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Characterization of separable states and entanglement witnesses
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We provide a canonical form of mixed states in bipartite quantum systems in terms of a convex combination
of a separable state and a so-called edge state. We construct entanglement witnesses for all edge states, which
allows us to introduce a canonical form of nondecomposable entanglement witnesses and the corresponding
positive maps. We also present a nontrivial necessary condition for entanglement witnesses and positive maps
to be extremal.
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One of the most fundamental open problems of quantunmal set of them that allows detection of all entangled states.
mechanics is the characterization and classification of mixeéirst steps toward answering these questions were accom-
entangled states of multipartite systems, i.e., states that eplished in Ref[13]. In Ref.[17] we extended these results,
hibit quantum correlationgl]. This problem is of enormous and presented a way of creating and optimizing entangle-
importance for applications in quantum information processiment witnesses starting from the so-called edge states. The
ing [2-5]. A density operatop=0 acting on a finite Hilbert methods that we used to prove most of our results were
spaceH =H,® Hy describing the state of two quantum sys- based on the technique of “subtracting projectors on product
temsA andB is called entanglef6] (or not separableif it vectors” [18,19.
cannotbe written as a convex combination of product states, In this Brief Report we use the methods and results pre-
i.e., as sented in Ref[17] to present a canonical form for a nonde-

composable EWND-EW) and the corresponding PM. We
:2 e f) (e 2 also provide a characterization of separable states using a
P= 2 Pul®c i€ Tl special class of EW'’s that are related not necessarily to edge
states, but to certain subspacestbfFinally, we present a
wherep, =0, and|e,f,)=|e)a®|f,)g are product vectors. nontrivial necessary condition for ND-EW'’s and PM'’s to be
Conversely,p is separablgor not entangledif it can be  extremal. In order to make this paper self-contained, we will
written in the form(Z1). review some of the results already presented in our previous

For low-dimensional systemgin H=C?®(? and H paper{17]. We refer the reader to that reference for the tech-
=(?®(3), there exists an operationally simple necessary andical details concerning those results.
sufficient condition for separability, the so-called Peres- We will denote byK(p), R(p), andr(p) the kernel,
Horodecki criterion[7,8]. It indicates that a statg is sepa- range, and rank gf, respectively. Let us start by defining the
rable if and only if(iff) its partial transpose is positive, where edge states. An “edge” stat&is a PPTES such that, for all
the partial transpose means the transpose with respect to opeoduct vectorge, f) ande>0, 6— €le,f) (e,f| is not posi-
of the subsystem®]. However, in higher dimensions this is tive or does not have a PPT. Obviously, the “edge” states lie
only a necessary condition; that is, there exist entangle@n the boundary between PPTES'’s and not-PPT states. In
states whose partial transpose is positRETES’$[10-17.  order to characterize them we use the following criterion
Thus, the separability problem reduces to finding whether $10,19.
density operator with positive partial transpose is separable Criterion. A PPTESS is an “edge” state iff there exists
or not[1]. no |e,f) e R(&) such thate,f*) e R(48) [20].

There exists a complete characterization of separable Note that the edge states violate the range criterion of
states based on entanglement witnegE&¥’s) and positive ~ separability in an extreme mannei0,19. They are of spe-
maps(PM's) [8]. Briefly speaking, a statg is entangled iff ~ cial importance since they are responsible for the entangle-
there exists a Hermitian operat®% (an EW) such that ment contained in PPTES'’s. In order to see that we general-
Tr(Wa)=0 for all separabler, but Tr(Wp)<O0. The latter ize the method of the best separable approximafti@} to
condition offers the possibility of experimental detection of the case of PPT states.
entanglement via the measuremenif-an observable that ~ Proposition 1 Every PPTES is a convex combination
“witnesses” the quantum correlations ip [13]. Starting
from EW's one can define PM’§14] that also detect en- p=(1=p)psest PI, 2
tanglement. An example of a PM is transpositibpl5,16,
whose tensor extenside T detects all non-PPT states. Un- of some separable stapg.,and an edge stat@
fortunately, the characterization of EW’s and PM'’s is not Note that in the decompositiof2) the weightp can be
known, and therefore the most challenging open questionshosen to be minimdi.e., there exists no decomposition of
are how to construct EW’s in general, and finding the mini-type (2) with a smallerp].
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The decompositiori2) can be obtained using the method

of subtracting projectors onto product stafesf)e R(p)
such that|e,f*)eR(p'®). One can show18] that p'<p
—\le, f){ef| is sl a PPTES if A
=min{1/((e,f|p~ e, f)),1[{e,f*|(p"®) e, f*)]}. More-
over, such an operation diminishes the rank of eithar

p'B, or both. The construction of the optimal decomposition
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Definition An EW (decomposable EWW is tangentto S
(to P) if there exists a statepeS (peP) such that
Tr(Wp) =0. Furthermore, we say th#&Y is tangent taS (P)
atpe S (P) if Tr(Wp)=0.

Observation 1 The statep is separable iff, for all EW’s
tangent toS, Tr(Wp)=0.

Proof. For (only if) the proof is trivial. For(if), let p be an

is a hard task, but construction of a decomposition with nonentangled state, and I&/ be an EW that detectp, i.e.,
minimal p can be obtained in a finite number of steps. ThisTr(Wp)<0. We definee=0 as in Eq.(4). If e=0 thenW s
provides us with a simple method to construct edge states itangent toS. If e>0 thenW’'=W-—¢€l is still an EW that

arbitrary dimensions, and a separability ch¢tgl].

It is natural to ask how to detect PPTES'’s, in view of the

detects the entanglement pfand it is tangent te.
Observation 2If a decomposable EWV is tangent toP

decomposition(2). As mentioned above, one approach is toat p, then for any decompositiof2) W must also be tangent

use EW's. There exists a class of EWalled decomposable
[17]) that have the formW=P+Q's, whereP and Q are

to P at the edge staté.
We can now prove the following proposition.

positive operators. Such witnesses can detect only non-PPT Proposition 2 If an EW W that does not detect any

entangled stateR21]. The EW's that cannot be written as

PPTES's is tangent t® at some edge sta@ then it is of the

W=P+Q's are called nondecomposable EW’s. An EW is form

nondecomposable iff it detects a PPTES]. In particular,

every ND-EW detects an edge state since one can immedi-

ately see from Eq(2) that if Tr(Wp)<0 then TriWs)<O0.

Despite their importance, it is not known how to characterize
the class of ND-EW'’s. It is thus an important task to study

the EW'’s of the edge states.

One of the important results of this report is that for any
edge state one can explicitly construct a ND-EW that detect

it. To show that, we generalize the method ©8], which is

restricted to PPTES’s constructed out of unextendible prod

uct bases[11] which, in particular, do not exist for
(2XN)-dimensional systems. Lel be an edge stat&; an
arbitrary positive operator such that &) >0, andP andQ
positive operators whose ranges satisR(P)CK(5),
R(Q)CK(5"8). We define

W,=P+QTe 3

and

e=inf(e,f|Wyle,f),
le.f)

c=supe,f|C|ef).
le.f)

4

Note that the properties af ensure thae>0. We then have
the following lemma(Lemma 6 of Ref[17]).
Lemma 1 Given an edge staté then

€
Wl:W5_ EC (5)

is a ND-EW that detects.

The simplest choice d?, Q, andC consists of taking the
projections ontd<(5) andK(5'8) and the identity operator,
respectively{23]. As we will see below, this choice provides
us with a canonical form for ND-EW’s. In order to show
that, let us first introduce some additional notations.

Let SCP denote the convex sé&tone of separabléPPT)
states. LetP: CS* be the convex set&lual cones of ND-
EW’s (EW'’s). All those sets are closed.

W=P+Q's, (6)

whereP,Q=0 such thaR(P)CK(4), R(Q)CK(45'®).

Proof. As mentioned before, an EWV that does not de-

tect any PPTES’s must be decomposable; thatWs; P

+Q'e. From the PPT property of and the positivity of
,Q we have that the rangd’(5) and R(P) [R(4'8) and
(Q)] must be orthogonal.

_ We are now in the position to prove one of the main

results of this paper, regarding our canonical form of ND-

EW'’s.

Proposition 3 Any ND-EW W has the form

W=P+Q'e—¢l, O0<e<inf(e f|[P+Q8le,f), (7)

le.f)

where P and Q fulfill the conditions of Proposition 2 for
some edge staté [24].

Proof. ConsiderW(\)=W+A\1l. Obviously, for somex
>0, say\g, W(\g) becomes decomposabler positive.
Note that, for anyA <Ay, W(\) is nondecomposable and
therefore it detects some PPTRSUsing continuity we con-
clude thatW(\,) is tangent tgP. From Observation 2 there
exists an edge staté to which W(\y) is tangent. From
Proposition 2 we obtain tha/(\o) =P+ Q's, whereP and
Q satisfy the needed conditions, and consequetiity P
+Q'e— €l with e=\,. SinceW is an EW, e must not be
greater than inf (e, f|[P+QT8[e,f).

Proposition 3. If the assumptions of Proposition 3 hold
thenW is of the form(7) with R(P) andR(Q) orthogonal to
some Hilbert subspacés® and H®, respectively, whergi)
there exists nole,f)eH? such that |e,f*)e ™ (i)
R[Trg(P3a) =R Trg(Pxp) ], RITra(Psa)]
=R[Tra(Pyp»)* ], wherePy stands for the projector onto the
subspaceX; (i) dimH*>max{r[Tra(Pyx)1,r[Tra(Px) 1},
x=a,b.

Proof. The point (i) is clear; (i) and (iii) follow from
simple analysis of the ranges of the partial reductions a$
well as the properties of the range of PPT sta%519.

Remark 1 The formulation presented permits us to re-
lease ourselves from dealing with edge states in the canoni-
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cal decomposition(7). Instead, we may consider only the 1 . . . : : : , .
pairs of “strange” subspaced®P® of the Hilbert space. wxx3E
Remark 2 It is worth recalling that all EW'’s are in one- 3 T

to-one correspondence to PM[d4]. In particular, any ot e

ND-EW leads to a so-called nondecomposable positive may 0.9 L  rosimive mar B aF

(ND-PM), i.e., a map that cannot be written as a convex sum .

of a completely positive map and some other completelyp’ - ot

positive map followed by transposition. The characterization * o

of ND-PM'’s is one of the most challenging open problemsin 0.8 | *

mathematical physics. Proposition(3') thus provides us i, *

with a canonical form for ND-PM’s. As we mentioned, a PM - ****m**

A (transforming operators acting df: to those acting on *

Hg) provides a separability test that is stronger than its EW .7 | *

counterparWV, acting onH,® Hg. The correspondence be-

tween such a PM and EW is given by the following relation: PLA : : . : ‘ ‘ : :

if [W)=3¢A [K)a®|K)c thenW, = 1,& A(|T)(W]). 0 0.2 0.4 0.6 0.8 1
As mentioned above, when studying separability we just b

have to deal with ND-EW'’s. In order to reduce the set of , e

ND-EW’s and ND-PM's, let us introduce the following defi-  FIG. 1. Values ofb” for which if b<b’pj, is detected by the

nitions. Given two ND-EW'8V; andW,, then we say that optimal witness and the positive map obtained frpgn

W, is ND finer thanW, if all the PPTES'’s detected by,

are also detected by/,. We say thatV is a nondecompos-

able optimal EW(ND-OEW) if there exists no ND-EW that .
is ND finer thanW. Thus it is obvious that the ND-EW'’s we After each step the set @y, pyr (or both of them in-
creases at least by one element. This new element will not be

are interested in are the ND-OEW's. Let us call an operator . : ; ; )
D=P+QT, with P,Q=0 andT denoting the partial trans- in K(P) [or in K(Q), or in botf, which automatically im-

. ; plies that it will be linearly independent of either the ele-
position with respect té or B, decomposable. Furthermore ments of or both. So. after a finite number of steps
let us define the set of product vectors on which the expec- Pw . Pwr e P

. : . andpy,t will span the whole Hilbert space, which ensures
tation value ofW vanishes, i.e.py={|e,f)eH, such that Pw ! i . : o :
(e,f|W|e,f)=0}. This set plays an important role in the that the final ND-EW is ND optimal. In principle, it may

optimization, which can be seen in the following results Con_happen thako=0 at some step, _befom,v andp, span the
. o ) whole H. Our numerical simulations suggest, however, that
cerning the characterization of ND-OEW'’s.

Proposition 4(Theorem 1b of Ref{17]). A ND-EW Wis among all possibldD’s one can always find one witk
ND optimal iff for all decomposable operatois and >0 =0. . - N
the operatoM’ =W— eD is not an EW. We have applied the methods of finding and optimizing

. EW's to a family py(be[0,1]) of PPTES’s in the
Corollary. If both py, as well asp,,t span the whole Hil- o . -
bert spaceH @ Hg, thenW is a ND-OEW. (2% 4)-dimensional system from RgfL0]. Forb=0,1 those

Remark 3 The necessary and sufficient conditions for astates are_separable, whereas f.sﬂﬂ(l the py’s are edge
ND-EW to be ND optimal are presented in Rdfl7]. states, which can be checked directly as shown in R€X.

Loosely speaking a ND-EW is ND optimal iff either bapky We have applied the following procedure. By virtue of some

and pyt span the whole Hilbert space, or there exist somesymmetrles Ofp,, One can perform a local change of basis

. . ~T ~ .
nonproduct vectorsl) related topy, (or py) such that both after which the transformed stafg, fulfills 5, ®=7%;. This
Pw (pw1) jointly with the set off ) andpyr (py) span the Step allowed us to construct the ND-BWj=P+PTs
wholeH,®Hg. In our numerical studies, however, we have —Mol, whereP is the projector orK(pp,), which already
not encountered the latter possibility; it is thus likely that thedetects the edge state. Following the procedure above we
converse of the Corollary is true. subtracted decomposable operators. In addition we chose

Our results allow us now to design a finite-step aIgorithmthem to be invariant under partial transposition with respect

to ND-optimize a given EWV, by subtracting decomposable (0 systemB. Note that ther/=W'® at any step and there-

(11 Iterate the proceduré) and(ll) as long as there is no
D=P+Q" with Ppy,=0 andQp,,r=0.

operators. fore we only had to make sure thpfy spanned the whole
(I) Take a decomposable opera@r=P+QT such that Hilbert space, which automatically ensured that the final
Ppw=0 andQpyr=0 and check if ND-EW was ND optimal. In Fig. 1 we show how many
members of the whole family of,,’s are detected by the
No= inf [Dg UZWeDE 2] . >0. (8) ND-OEW obtained fronp,,. We plot here also the efficiency
le)eHa of the corresponding ND-PM. Here the improvement of ef-
ficiency is less spectacular, but still significant.
HereW,=(e|W|e), D.=(e|D|e), where|e) e H5, whereas It must be stressed that both the EW’s and the PM’s con-
[ X]min is the minimal eigenvalue oX. structed in a X4 system are examples for a quantum sys-
(I1) If \q is positive construct the new ND finer EW’ tem with a one-qubit subsystem. We have also provided ex-
=W-2agD. amples of the sqt,, that spans the whole Hilbert space. This
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set allows us to construct very peculiar separable states ™®D-EW'’s, P, is contained in the sd8 of all optimal ND-

full rank that lie on the boundary af. Note also that, in EW'’s of the form(7).

general, the parametay, in the optimization procedure has  Remark 4 Moreover, applying the isomorphisfid4] to

to be found numerically. In Ref17] we were able to for- the members ofd (B) we obtain the setd’ (B’) of PM’s

mulate an analytic method that allows one to detect thgND-PM's) containing the set of all extreme PM's. The

whole family of py,’s. - ~ above theorems thus provide the first nontrivial necessary
As we remember, the key problem is to find the minimal condition for EW’s and PM's to be extremal. In particular,

set of EW's detecting a PPTES. Obviously, this minimal s€%q|iowing Proposition 3 we can obtain a weaker condition

will consist of ND—OEW’S. A related problem is to find a §et by considering optimal EW’s of the forif¥) without involv-

of extremal points of>". Note that a nonoptimal ND-EW is ing the notion of the edge states, but only pairs of “strange”

a convex sum of an optimal one and a decomposable operaybspaced(® and HP.

tor (Proposition 4, so it cannot be an extremal point. Note

that Proposition 33") combined with the optimality property This work was supported by the DF@&FB 407 and

provides the necessary form of extremal points of EW’'s asSchwerpunkt  “Quanteninformationsverarbeitung” the

well as PM’s. We have thus the following proposition. DAAD, the OFW (SFB “Control and Measurement of Co-
Proposition 5 The set of extremal points of the set of herent Quantum Systemg”the ESF PESC Program on

EW's, St, is contained in the setl of all optimal EW’s of  Quantum Information, the TMR network Grant No. ERB-

the form(7) plus projectors and transposed projectors. FMRX-CT96-0087, the IST Program EQUIP, and the Insti-
Proposition 8. The set of extremal points of the cone of tute for Quantum Information GmbH.
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