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Bidirectional emission from a ring resonator driven by an external field
and containing a saturable absorber
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We formulate a first-principles description of the behavior of a bidirectional ring cavity containing a satu-
rable absorbing medium, and driven by an external coherent field. The setting of interest to this study is an
extension of the ordinary optically bistable system, where a ring resonator supports only one of the two
possible directions of propagation of the cavity field. In this more general case and in the uniform-field limit,
we show that the dynamics of the fields-atoms system is described by an infinite set of coupled equations that
can be readily solved by standard numerical means after appropriate truncation of the number of atomic
variables. With the help of two different approaches, we find unexpected, long-time stationary solutions such
that the forward and backward fields oscillate with different carrier frequencies: the first is based upon the
time-dependent equations and the second on a set of nonlinear-algebraic equations describing the steady states.
As an added confirmation, we carry out a linear-stability analysis of the unidirectional steady state for the
purpose of identifying the conditions under which a backward field can grow from an initial fluctuation. By this
approach we also suggest a possible strategy for the experimental observation of stationary, frequency-shifted
output fields.
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[. INTRODUCTION The purpose of this paper is to reexamine the conclusions
of Ref. [7] in the more general setting involving arbitrary

Bidirectional ring resonators have played a significantdetuning parameters, and to propose the existence of an un-
role in laser physics and quantum optidd. An extensive expected steady state in which both forward and backward
literature deals with theoretical and experimental aspects dfelds emerge from the resonator with slightly different car-
the behavior of bidirectional ring cavities containing an ac-rier frequencies. To be more precise, we predict that in
tive medium[2]. In contrast, much less attention has beensteady state the forward field oscillates in synchronism with
paid to the counterpart problem of a bidirectional resonatothe injected field, while the backward field is frequency
containing a passive medium and driven by an external coshifted from both. This is surprising because, at first sight,
herent field. Of course, this comment does not include caviene would not expect a steady state if the forward and back-
ties configured as Fabry-Perot resonators where bidirectionalard fields oscillate with different frequencies in the same
propagation is an unavoidable consequence of the geometoptical resonator.
of the mirrors[3]. We derive our working equations following a somewhat

In fact, an extensive amount of work during the mid different procedure from the one used in Réf}, and intro-
1970s and early 1980s dealt with the bistable properties afluce a version of the boundary conditions that, upon suitable
ring cavities containing a passive medium but, for the mosthange of the field variables, can be cast into the standard
part, these studies focused on a setting where the cavityeriodic form appropriate for an ideal resonator. In terms of
could support only unidirectional propagation in the samethe new variables, the equations of motion acquire the ex-
direction as the external fielt3,4]. And, indeed, this has pected field damping terms, and terms containing the cavity-
been largely the outcome of experiments, as reported fomistuning parameter. The advantage of our approach is that,
example by Kimble and collaboratof§]. Exceptions were in the uniform-field limit, it can readily yield information not
noted but, to our knowledge, they were not investigated furonly on the steady-state properties of the system, but also on

ther[6]. its transient evolution with the help of standard numerical
In a significant contribution that appears to have attracteanethods.
only limited attention, Asquini and Casagranidg investi- We find ourselves in agreement with the conclusions

gated the bistable properties of a bidirectional ring cavityreached by Asquini and Casagrande under resonance condi-
under resonance conditions, i.e., when the frequency of theons. However, in the more general setting in which arbi-
driving field matches the frequency of one of the cavitytrary detuning parameters are allowed, a backward field with
modes and the atomic transition frequency. They studied tha nonzero, time-independent amplitude can coexist with a
steady-state behavior and the linear stability of the systemstationary forward field, provided that its carrier frequency is
around steady state, and concluded that bidirectional propalfferent.

gation does not introduce novel stationary features, relative With regard to the physical interpretation of this effect,
to the unidirectional case. Their linear stability analysis, in-we believe that the following sequence of events is likely to
stead, suggested the existence of instabilities in the counteplay a role in this unusual phenomenon: the backward wave
propagating field, in addition to the known self-oscillations grows from spontaneous emission noise; its gain is provided
of the forward field. by an initially small fraction of the forward wave that is
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Bragg-scattered from the atomic polarization and population R<1 / 0 L \ R<1
gratings formed in the medium by the interference between £ I i

the counterpropagating components. When the gain of the !

backward wave exceeds the cavity losses, a steady-state con- @ /,'/

dition is eventually reached in which the backward field op-

erates, in essence, as a ring laser of its own, subject to its

own boundary conditions. In fact, the value of the frequency

shift, calculated numerically, is often well approximated by R=1
thevbjesuﬁ;\zogglgjgg gd f?r:r;u;;g;r?;?;ngg dlsssgcghtehoeri):. fre- FIG. 1. Schematic representation of the bidirectional ring reso-

diff b Ving the ti d dent fi nator. The input and output mirrors have equal power reflectivities,
quency dilference by solving the ime-dependent equa Ion§<1,while the third mirror is assumed to be an ideal reflector. The
of the system for long times and, independently,

. . . . a!so b3full length of the resonator iA, the passive medium is confined to
solving the nonlinear-algebraic equations that describe thg,. segment &z<L, and&, denotes the injected field.

steady-state configurations. These results, not surprisingly,
are in excellent agreement with each other and offer mutual \ye assume the injected signal to be a monochromatic
support in favor of the existence of the frequency-shiftedp|ane wave of the form
steady states.

As an additional independent check, we have also carried E(z)=E k¢, (1)
out a linear-stability analysis in the neighborhood of steady
states with zero backward field, and determined the paranwhere E, is a constant amplitude and and k=w/c are
eters that favor the growth of an initial backward field fluc- chosen as the reference frequency and wave number, respec-
tuation. The boundaries of these unstable domains are in exvely. As usual, the cavity field(z,t) and the macroscopic
cellent agreement with those derived from the time-atomic polarizationP(z,t) are linked by Maxwell's wave
dependent equations and from their stationary counterpartsequation

Our paper is organized as follows. Section Il contains a
description of the model and a derivation of the equations of 92 92 1 92
motion, ending with the infinite set of working equations in (—2—02—2> &z t)=———P(z1). 2
the uniform field limit. In Sec. Ill we discuss two possible at 9z €0 dt
kinds of steady states. The first, in which the backward field
oscillates synchronously with the forward field, is physically
unrealizable, as we show. The second class of steady states,
characterized by forward and backward fields with different
carrier frequencies, is consistent, instead, with the workingNhere
equations. In this case we derive numerically and display the
values of the relevant variables for selected parameters, us- _ i(kz— ot)
ing an appropriate nonlinear algebraic set of steady-state Er(z=Ee(zl)e ree., 30
equations. Section IV describes time-dependent solutions
with special emphasis on two sets of system parameters. In

Sec. V, we consider the linearized behavior of our system i%\nd F and B label the forward and backward directions of

the neighborhood of steady-state configurations in Whic.rbropagation, respectively. Because we have in mind a near-

qnly thhe f?rwardr:‘ield s nr?n?erot; arlld d%tirrTéneF.the"Cond"resonant interaction between the injected field and the atoms,
tions that favor the growth of a backward field. Finally, we through the intermediary of the cavity field, the amplitudes

conclude the paper, in Sec. VI, with a brief overview of OurEF(z,t) andEg(z,t) are slowly varying with respect to both

We assume the cavity field to have the form

E(z,t)=E(z,t) + Eg(z,1), (39

&(z,t)=Eg(z,t)e 'kt c e (30

results. zandt. In this way, we can interpret the cavity fieffz,t) as
the superposition of two contributions that propagate in op-
Il. DESCRIPTION OF THE MODEL AND EQUATIONS pOSite directions with SlOle Varying amplitudes.
OF MOTION For the macroscopic polarization we assume the represen-
tation
We consider a ring cavity composed of three mirrors; one
is an ideal reflector and the other two have equal power P(z,t)=pu[PP(z,t)e '+ P()(z,t)e'!], (4)

reflectivities,R<1, as shown schematically in Fig. 1. The

total length of the resonator is. Inside the cavity, a region whereu is the modulus of the atomic transition dipole mo-
of lengthL is filled with a homogeneously broadened, pas-ment, andP(*)(z,t) are slowly varying functions of time but
sive medium made up of two-level atoms. A coherent field israpidly varying functions of space; moreover, we have
injected into the cavity through one of the two partially P(7)=[P(+)]*.

transmitting mirrors, while a fraction of the cavity field es-  Upon substituting Eq€3) and(4) into Eqg.(2), the slowly
capes in both the forward and backward directig®ls We  varying amplitude approximation yields two separate equa-
analyze this model within the plane wave and slowly varyingtions for the forward and backward field amplitudes of the
amplitude approximations. form [9],
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3 a op 1 [zen 2 (4 and_ the cavity mistuning parameter until the slow spatial
i Er(zt)= |—60ij dz’e ™ PY(Z',1), variation of the field amplitude&€x(z,t) and Eg(z,t) be-
comes almost negligible over a single pass through the me-
(53 dium.
J g op 1 - The first step in this program is to introduce new scaled
(E—CE) Eg(z,t)=i=— 2e N j dz’ e @ p(H)(z' 1), variables,Yg(z,t) and Yg(zt), whose boundary conditions

have the standard periodic form of an ideal resonator. The

(Sb) required transformations are
where\ = 27x/k. Note that the slowly varying amplitudes of 5 .
the cavity field are driven by the local average of the rapidly Er(z,t)==—(y,y )1’2(Yp(z,t)— —|In R|y|>
varying polarization amplitude®(*)(z,t) weighted by the ITaNNE
exponential factore ™ '*? ande'¥?, respectively. .
The evolution of the medium is described by the optical Xexr{ — —|n(Re_i5c)}' (103
Bloch equations after neglecting terms that oscillate at fre- A
guenciest 2w and higher. After inclusion of the usual phe- 5 A
nomenological damping terms, the atomic equations have the _" 1 - —id,
form Es(z1) 2M(y;y”) Yg(z,t)ex A IN(Re %),
(10b)
C POzt =—y (1+i8) POz~ 2D
It (Zyt)__')’J_( +16p) (Z,t)—lz (z,1) where
X[Er(z )€ *+Eg(z,)e "7, (62 2p yVTE)
Y= A ('}’H')’ ) | nR|' (11)

J M

= == —Ded]+2i L p)

o oy yH[D(Z,t) o h Py In terms of the new field amplitudes, the boundary condi-
i i ti 9) take the f

[Ex(2,0)e¥+ Eg(z,)e k7] c.c}, (o~ 1onS (9 take the form

where Y, and y, are the relaxation rates of the polarization Ye(0D=Yr(AD), (123

and population difference, respectlvelﬁoz(wo—w)/n, Ya(A,t)=Yg(01) (12b)
wgq Is the atomic transition frequencip(z,t) is the differ-
ence between the number densities of excited and grounahich are, indeed, formally appropriate for an ideal bidirec-
state atoms, anB®? is the value ofD in the absence of the tional ring cavity. Of course, Eq$12) do not imply that we
cavity field. are neglecting the cavity damping mechanism or, for that
In view of the geometry of the resonat@Fig. 1), the  matter, the driving action of the injected field. In fact, as
forward and backward fields obey the boundary conditions shown below, these contributions appear explicitly in the
transformed equations.
Er(0D)=VTEOD) +RE(ALY), () Before deriving the new equations of motion, it is also
convenient to introduce the scaled atomic variables

Eg(A,1)=R&(O), (8) "
which, in view of Egs.(3b), (3c), and(1), imply p(z,t)= %(L) P(F)(z,1), (139
Er(04)= VTE+RE(A,De ™', (9a |
is d(z,t)=D(z1t)/N, (13b)
Eg(A,t)=REg(0t)e %, (9b)

whereN is the number density of atoms. At this point, the

where T is the power transmittivity of the mirrorsTe= 1 equations of motion, in terms of the new variables, take the

—R), 6.=(w;,—w)Alc is the cavity mistuning parameter,

andw. denotes the cavity resonance frequency that is nearest

to the carrier frequency of the injected field. J 9
Equations(5) and (6), plus the boundary condition®) (&t +c—)YF(z,t)

and appropriate initial conditions, are sufficient, in principle,

to analyze the space-time evolution of the bidirectional ring c/InR) c InR|

. Z|InR c .
resonator. At this level of generality, the problem is clearly Y|——In(Re"5C)TY.+ —In(Re %) Y

; . : A T A A A
very complex. It is possible to introduce significant simplifi-
cations without omitting essential physical aspects if we z , 1 [z+\
limit our considerations to the so-called uniform-field limit +ca ex;{xln(Re"ﬁc)} Xf dz’e *?'p(z',1),
(UFL) [4,10,11, a situation where the mirrors’ transmittivity z
is reduced in step with the medium absorption coefficient (14a
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o)
gt Caz)Ye(zl

= S In(Re15) Y g+ ca exd — —— In(Re™1%)
A B A
1 (z+\
x—f dz'ek?'p(z' 1), (14b)
ANz

J
Sp(zU=—y (1+id)p+y pd, (149

1% 1
4z =—y(d=d*)— Sy (Bp*+cc), (140
where a=Nwu?/2eqh y.C is the unsaturated field absorp-
tion coefficient per unit lengthg®?=D®%N, and

v,

o] - Zintre v, 2
B=e"*ex —Xln(Re c) Y_T

4
+ e ikz ex;{

A In(Re %) |Y
A

(19

In spite of the significant increase in formal complexity, .

Egs. (14) are ideally suited for the implementation of the
uniform-field limit. Specifically, we assume the conditions

al<1, T<1, &.<1, (16)
subject to the constraints
ok e b 17
|In R| inite number, (17a
b % o finit b 17b
R~ T~ inite number. (17b

With the help of Eqs(16) and (17), Egs. (14) take the
approximate form

J J B . 2CA 1
E#—CE Ye=—«k(1+i10)Ye+ kY, +« X
Z+\ L,
XJZ dz'e *¥p(z' 1), (189
J J Yg= 1+i0)Y ZCA !
ﬁ— E —k(1+i0)Ygt+«k EX
Z+N\ L,
><J’ dz’ e**'p(z' 1), (18b)
z

J . .
SP= =7, [(1+i89)p—d(e"?Y, +e "?Yg)], (180

PHYSICAL REVIEW A63 043815

1 * ( alkz —ikz
5 v [p* (e Yp+e ") +ecl,
(18d

where k=cT/A denotes the field damping rate out of the
cavity. Note thatd®?= —1 for an absorbing medium.

The boundary condition€l2) are consistent with the fol-
lowing expansion of the field amplitudes in terms of the
cavity modes:

d
—d=- —de9) —
4= (d=d)

Ye(z,t) = 2_ f(t)e2n A (199
Yg(z,t)= 2 b,(t)e~12nZA, (19b

In this way, the partial differential equatio$8a and(18b)
become an infinite collection of ordinary differential equa-
tions for the modal amplitudes,(t) and b,(t) (—e<n<
+). In the uniform-field limit[Egs. (16) and (17)] the in-
termode spacing is much larger than the width of each cavity
mode k, while the cavity mistuning’, is of the order of.
This implies that the injected field is almost resonant with
only one cavity modéthe one labeled=0), and that all the
other modes can be ignored if they are initially unexcited and
if they are not affected by dynamical instabilities. These are
not expected to emerge if the atomic linewidgh is suffi-
ciently smaller than the intermode spacing.

On the basis of these observations, we project the field
equations(18g and (18b) onto then=0 modes and ignore
all modes with indices1#0 in the atomic equation&l8¢)
and (18d with the result

d - - o~ 1L L
d—Tf(q-)z—:<(1+i6)f+:<Y|+K2CEfOdz’e*'kZ p(z’,7),

(208
d - ; - 1Mt 1 aikz' ’
E_b(r)=—x(1+l0)b+K2CEfodZe p(z’',7),
(20b)
d H ikz —ikz
d—Tp(z,r)=—(1+|6o)p+d(e f+e ""*b), (200
d 1
god(z.n)=—¥(d- ded) — 'y[p (e*?f+e k?h)+c.c],

(20d)

wheref(7)=fy(7), b(7)=by(7), 7= AL 7<=K/‘yl, and y
= 'yH/'yi. In arriving at Egs.(209 and (20b) we have used
the approximate equality

A1 [z+\ L, L -
J;) dZXJZ dzrerlkz p(zl,t),wvjo dz/etlkz p(Z’,T),
(21)
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which holds ifL>\, and if the atomic polarization vanishes the atomic variable$with the exception ofly) develop fre-
outside the domain€z=<L. Note that, in writing Eqs(200  quency shifts with respect to the external driving field.
and (20d), we have changed the partial time derivative into

an ordinary time derivative because from now Dis just a A. Synchronous steady state solutions

label, instead of an independent variable.

For the purpose of our subsequent analyses, and in par- As we can see by direct inspection of E83), the for-
purp q ySes, PalVard and backward modal amplitudds, and by, are di-

ticular the numerical computations, it is convenient to avoidrectl coupled to the polarization modes and respec-
the continuous label. This is made possible by defining the . Y pled P ‘modpg andp, respt
- " ; tively, and indirectly to the remaining polarization variables
atomic “modal” amplitudes . - ) X
characterized by odd indices and to the population variables
carrying even indices. Thus, it follows that the possible syn-

L
Pm(7)= %J' dze '™%p(z,7), (22a chronous steady states are solutions of the algebraic equa-
0 tions:
1 (1+i6)fs—Y,—2Cpy'=0, (249
dm(r)=EJ’ dze '™kx(z, 7). (22b)
0 (1+i8)bg—2Cp*, =0, (24b)
wherem=0,+1,+2, ..., andd},=d_,, becaused(z,7) is —(1+i5p)pS+dSt ftdSiby=0, (240

real. It then follows from Eqs(20) and (22) that

1
d ~ dSt_deq5 + = st % fo+ st % b
g-f=—«l@+iof-Y,—2Cp], (233 2m mot 5 (P=@m-1)fstt P=(2m+1)Dst)
1
d - + 5 (P3ms 15 Pom-10%) =0, (249
g-b=—*[(1+i6)b—2Cp_4], (23b)

where st denotes the stationary value of the corresponding
variable. From Eq(24¢) we also have

d
—pPm=—(1+180)pm+ (dm_1f +dm1b), (230

st st
dr st _d2m—2fst+ d2mbst

Pam-1=""1 175,

(25

d 1
g, dm=— Y(dn= 0 0) = 5 ¥(P (1) f +PZ (i1 1)b) After substituting Eq.(25) into Eq. (24d) and keeping in
mind thatdy =d_,, we obtain the recursion relation

1
5 Y(Pmeaf™ P ab”), (230 EdSty ot A3t E5 A5 =A%, (20)
. wherem=0,+1,£2, ..., and

Note that, wherb=0, Eqs.(23) reduce to the much simpler
equations for a unidirectional ring resonator where the only fsid
nonzero atomic amplitudes apg andd,. 11 2 (273

The modal equation&3), which are equivalent to Egs. 0
(20), form the basis of our model for a bidirectional ring £ 2+ b2
resonator with an injected field in the case when the medium =1+ SR (270

0

is homogeneously broadened and the conditions for the UFL
are satisfied. Although the model applies equally well to the\n connection with Eq(26), we distinguish two possibilities:

description of a medium with gain, in the following we will . _ - _
focus only on the behavior of an absorbing system, i.e., oriielgéorgio' In the former casg.e., forbs=0), Eq.(27D

the case when®9=—1.

i
lll. STEADY STATES m=1+ 1+ 8% 28
We now consider the matter of the possible steady stategng Eq.(26) reduces to

of Egs.(23). Intuitively one might expect that, if nontrivial
steady state solutions were to exist, the forward and back- st 1 eq
ward fields would have to be synchronized in frequency. As d2m—;d Om,o- (29
it turns out, this is not possible for the case of an absorbing
sample of atoms, as we show in this section. It is convenienthus, Eq.(25) implies that
to separate the discussion into two subsections, the first deal- st
ing with synchronous solutions, and the second concerned st fsdo _ fst E eq (309
with the more general situation where the backward field and PLI=15 S0 1+idgn
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p*, =0, (30b)

2—4|§|2=l+ |fst|2_|bst|2 2 |fst|2+|bst|2

. . . g 1+ 02 1+ 62

and, in turn, Eq.30a, together with Eq(244a, yields the (39)
steady-state equation

A simple analysis of the roots of E(86) shows that the root

2Cd°®d 2C§pded .

N R o - labeled (- -)_ yields
+i| 6+

(1 1+5§+|fst|2) '(” 1+5§+|fst|2” S

(31) st

_St>
do

1, (393

for the forward field amplitude. This is the familiar steady

state bistability equation for a unidirectional ring resonator

[4]. leading to the unphysical resuléi3},|—~ as m—o. The
If £&#0, then from Eq(273 it follows that the backward second root, instead, is consistent with the ratio

field bg; is not equal to zero and we have to solve the recur-

sion relation(26), which can be written explicitly in the form d3'
—1<1, (39b
£+ pdSt+ e+ dSi=d®?  (m=0), (329 do
gS+ pdSi+ 4 dS=0  (m=1), (32 as it must be. Iity combini_ng E@37) with Eq. (329 we can
calculate eacls,. In particular, we have
gl pdst £4d¥=0 (m=2), (320 4o
do'=——=3 (409
Vi—4lg®
plus the complex conjugates of Eq82b), (320, etc. ged
Next, we note that Eq.32b) can also be written as gst __( 1— n ) (40b)
,2_ )
dSt |§|2 2€ \ 772_4|§|2
==, (33 .
dst d and thus, according to E¢25), we have
° e
dS
2 o U%fsrdgibs
while Eg. (329 yields, P s,
N A [ p-2by a5
§ ast gst (34 =(1-1idp) - st
2 7]+§*d_§t 2|bg{? V7P —4g?
! (41)
etc. These results imply,
It follows, from Egs.(24b) and(41), that
dSt dS'[ g 2 g 2
f*_ztzf*_:t:"':_ 4 = 4 - 0=—15y, (42a
st oS H L02
T TG 214 5
0 , 7—2|bg|(1+ &)
(35) 2|bg?=2Cde9 1— . (42b
VP —4l¢?

Consider now the quadratic equation
It is easy to show that

g* d_;t = — ﬂ (36)
dst ds"’ 17— 2| 2/(1+ 55)
0 x 2 0
URRS 1— >0. (43

st
%o VP —4lgl?

so that, for an absorbing mediund¢<0), Eq. (42b) can
never be satisfied. Thus, no steady state is possible for
- .. #0, and the only synchronous stationary solutions are those
whose backward field amplitude is equal to zero. This con-
(37) clusion was also reached by Asquini and Casagranfen-
der resonance conditions but without invoking the uniform
where field limit.

whose roots are

st

d3' 1 , . d3
& =3(-nENn —4|gP)=| &

st st
do d>

- =

*
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B. Nonsynchronous steady states

Somewhat unexpectedly, Eq&3) admit a class of long-
time solutions in which the backward field and the atomic
modal variablegwith the exception ofdy) oscillate with a
frequency that is different from that of the driving field.
More precisely, we seek long-time solutions of the form,

f(r)="fq, (449
b(7)=bge™'*", (44b)
Pam-1(7) = Pam-1€' (MDA, (449
dom(7) =d3p,e™7, (440

FIG. 2. The moduli off; andbg, (labeledf andb, respectively

whereA is an unknown frequency shiftneasured in units of are plotted as functions of the driving field amplitude together
Y, ) and fst!bst7p2m L ,d are all constant. If solutions of with the steady-state curve of unidirectional bistabilitifin solid
line). The parameters of this simulation afg=—0.1, §=—11.5,
=2, 2C=79, k=0.09. The stationary solutions below the turning
pomts(lndlcated by the arrowssatisfy Eqs(45) but are not physi-
cally accessible because they are unstable.

thls type exist and are stable, direct experimental eV|denc
could be provided by looking for a beat note between the”
forward and backward field components.

Substitution of the ansat®4) into Egs.(23) yields the

following nonlinear algebraic set of equations: . _ . . .
ity curve is not accessibleWe will return to his aspect of

(1+i0)fg— Y|—2Cp§t= 0, (453 the problem in our discussion of the time-dependent solu-
tions and their stability.
A)
K

—[1+i(So+mA)IpSt_ +d5h of+d5hbS=0
(450

1+i bsi—2Cp*, =0, (45b)

IV. TIME-DEPENDENT SOLUTIONS

In order to analyze the behavior of the system as a func-
tion of time, we have integrated Eq®3) using a standard
Runge-Kutta method with adaptive-step-size control. These
1 equations involve an infinite hierarchy of atomic variables,

eq Z(pSt* st* but numerical tests have shown that, for a large range of
Leim )d I mot 5 (PGt P=Gme1)Pst parameters, a cutoff a= * 10 is already sufficient for con-
1 vergence of the solutions to a satisfactory level of accuracy.

+ = (pSt s fE+pSt,_ b%)=0, (450 Beca_luse we are considering a homogeneogsly broadened ab-
sorbing medium, we have sgt%= —1. In addition, we have

electedY, to be real for definiteness. A natural choice of
itial conditions is such that every dependent variable be-

for the unknown steady state amplitudes and frequency shi
A [12], which we have solved using the globally convergentgins at zero, except fad, that is real and initially equal to

method of Ref[13] —1. Furthermore, we have assigned a small initial value to
Note that, asc gets smaller for decreasing mirror trans- the backward field [typically such that |b(7=0)
mittivity, A must also decrease so that the ralix in Eq.  =1.0x10"4] to simulate the spontaneous emission noise of
(45b) remains finite. We have checked the correctness of thithe system.
plausible guess numerically. At the same time, it might ap- Our analysis of the previous section has shown the possi-
pear that, for sufficiently small values af and finitem, one  bility that long-time solutions of Eqs23) with a nonzero
might neglect the contribution®A in Egs.(45¢0 and(45d). backward field may take the forfd4) with a frequency shift
As it turns out, we have also verified that the maximumA between the oscillation frequencies of the backward and
number of modes that must be kept for an accurate solutioforward fields. Our numerical simulations have shown that
of Egs. (45) increases aa\ decreases so that, apparently, b(7) may vanish, in spite of the initial nonzero value of this
these contributions are never negligible and, as a consesariable and, if so, the solution approaches the steady-state
quence, the continued fraction technique discussed in theonfiguration of the unidirectional ring resonator. However,
previous section cannot be applied. for a wide range of parameter values, this type of solution
A typical example of possible steady state valuesfigr becomes unstable, and the field and atomic variables evolve
and b, is shown in Fig. 2 together with the well-known into the general form given by Eq&l4).
corresponding steady state of the forward field in ordinary In this case, a typical early stage of the evolution of the
optical bistability. As one can readily anticipate from thesefields is shown in Fig. 3. For the chosen parameters, the
numerical solutions, not all steady-state values are accessibteodulus of the backward field grows monotonically, and
(just as the negative-slope segment of the stationary bistabieventually reaches a constant value in approximately 1200
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FIG. 5. The moduli off, (solid circles andbg; (open circleg
are plotted as functions of the driving field amplitude together
with the steady state curve of unidirectional bistabilitlgin solid
line). The accessible steady-state values, obtained by the numerical
solution of Egs.(23), are in excellent agreement with the corre-
sponding solutions of the stationary equati¢#s). The parameters
of this simulation ares,=—0.1, #=—11.5, y=2, 2C=79, «
=0.09.

0 50 100 150 200

T
obtained by varying the injected field amplitude, together

FIG. 3. The early time-dependent evolution of the moduli of thewith a solid line representing the modulus of the forward
forward (a) and backwardb) cavity fields, corresponding %,  field for a unidirectional ring resonator. We obtained these
=50. The remaining parameters of this simulation &5 —0.1,  results by starting the first run at the valMe=37 with the
6=-11.5,y=2, 2C=79, «=0.09. initial conditions described above, and continuing the time

integration until the moduli of andb became constant. At
units of the dimensionless time At this point, the real and this point we increaseﬁ'l and repeated the procedure, with
imaginary parts of the forward fields; are constan(not  the final values of the earlier run chosen as the new initial
shown, but the real and imaginary parts bfr) undergo conditions.
sinusoidal oscillations with constant amplitude, as shown in  For the assigned parameters, our numerical solutions
Fig. 4. These results show clearly that, after a SUffiCient'yshOW thatb continues to be zero addst| varies a|0ng the
long time, the forward field reaches a steady state and that jswer branch of the bistability state equation uitjlreaches
oscillates with the frequency of the external fleld, while thethe approximate value of 4l(gee F|g 5 At this point the
backward field, which is also in steady state, oscillates with dorward field “jumps up,” as it would in a unidirectional
frequency shifted by an amount whose magnitude can be ring resonator, and the backward field acquires a nonzero
extracted from the data shown in Fig. 4. magnitude for the first time. Note, however, that the forward

Figure 5 shows a collection of values [ffy| and[bs|  field lands well above the upper branch of the unidirectional

bistability curve. After this jump, both fields vary continu-
3 ' ' ' ously, as we chang¥,, until we reach approximatelY,
=54.6 where|b,| becomes equal to zero arld| ap-
proaches the upper branch of the bistability state equation.

Upon decreasing,, the situation does not change until
Y,=52.7 where|bg| becomes finite andif|, correspond-
ingly, moves away from the bistability steady state curve.
When Y, approaches the approximate value 38.7, the for-
ward field jumps down back to the lower branch of the state
equation and the backward field vanishes. So, hysteresis
manifests itself for both fields, at both ends of a finite range
-3 : : ‘ : of values of the injected field amplitude.

1200 1210 1220 1230 1240 1250 We should also point out that sudden jumps and hyster-
T esis are not always present when the backward field develops

FIG. 4. Long-time behavior of the real pafsolid line and @ Nonzero stationary value. Figure 6 was constructed in the
imaginary part(dotted ling of the backward field for the same Same way as Fig. 5, but for different values of the param-
parameters adopted in Fig. 3. Because the forward field is constarfters. Here both fields vary continuously,¥gschanges, and
over the same time range, the oscillations of the backward fiel@gain the backward field acquires a nonzero magnitude in-
display the nonsynchronous nature of the solution. side a bounded range of values¥gf. Note that, although the
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spatial grating in the population difference. Perhaps the most
notable feature is that, although the spatial average of the
population difference is negative, periodically there are re-
gions where the population difference is greater than zero
and, thus, these regions have gain.

V. LINEAR STABILITY ANALYSIS

It is already known from previous studi¢4,11] that the
steady-state solutions of unidirectional bistability may be-

R come unstable along a segment of the upper branch and give
15 25 35 45 55 way to self-oscillations. Asquini and Casagrand¢ gener-
Y, alized the studies of Refl1] for the case of a bidirectional

ring cavity under resonant conditions. Here we complete the
FIG. 6. The moduli offs, (solid circle3 andbg, (open circles  development of our previous sections and extend the treat-
are plotted as functions of the driving field amplitudle together  ment of Ref[7] by carrying out a linear-stability analysis for
with the steady-state curve of unidirectional bistabilithin solid  arhitrary values of the detuning parameters. In particular, we
line). The parameters used in this simulation @e=0, 6=—10,  a550ciate the appearance of solutions having a nonzero back-
y=2, 2C=50, k=0.2. ward field with the instability of the trivial solution under
infinitesimal perturbations, where by “trivial solution” we
cavity-damping rate: does not affect the steady-state behav-mean a configuration wheffe, obeys Eq(31), where
ior of the forward field in unidirectional bistability, it does
play a role in determining the existence and stability of the o (1 5§)deq
nonzero backward field solutions in the case of a bidirec- 0 :m, (479
tional ring resonatofsee Eqs(45)]. o st
Stationary behaviors are not the only possible outcomes

st
of the long-time dynamics. We have seen instances in which pst= do fst (47b)
forward and backward fields coexist and undergo self- T1+i6y”
pulsing oscillations. However, we have chosen not to inves-
tigate this aspect of the problem. andb and the other modal components vanish.

It is interesting, instead, to display the population differ- The linearized form of Eqs(23) around an arbitrary-
enced(z,7) as a function ofz. In terms of the population trivial state is given by
modal amplitudes, this variable is given by

d ~ ~
_ — 8f=—k(1+i6)6f+k2Cbp,, (489
d(z,7)= don(7)e2™ (4 ar
m
d ~ ) ~
Figure 7 shows how the population difference varies With g, 0=~ «(1+i6)6b+«k2Cop_y, (48b)
at a selected time= 7, (solid line) after all transients have
died out, and at a slightly later time=7,+1.22 (dotted d
line). This behavior suggests the existence of a moving- E_‘Spmel:_(l+i50)5p2mfl+fst5d2m72
Ot + A8 16 + S!S 00D, (480
g
g d _ 1 * Stk
% a- 0y = — ySdom— 5 Y(fst0P~ 2m—1) T P1 " Omodf
c
S 1
% +pit* 5m,715b)_ 57(f2t5p2m+1
]
el ] + P1'Om 00 * + P O 18b%), (489
0 5 K 10 15
z together with their complex conjugates. In EG8), 5f, b,
FIG. 7. Spatial profile of the population difference plotted as adpPsm—1, anddd,,,, form=0,=1,+2, ... ,denote the devia-
function of kz after a long timer; (solid line) and at the slightly  tions from the respective steady-state values of the variables.
later time 7,+ 1.22 (dotted ling for a value of the driving field By inspection, we see that Eq$48) split into three
amplitudeY,=50. The remaining parameters of this simulation aregroups, each forming a closed set of equations. The first
8o=-0.1, 6=—11.5,y=2, 2C=79, k=0.09. group includes,
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d - -
5f=—%(1+i16)5f+x2Cop;,

prpe (49a

d - , -
d—Taf*=—K(1—|0)5f*+K2c:5p1‘, (49b)
—8p1=—(1+18y) p,+ fi06do+d3'sf, (499

dr

d
I- opF =—(1—i8,) opF + f5,6do+d3'6f*, (490

d 1
g7 9do=—y8do— 5 ¥(F5dpT +pi™ &f + f50p, + pT'of*),
(499

PHYSICAL REVIEW A63 043815

N3+ (y+2)N2+ (14 85+ 2y+ v f PN

+y(1+ 82+ 29+ y|fs]?=0. (52
With the help of the Hurwitz criterioff14], it is easy to
prove that all three roots of Eq52) have a negative real
part, which implies that the only fluctuations that may be
amplified and eventually destroy the trivial solution are gov-
erned by Eqgs(49) or (50) [and the complex conjugate of Eq.
(50)].

Although the characteristic equation associated with Egs.
(49) is already known, for completeness we reproduce it be-
low together with the characteristic equati®0). For Egs.
(49) we have,

which we recognize as the linearized equations of unidirec&nd for Eqs(50)
tional bistability. The second group couples the fluctuation

variablessb, dp_,, 8d_,, and dp} according to

d ~ ~
ob=—k(1+i6)6b+«2Cp_1,

ar (509

d
d—Tép_lz—(1+i50)5p_1+fst5d_2+d8t5b, (50b)

d 1
g 0d-2=—yd_,— 5 y(fsi0p5 +pi* db+5p_y),
(500

d
op5 =—(1—1680)6p3 +f5d_5,

ar (500

where we have used the identd§ =d_,. The third group is
comprised of an infinite set of triplets of equations of the
form

d7_5p72n+1: —(1+i60)0p_ons1t+fs6d 5y, (518

d 1
E_5d—2n: —yéd_5,— 57(f5t5p§n+1+ f:t5p—2n+1)a
(51b

d .
d_7_5p§n+1: —(1-180)0p3n41+50d 5., (510

wheren#0,+1.
The eigenvalues of Eq$49) have already been analyzed

)\5+C4)\4+C3)\3+C2)\2+C1)\+C0:0 (53)
)\4+b3)\3+b2)\2+b1)\+b020, (54)
where
C,=2+y+ 2k, (553
Ca=1+ 82+ y|fsl?+2y+ K1+ 6?)
+2k(2+y)—2k2Cd!, (55b)
Co= Y(1+ 85+ |fsf?) + 2k(1+ 29+ 55+ 7|f?)
+ K22+ y)(1+ 6%
- - fof?
—2k2Cd! 1+K+y—7|—s‘|2 , (550
2(1+ 6%

C1=2ky(1+ 85+|f(?) + K21+ 2y+ 55+ 9| fs(?)

+(k2Cd3H?—2k2Cd!

'y+7<( 1-06p+7y

in past studies of unidirectional bistability and self-pulsing gng

[4]. The sets of Eq450) and(51), instead, contain informa-

tion on the possible emergence of solutions in which the

backward field plays a dynamical role.

We consider first Eqs(51) for an arbitrary value of the
index n (with n#0,=1). The characteristic equation takes
the form

fol?(1+ 68
_3’| st| ( a o) (550)
2(1+ 6%
~2 2 2 2 -~ sty 2 |fst|2
Co= Yk (1+ 6°)(1+ 55+ |fs?) +(k2Cdy)y| 1— >
1+ 6
—2k22Cd'y(1- 66y), (550
bs=2+y+k(1+i6), (563

bo=1+ 63+ y|fl 2+ 2y+k(1+i6)(2+ y)—k2Cd',
(56b)
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0.15 3 3 3 3 3 nonzero-backward field. The same outcome was observed by
‘ ‘ starting from an initial condition in which both forward and
0.1 3 f backward fields were zero and by applying a small initial
. /\b ‘ ‘ perturbation to the backward field to simulate spontaneous
S 005 f \ emission noise.
o . \ In general, i.e., for different selections of the parameters,
0 A \ the situation appears to be more complicated because we also
NN\ found instances in which the self-pulsing stdteith bg,
NN =0) and the nonsynchronous steady states behave as coex-
‘0'0525 35 45 55 isting attractors. For example, in correspondence with the
Y, parameterss,=—0.1, §=—9.5, y=2, 2C=79, and

FIG. 8. The real parts of the solutions of the characteristic equa-: 0.55, both Egs(53) and(54) have one root having a posi-

tions (54) (labeledb) and(53) (labeledf) are plotted as functions tive real part in the ra'f‘ge 4M'<64'32 If. we select a
of the driving field amplitudey, for the parameters,=0, o= value of the external driving field from within the common

B a o~ domain of instability, the system evolves into different at-
~10.y=2, 2€=50, x=0.2. tractors depending on the initial conditions. These coexisting
- attractors appear to be quite removed from each other, so that
by=y(1+ 85+ |fs?) + k(1+i0)(1+2y+ 85+ ¥ f?) we never observed random switching between the two do-
mains in response to small perturbatiofesg., numerical

2
~K2C A 1+ y—id,— M , (560  hoise or artificially induced small jumps during the evolu-
2(1-i6p) tion).
5 ~ In order to observe a stationary state with a nonzero value
bo=yx(1+i0)(1+ 5§+|fst|2)— k2Cd3'y(1—i6y). of the backward field, the best strategy, perhaps also viable

(56d  experimentally, might be to observe that the domain of in-
] _ stability of the backward field is broader than that of the
We have obtained the roots of EqS3) and(54) numeri-  forward field, and to select a value of the driving field for
cally. For the parameters chosen in the construction of Fig. §hich only the backward field is unstable. This should pro-
bility curve, one(and only ong of the roots of Eq(54) has  gtate of the type described by E@4).
a positive real part in the range 38&,<52.8, while all

roots of Eq.(53) have a negative real part. This is consistent
with the observed behavior of the time-dependent equations
(23) whose solutions evolve with a nonzero-backward field
atY,=52.7, wheny, is scanned in the direction of decreas- In this paper we have explored the influence of the back-
ing values. Incidentally, we note that the root with a positiveward mode of propagation of the cavity field on the dynam-
real part has an imaginary part that is quite close to thécs of a ring resonator driven by an external field and con-
frequency shiftA calculated from the time-dependent solu- taining an ensemble of absorbing two-level atoms. After
tions (see Sec. IV, Fig. B developing a first-principles description of this problem in

The situation is more complicatédnd interestingfor the  the plane wave and semiclassical approximations, we have
parameters chosen in Fig. 6 because in this case both Eqierived the working equations in the uniform field limit.
(53) and(54) have one root having a positive real part for a These equations describe the coupled evolution of the for-
range of values o¥, [15]. As shown in Fig. 8 the ranges of ward and backward cavity field amplitudes and of an infinite
instability overlap, in part, but have considerably differenthierarchy of atomic “modal” variables.
widths; in addition, the real parts of the unstable roots of Eq. The main result of our analysis is the prediction of a
(54) are significantly larger than those of the correspondingsteady-state configuration in which the forward and back-
roots of Eq.(53). Similar behavior shows up for various ward fields have constant amplitudes but different frequen-
parameter combinations and appears to be rather commoncies of oscillation. This prediction is supported by the long-

If a driving field amplitude is chosen from within the time behavior of the equations of motion and is further
common domain of instability, and if we artificially turn off confirmed by two additional independent calculations. The
the backward field and the appropriate atomic variables, thérst is based on the solution of a nonlinear system of alge-
forward field will eventually evolve into a self-pulsing state, braic equations for the steady-state values of the variables,
as it should. However, if we allow the cavity field to operateand the second is the analysis of the linear response of the
also in the backward direction, an arbitrarily small initial system in the neighborhood of a unidirectional steady state.
fluctuation of the backward field will grow, destroy the self-  The linear-stability analysis also shows that, at least for
pulsing state and bring the entire system to a stationary staté)e parameters adopted in this study, the unidirectional
as shown in Fig. 3. This behavior suggests that the selfsteady state can become unstable against the growth of a
pulsing state of unidirectional bistability is unstable in the backward wave over a domain that is significantly wider than
bidirectional modelfor the chosen parameterand that the that over which self-pulsing of the forward field is predicted
only attractor in this case is the stationary state with ao emerge. Thus, appropriate values of the parameters can be

VI. SUMMARY AND CONCLUSIONS
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