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Twin paradox in compact spaces
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Twins traveling at constant relative velocity will each see the other’s time dilate leading to the apparent
paradox that each twin believes the other ages more slowly. In a finite space, the twins can both be on inertial,
periodic orbits so that they have the opportunity to compare their ages when their paths cross. As we show,
they will agree on their respective ages and avoid the paradox. The resolution relies on the selection of a
preferred frame singled out by the topology of the space.
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The twin paradox in special relativity has a simple formu-The spacetime is invariant under the action of the Poincare
lation and resolution in infinite flat space. One twin remainsgroup, which contains translations, rotations, and the Lorentz
on Earth while the other moves at constant velocity in atransformations representing relative motion at constant ve-
spaceship to a distant planet, turns around and returns honhecity. The isometries can be represented®48,1) matrices.
to Earth. Each twin believes the other’s clock runs sloweMWe consider special relativity in a compact three-manifold
and so the paradox arises that each believes the other should.=R® M/T". The elementshe " act discretely, without
be younger at their reunion. The paradox is resolved sincéxed points, and are a subset of the full isometry group. The
the twin in the spaceship had to slow down, stop at the disgroupT” can be thought of as the set of instructions for com-
tant planet, turn around, and accelerate to constant velocityactifying the space. All multiconnected, flat topologies can
before returning to Earth. Therefore the traveling twin wasbe constructed from either a parallelepiped or a hexagonal
not always in an inertial frame and special relativity is notprism with opposite sides identified according to the rules
contradicted by the realization that the twin who left Earth isgiven by the elementg < I" [5—-8].
younger than her sibling at the time of their reunion. It is advantageous to embed th@+1)-dimensional

In a compact space, the paradox is more complicated. l§pacetime in a(4+1)-dimensional Minkowski spacetime
the traveling twin is on a periodic orbit, she can remain in anwith the fourth spatial coordinate fixed. Specifically, 3
inertial frame for all time as she travels around the compact-1)-dimensional coordinate(2) is replaced by the
space, never stopping or turning. Since both twins are iner¢4+ 1)-dimensional coordinate
tial, both should see the other suffer a time dilation. The
paradox again arises that both will believe the other to be t
younger when the twin in the rocket flies by. The twin para-
dox can be resolved in compact space and we will show that
the twin in the rocket is in fact younger than her sibling after x8=
a complete transit around the compact space. The resolution
hinges on the existence of a preferred frame introduced by
the topology, one consequence of which is the inability of q

the twin in the rocket to synchronize her clodks2]. While where q is fixed at unity as in Fig. 1. We will let Greek

other authors have come to similar conclusi¢s 3], the indices run over 0,1,2, and 3 and Latin indices run over 0, 1,
present discussion offers a completely general solution an 3 and 4

does not rely on any specific topology. We also make use o
the modern language of topology, which has recently seen

3

N < X

application in cosmology4]. 4
The manifold of special relativity iR® M whereR rep-
resents the time direction and1=R® is a flat three-
dimensional infinite space. The flat spacetime metric is the g=1
familiar
ds’=g,,,dx*dx” )
with g#=diag(~1,1,1,1) and \
t
X
X
XH= 2 FIG. 1. The embedding of (81)-Minkowski space into (4
y +1)-Minkowski space. Thet(z) directions are suppressed so that
z the manifold appears as an infinite sheet fixedatl.
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In this coordinate system the generators can be reprder the twisted space aré,,T,,R,(7)T, with R(#) the
sented as %5 matrices. For instance, the generator that efrotation matrix:
fects the identification of a point (x,y,z,q) with the point

(t,x+L,y,z,q) can be written a§9] 1 0 0 00
0 cos# sing 0 O
10000 _| 0 —sing cos# 0 O
01 00°L R,(0)= (6)
x 0 0 0 10
T={0 0100 ) 0o o0 0 0 1
0 0 01 O
0 0 0O All of the multiconnected, flat topologies can be built out of
a combination of these translations and rotations.
so that the boundary condition can be expressexi-ag,xX, Periodic orbits are of particular interest since an observer
which generalizes to on a periodic orbit can remain inertial. A periodic orbit can
be described by the holonomiese I', which map the end-
x2— qngb (5 point of the orbit to the starting point of the orbit. In other

words, a periodic orbit has.,— ¢Xsarr, Where¢ can be a

for each¢el'. As an illustration, the hypertorus is con- composite wordp=1II#,.. Each word has a corresponding
structed by gluing opposite faces of the parallelepiped. Th@eriodic orbit. For example, consider the periodic orbit of

elements ofl" areT, of Eq. (4) and Fig. 2 in the hypertorus. For this orbit we have,q
= TyT>2<Xstart-
1000 0 10000 Suppose the space is compactified so that with respect to
01 00 O 01 0 0 O an observer S, only spatial points are identified. In the coor-
dinate system at rest with respect to S, all of the holonomies
T,=(0 01 0Ly T=/00100 have$2=1. S's twin H takes a rocket ride around the com-
00010 0 00 1L, pact space, traveling always with constant velocity, never
0000 1 0000 1 turning, slowing or speeding uffig. 3). A coordinate sys-

tem at rest with respect to H is given by Ax with A the
Another allowed compact topology is one that first twists theLorentz transformation. In (# 1) dimensions we can repre-
z faces throughm before identification. The elements bf  sent the most general Lorentz transformation as

7 ~7hx — By —vB; 0
B, 1+<7—312>ﬁ§ (y—;ﬁxﬁy (y—llglﬁxﬂz 0
- -1)82 —
A=| —yB, (7_;)2% 1+(7ﬂ2)ﬁy (¥ Z)Zﬂyﬁz ol
2
8, (7—;)2,3xﬁz (y—é)zﬁyﬁz l+(7—’812)ﬂz 0
0 0 0 0

where theg; are the velocities of the boosts in the ¥,z,q) and so expects H'’s clock to advance by

directions 3= Ei,Biz , andy=1/\/1— B2. The velocity in the

q direction is understood to be zero. At=D/(yp). (9
S sees H travel a distand® before passing overhead.

During one orbital period, S's clock advances a time H is therefore younger than S when their paths coincide.

There is no paradox since H will agree that in fact she is
younger than her twin. According to H, both space and time
. ) points have been identified. As a result it becomes impos-
However, S will believe H’s clock runs slower by the factor giple for H to synchronize her clock4]. H must be on a

o periodic orbit to remain inertial. Led be on a periodic orbit
At=At/y (8) corresponding to the composite wagdso the boundary con-

At=D/B. (7)
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FIG. 2. The compact hypertorus can be represented as an iden- FIG. 3. S stays on Earth while H travels on the periodic orbit of

tified parallelepiped. Alternatively, the compact topology can bef'9: 2-

represented by tiling flat space with identical copies of the funda- The previous example can be recast in a more physical,
mental parallelepiped. In the tiling picture above only they] less abstract discussion. What the above formalism shows is
directions are shown. A particular periodic orbit is drawn which 5t only one reference frame can be at rest with respect to
corresponds tatene= T, TXstar the compact spatial sections. All other inertial observers in
_ relative motion live in a universe where both space and time

dition (5) becomesc= Ax— A ¢x. The lack of synchronicity  points are identified. In the example given around E@s-

will be given by the time component df(1— ¢)x or explic-  (14), twin S is at rest in a flat torus and H moves inertially

itly along a periodic orbit. Suppose H is initially unaware that
_ _ o _ , spacetime is compact. In order to properly perform any ex-
St=(yt—yB'x) = (yt—yB X)) =—yB'(Xi— ¢iX)) periments, H has to equip her reference frame with a full
(10 system of rulers and clocks. She can set up a system of

o - observers one by one trying to synchronize their clocks b
W't.h ':il’ 2, 3, and 4 a}nd the vectd' =(Bx. By .52.0), exchanging infor?/nation v?//ithga Iigk?/tbeam. Somewhere aloné]/
while x'=(x,y,z,q). The distance traveled as measured by S[he way however H will receive her own message telling her

i 2_ a
is D”=Ax"AX, or to reset her clock by the amoumBD. She will be out of

_ ] o] synch with her own attempts to synchronize. That is, observ-
D= 0= X)) (X~ ¢ix)) (19 ers at the same spacetime point can have clocks that read
and different times. H will know that any measurements made in
this frame are ambiguous by the time shift.
(X— ¢{xj): DBi/B (12 The twin paradox shows that the compact topology iden-

tifies a preferred frame, namely, the frame in which the
so that H's clocks are out of synchronization by a factor  |ength along a given side is shortest, a point emphasized in
_ Refs. [1] (see also Ref[2]). To generalize the effect to
ot=—vypD. (13 curved spaceA can be replaced by an appropriate diffeo-
morphism and the spacetime topology generalizes\g
=R&MVYIT, where the universal covei Y is a curved,
simply connected manifold. Multiconnected cosmologies
challenge the Copernican principle. A compact topology se-
lects a preferred place and a preferred time so Humhe
- _ galaxy, if not our own, is at the center of the universe. Some
At=yD/p=ypD=DI(vB) (14 observers are also uniquely able to synchronize their clocks
in agreement with Eq(9). Both twins agree that H is and observe the smallest volume for the universe.
younger than $10].
Notice that Ultlmat6|y the age difference between the We thank P. Ferreira’ N. J. Cornish, W. T. Gowers, A.
twins is independent of topology except through the distanc&ent, R. Jones, G. Starkman, and J. Weeks for discussions.
D. For the orbit of Fig. 2, for instances=T, T; and Eq(11)  J.L. is grateful to the theoretical physics group at Imperial

H sees her twin S move away from her in the opposite di
rection only to return after traveling a distangB®. With the
additional time offset of Eq(13) due to the compact topol-
ogy, H’s clock must read

givesD = \/2LX2+ Lyz. College for their hospitality. J.L. is supported by the PPARC.
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