
PHYSICAL REVIEW A, VOLUME 63, 043815
Bidirectional emission from a ring resonator driven by an external field
and containing a saturable absorber

Zongxiong Ye and Lorenzo M. Narducci
Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104

~Received 19 October 2000; published 16 March 2001!

We formulate a first-principles description of the behavior of a bidirectional ring cavity containing a satu-
rable absorbing medium, and driven by an external coherent field. The setting of interest to this study is an
extension of the ordinary optically bistable system, where a ring resonator supports only one of the two
possible directions of propagation of the cavity field. In this more general case and in the uniform-field limit,
we show that the dynamics of the fields-atoms system is described by an infinite set of coupled equations that
can be readily solved by standard numerical means after appropriate truncation of the number of atomic
variables. With the help of two different approaches, we find unexpected, long-time stationary solutions such
that the forward and backward fields oscillate with different carrier frequencies: the first is based upon the
time-dependent equations and the second on a set of nonlinear-algebraic equations describing the steady states.
As an added confirmation, we carry out a linear-stability analysis of the unidirectional steady state for the
purpose of identifying the conditions under which a backward field can grow from an initial fluctuation. By this
approach we also suggest a possible strategy for the experimental observation of stationary, frequency-shifted
output fields.

DOI: 10.1103/PhysRevA.63.043815 PACS number~s!: 42.65.Pc, 42.65.Sf, 42.55.Ah
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I. INTRODUCTION

Bidirectional ring resonators have played a significa
role in laser physics and quantum optics@1#. An extensive
literature deals with theoretical and experimental aspect
the behavior of bidirectional ring cavities containing an a
tive medium@2#. In contrast, much less attention has be
paid to the counterpart problem of a bidirectional resona
containing a passive medium and driven by an external
herent field. Of course, this comment does not include c
ties configured as Fabry-Perot resonators where bidirecti
propagation is an unavoidable consequence of the geom
of the mirrors@3#.

In fact, an extensive amount of work during the m
1970s and early 1980s dealt with the bistable propertie
ring cavities containing a passive medium but, for the m
part, these studies focused on a setting where the ca
could support only unidirectional propagation in the sa
direction as the external field@3,4#. And, indeed, this has
been largely the outcome of experiments, as reported
example by Kimble and collaborators@5#. Exceptions were
noted but, to our knowledge, they were not investigated
ther @6#.

In a significant contribution that appears to have attrac
only limited attention, Asquini and Casagrande@7# investi-
gated the bistable properties of a bidirectional ring cav
under resonance conditions, i.e., when the frequency of
driving field matches the frequency of one of the cav
modes and the atomic transition frequency. They studied
steady-state behavior and the linear stability of the sys
around steady state, and concluded that bidirectional pro
gation does not introduce novel stationary features, rela
to the unidirectional case. Their linear stability analysis,
stead, suggested the existence of instabilities in the coun
propagating field, in addition to the known self-oscillatio
of the forward field.
1050-2947/2001/63~4!/043815~12!/$20.00 63 0438
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The purpose of this paper is to reexamine the conclusi
of Ref. @7# in the more general setting involving arbitrar
detuning parameters, and to propose the existence of an
expected steady state in which both forward and backw
fields emerge from the resonator with slightly different ca
rier frequencies. To be more precise, we predict that
steady state the forward field oscillates in synchronism w
the injected field, while the backward field is frequen
shifted from both. This is surprising because, at first sig
one would not expect a steady state if the forward and ba
ward fields oscillate with different frequencies in the sam
optical resonator.

We derive our working equations following a somewh
different procedure from the one used in Ref.@7#, and intro-
duce a version of the boundary conditions that, upon suita
change of the field variables, can be cast into the stand
periodic form appropriate for an ideal resonator. In terms
the new variables, the equations of motion acquire the
pected field damping terms, and terms containing the cav
mistuning parameter. The advantage of our approach is
in the uniform-field limit, it can readily yield information no
only on the steady-state properties of the system, but als
its transient evolution with the help of standard numeri
methods.

We find ourselves in agreement with the conclusio
reached by Asquini and Casagrande under resonance c
tions. However, in the more general setting in which ar
trary detuning parameters are allowed, a backward field w
a nonzero, time-independent amplitude can coexist wit
stationary forward field, provided that its carrier frequency
different.

With regard to the physical interpretation of this effec
we believe that the following sequence of events is likely
play a role in this unusual phenomenon: the backward w
grows from spontaneous emission noise; its gain is provi
by an initially small fraction of the forward wave that i
©2001 The American Physical Society15-1
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Bragg-scattered from the atomic polarization and popula
gratings formed in the medium by the interference betw
the counterpropagating components. When the gain of
backward wave exceeds the cavity losses, a steady-state
dition is eventually reached in which the backward field o
erates, in essence, as a ring laser of its own, subject t
own boundary conditions. In fact, the value of the frequen
shift, calculated numerically, is often well approximated
the usual mode-pulling formula of ordinary-laser theory.

We have calculated the stationary fields and their f
quency difference by solving the time-dependent equati
of the system for long times and, independently, also
solving the nonlinear-algebraic equations that describe
steady-state configurations. These results, not surprisin
are in excellent agreement with each other and offer mu
support in favor of the existence of the frequency-shif
steady states.

As an additional independent check, we have also car
out a linear-stability analysis in the neighborhood of stea
states with zero backward field, and determined the par
eters that favor the growth of an initial backward field flu
tuation. The boundaries of these unstable domains are in
cellent agreement with those derived from the tim
dependent equations and from their stationary counterpa

Our paper is organized as follows. Section II contain
description of the model and a derivation of the equations
motion, ending with the infinite set of working equations
the uniform field limit. In Sec. III we discuss two possib
kinds of steady states. The first, in which the backward fi
oscillates synchronously with the forward field, is physica
unrealizable, as we show. The second class of steady st
characterized by forward and backward fields with differe
carrier frequencies, is consistent, instead, with the work
equations. In this case we derive numerically and display
values of the relevant variables for selected parameters
ing an appropriate nonlinear algebraic set of steady-s
equations. Section IV describes time-dependent solut
with special emphasis on two sets of system parameter
Sec. V, we consider the linearized behavior of our system
the neighborhood of steady-state configurations in wh
only the forward field is nonzero, and determine the con
tions that favor the growth of a backward field. Finally, w
conclude the paper, in Sec. VI, with a brief overview of o
results.

II. DESCRIPTION OF THE MODEL AND EQUATIONS
OF MOTION

We consider a ring cavity composed of three mirrors; o
is an ideal reflector and the other two have equal po
reflectivities,R,1, as shown schematically in Fig. 1. Th
total length of the resonator isL. Inside the cavity, a region
of length L is filled with a homogeneously broadened, pa
sive medium made up of two-level atoms. A coherent field
injected into the cavity through one of the two partia
transmitting mirrors, while a fraction of the cavity field e
capes in both the forward and backward directions@8#. We
analyze this model within the plane wave and slowly vary
amplitude approximations.
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We assume the injected signal to be a monochrom
plane wave of the form

EI~z,t !5EIe
i (kz2vt)1c.c., ~1!

where EI is a constant amplitude andv and k5v/c are
chosen as the reference frequency and wave number, res
tively. As usual, the cavity fieldE(z,t) and the macroscopic
atomic polarizationP(z,t) are linked by Maxwell’s wave
equation

S ]2

]t2
2c2

]2

]z2D E~z,t !52
1

e0

]2

]t2
P~z,t !. ~2!

We assume the cavity field to have the form

E~z,t !5EF~z,t !1EB~z,t !, ~3a!

where

EF~z,t !5EF~z,t !ei (kz2vt)1c.c., ~3b!

EB~z,t !5EB~z,t !e2 i (kz1vt)1c.c., ~3c!

and F and B label the forward and backward directions
propagation, respectively. Because we have in mind a n
resonant interaction between the injected field and the ato
through the intermediary of the cavity field, the amplitud
EF(z,t) andEB(z,t) are slowly varying with respect to bot
z andt. In this way, we can interpret the cavity fieldE(z,t) as
the superposition of two contributions that propagate in
posite directions with slowly varying amplitudes.

For the macroscopic polarization we assume the repre
tation

P~z,t !5m@P(1)~z,t !e2 ivt1P(2)~z,t !eivt#, ~4!

wherem is the modulus of the atomic transition dipole m
ment, andP(6)(z,t) are slowly varying functions of time bu
rapidly varying functions of space; moreover, we ha
P(2)5@P(1)#* .

Upon substituting Eqs.~3! and~4! into Eq.~2!, the slowly
varying amplitude approximation yields two separate eq
tions for the forward and backward field amplitudes of t
form @9#,

FIG. 1. Schematic representation of the bidirectional ring re
nator. The input and output mirrors have equal power reflectivit
R,1, while the third mirror is assumed to be an ideal reflector. T
full length of the resonator isL, the passive medium is confined t
the segment 0<z<L, andEI denotes the injected field.
5-2
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S ]

]t
1c

]

]zDEF~z,t !5 i
vm

2e0

1

lEz

z1l

dz8e2 ikz8P(1)~z8,t !,

~5a!

S ]

]t
2c

]

]zDEB~z,t !5 i
vm

2e0

1

lEz

z1l

dz8eikz8P(1)~z8,t !,

~5b!

wherel52p/k. Note that the slowly varying amplitudes o
the cavity field are driven by the local average of the rapi
varying polarization amplitudeP(1)(z,t) weighted by the
exponential factorse2 ikz andeikz, respectively.

The evolution of the medium is described by the opti
Bloch equations after neglecting terms that oscillate at
quencies62v and higher. After inclusion of the usual phe
nomenological damping terms, the atomic equations have
form

]

]t
P(1)~z,t !52g

'
~11 id0!P(1)~z,t !2 i

m

\
D~z,t !

3@EF~z,t !eikz1EB~z,t !e2 ikz#, ~6a!

]

]t
D~z,t !52g

i
@D~z,t !2Deq#12i

m

\
$P(2)~z,t !

3@EF~z,t !eikz1EB~z,t !e2 ikz#2c.c.%, ~6b!

whereg
'

andg
i

are the relaxation rates of the polarizatio

and population difference, respectively,d05(v02v)/g
'
,

v0 is the atomic transition frequency,D(z,t) is the differ-
ence between the number densities of excited and gro
state atoms, andDeq is the value ofD in the absence of the
cavity field.

In view of the geometry of the resonator~Fig. 1!, the
forward and backward fields obey the boundary conditio

EF~0,t !5ATEI~0,t !1REF~L,t !, ~7!

EB~L,t !5REB~0,t !, ~8!

which, in view of Eqs.~3b!, ~3c!, and~1!, imply

EF~0,t !5ATEI1REF~L,t !e2 idc, ~9a!

EB~L,t !5REB~0,t !e2 idc, ~9b!

where T is the power transmittivity of the mirrors (T51
2R), dc5(vc2v)L/c is the cavity mistuning paramete
andvc denotes the cavity resonance frequency that is nea
to the carrier frequency of the injected field.

Equations~5! and ~6!, plus the boundary conditions~9!
and appropriate initial conditions, are sufficient, in princip
to analyze the space-time evolution of the bidirectional r
resonator. At this level of generality, the problem is clea
very complex. It is possible to introduce significant simpli
cations without omitting essential physical aspects if
limit our considerations to the so-called uniform-field lim
~UFL! @4,10,11#, a situation where the mirrors’ transmittivit
is reduced in step with the medium absorption coeffici
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and the cavity mistuning parameter until the slow spa
variation of the field amplitudesEF(z,t) and EB(z,t) be-
comes almost negligible over a single pass through the
dium.

The first step in this program is to introduce new sca
variables,YF(z,t) and YB(z,t), whose boundary condition
have the standard periodic form of an ideal resonator. T
required transformations are

EF~z,t !5
\

2m
~g

i
g

'
!1/2S YF~z,t !2

z

L
u ln RuYI D

3expF2
z

L
ln~Re2 idc!G , ~10a!

EB~z,t !5
\

2m
~g

'
g

i
!1/2YB~z,t !expFz2L

L
ln~Re2 idc!G ,

~10b!

where

YI5
2m

\
~g

i
g

'
!21/2

ATEI

u ln Ru
. ~11!

In terms of the new field amplitudes, the boundary con
tions ~9! take the form

YF~0,t !5YF~L,t !, ~12a!

YB~L,t !5YB~0,t !, ~12b!

which are, indeed, formally appropriate for an ideal bidire
tional ring cavity. Of course, Eqs.~12! do not imply that we
are neglecting the cavity damping mechanism or, for t
matter, the driving action of the injected field. In fact,
shown below, these contributions appear explicitly in t
transformed equations.

Before deriving the new equations of motion, it is al
convenient to introduce the scaled atomic variables

p~z,t !5
2i

N S g
'

g
i
D 21/2

P(1)~z,t !, ~13a!

d~z,t !5D~z,t !/N, ~13b!

whereN is the number density of atoms. At this point, th
equations of motion, in terms of the new variables, take
form

S ]

]t
1c

]

]zDYF~z,t !

5
cu ln Ru

L
YI2

c

L
ln~Re2 idc!

zu ln Ru
L

YI1
c

L
ln~Re2 idc!YF

1ca expF z

L
ln~Re2 idc!G 1

lEz

z1l

dz8e2 ikz8p~z8,t !,

~14a!
5-3
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S ]

]t
2c

]

]zDYB~z,t !

5
c

L
ln~Re2 idc!YB1ca expF2

z2L

L
ln~Re2 idc!G

3
1

lEz

z1l

dz8eikz8p~z8,t !, ~14b!

]

]t
p~z,t !52g

'
~11 id0!p1g

'
bd, ~14c!

]

]t
d~z,t !52g

i
~d2deq!2

1

2
g

i
~bp* 1c.c.!, ~14d!

where a5Nvm2/2e0\g
'
c is the unsaturated field absorp

tion coefficient per unit length,deq5Deq/N, and

b5eikz expF2
z

L
ln~Re2 idc!G S YF2

zu ln Ru
L

YI D
1e2 ikz expFz2L

L
ln~Re2 idc!GYB . ~15!

In spite of the significant increase in formal complexit
Eqs. ~14! are ideally suited for the implementation of th
uniform-field limit. Specifically, we assume the conditions

aL!1, T!1, dc!1, ~16!

subject to the constraints

aL

u ln Ru
'

aL

T
[2C5finite number, ~17a!

dc

u ln Ru
'

dc

T
[u5finite number. ~17b!

With the help of Eqs.~16! and ~17!, Eqs. ~14! take the
approximate form

S ]

]t
1c

]

]zDYF52k~11 iu!YF1kYI1k2C
L

L

1

l

3E
z

z1l

dz8e2 ikz8p~z8,t !, ~18a!

S ]

]t
2c

]

]zDYB52k~11 iu!YB1k2C
L

L

1

l

3E
z

z1l

dz8eikz8p~z8,t !, ~18b!

]

]t
p52g

'
@~11 id0!p2d~eikzYF1e2 ikzYB!#, ~18c!
04381
]

]t
d52g

i
~d2deq!2

1

2
g

i
@p* ~eikzYF1e2 ikzYB!1c.c.#,

~18d!

where k5cT/L denotes the field damping rate out of th
cavity. Note thatdeq521 for an absorbing medium.

The boundary conditions~12! are consistent with the fol-
lowing expansion of the field amplitudes in terms of t
cavity modes:

YF~z,t !5 (
n52`

1`

f n~ t !ei2npz/L, ~19a!

YB~z,t !5 (
n52`

1`

bn~ t !e2 i2npz/L. ~19b!

In this way, the partial differential equations~18a! and~18b!
become an infinite collection of ordinary differential equ
tions for the modal amplitudesf n(t) and bn(t) (2`,n,
1`). In the uniform-field limit@Eqs.~16! and ~17!# the in-
termode spacing is much larger than the width of each ca
modek, while the cavity mistuningdc is of the order ofk.
This implies that the injected field is almost resonant w
only one cavity mode~the one labeledn50), and that all the
other modes can be ignored if they are initially unexcited a
if they are not affected by dynamical instabilities. These
not expected to emerge if the atomic linewidthg

'
is suffi-

ciently smaller than the intermode spacing.
On the basis of these observations, we project the fi

equations~18a! and ~18b! onto then50 modes and ignore
all modes with indicesnÞ0 in the atomic equations~18c!
and ~18d! with the result

d

dt
f ~t!52k̃~11 iu! f 1k̃YI1k̃2C

1

LE0

L

dz8e2 ikz8p~z8,t!,

~20a!

d

dt
b~t!52k̃~11 iu!b1k̃2C

1

LE0

L

dz8eikz8p~z8,t!,

~20b!

d

dt
p~z,t!52~11 id0!p1d~eikzf 1e2 ikzb!, ~20c!

d

dt
d~z,t!52g~d2deq!2

1

2
g@p* ~eikzf 1e2 ikzb!1c.c.#,

~20d!

where f (t)[ f 0(t), b(t)[b0(t), t5g
'
t, k̃5k/g

'
, andg

5g
i
/g

'
. In arriving at Eqs.~20a! and ~20b! we have used

the approximate equality

E
0

L

dz
1

lEz

z1l

dz8e6 ikz8p~z8,t !'E
0

L

dz8e6 ikz8p~z8,t!,

~21!
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which holds ifL@l, and if the atomic polarization vanishe
outside the domain 0<z<L. Note that, in writing Eqs.~20c!
and ~20d!, we have changed the partial time derivative in
an ordinary time derivative because from now onz is just a
label, instead of an independent variable.

For the purpose of our subsequent analyses, and in
ticular the numerical computations, it is convenient to av
the continuous labelz. This is made possible by defining th
atomic ‘‘modal’’ amplitudes

pm~t!5
1

LE0

L

dze2 imkzp~z,t!, ~22a!

dm~t!5
1

LE0

L

dze2 imkzd~z,t!. ~22b!

wherem50,61,62, . . . , anddm* 5d2m becaused(z,t) is
real. It then follows from Eqs.~20! and ~22! that

d

dt
f 52k̃@~11 iu! f 2YI22Cp1#, ~23a!

d

dt
b52k̃@~11 iu!b22Cp21#, ~23b!

d

dt
pm52~11 id0!pm1~dm21f 1dm11b!, ~23c!

d

dt
dm52g~dm2deqdm,0!2

1

2
g~p2~m21!

* f 1p2~m11!
* b!

2
1

2
g~pm11f * 1pm21b* !, ~23d!

Note that, whenb50, Eqs.~23! reduce to the much simple
equations for a unidirectional ring resonator where the o
nonzero atomic amplitudes arep1 andd0.

The modal equations~23!, which are equivalent to Eqs
~20!, form the basis of our model for a bidirectional rin
resonator with an injected field in the case when the med
is homogeneously broadened and the conditions for the U
are satisfied. Although the model applies equally well to
description of a medium with gain, in the following we wi
focus only on the behavior of an absorbing system, i.e.,
the case whendeq521.

III. STEADY STATES

We now consider the matter of the possible steady st
of Eqs. ~23!. Intuitively one might expect that, if nontrivia
steady state solutions were to exist, the forward and ba
ward fields would have to be synchronized in frequency.
it turns out, this is not possible for the case of an absorb
sample of atoms, as we show in this section. It is conven
to separate the discussion into two subsections, the first d
ing with synchronous solutions, and the second concer
with the more general situation where the backward field
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the atomic variables~with the exception ofd0) develop fre-
quency shifts with respect to the external driving field.

A. Synchronous steady state solutions

As we can see by direct inspection of Eqs.~23!, the for-
ward and backward modal amplitudes,f st and bst , are di-
rectly coupled to the polarization modesp1 andp21, respec-
tively, and indirectly to the remaining polarization variabl
characterized by odd indices and to the population variab
carrying even indices. Thus, it follows that the possible s
chronous steady states are solutions of the algebraic e
tions:

~11 iu! f st2YI22Cp1
st50, ~24a!

~11 iu!bst22Cp21
st 50, ~24b!

2~11 id0!p2m21
st 1d2m22

st f st1d2m
st bst50, ~24c!

d2m
st 2deqdm,01

1

2
~p2(2m21)

st * f st1p2(2m11)
st * bst!

1
1

2
~p2m11

st f st* 1p2m21
st bst* !50, ~24d!

wherest denotes the stationary value of the correspond
variable. From Eq.~24c! we also have

p2m21
st 5

d2m22
st f st1d2m

st bst

11 id0
. ~25!

After substituting Eq.~25! into Eq. ~24d! and keeping in
mind thatdm* 5d2m , we obtain the recursion relation

jd2m22
st 1hd2m

st 1j* d2m12
st 5deqdm,0 , ~26!

wherem50,61,62, . . . , and

j5
f stbst*

11d0
2 , ~27a!

h511
u f stu21ubstu2

11d0
2 . ~27b!

In connection with Eq.~26!, we distinguish two possibilities
j50, orjÞ0. In the former case~i.e., forbst50), Eq.~27b!
yields

h511
u f stu2

11d0
2 , ~28!

and Eq.~26! reduces to

d2m
st 5

1

h
deqdm,0 . ~29!

Thus, Eq.~25! implies that

p1
st5

f std0
st

11 id0
5

f st

11 id0

1

h
deq, ~30a!
5-5
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p21
st 50, ~30b!

and, in turn, Eq.~30a!, together with Eq.~24a!, yields the
steady-state equation

F S 12
2Cdeq

11d0
21u f stu2

D 1 i S u1
2Cd0deq

11d0
21u f stu2D G f st5YI

~31!

for the forward field amplitude. This is the familiar stead
state bistability equation for a unidirectional ring resona
@4#.

If jÞ0, then from Eq.~27a! it follows that the backward
field bst is not equal to zero and we have to solve the rec
sion relation~26!, which can be written explicitly in the form

jd22
st 1hd0

st1j* d2
st5deq ~m50!, ~32a!

jd0
st1hd2

st1j* d4
st50 ~m51!, ~32b!

jd2
st1hd4

st1j* d6
st50 ~m52!, ~32c!

•••

plus the complex conjugates of Eqs.~32b!, ~32c!, etc.
Next, we note that Eq.~32b! can also be written as

j*
d2

st

d0
st

52
uju2

h1j*
d4

st

d2
st

, ~33!

while Eq. ~32c! yields,

j*
d4

st

d2
st

52
uju2

h1j*
d6

st

d4
st

, ~34!

etc. These results imply,

j*
d2

st

d0
st

5j*
d4

st

d2
st

5•••52
uju2

h2
uju2

h2•••

52
uju2

h1j*
d2

st

d0
st

.

~35!

Consider now the quadratic equation

j*
d2

st

d0
st

52
uju2

h1j*
d2

st

d0
st

, ~36!

whose roots are

S j*
d2

st

d0
stD

6

5
1

2
~2h6Ah224uju2!5S j*

d4
st

d2
stD

6

5•••,

~37!

where
04381
r
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h224uju2511S u f stu22ubstu2

11d0
2 D 2

12
u f stu21ubstu2

11d0
2 .

~38!

A simple analysis of the roots of Eq.~36! shows that the root
labeled (•••)2 yields

Ud2
st

d0
stU.1, ~39a!

leading to the unphysical resultud2m
st u→` as m→`. The

second root, instead, is consistent with the ratio

Ud2
st

d0
stU,1, ~39b!

as it must be. By combining Eq.~37! with Eq. ~32a! we can
calculate eachd2m

st . In particular, we have

d0
st5

deq

Ah224uju2
, ~40a!

d22
st 5

deq

2j S 12
h

Ah224uju2
D , ~40b!

and thus, according to Eq.~25!, we have

p21
st 5

d22
st f st1d0

stbst

11 id0

5~12 id0!
deq

2ubstu2
S 12

h22ubstu2/~11d0
2!

Ah224uju2
D bst .

~41!

It follows, from Eqs.~24b! and ~41!, that

u52d0 , ~42a!

2ubstu252CdeqS 12
h22ubstu2/~11d0

2!

Ah224uju2
D . ~42b!

It is easy to show that

12
h22ubstu2/~11d0

2!

Ah224uju2
.0. ~43!

so that, for an absorbing medium (deq,0), Eq. ~42b! can
never be satisfied. Thus, no steady state is possible foj
Þ0, and the only synchronous stationary solutions are th
whose backward field amplitude is equal to zero. This c
clusion was also reached by Asquini and Casagrande@7# un-
der resonance conditions but without invoking the unifo
field limit.
5-6
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BIDIRECTIONAL EMISSION FROM A RING . . . PHYSICAL REVIEW A 63 043815
B. Nonsynchronous steady states

Somewhat unexpectedly, Eqs.~23! admit a class of long-
time solutions in which the backward field and the atom
modal variables~with the exception ofd0) oscillate with a
frequency that is different from that of the driving field
More precisely, we seek long-time solutions of the form,

f ~t!5 f st , ~44a!

b~t!5bste
2 iDt, ~44b!

p2m21~t!5p2m21
st ei (m21)Dt, ~44c!

d2m~t!5d2m
st eimDt, ~44d!

whereD is an unknown frequency shift~measured in units o
g

'
) and f st ,bst ,p2m21

st ,d2m
st are all constant. If solutions o

this type exist and are stable, direct experimental evide
could be provided by looking for a beat note between
forward and backward field components.

Substitution of the ansatz~44! into Eqs. ~23! yields the
following nonlinear algebraic set of equations:

~11 iu! f st2YI22Cp1
st50, ~45a!

F11 i S u2
D

k̃
D Gbst22Cp21

st 50, ~45b!

2@11 i ~d01mD!#p2m21
st 1d2m22

st f st1d2m
st bst50,

~45c!

S 11 im
D

g Dd2m
st 2deqdm,01

1

2
~p2(2m21)

st * f st1p2(2m11)
st * bst!

1
1

2
~p2m11

st f st* 1p2m21
st bst* !50, ~45d!

for the unknown steady state amplitudes and frequency s
D @12#, which we have solved using the globally converge
method of Ref.@13#.

Note that, ask̃ gets smaller for decreasing mirror tran
mittivity, D must also decrease so that the ratioD/k̃ in Eq.
~45b! remains finite. We have checked the correctness of
plausible guess numerically. At the same time, it might
pear that, for sufficiently small values ofD and finitem, one
might neglect the contributionsmD in Eqs.~45c! and~45d!.
As it turns out, we have also verified that the maximu
number of modes that must be kept for an accurate solu
of Eqs. ~45! increases asD decreases so that, apparent
these contributions are never negligible and, as a co
quence, the continued fraction technique discussed in
previous section cannot be applied.

A typical example of possible steady state values forf st
and bst is shown in Fig. 2 together with the well-know
corresponding steady state of the forward field in ordin
optical bistability. As one can readily anticipate from the
numerical solutions, not all steady-state values are acces
~just as the negative-slope segment of the stationary bist
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ity curve is not accessible!. We will return to his aspect of
the problem in our discussion of the time-dependent so
tions and their stability.

IV. TIME-DEPENDENT SOLUTIONS

In order to analyze the behavior of the system as a fu
tion of time, we have integrated Eqs.~23! using a standard
Runge-Kutta method with adaptive-step-size control. Th
equations involve an infinite hierarchy of atomic variable
but numerical tests have shown that, for a large range
parameters, a cutoff atm5610 is already sufficient for con
vergence of the solutions to a satisfactory level of accura
Because we are considering a homogeneously broadene
sorbing medium, we have setdeq521. In addition, we have
selectedYI to be real for definiteness. A natural choice
initial conditions is such that every dependent variable
gins at zero, except ford0 that is real and initially equal to
21. Furthermore, we have assigned a small initial value
the backward field @typically such that ub(t50)u
51.031024] to simulate the spontaneous emission noise
the system.

Our analysis of the previous section has shown the po
bility that long-time solutions of Eqs.~23! with a nonzero
backward field may take the form~44! with a frequency shift
D between the oscillation frequencies of the backward a
forward fields. Our numerical simulations have shown th
b(t) may vanish, in spite of the initial nonzero value of th
variable and, if so, the solution approaches the steady-s
configuration of the unidirectional ring resonator. Howev
for a wide range of parameter values, this type of solut
becomes unstable, and the field and atomic variables ev
into the general form given by Eqs.~44!.

In this case, a typical early stage of the evolution of t
fields is shown in Fig. 3. For the chosen parameters,
modulus of the backward field grows monotonically, a
eventually reaches a constant value in approximately 1

FIG. 2. The moduli off st andbst ~labeledf andb, respectively!
are plotted as functions of the driving field amplitudeYI together
with the steady-state curve of unidirectional bistability~thin solid
line!. The parameters of this simulation ared0520.1, u5211.5,

g52, 2C579, k̃50.09. The stationary solutions below the turnin
points~indicated by the arrows! satisfy Eqs.~45! but are not physi-
cally accessible because they are unstable.
5-7



i
tl
a
he
h
e

rd
se

e
t
th
tial

ons

l
ero
rd

nal
-

n.
til

ve.
or-
ate
esis
ge

ter-
lops
the
m-

in-

he

e
ta
e

rical
e-

ZONGXIONG YE AND LORENZO M. NARDUCCI PHYSICAL REVIEW A63 043815
units of the dimensionless timet. At this point, the real and
imaginary parts of the forward fieldf st are constant~not
shown!, but the real and imaginary parts ofb(t) undergo
sinusoidal oscillations with constant amplitude, as shown
Fig. 4. These results show clearly that, after a sufficien
long time, the forward field reaches a steady state and th
oscillates with the frequency of the external field, while t
backward field, which is also in steady state, oscillates wit
frequency shifted by an amountD, whose magnitude can b
extracted from the data shown in Fig. 4.

Figure 5 shows a collection of values ofu f stu and ubstu

FIG. 3. The early time-dependent evolution of the moduli of t
forward ~a! and backward~b! cavity fields, corresponding toYI

550. The remaining parameters of this simulation ared0520.1,

u5211.5, g52, 2C579, k̃50.09.

FIG. 4. Long-time behavior of the real part~solid line! and
imaginary part~dotted line! of the backward field for the sam
parameters adopted in Fig. 3. Because the forward field is cons
over the same time range, the oscillations of the backward fi
display the nonsynchronous nature of the solution.
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obtained by varying the injected field amplitudeYI , together
with a solid line representing the modulus of the forwa
field for a unidirectional ring resonator. We obtained the
results by starting the first run at the valueYI537 with the
initial conditions described above, and continuing the tim
integration until the moduli off and b became constant. A
this point we increasedYI and repeated the procedure, wi
the final values of the earlier run chosen as the new ini
conditions.

For the assigned parameters, our numerical soluti
show thatb continues to be zero andu f stu varies along the
lower branch of the bistability state equation untilYI reaches
the approximate value of 41.2~see Fig. 5!. At this point the
forward field ‘‘jumps up,’’ as it would in a unidirectiona
ring resonator, and the backward field acquires a nonz
magnitude for the first time. Note, however, that the forwa
field lands well above the upper branch of the unidirectio
bistability curve. After this jump, both fields vary continu
ously, as we changeYI , until we reach approximatelyYI
554.6 where ubstu becomes equal to zero andu f stu ap-
proaches the upper branch of the bistability state equatio

Upon decreasingYI , the situation does not change un
YI552.7 whereubstu becomes finite andu f stu, correspond-
ingly, moves away from the bistability steady state cur
When YI approaches the approximate value 38.7, the f
ward field jumps down back to the lower branch of the st
equation and the backward field vanishes. So, hyster
manifests itself for both fields, at both ends of a finite ran
of values of the injected field amplitude.

We should also point out that sudden jumps and hys
esis are not always present when the backward field deve
a nonzero stationary value. Figure 6 was constructed in
same way as Fig. 5, but for different values of the para
eters. Here both fields vary continuously, asYI changes, and
again the backward field acquires a nonzero magnitude
side a bounded range of values ofYI . Note that, although the

nt,
ld

FIG. 5. The moduli off st ~solid circles! andbst ~open circles!
are plotted as functions of the driving field amplitudeYI together
with the steady state curve of unidirectional bistability~thin solid
line!. The accessible steady-state values, obtained by the nume
solution of Eqs.~23!, are in excellent agreement with the corr
sponding solutions of the stationary equations~45!. The parameters

of this simulation ared0520.1, u5211.5, g52, 2C579, k̃
50.09.
5-8
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BIDIRECTIONAL EMISSION FROM A RING . . . PHYSICAL REVIEW A 63 043815
cavity-damping ratek̃ does not affect the steady-state beha
ior of the forward field in unidirectional bistability, it doe
play a role in determining the existence and stability of
nonzero backward field solutions in the case of a bidir
tional ring resonator@see Eqs.~45!#.

Stationary behaviors are not the only possible outcom
of the long-time dynamics. We have seen instances in wh
forward and backward fields coexist and undergo s
pulsing oscillations. However, we have chosen not to inv
tigate this aspect of the problem.

It is interesting, instead, to display the population diffe
enced(z,t) as a function ofz. In terms of the population
modal amplitudes, this variable is given by

d~z,t!5(
m

d2m~t!ei2mkz. ~46!

Figure 7 shows how the population difference varies withkz
at a selected timet5t1 ~solid line! after all transients have
died out, and at a slightly later timet5t111.22 ~dotted
line!. This behavior suggests the existence of a movi

FIG. 6. The moduli off st ~solid circles! andbst ~open circles!
are plotted as functions of the driving field amplitudeYI together
with the steady-state curve of unidirectional bistability~thin solid
line!. The parameters used in this simulation ared050, u5210,

g52, 2C550, k̃50.2.

FIG. 7. Spatial profile of the population difference plotted a
function of kz after a long timet1 ~solid line! and at the slightly
later time t111.22 ~dotted line! for a value of the driving field
amplitudeYI550. The remaining parameters of this simulation a

d0520.1, u5211.5, g52, 2C579, k̃50.09.
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spatial grating in the population difference. Perhaps the m
notable feature is that, although the spatial average of
population difference is negative, periodically there are
gions where the population difference is greater than z
and, thus, these regions have gain.

V. LINEAR STABILITY ANALYSIS

It is already known from previous studies@4,11# that the
steady-state solutions of unidirectional bistability may b
come unstable along a segment of the upper branch and
way to self-oscillations. Asquini and Casagrande@7# gener-
alized the studies of Ref.@11# for the case of a bidirectiona
ring cavity under resonant conditions. Here we complete
development of our previous sections and extend the tr
ment of Ref.@7# by carrying out a linear-stability analysis fo
arbitrary values of the detuning parameters. In particular,
associate the appearance of solutions having a nonzero b
ward field with the instability of the trivial solution unde
infinitesimal perturbations, where by ‘‘trivial solution’’ we
mean a configuration wheref st obeys Eq.~31!, where

d0
st5

~11d0
2!deq

11d0
21u f stu2

, ~47a!

p1
st5

d0
stf st

11 id0
, ~47b!

andb and the other modal components vanish.
The linearized form of Eqs.~23! around an arbitrary-

trivial state is given by

d

dt
d f 52k̃~11 iu!d f 1k̃2Cdp1 , ~48a!

d

dt
db52k̃~11 iu!db1k̃2Cdp21 , ~48b!

d

dt
dp2m2152~11 id0!dp2m211 f stdd2m22

1d0
stdm,1d f 1d0

stdm,0db, ~48c!

d

dt
dd2m52gdd2m2

1

2
g~ f stdp2~2m21!

* 1p1
st* dm,0d f

1p1
st* dm,21db!2

1

2
g~ f st* dp2m11

1p1
stdm,0d f * 1p1

stdm,1db* !, ~48d!

together with their complex conjugates. In Eqs.~48!, d f , db,
dp2m21, anddd2m , for m50,61,62, . . . ,denote the devia-
tions from the respective steady-state values of the variab

By inspection, we see that Eqs.~48! split into three
groups, each forming a closed set of equations. The
group includes,
5-9
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d

dt
d f 52k̃~11 iu!d f 1k̃2Cdp1 , ~49a!

d

dt
d f * 52k̃~12 iu!d f * 1k̃2Cdp1* , ~49b!

d

dt
dp152~11 id0!dp11 f stdd01d0

std f , ~49c!

d

dt
dp1* 52~12 id0!dp1* 1 f st* dd01d0

std f * , ~49d!

d

dt
dd052gdd02

1

2
g~ f stdp1* 1p1

st* d f 1 f st* dp11p1
std f * !,

~49e!

which we recognize as the linearized equations of unidir
tional bistability. The second group couples the fluctuat
variablesdb, dp21 , dd22, anddp3* according to

d

dt
db52k̃~11 iu!db1k̃2Cdp21 , ~50a!

d

dt
dp2152~11 id0!dp211 f stdd221d0

stdb, ~50b!

d

dt
dd2252gdd222

1

2
g~ f stdp3* 1p1

st* db1 f st* dp21!,

~50c!

d

dt
dp3* 52~12 id0!dp3* 1 f st* dd22 , ~50d!

where we have used the identityd2* 5d22. The third group is
comprised of an infinite set of triplets of equations of t
form

d

dt
dp22n1152~11 id0!dp22n111 f stdd22n , ~51a!

d

dt
dd22n52gdd22n2

1

2
g~ f stdp2n11* 1 f st* dp22n11!,

~51b!

d

dt
dp2n11* 52~12 id0!dp2n11* 1 f st* dd22n , ~51c!

wherenÞ0,61.
The eigenvalues of Eqs.~49! have already been analyze

in past studies of unidirectional bistability and self-pulsi
@4#. The sets of Eqs.~50! and~51!, instead, contain informa
tion on the possible emergence of solutions in which
backward field plays a dynamical role.

We consider first Eqs.~51! for an arbitrary value of the
index n ~with nÞ0,61). The characteristic equation take
the form
04381
-
n

e

l31~g12!l21~11d0
212g1gu f stu2!l

1g~11d0
212g1gu f stu2!50. ~52!

With the help of the Hurwitz criterion@14#, it is easy to
prove that all three roots of Eq.~52! have a negative rea
part, which implies that the only fluctuations that may
amplified and eventually destroy the trivial solution are go
erned by Eqs.~49! or ~50! @and the complex conjugate of Eq
~50!#.

Although the characteristic equation associated with E
~49! is already known, for completeness we reproduce it
low together with the characteristic equation~50!. For Eqs.
~49! we have,

l51c4l41c3l31c2l21c1l1c050 ~53!

and for Eqs.~50!

l41b3l31b2l21b1l1b050, ~54!

where

c4521g12k̃, ~55a!

c3511d0
21gu f stu212g1k̃2~11u2!

12k̃~21g!22k̃2Cd0
st, ~55b!

c25g~11d0
21u f stu2!12k̃~112g1d0

21gu f stu2!

1k̃2~21g!~11u2!

22k̃2Cd0
stS 11k̃1g2

gu f stu2

2~11d0
2!
D , ~55c!

c152k̃g~11d0
21u f stu2!1k̃2~112g1d0

21gu f stu2!

1~ k̃2Cd0
st!222k̃2Cd0

stFg1k̃S 12ud01g

2
gu f stu2~11ud0!

2~11d0
2!

D G , ~55d!

c05gk̃2~11u2!~11d0
21u f stu2!1~ k̃2Cd0

st!2gS 12
u f stu2

11d0
2D

22k̃22Cd0
stg~12ud0!, ~55e!

and

b3521g1k̃~11 iu!, ~56a!

b2511d0
21gu f stu212g1k̃~11 iu!~21g!2k̃2Cd0

st,
~56b!
5-10
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b15g~11d0
21u f stu2!1k̃~11 iu!~112g1d0

21gu f stu2!

2k̃2Cd0
stS 11g2 id02

gu f stu2

2~12 id0! D , ~56c!

b05gk̃~11 iu!~11d0
21u f stu2!2k̃2Cd0

stg~12 id0!.
~56d!

We have obtained the roots of Eqs.~53! and~54! numeri-
cally. For the parameters chosen in the construction of Fi
we find that, on the upper branch of the unidirectional bis
bility curve, one~and only one! of the roots of Eq.~54! has
a positive real part in the range 38.8,YI,52.8, while all
roots of Eq.~53! have a negative real part. This is consiste
with the observed behavior of the time-dependent equat
~23! whose solutions evolve with a nonzero-backward fi
at YI552.7, whenYI is scanned in the direction of decrea
ing values. Incidentally, we note that the root with a posit
real part has an imaginary part that is quite close to
frequency shiftD calculated from the time-dependent sol
tions ~see Sec. IV, Fig. 4!.

The situation is more complicated~and interesting! for the
parameters chosen in Fig. 6 because in this case both
~53! and~54! have one root having a positive real part for
range of values ofYI @15#. As shown in Fig. 8 the ranges o
instability overlap, in part, but have considerably differe
widths; in addition, the real parts of the unstable roots of
~54! are significantly larger than those of the correspond
roots of Eq. ~53!. Similar behavior shows up for variou
parameter combinations and appears to be rather comm

If a driving field amplitude is chosen from within th
common domain of instability, and if we artificially turn of
the backward field and the appropriate atomic variables,
forward field will eventually evolve into a self-pulsing stat
as it should. However, if we allow the cavity field to opera
also in the backward direction, an arbitrarily small initi
fluctuation of the backward field will grow, destroy the se
pulsing state and bring the entire system to a stationary s
as shown in Fig. 3. This behavior suggests that the s
pulsing state of unidirectional bistability is unstable in t
bidirectional model~for the chosen parameters! and that the
only attractor in this case is the stationary state with

FIG. 8. The real parts of the solutions of the characteristic eq
tions ~54! ~labeledb) and ~53! ~labeledf ) are plotted as functions
of the driving field amplitudeYI for the parametersd050, u5

210, g52, 2C550, k̃50.2.
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nonzero-backward field. The same outcome was observe
starting from an initial condition in which both forward an
backward fields were zero and by applying a small init
perturbation to the backward field to simulate spontane
emission noise.

In general, i.e., for different selections of the paramete
the situation appears to be more complicated because we
found instances in which the self-pulsing state~with bst
50) and the nonsynchronous steady states behave as c
isting attractors. For example, in correspondence with
parametersd0520.1, u529.5, g52, 2C579, and k̃
50.55, both Eqs.~53! and~54! have one root having a pos
tive real part in the range 40.2,YI,64.3. If we select a
value of the external driving field from within the commo
domain of instability, the system evolves into different a
tractors depending on the initial conditions. These coexist
attractors appear to be quite removed from each other, so
we never observed random switching between the two
mains in response to small perturbations~e.g., numerical
noise or artificially induced small jumps during the evol
tion!.

In order to observe a stationary state with a nonzero va
of the backward field, the best strategy, perhaps also via
experimentally, might be to observe that the domain of
stability of the backward field is broader than that of t
forward field, and to select a value of the driving field f
which only the backward field is unstable. This should p
mote the evolution of the system into a long-time station
state of the type described by Eq.~44!.

VI. SUMMARY AND CONCLUSIONS

In this paper we have explored the influence of the ba
ward mode of propagation of the cavity field on the dyna
ics of a ring resonator driven by an external field and co
taining an ensemble of absorbing two-level atoms. Af
developing a first-principles description of this problem
the plane wave and semiclassical approximations, we h
derived the working equations in the uniform field limi
These equations describe the coupled evolution of the
ward and backward cavity field amplitudes and of an infin
hierarchy of atomic ‘‘modal’’ variables.

The main result of our analysis is the prediction of
steady-state configuration in which the forward and ba
ward fields have constant amplitudes but different frequ
cies of oscillation. This prediction is supported by the lon
time behavior of the equations of motion and is furth
confirmed by two additional independent calculations. T
first is based on the solution of a nonlinear system of al
braic equations for the steady-state values of the variab
and the second is the analysis of the linear response of
system in the neighborhood of a unidirectional steady sta

The linear-stability analysis also shows that, at least
the parameters adopted in this study, the unidirectio
steady state can become unstable against the growth
backward wave over a domain that is significantly wider th
that over which self-pulsing of the forward field is predicte
to emerge. Thus, appropriate values of the parameters ca

a-
5-11
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selected that can lead to the observation of a station
backward field without dynamical competition from the se
pulsing state. Under these conditions, if one overlaps
forward- and backward-output field, one should be able
observe a beat note at a frequency that we estimate shou
of the order of the atomic polarization relaxation rate.
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