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Accelerating decay by multiple 2p pulses
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We show how a control of the dynamics of a decay process can be achieved by the application of a series
of 2p pulses on an auxiliary transition. The 2p pulse changes the phase of the ground state byp while leaving
the phase of the excited state unaltered. This produces quantum interferences between the transition amplitudes
for evolution in the short interval, just before and after the 2p pulse. Such an interference under suitable
tailoring of the density-of-states of the bath and the timet leads toaccelerateddecay.
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In a recent letter Kofman and Kurizki@1# have demon-
strated the opposite of the quantum Zeno~suppression of
decay! effect@2–8#. They show, by a number of calculation
that the accelerated decay is much more ubiquitous. T
derive the following expression for the net decay rate
terms of the coupling constantg(v); and the final density-
of-statesr(v)

R52pE
o

`

dvug~v!u2r~v!F~v!, ~1!

where the functionF(v) is related to the measurements
the intervals oft

F~v!5
t

2p
sinc2S ~v2va!t

2 D ~2!

andva is the frequency of the excited state. They show t
both the quantum Zeno effect as well as the quantum a
Zeno effect follow from Eq.~1! depending on the relation
between the widthGR of r(v) to the measurement ratet21

and the relative separation between the peaksvm of r(v)
andva of F(v). In particular if uvm2vaut@1, i.e., if va is
detuned from the nearest maximum ofr(v), then one finds
accelerated decay by frequent measurements i.e., the q
tum anti-Zeno effect@1,9#. We further note that continuou
measurements@10# should be distinguished from a series o
large number of discrete set of measurements. Explicit
culations @11# have shown that in such measurements,
contrast to quantum Zeno effect, the state of the system
variably evolves. The classic work of Mishra and Sudarsh
@2# on quantum Zeno effect and the recent work of Kofm
and Kurizki @1# on quantum anti-Zeno effect invoke in a
important way the idea of frequent measurements and c
sequently these predictions are dependent on the proje
hypothesis. In the present report we examine analternate
scenariowhere we do not make use of frequent measu
ments, however we use a kind of coherent control@12#. We
report how coherent control can lead to both acceleration
inhibition of decay depending on the structure of the dens
of-states of the bath. In our scheme the system evolvesuni-
tarily under the influence of a series of ultrashort 2p pulses
applied at intervals oft on an auxiliary transition.
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We consider the following scheme, which is similar to t
one proposed in Ref.@13# in connection with the inhibition
of decay. In the present paper we operate in a different
gion of parameters so as to produce acceleration of the
cay. Initially the atom is prepared in the excited state and
consider its decay to the ground stateug&. We consider sys-
tematic application of ultrashort 2p pulses on a long-lived
transitionug&↔u l &. We also assume that during the 2p pulse
duration the evolution of the statesue&,ug& due to the vacuum
field is negligible. The pulses are applied att
5t,2t, . . . ,2Nt. In between the pulses the system evolv
due to interactionH1 with the vacuum field. We will show
how this scheme can lead to the acceleration of the de
process if the transition frequency and the density-of-sta
of the bath are appropriately chosen.

Let us assume thatt is small enough so that we can app
first-order perturbation theory as far as the interaction w
the vacuum field is concerned. The interaction Hamilton
in the interaction picture is

H1~ t !5\(
k

ue&^gugkake
idkt1H.c,

dk5veg2vk . ~3!

Hereak is the annihilation operator for the vacuum field a
gk is the coupling constant. Depending on the model of
vacuum field~free space, photonic band gap, etc.!, the index
k can also include the polarization index. The first-order p
turbation theory gives the evolution of the stateue& as

uC~ t !&[ue&2(
k

igk* ug,1k&
~e2 idkt21!

~2 idk!
, ~4!

which on application of the 2p pulse att5t transforms into

uC~t1!&5ue&1(
k

igk* ug,1k&
~e2 idkt21!

~2 idk!
. ~5!

Here we use the notationt1 to indicate the state just after th
application of the 2p pulse. Note that the effect of the 2p
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pulse is to change the stateug& to 2ug&. Thisp phase change
is crucial for our argument. The system evolves underH1
from t1 to 2t leading to

uC~2t!&5ue&2 i(
k

gk* ug,1k&
~e2 idkt21!

~2 idk!
e2 idkt

1 i(
k

gk* ug,1k&
~e2 idkt21!

~2 idk!
, ~6!

which on the application of the second 2p pulse at 2t be-
comes

uC~2t1!&[ue&1 i(
k

gk* ug,1k&
~e2 idkt21!2

~2 idk!
10~g2!.

~7!

We note in passing that the standard result~i.e., without 2p
pulses! will be obtained from Eq.~7! by replacing (e2 idkt

21)2 by (12e22idkt). We can now continue this evolutio
till time 2Nt1 and ask what is the probabilityp̃ge of finding
the atom in the stateug& with the emission of one photon
Clearly p̃ge is given by

p̃ge5(
k

u^g,1kuC~2Nt1!&u2. ~8!

Our calculation leads to

p̃ge5(
k

ugku2tan2S dkt

2 D sin2~dktN!

~dk/2!2
. ~9!

FIG. 1. The two frames show the probability of occupation a
function of n ~time! for a continuum with Gaussian density-o

states. The solid curve is forp̃eg/2pGr0 and the dashed curve is fo
peg/2pGr0. The value ofD is given in the frames andtG51.
04410
We note that if we had not applied 2p pulses on the auxil-
iary transitionug&↔u l & then the result would be given by Eq
~9! without the factor tan2(dkt/2). Evidently, now we have a
handle for manipulating decay characteristicsby suitably
choosing the function tan2(dkt/2). We will call such a func-
tion the interference function, which arises from the interf
ence between the transition amplitudes in the intervals 0,t
,t and t1,t,2t. This is clearly seen from Eqs.~6! and
~7!. We note in passing that several proposals exist in lite
ture @13–15# for the inhibition of decay using pulses. Th
actual decay characteristics are quite sensitive to the pa
eters of the pulses. For example Viola and Lloyd@15# in their
work on the interaction of a spin with an Ohmic bath al
discover accelerated decay when pulses are not applied
frequently compared to the correlation time of the bath.

In order to understand the effect of the interference fu
tion, i.e., application of 2p pulses, we consider a one
dimensional continuum limit of~9!:

p̃ge5E
2veg

`

dx tan2S xt

2 D sin2~xtN!

~x/2!2
r~x!, ~10!

wherer(x) contains the effect of both the density of fin
states as well as the transition matrix element. The proba
ity of finding the atom in the ground state has a form simi
to the rateR appearing in the work of Kofman and Kurizk
We now evaluate Eq.~10! for a structured continuum define
by both Gaussian and exponential density-of-states

r~x!5ro exp$2ux2Du2/G2%,

r~x!5ro exp$2ux2Du/G%, ~11!

whereD is the difference between the transition frequen
veg and the central frequency of the structured continuu

a

FIG. 2. The two frames show the probability of occupation a
function of n ~time! for a continuum with exponential density-of

states. The solid curve is forp̃eg/2pGr0 and the dashed curve is fo
peg/2pGr0. The value ofD is given in the frames andtG51.
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We assume thatG!veg . We examine the behavior ofp̃ge

for D/G*1 and forDt*1. We show in Figs. 1 and 2 th

behavior ofp̃ge for a continuum with Gaussian~exponential!
density-of-states as a function ofN. We also show the be
havior of the standard resultpge , which is obtained by drop-
ping the tan2(xt/2) from the integrand in Eq.~10!. Figures

1~b! and 2~b! clearly demonstrate thatp̃ge.pge , i.e., the
decay process has been accelerated by the interference
tion tan2(xt/2). At the same time it is also clear that fo
d

et

04410
nc-

smaller D values ~cf. Ref. @13# for D50) one can obtain
inhibition of decay@Figs. 1~a!, 2~a!#. Using the ultrashort 2p
pulses we have thus achieved a control of the decay proc
We again emphasize that this control is achieved with
performing either continuous measurements or a serie
discrete measurements and thus our control does not inv
the postulate of collapse of the wave function.

We thank S. Menon for help with figures and MO
wishes to thank the ONR, the NSF, and the Robert A. We
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