition for EW’s and PM’s to be extremal. In particula
following Proposition 38 we can obtain a weaker conditio
by considering optimal EW’s of the form~7! without involv-
ing the notion of the edge states, but only pairs of ‘‘strang
subspacesHa andHb.
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