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Transient QED effects in absorbing dielectrics
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The spontaneous-emission rate of a radiating atom reaches its time-independent equilibrium value after an
initial transient regime. In this paper, we consider the associated relaxation effects of the spontaneous-decay
rate of atoms in dispersive and absorbing dielectric media for atomic-transition frequencies near material
resonances. A quantum mechanical description of such media is furnished by a damped-polariton model in
which absorption is taken into account through coupling to a bath. We show how all field and matter operators
in this theory can be expressed in terms of the bath operators at an initial time. The consistency of these
solutions for the field and matter operators are found to depend on the validity of certain velocity sum rules.
The transient effects in the spontaneous-decay rate are studied with the help of several specific models for the
dielectric constant, which are shown to follow from the general theory by adopting particular forms of the bath
coupling constant.
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I. INTRODUCTION function is an input function and the Maxwell field operators
The rate and the spectral and spatial characteristics of theatisfy quantum Langevin equations with both loss and quan-
spontaneous decay of an atom depend on the properties tnfm noise termg$19,20. With the use of a Green-function
the atom and of the radiation field, and on the interactiorapproach, the phenomenological quantization theories have
between them. The radiation field changes by the presence bken generalized to inhomogeneous dielectrics, first for
other matterf1]. One can try and manipulate the emissionmultilayer systems and later for genera{r,») [21,22.
properties once the influence of this medium is understoodField commutation relations turn out only to depend on the
In quantum optics of linear dielectrics, one tries to de-analytical properties of the Green function. However, the cal-
scribe the material medium in an effective way with the helpculation of spontaneous emission inside such a medium
of the classical dielectric functios(r,w), which, in general, would involve the actual computation of the Green function,
is a complex function of both position and frequency and inwhich for generak(r, ) is not easy.
this full generality describes the propagation and loss of light A special case of the former theories is the quantum op-
at each point in the dielectric. Sometimes it is possible taical description of inhomogeneous systems at frequencies
neglect the spatial variatior@ncluding local field effects ~ where both dispersion and losses can be neglected. Then a
dispersion, and losses altogether. The spontaneous-emissidascription in terms of modes is possible, where the mode
rate of an atom in such a simple dielectric is the refractivefunctions are harmonic solutions of the classical wave equa-
index n of the medium times the rate, in vacuum[2—-4). tion featuring a position-dependent dielectric “constant”
The situation becomes more complicated when materiat(r) [23]. This encompasses the now theoretically and ex-
dispersion has to be taken into accolit-11]. Since the perimentally very active research area of the so-called pho-
Kramers-Kronig relations tell that dispersion and loss alwaysonic crystals[24], where a periodic modulation of the re-
come togethetbe it not always at the same frequengjeme  fractive index at the scale of the wavelength of light can
should like to include losses as well in order to describe aldrastically modify the mode structure compared to vacuum.
frequencies in one theory. The damped-polariton mft2t By increasing the refractive-index contrast, even a photonic
15] provides us with such a microscopic theory. From thisband gap can open up giving rise to a frequency interval for
theory it was shown that the radiative spontaneous-emissiowhich waves cannot travel in the crystal in any direction so
rate equald’y times the real part of the refractive index at that spontaneous emission would be inhibited completely.
the transition frequenc}/16]. Until now, such a band gap has not been found conclusively
The quantum mechanical treatment of dissipative systemis the optical regimé25]. It has been proposed to look for
is more complicated than the classical one because of thigequencies close to material resonances, where refractive
extra requirement that equal-time commutation relations ddéndices can be quite substantially higher or lower th426l.
not change over timgd17,1§. Based on the damped- Interesting new effects have been predicted for band-gap
polariton model and on the fluctuation-dissipation theoremsystems such as photon-atom bound states and nonexponen-
phenomenological quantization theories were constructetial spontaneous decay at the edges of the[8@p A current
that meet these requirements. In these theories, the dielectriiebate is whether the Weisskopf-Wigner approximation can
be used in the calculation of spontaneous emission near an
edge of a photonic band gap. This question seems to depend
*Email address: wubs@phys.uva.nl strongly on the analytic or singular behavior of the density of
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states at the edges of the gap, which has recently been cdlemogeneous, the dynamics can be separated into a trans-

culated for face-centered-cubic and diamondlike crystalerse and a longitudinal part. In this paper we concentrate on

structured28]. If near the edge of the band gap a large partthe transverse excitations as described by the following

of the modes has a cavitylike structure, producing nonzerdlamiltonian[13,14:

dwell times near the emitting atom, then an emitted photon

has a nonzero probability of being reabsorbed, which would H=H o+ Hmart Hoant Hings (1)

give Rabi-like oscillations of the atomic population that are

missed in the Weisskopf-Wigner approximation. .
Nonexponential decay can also be caused by the interfe}’ylth

ence of possible decay channels: for short times after the

excitation of the atom, a larger frequency interval of the

medium states plays a part in the decay process than for later

times. Ultimately, only the refractive index at the atomic-

transition frequency plays a role, all in concordance with the

energy-time uncertainty relation. This interference process Hmat:f d®k iwo b (N, k,t)b(\, K, 1), 3)

already happens for spontaneous emission in vacuum. How-

ever, when the medium has a strong jump in the density of

states around the atomic-transition frequency, the interfer- a [ N

ence effect will change substantially. Hbath:f d kfo dofiob, (kDb (N K1),  (4)
To separate the latter cause of nonexponential decay from

the former, it is interesting to consider the spontaneous emis-

sion inside homogeneous lossy dielectrics with strong and

narrow material resonances, where the density of states can

also change very rapidly. Here all states correspond to simple

Hem=f dk ikke a'(n k., t)a(n ki), @

Hmt:%f d3kf:dw #V(w)[b(\,k,1)+bT(N,—Kk,1)]

plane-wave modes, so that real reabsorption processes do not X[bL(A k1) +b, (A, —k,)]

play a role. In this paper, we use the damped-polariton model _ —

formulated by Huttner and Barngt3,14] to study the inter- I 3 \/“TO +

ference effects of spontaneous emission. If absorption is ne- + 2 d*k o ~k_c [a(v k+a'(h,—k D]

glected in the damped-polariton model, then we are left with
the Hopfield model of a dielectrif8,29], which has a fre- X[bT(\,k,t) —b(\,—k,t)]. (5)
qguency band gap inside which the refractive index is purely

imaginary. The analogy between this polariton band-gap SYWe use the same notations ag14]. In particularkc stands
tem and photonic crystals was drawn[B0]. ) '

The organization of the paper is as follows: In Sec. Il wefo_r VK + w, yvhere the frequencyo? equals a/\Jpeo,
introduce the theory and solve its equations of motion usin ith « the coupling constant between field and matter and
Laplace transformations. In Sec. Ill we show that the consist'® density. The resonance frequenay of the polarization
tency of our solutions depends on the validity of a number ofield is renormalized tao,, which is the positive-frequency
velocity sum rules, which are then proved. In Sec. IV, wesolution of
find that for long times all field operators can be expressed in
terms of the initial bath operators, and we give an interpre- - , ~ [
tation of the result. We also show how to relate the result to wp=wot woJ’ do Vi(w)/o. (6)
phenomenological quantization theories. Before we can dis- 0
cuss transient effects of spontaneous emission in Sec. VI, we
discuss in Sec. V the Lorentz oscillator model and the pointThe k integrals in the Hamiltonian are understood to also
scattering model. We show how both these models can pdenote a summation over the two transverse polarization di-
found from the damped_po|ariton theory by Choosing a Suit_rections labeled by\ The creation and annihilation opera-

able coupling to the bath. The paper ends with a discussioffrs satisfy standard bosonic commutation relations. The
of the results and with conclusions in Sec. VII. Heisenberg equations of motion for the bath annihilation op-
erators are

Il. THE MODEL AND SOLUTIONS OF THE EQUATIONS _ i
OF MOTION b,(\,kt)=— EV(w)[b()\,k,t)-i—bT()\,—k,t)]

The damped-polariton theory describes the interaction of
light with an absorbing homogeneous medium. The coupling
of the matter to a frequency continuum is the cause of the
light absorption. The continuum could be a phonon bath oand similarly for the creation operators. In the following, we
something else, but for the moment that is not specified: it islrop the §,k) labels. We solve implicitly for the bath vari-
a collection of harmonic oscillators with a frequency- ables as was done ifB1] in a classical treatment of the
dependent coupling to the matter fields. Since the medium isodel,

—iwb,(\ K1), (7)
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i t
bw<t>=—5V(w)f()dt’[b(t')+b*(t’)]

xe 1t p (0)e it

8

The annihilation operators are defined in terms of (trens-
verse physical fields,

| g0 ~ .
_ p
"= Naa

9

woX(D)+ ';P(t)},
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X(1)=(we/a)?eoP (1) + (w2 @) eoAt),
P(t)=— a?wd/(gqw)X(t) + a’wo/(2eow?)

t
><J dt’ F(t—t")X(t")—B(t).
0

In the last equation, the bath operaRyt) is defined as

hw %
B(0= V22 [ donV(wp)lb,,0)

0 x e lety b:‘ol(O)e“"lt], (11)
and similarly for the creation operators. H&andE are the
vector potential and the electric field, respectivelithe po-  whereas the functiof in the convolution in(10) is
larization field andP its canonical conjugate. Insertion of the
solution (8) and its Hermitian conjugate in the equations of "
motion gives F(t)zzf dw; V¥(w)sin(w4t). (12
0
E(t)=(ke)?A(t) + (0 a)P(1), (10)
_ We get a system of algebraic equations by taking the Laplace
A(t)=—E(1), transform, which we denote by a bar
P —kc? 0 — wla E(p) E(0)
1 p 0 0 A(p) A(0)
2 2 2 — = . (13)
0 —egpuila p —gowila X(p) X(0)
0 0 @202 (e00d)[1—F(p)/(200)] P Pip) P(0)-B(p)
|
Through the operatdB(p) the bath remains part of the sys- With infinitesimal positive, and
tem of equations: this is as far as we can “integrate out” the —_
bath variables. Flw)=F(—io+7n)
Now we can determine the dielectric functianw), . 1 1
which is aclassicalquantity, by putting the determinant of = dlez(wl)( _ |
the (4x4) coefficient matrix to zero. The determinant gives 0 wimo—ln ottty
the dispersion relation (17)

D(p)=&(p)p*+k*c*=0, (14
with the “Laplace dielectric function”
_ 2
e(p)=1+ (15

P2+ wi— 3woF(p)

The functionE(p) is the Laplace transform d¥(t), which
was defined in Eq(12). From this we find the dielectric
function

2
wC

2 2 - !

—e(—i =1— -
e(w)=¢e(—lwt+n) w—wo+%w0F(a))

(16)

The difference betweeRk(w) andF(t) is denoted by their
arguments. The dielectric function satisfies the Kramers-
Kronig relations and has the property of a response function
thate(— w*) equalse* (w). It can be shown that it has no
poles in the upper half plane provided that the integral in Eq.
(6) exists. Previous authof44,31,32 assumed that the ana-
lytical continuation ofV?(w) to negative frequencies is an-
tisymmetrical in frequency. Then Eq16) reduces to the
dielectric constant if31] where it was shown to be identical
to the more complicated expression[i¥].

We combine Eqs(13) and (15) and write the Laplace
fields in terms of the fields at tinte= 0 with coefficients that

are functions_ of the_ Laplace dielectric functio_rr(p) and
susceptibilityy(p) =e(p) — 1. For the electric field we find
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. . — UpiUgi .
E(p)=D-1<p>|pE<0>+[p2x<p>+k2c2]A(0> MEE<t>=; Re{%e'ﬂﬂ ,
+i p_Z_( )—1|X(0) 02 vgi
0" 2P Mea(t)= —ke) Im 2L 8lemi0yt,
1 - — (23
+ P X(PIPO)—B(P)]. (18)
2 2
B ak?c? 2 R Up,iVg,j 1_@ we
The other Laplace operators can be found in the same way EX w§8o ] c? c?  Kéc?
and are listed in the Appendix. The inverse Laplace trans-
form gives the fields at timeéin terms of the fields at time .
t:O, Xe*l()jt ,

E(t)=Mge(t)E(0) + Mga(t)A(0) + Mex(t) X(0)

kc ; v2. )
+Megp(t)P(0)+Bg(t), (19 Mep(t)=— > Im %( 1- %) e—'ﬂjt].
] c
where, for instance,
Lo Some details of the calculation and a list of coefficients
1% . .
_ -1 M mn(t) of other operators can be found in the Appendix. In
Megg(t) om0 f_ixdpe" D (p)p. (20 these expressions, the frequenci€s=Q;(k) are the

The operatoBg(t) in Eqg. (19) is the contribution of the

complex-frequency solutions of the dispersion relation
w’e(w)—k*c?=0. All Q;(k) have a negative imaginary

=0 bath operators to the electric field. This term will be part. Sincee(— w*)=¢*(w), it follows that —Qj*(k) is

analyzed in more detail in Sec. IV.

also a solution of the dispersion relation. We can choose

The equattime commutation relations of the field opera- (k) to be the solution with a positive real part. The sum-

tors are
[A\ K1), —8oE(N,— K", ) ]=[X(\,k,1),P(N', =K', 1)]
—ifo,, (k=K. (21

All other inequivalent combinations of operators commute.

mation overj is a summation over all the polariton branches
of the medium. For each branch, the complex phase velocity
is defined asvj;(k)=€Q;(k)/k and the group velocity as
vg,j(K)=dQ;(k)/dk. For convenience, we leave out their
explicit k dependence in the following.

From Eq.(19) we can see that the “diagonal” coefficient

In particular, A and X are independent canonical variables. Mee(t) in Eq. (23) should have the value 1 at tinie=0 and

Hence, we have the properftp, —D]=[A, — eoE] with the

displacement field defined asoE— aX. With the help of

Egs. (19 and (21), we can also calculateonequaltime
commutators, for example,

[E(N\K,1),E(N",—Kk',0)]
= MEA(t)[A()\,k,O),E()\’,—k’,O)]

if
== —Mea() 8 8(k—k"). (22)
0

In principle we have solved the complete time evolution
of the field operators. In Sec. Ill we analyze in more detail
their short-time behavior, whereas in Sec. IV we consider the

long-time limit.

IIl. SHORT-TIME LIMIT: SUM RULES

For fixedk, the zeros of the dispersion relatioh4) are

the poles of the integrand in ER0). We assume that they

are simple first-order poles and rewrite the inte@28) as an

integral over frequencie®@=ip. Then, using contour inte-

the *“off-diagonal” coefficients Mga(0),Mgx(0), etc.,
should have the value 0. The coefficients of the other field
operators should also follow this rule. If these constraints are
satisfied, the nonequal-time commutators like E2R) get
the right equal-time limits as well. The coefficiefEq. (23)]
can only have the right=0 limits if certain velocity sum
rules are satisfied.

Velocity sum rules can be derived in a systematic way by
evaluating the following two types of integrals:

for n=-1,0,1,

J’w q (w+i6) (24)

—» wS(a))wz—kZCZ,
> (0+i8)"x(w)
f do—————, for m=-1,0,1,2,3. (25

w 1
= g(w)w?—k3c?

Heree(w) is anarbitrary dielectric function that satisfies the

Kramers-Kronig relations, so it is not necessarily of the spe-
cific form (16). The integrals can be evaluated using contour
integration in the complex-frequency plane. We can close the
contours either in the upper or in the lower half plane. Equat-

gration in the lower frequency half plane, we find the coef-ing the two answers gives a velocity sum rule. In this way

ficients for the electric field

one finds for all wave vectors
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2
2 Re(vg,vp,/c?)=1, (26) e(@)=1-— . (32
] w?— 0
; Re(vg,; /vp)=1. (27) This ¢(w) is real and violates the Kramers-Kronig relations,

but it can be considered as a limiting case of an acceptable
dielectric function. The high-frequency limit @2y (w) in-
These sum rules can be found from E24) with n=1 and  deed equals- wZ. The two sum ruleg26) and (27) were
n=—1, respectively. Both relations have been obtained beshown to be valid for this mod¢lL4] and we want to check
fore [8,14,33,34 The second was coined the Huttner- Eq. (30) as well. The dispersion relation is
Barnett sum rule irf33] because of its importance in phe-
nomenological quantum theories of dielectrics. A second 0*— (w2+ w2+ K2c?) w2+ K2c2w2=0, (33)
group of sum rules has the form

which has two(rea) solutionsQ? and Q2 with sum (@3

> Im(vgv3%)=0, for g=—1,0,1. (28)  +w2+k?c?) and produck®c?w3. It follows that for allk
i

The rules withg=—1 andq=1 follow from Eq. (25) with 03 vgstod v _:i 1(94 +0%)

m=0 andm=2, respectively; the case with=0 follows P P sdk Tt T

from Eq. (24) with n=0.

All of these sum rules are independent of any specific
form of the dielectric function as long as it satisfies the 4k3 dk
Kramers-Kronig relations. Other sum rules do depend on the

behavior ofe(w) for high or low frequencies. For example, wg
from Eqg. (25 with m=—1 we find =1+ e ct, (34)
; Re(c?vg /vy ) =2(0). (29 in agreement with Eq(30). The other sum rules can also be

checked for this simple model. The sum ruldsg. (28)]
obviously hold because all group and phase velocities are
real in this model. In models that respect the Kramers-
Kronig relations, these sum rules are nontrivial.

This sum rule depends on the static limit of the dielectric
function. For conductors the dielectric function is singular at
w=0 [35], but for dielectric functions that can be found
from the damped-polariton model(0) is finite. Two other
sum rules can be derived when for high frequenciég(w) IV. LONG-TIME LIMIT
approaches a constant value that we namq’;m. From Eq.

(25) with 3 then find A. Field and medium operators
with m=3, we then fin

The coefficientdV gg(t), etc., in Eq.(23) damp out expo-
nentially in time. Every polariton branch has its own charac-

> Relvgv3 /ch) =1+ i, /(ke)?. (30)  teristic damping timer;(k)=1[ImQ;(k)]. After a few
! times the maximum characteristic damping period with the
maximum taken over all branches, the exponentially damped

2 2 -1
Moreover, if w“x(w) + win, falls off faster thanw =, then  qetficients can be neglected. We call this the long-time

the integral limit. The speed at which it is attained dependss¢m) and
by o 5 onk. For long timespnly the bath operatdBg(t) in Eq. (19
* oTox(w)+ wjiy] survives because it has poles on the imaginary axis in the
J:wd‘” e(@) 02— k2C? (32) complexp plane:

o 1 [t (=
produces the sum rul@8) with q=2. Bo(t)= — _Of dw.V
Returning now to the time-dependent coefficie(®s) (V) 2miwg ¥ 260)0 (@)

(and the other ones in the Appengdine finds, by inspec-

tion, that one needs all the above sum rules excep{(Z). ioe . Px(p) | Pe,(0) b:rul(o)

to prove that the coefficients have the right limits fer0. In X Lwdp e e(p)p2+k2c2[ptimy - p—iwg]

particular, from Eq(16) it follows that the frequencwi,, as PP

defined above exists in the damped-polariton model and (35

equalsw.. Then with Eqs(27) and(30) we see that indeed

one hasMgy(0)=0 in Eq.(23). Hence, in the long-time limit, all field operators are functions
It is easy to prove the above sum rules in the followingof the initial bath operators alone. For the electric field, we

one-resonance model: find
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1 \/ﬁTwo " The solutions found above can be related to those ob-
EMt)—=E((t)=—— —f dw; V(wy) tained by explicit diagonalization of the full Hamiltonian of
we ¥ 280Jo the model. In[14], this diagonalization was carried out by
) ot using Fano’s technique. In that way the field and medium
wix(w1)b, (0)e s operators were written in terms of the diagonalizing annihi-
s(wl)wf—kzcz lation operatorgcalled C(k,w) in [14]] and the correspond-
ing creation operators. If one replaces the bath annihilation
operatorsh,,(k,0) in the long-time solution§37) by the di-
, (36)  agonalizing annihilation operato®(k,w) and if one makes
similar replacements for the creation operators, the expres-

) ] o sions for the field and medium operators[ii¥] are recov-
where the subscrigtdenotes the long-time limit. The tem- greq.

poral (and spatigl Fourier components of the long-time so-  The |ong-time solutions can be interpreted as follows:

wx* (w1)b], (0)e1"

e* (wl)wi— k?c?

lutions are when the dielectric medium is prepared in a state that is not
5 an eigenstate of the Hamiltonian and if the couphf@v) is
E ()= — — fiwgV(w)w?x(w)b,(0) nonzero for all the frequencies, then the medium tends to an
: we ¥ 280 g(w)w?-k%? equilibrium that is determined by the state of the bath. The
time taken for this equilibrium to settle down is the time after
. i frae V(@) wx(@)b,(0) which the long-time solutions can be use_d for the_field_op-
A (w)=— , erators. So, one can always use the long-time solutions in the
we ¥ 280 g(w)w’—kAc? calculations unless the medium has been specially prepared
(37)  in a nonequilibrium state a short time before one does the
- experiment. The interpretation of the long-time solution will
1 JhwoegV(w)(w*—Kc?) x(w)b,(0) become clearer in Sec. VI where we calculate spontaneous
X (w)=— aw, 2 e(w) w?— K22 ' emission.
In summary, for times long aftar=0, all field operators
[ k2p2_ 2 can be expressed solely in terms of the bath operators at time
P’ (w)__ hwoV(w) (0~ Ke*— g )wX(w)b“’(o), t=0. The time evolution is governed by the bath Hamil-
wc 2gq e(w)w?—k?c? tonian alone. The field operators still satisfy Maxwell's equa-

tions and the canonical commutation relations. Classical ex-

where the superscript denotes the positive-frequency com- pressions for the Maxwell fields would have died
ponent of the operator. For future reference we also give thexponentially to zero in this long-time limit.

long-time limit of the electric field operator as a function of

position and time: . . . ]
B. Relation with phenomenological theories

/ The long-time solutions of the field operators can be re-
B(ry=- 2(27)% w f 2 q(k)J doy lated to expressions in phenomenological theories, as we will
0 show presently. In phenomenological quantum mechanical

theories of homogeneous absorbing dielectfit8—21], a

noise current density operatdris added to the Maxwell
equations in order to preserve the field commutation rela-

(39) tions:

V(wp)oix(w1)b, (\K,0)
e|(k-rfw1t)_,’_ H.c.l.

X

s(wl)a)i— k2c?

+ i +
Similar expressions can be given for the other operators. No- VXE'(ro)=1eB™(r,e), (40

tice that these long-time solutions indeed are solutions of the

equations of motlomO) and (_)f the Maxwell equations. The VXB (1, 0)=—iwuD (r,)+ud (r,e). (41
canonical commutation relatiort®1) should be preserved in

this long-time limit. Also, the nonequal-time commutation

relations like in Eq(22) should be time-translation invariant. The displacement field* in the last equation is defined in
The commutation relations can be verified with the equalityterms of the electric field and the dielectric function as

2V2(w)|)((w)|2 Imx(w)=Ime(w)=¢(0), D¥(r,0)=g0e(w)E*(r,m). (42
(39

20

We write D to stress the difference with the microscopic
which follows from Eqgs.(16) and(17). Sincee;(w) is anti-  displacement field in Sec. Il. After taking the spatial Fou-
symmetric inw, all commutators can be shown to be propor-rier transform and usin®@*=VXA™ andE"=iwA™, so
tional to integrals over the whole real-frequency axis. Con-that the first of the Maxwell equations is satisfied, one finds
tour integration then leads to the required results. from the second equation
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1 N ' !
[06() KA (A K,w) =~ — 3" (\ ko). (43) (A1), =D, —kLD]
0 i N e(w)ei(w)o’
The vector potential and all Maxwell fields can be calculated =% o(k—k )fo do |6 (@)w?—k2c??’
in terms of the noise current densily The canonical com-
mutation relations are preserved if for the noise current den- (49

sity one choosepl9,2
Y 619,20 with €, (w) the real part of the dielectric constant. The sym-

[3T (N K w),[IT(N K 0 )] metry of the integrand enables us to rewrite the right-hand
) side as an integral over all real frequencies. When using

_ hw’egei(w) 5 d(K—K ) S(w—w'). (44) contour integration, one cannot replast(w) by e(— w*),
T M ' but the analytical continuation to complex frequencies of

) ) ) ) £*(w)=¢(— w) must be used instead:
Instead of using the noise current density, one defines basic

bosonic operators [ANk,t),—D(\',—k',1)]
a . ’ 2
fNkw) =\ -——3"(\ ko), @45 =ik oy a(k—k') 2 Ree(—Qy)vp jvg,/¢7],
how‘egpei(w) J

. . . . 50
so that these operators satisfy simple commutation relations (50

L , , where we assumed, as before, that all poles of the dispersion
[FO K@), IOV K 0)]= 800 6(k—K) 80— o )'(46) relation are first-order poles. Note that—(};) depends on
the behavior of the dielectric function in thapper half
Now we turn to the long-time solutions of the field opera- plane. Contrary to a statement[i20], the commutator does
tors that we determined in Sec. IV A. The long-time solutionnot give the canonical result because in general there is no
of the vector potential iff37) obviously is a solution of the sum rule for the right-hand side of the equation. In other
following inhomogeneous wave equation: words, O —&E) is canonically independent d, but (D

—¢0E) is not. The operatord—D) is proportional to the
Langevin noise term in the wave equation for the electric
. ~ field.

_ @V(w)wx(w)bw()\,k,O). (47) Now let us neglect absorption at all frequencies. Strictly
we ¥ 2gg speaking, the limits;(w)—0 is unphysical because it vio-
lates the Kramers-Kronig relations, but the limit is some-
times taken for dielectrics that show negligible absorption at

[e(w)w?— k2C2]A|+()\,k,w)

This kind of equation is well known in Langevin theories

[17.18: the_ coup[ing to a bath gives a dqmping te(ﬂm_re: a optical frequencie$21,33. When e(w) becomes real, the
complex dielectric constanin the equations of motion of solutions(); become real and in that limit one hag— ()

the Is&’st(—fjm.I Besidcﬁs dahmping, therr(]a is an extra term that Es(ﬂj)z(clvp,—)z Inserting this in Eq(50) and using the
neglected classically. This term is the quantum noise operg- g 7 _ . N ' -
tor, which features the bath operators at titwe0. Huttner-Barnett sum ul&jRe(vg,; fupj) =1, we immedi

The long-time solution47) can justify the phenomeno- ately find the canonical result fpA, —D]. We compare this

logical equation(43) if we identify with the results in(33] where the dielectric function is as-
sumed to be real. There a phenomenological Lagrangian was
_V(e)x(w) introduced and the fields and—D were correctly identified
f'(7"'("")__'|V(w))((w)| b,(Nk,0), (48) as a canonical pair. The Huttner-Barnett sum rule was in-

voked to show that their commutator indeed had the canoni-
where we used Eq39). We see that up to a phase factor, thecal form. It was concluded that it is misleading that also
bath operatorg ,(\,k,0) from the microscopic theory serve [A,—¢egE] has the canonical form. Here we have learnt that
as basic bosonic operatofé\ ,k,w) in the phenomenologi- this misleading result is not surprising: in the limit of real
cal theories. We want to stress that the identificaté® is  dielectric constantsand only then both [A,—&gE] and

only valid in the long-time limit when the medium is in [A,—D] can have the canonical form in the same gauge, the

equilibrium with the bath. . . . reason being thad approache® in that limit.
In Sec. Il we saw that-¢yE is the canonical conjugate

field of A and that[A,—D] gives the canonical result as
well. Since we can make the identificatigd8), the same
relations hold in the phenomenological theory that was de- phenomenological theories as discussed in Sec. IV B have
scribed in ihls SeCEon. But now let us CalCUlate~the CommU'expressions fOE‘(a)) as input_ In practice, this input will be
tator[A,—D] with D* defined as in Eq42) andD ™~ asits  the outcome of measurements of the dielectric function. By
Hermitian conjugate. We can use the long-time solutions beehoosing the appropriate microscopic coupling constants and
cause the commutation relations are preserved: resonance frequencies in the damped-polariton model, one

V. MODEL DIELECTRIC FUNCTIONS
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can hope to find a given dielectric function, thus providing a 4 o 1 1
connection with phenomenological theories. It was argued in~ A(w)= —7P dwlwlx(wl)< +

[31] that the well-known Lorentz oscillator form of the di- mwg JO wmw Ot
electric function could not be found from the damped-

polariton theory in this way. We shall reconsider this issue :4K(w)~£_ (54)
below. wq

A dielectric function that follows from the damped-

polariton Hamiltonian(2) will have a single resonance be- The principal-value integral can be evaluated by means of
cause there is only one resonance frequengyn the matter  contour integration in the complex-frequency plane. In this

fields. Experimentally, one may find more resonances iRyay we arrive at the following expression for the dielectric
g(w). This should not be used as an objection to thes,nction

damped-polariton model because, in principle, one could
easily extend the theory with more material resonances. In
this section, we consider two of these one-resonance models. e(w)=1— @
wz—wg—ZQ[Ko— kK(w)]+2iwk(w)
(595

2
c

A. The Lorentz oscillator model

We want to find microscopic coupling constants in thewye can choosé) arbitrarily high (but finite). Quite unlike
damped-polariton theory so that the resultisngv) has the :DO, the optical resonance frequeney., approaches, from

following Lorentz oscillator form: above, the higher we choose the cutoff, since one dfas
= w3+ 2kow5/Q. Note that the dielectric functiofb5) has
>3 : . (51)  the right high-frequency Iimituz)((w)—>—w§ as required in
W” = Wiest 2iw Ko Sec. Il.
It is well known that there are two branches of solutions
. . f the dispersion relation when the dielectric function is of
Here wres I the resonance frequency of the ”.‘ed'“m AN%he form (51): an upper and a lower polariton branch. The
we,Lor IS @ frequency that IS related to the cogplmg Stre.ngthdielectric function(55) gives rise toanotherbranch: it has a
between the electromggnetlc and the r_natter field. Identifyin urely imaginary frequency with magnitude of the order of
e(w) from Eq. (16) with & o(w), we find, apart from the o ct0ff frequency. This “cutoff branch” has negligible
trivial identification we= we,or, dependence. In fact, the leadikglependent term for large
Q is 2iw2kek?c?/Q%. Clearly, the group velocity on this
branch is practically zero so that the contribution of the cut-
off branch to the velocity sum rules of Sec. Ill can be ne-
glected.
We conclude that high cutoff frequencies can be chosen
i kot A, (52) such that in the optical frequency regime the dielectric func-
tion cannot be discerned from a Lorentz dielectric function
with resonance frequency,.s~ vy and damping constant
_ Ko- The solutions of the dispersion relation of the upper and
where the frequency shifh is defined such tha&»fes= wé the lower polariton branch together satisfy the sum rules of
— woA/2. The couplingV?(w,) is fixed by the identification ~ Sec. IIl.
of the imaginary parts and for all frequencies it equals

V2(wy) =4kowy/(wy). However, if we insert this cou- B. The point scattering model
pling in the equation for the real parts, we find that the fre-
guency shiftA is infinitely large. Also, the renormalized fre-

2
We Lor

elolw)=1~—

1 1
— + -
wi—w—1lnp witotin

f dw;V¥(w;)
0

—4

o

In general the dielectric functior(w) describes the

= } propagation of a coherent light beam in a fixed direction in
quencyw, in Eq. (6) blows up. We can solve this problem ap, jsotropic medium. A complex(w) means that there is

by introducing a frequency cutoff in the coupling, namely, extinction, which can be caused either by scattering or ab-

V3 (1) =4k(w1) w1/ (Twg) with sorption or both. The dielectric function does not contain
information about the extinction mechanism. A well-known
dielectric medium showing polariton behavior is the dilute

KoQ2? gas, which can be described as a collection of point dipoles

Qz+wi' (53 that scatter light independently. If only one type of elastic

scatterers is present, each having only one resonance, then

the dielectric function is given b}36]

k(w1)=

With this choice one finds,= \/w02+ 2koQ2, which clearly Amc2T
has a strong dependence on the cutoff frequency. The/shift edw)=1— Tt e

becomes both finite and frequency dependent. 0= wiet 2T w%c

: (56)
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where n=N/V is the density of the scatterefsot to be stants that in the optical regime give rise to the dielectric
confused with the refractive indexn(w)] and I'¢  function (56). Equating with Eg. (16) we get wg
=e?/(4meomec?) is the classical electron radius. This di- —47¢2I .n andV2(wy) = 4T (0y) 03/ (3maec) With

electric function can also be found if one supposes that the

medium consists of classical harmonically bound point r.04
charges whose motion is described by the Abraham-Lorentz M(wy)=— i (57)
equation. The dielectric functio(b6) has the property that Q4+ o]

the corresponding@ matrixt(w) satisfies the optical theorem

with t(w) defined ag(w)=1-nt(w)(c/w)?. However, Eq. Here we have inserted a convenient frequency cutoff from

(56) is not a proper response function since it has a pole neahe start in order to keep finite the frequency and the shift

the very largepositiveimaginary frequency &/(2I'¢). This A contour integration give§)§=w§+ J2T .0%/(3c) and

can be related to the need for the a-causal phenomenon

called preacceleration to avoid so-called runaway solutions 2 \/5

of the Abraham-Lorentz equatid7]. Alw)= —T(0)Q(Q2%+ w?). (58)
Although we know that in the damped-polariton theory 3wqC

only proper response functions can be found, we proceed

like in the previous subsection and try to find coupling con-The dielectric function has the form

~ 47rc?T n
0?— w2+ [203(0%- 0)/(30%C)|[Te—T(w)]+ 2il(w)w¥c

g(w)=1 (59

In this case, the resonance frequency shifts to frequencidsequency (), much higher than the optical regime. The
lower thanwg and the shift is larger for larger cutoff fre- imaginary parts of the upper and lower polariton branches
guencies. However, since the classical electron radius is sare plotted in Fig. 2. The imaginary part of the cutoff branch
much smaller than an optical wavelength, it is very wellis large, negative, and practically constant for parameters as
possible to choose a cutoff frequency such thag() given in Fig. 1. Again, since the group velocity on the cutoff
<c/T'.. Then for optical frequencies, the dielectric function branch is practically zero, the upper and lower polariton
(59 is of the form (56). Note that for high frequencies branches together satisfy the sum rules of Sec. lll. In particu-
wzx(w)—wwﬁ for the dielectric function(59), but not for  lar, Fig. 2 illustrates that the upper and lower polariton group

Eq. (56). velocitiesvy, andv g, satisfy the sum rule Im{y ,+vg)
Again, the frequency cutoff introduces a cutoff branch. In=0.
Fig. 1 we plot the real parts of the three solutiddgk) of The cutoff, which was necessary to produce the dielectric

the dispersion relation. As a measure of the damping, wéunction in the damped-polariton theory, neatly removes the
introducex, which is given byl'cw3/(3c). For the purpose preacceleration behavior associated with a pole in the upper
of presentation, the numerical values of bathand«x were  half plane and leads to a good response function. The form
chosen artificially large for a dilute gas. The frequencies orPf the couplingV(w) given above Eq(57) has the following

the cutoff branch are of the same magnitude as the cutofthysical interpretation. By equating the damped-polariton di-
electric function with Eq.(56), we assumed that the dilute

] 1 0.000

g .
= 3
5,‘-’—4 - < 0005}
@ - <)
¥ 2t PP £
00 'II I2 3 '0'0100 1 ‘2 3
kc/w, ke/o,
FIG. 1. Real parts of the three solutiof of the dispersion FIG. 2. Imaginary parts of the lowe(solid line) and upper

relation withe(w) as in Eq.(59). Numerical values of the param- (dashed ling polariton solutiond}; of the dispersion relation with
eters:)= 10wy, w.=0.50q, andk=0.0lw,. The solid line is the  &(w) as in Eq.(59). Numerical values of the parameters as in the
lower polariton branch, the upper polariton branch is dashed and therevious plot. Not shown is the imaginary part of the cutoff branch,
cutoff branch is dotted. which is also negative and about a 1000 times larger in magnitude.
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gas can be described as a homogeneous dielectric. The light 3

scattering by the gas molecules can be accounted for by an

absorptive coupling to thfree electromagnetic field as long

as only single scattering of light is relevant. Then scattered =z Z;J

light is lost for propagation in the original direction. If the k=4

matter-bath coupling is dipole coupling, then for optical fre- & 1k

quencies the produdf?(w;)/w; should be proportional to /

the density of states of the electromagnetic field, which goes ‘ ‘
quadratically in frequency. This is indeed the case. 0o 1 2 3

/o,

VI. SPONTANEOUS EMISSION FIG. 3. Real part of the refractive index in the Lorentz oscillator

The spontaneous-emission rate, in principle, is a timeMcdel whene(w) is given by Eq. (55 with parameterso
dependent quantity. In this section we investigate the tran= 0-0100: @c=0.5wo, and€2=10w,.
sient dynamics of the spontaneous-emission rate of a guest ) o S ) )
atom in an absorbing medium when the transition frequencyfS 1ong-time limitE,(r 5 ,t), which is given in Eq(38). Since
of the guest atom is close to a material resonance of the depends only on the bath operators-a0, we may write
medium. We show how our results relate to previous treatEd- (60) in the form
ments of spontaneous emission in absorbing dielectrics,

where Fermi’s golden rule was used to show that the time- I‘(t)=3Re tdt/eiwA(tft’)

independent (equilibrium) value for the spontaneous- K2 i

emission rate equalEy Rg n(w,)] [11,16. Recently, local

field effects have been included in quantum electrodynamical X Troat] pred O) - Ej(ra, ) m-E(ra,t")]. (61)

formulations of the problem3,6,9,11,38 but we shall not

focus on them in this paper Here p,oq is the reduced density matrix obtained by tracing

. t the electromagnetic and material degrees of freedom:
We model the guest atom as a two-level atom with ground" i L
g g Pred 0)=Trem mapm(0). For thespecial case that the initial

state and excited stateje) and Hamiltonian H . ! . . .

=ﬁw,J|ge>)<e|. The mediur‘r(withl fi>elds and bath includedg Qensny matr|XpM(O) factprlzes, the reduced density matrix

described by the damped-polariton model with Hamiltonian!"c’.t.he bath density matrippa0) att=0. In g_eneral, the

Hy, given by Eq.(1). The total Hamiltonian isH=Hy+ V. initial state of the electromagnetic and material degrees of
M L) =Hp

with Ho=Hy, + Ha and V= — ps-E(r ). HereV is the di- freedom att=0 does not play a role in the emission rate.

pole interaction betwieen the atom and the mediugns the , (EPGEIENIS BESREE LIS B BN SRR S
atomic dipole moment operator, ark(r,) is the electric y 9 '

field operator at the position, of the atom. Let us assume this is indeed the case. Upon inserting Eq.

Suppose that the damped-polariton system is prepared .(513(8) in Eq. (61) we can perform the mtggral, the mtegrals'
time 0 in a state described by a density matrix(0). We do over t'he V\./avevect'or, and the summations over the polariza-
not assume thaty,(0) commutes wittH,, nor that it factor- tion directions. This leads to
izes into a product of a density operator for the bath and a

2 o i _ _
density operator for the undamped-polariton syst@s is I'(t)= M—Rej dww’n(w) sin (0= wa)(t tO)],
often assumed for convenienk®9)). At time t,>0 we bring 3w?hieoc®  Jo W™ O

the guest atom in its excited state and couple it to the (62)

damped-polariton system. Using perturbation theory, one can. B -
calculate[18] the time-dependent probability that the guestW'th n(‘_")_ Ve(w) the complex refractive index.
atom has emitted a photon at time t,. We define the de- For times (—1o) that are large enough, one may replace

rivative of this quantity as the instantaneous spontaneousiM (@~ @a)(t—tg)[/(w=wy) by 7é(w—w,). However, the
emission ratd’(t). It is given as time scale at which this replacement is valid depends on the

resonance structure of the refractive indgw). Since we
want to study just this time scale, we will not make the

2 t , . replacement. To evaluate the integral, we multiply the inte-

F(t)=—2Ref dt’el“alt=t) grand by a convergence factr*/(Q*+ o) with Q> w,.

h to The specific choice of the cutoff frequen€y will only af-

XT pp(0) - E(r o ) p-E(ra,t’)],  (60) fectI'(t) at time difference$—ty much smaller than a single
optical cycle. We need to use a high-frequency cutoff at this
point because the dipole approximation is incorrect for high

where u is now the dipole transition matrix element of the frequencies.

guest atom. For the dielectric function, we take the Lorentz oscillator
If the guest atom is excited a long time after the initial form (55) and we choose the cutoff frequency in that model

preparation of the medium, all transient effects in the electricdo be identical to the one inserted in E§2). In Fig. 3, we

field have damped out. Hence, the field may be replaced bgive the real part of the refractive index which clearly
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changes rapidly neap=wq. It is a familiar figure and it 1.0
shows that the refractive index does not change much while —
increasing the cutoff frequendy from 10w, to infinity. The =
density of radiative modes around the material resonance is E g0l
proportional tow? R n(w)]. &
With this model for the dielectric function and the param- = \
eters as in Fig. 3, we calculatdd(t) in the case that the = osl
transition frequencyw, exactly equalswgy. Since the inte- =the . s
grand in Eq.(62) is rapidly fluctuating, it is expedient to use 0 200 400 600
complex contour deformation to evaluate the integral. We ()

add an infinitesimal positive imaginary part to the denomi- ) o
nator and split the sine into two complex exponentials. The FIG- 4. Normalized  spontaneous-emission  ratg(t)/
contour of the integral with eXi{w—wa)(t—to)] in the inte- [Ty Ren(_a_)A)] in an absort_nng dielectric as a_functlon of time wr_wen
grand is deformed towards the positive imaginary axis. Thn%he transition frequency, is equal tow,. Choice of parameters in

o . he Lorentz oscillator modeky=0.0lwq, w.=0.50wy, andQl=o».
contribution from the pole arising from the convergence fac- S L

. 1. . The solid line is the exact result for E(2) and the dashed line is

tor can be neglected at time scakesty>w, . Likewise,

- . . ] . the approximate expressidf?).
the integration contour of the integral with §xg(w—wa)(t
—tg)] is deformed towards the negative imaginary axis. o .
Again, the pole contribution from the convergence factor is )= fwd)\ e M og— kg—i(M+xg)]?
negligible. Further contributions, which cannot be neglected, 0
arise from the branch cuts of(w)=e(w) and from the
pole atw, . The latter contribution is easily evaluated and
yields the equilibrium valud’(«)=TjRen(w,). In con-
trast, the branch cuts yield time-dependent contributions to

VN[Vwp— k5= wa=i(\+ k)]
2w§ wO—KO+i)\(7\2+4wg+ w§—4;<§) vz

4(w(2)— K(Z))+)\2

I'(t). For large Q) they are situated atw;=—ikg (66)
+ \/woz— K02 andw,= —ikgy+ \/woz-i- wcz— Koz. Aroundw, and ] o o
w,, We can approximate the dielectric function by The branch cut arouna, gives a similar contribution.
The integrals arising from the branch cuts and from the
s(ml—i5e“P)z—iwﬁe““’/(25~/woz—l<oz), (63) imaginary axis can easily be evaluated numerically since

their integrands are no longer rapidly fluctuating. The result
e(wy—i06'9)=—2i 5e‘¢\/m/w§. (64) Is the solid line in Fig. 4. We see that the spontaneous-
emission rate builds up until it finally reaches the time-
The branch cut ab, gives the following contribution to the independent equilibrium valuEy Ren(w,).
spontaneous-emission rate: The dashed line in Fig. 4 is an analytical approximation
for I'(t), which captures the main features of the time de-
pendence at least qualitatively. It is derived by retaining only
the contribution(65) in the time-dependent part @f(t) as
this is dominant for largeé. Moreover, we approximaté(t)
_i(\/m_ wp)(t—to) (1)1, (65) by the first term in its asymptotic expansion for latget,.
In this way we arrive at the following approximate expres-

I'o .
— ——Rdexp{ —im/4—ko(t—1o)

T Wp

whereJ(t) is defined as sion forI'(t):
|
I'(t)=TyRe N(wa) we(w5— ko)™ exp{ —i m/4— ro(t—to) —i[ Vwi— kg~ wal(t—to)} 67
= w J— .
i M 2mwi(Vwi— k- wa—io) (t—tg) 2

As explained, this approximation contains only the contribu-nance, oscillations with frequency\/woz— KOZ— w, are

tion from the branch cut ab,; the branch cut ai, gives a  present. Figure 4 shows the on-resonance case when the

faster decaying term, which goes like “o(' "%/ (t—t;)¥2  time-dependent term shows no oscillations, but has a rela-

The contributions from the integrals along the imaginary axigively large amplitude.

decay even faster. The main result of the present discussion is the time de-
It can be seen from Eq67) that the amplitude of the pendence of the spontaneous-emission rate. The time-

time-dependent part off'(t) falls off as e *('"')/(t  independent value is not reached instantaneously, but at a

—to)¥?and also that the amplitude of the extra term is larg-time scale that is governed by the resonance characteristics

est around resonance Whaﬁzx/woz— KO2. Away from reso-  of the medium. In fact, the smaller the resonance wigh
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the longer it takes to reach the time-independent value. Typishows up in the initial stages of the decay process. This
cally, it takeswq/ K optical cycles as follows from the ex- transient behavior, which is related to the preparation of the
ponentiale” “o(t"%) in the approximate expressi¢f7). For ~ guest atom in its excited state, leads to a nonexponential
narrow resonances with,/ kg large, the transient dynamics decay—or in other words to a time-dependent spontaneous-
may take a substantial amount of time. emission rate—if the atomic transition frequency is near a
resonance of the dielectric. The nonexponential dynamics

takes place at time scales that are inversely proportional to

VII. DISCUSSION AND CONCLUSIONS the width of the resonance. As we have shown, the charac-

We have solved the equations of motion for the field op-teristics of the time-dependent decay rate can be captured in
erators in the damped-polariton model using Laplace trans@n analytic asymptotic expression of which the qualitative
formations. The solutions of the field and medium operatord€atures are corroborated by numerical methods.
are the sum of a transient and a permanent part. The latter are
expressed solely in terms of the initial bath operators. Long ACKNOWLEDGMENTS
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tinuum that produces the absorption also forms the noise
source that keeps the commutation relations in order. This is
conceptually simpler than expressing the quantum Langevin

noise in terms of the creation and annihilation operators that
diagonalize the total Hamiltonian of the damped-polariton |, sec. || the electric-field operatcE(p) was given in

model[14]. o _ __terms of the operators at=0. Here we give the analogous
The effects of the initial state of the field and medium g, ressions for the other Laplace operators. Furthermore, we

variables on the expectation values at a later time are notic&now how to evaluate the time-dependent coefficients

able only during a short period that is determined by thean(t) like in Eq. (23 for the electric-field operator. Fi-

characteristic relaxation times of the damped-polariton,,)y we Jist the expressions for the coefficients of the other
modes. Once these transient effects have died out the eXPEGserators.

tation values are determined by the reduced density matrix,
which follows from the full density matrix at the initial time
by taking the trace over the degrees of freedom of field an
matter(without bath). If the full density matrix at the initial 1 2
time factorizes, the reduced density matrix equals the initial A(p)= __[ —E(0)+pA(0)— had p_;(p)_l
bath density matrix. D(p) 0| w?
The method of long-time solutions can be used for other L

dissipative quantum systems as well. For models in which — —
the Hamiltonian can be diagonalized completely, it is an al- B ;px(p)[P(O)—B(p)]},
ternative to the Fano diagonalization technique. The latter
can be quite complicatdd 4,40, whereas our long-time so- - 1 e en
lutions are found after the simple inversion of & 4 matrix, X(p)= _—[ — Z2px(P)E(0)+ —p2x(p)A(0)
as one sees from Secs. Il and IV. More generally, the long- D(p) @ @
time method may be useful for dissipative systems with a 5 5 5
bilinear coupling to a harmonic oscillator bath whose dy- k“c

; ; —+—=+1
namics can be integrated out. g g

We employed the method of long-time solutions to study
transient effects in a medium described by a Lorentz oscilla- €0, 5. 0 20— _
tor dielectric function. This dielectric functiofand that of + = (P +kC)X(P)P(0O)=B(p)];,  (A2)
the point-scattering model as wetian be derived from the @
damped-polariton model by taking a suitable bath coupling. [
-

APPENDIX: LAPLACE OPERATORS
AND TIME-DEPENDENT COEFFICIENTS

The expression foE(p) in Eq. (18) has the following
&malogous expressions for the other Laplace operators:

X(0)

(A1)

+ px(p)X(0)

Although a cutoff procedure turns out to be indispensable,g(p): _L p_zz(p)_l
the essential physics in the optical regime can be represented D(p) wﬁ
adequately in this way. Once the connection with the
damped-polariton model has been established, spontaneous-
emission processes by a guest atom in a Lorentz oscillator XA(0)+ P
dielectric can be investigated by means of the long-time

method. Although transient effects due to the initial prepara-

tion of the dielectric have damped out after a few medium +p

relaxation periods, transient behavior of a different type

E(0)+ap

2
%X(p)—l]

kZC2 p2
—+ 5 +1|X(0)

We We

2 2

P -1

2
O‘)C

kZCZ 2
—+—+1
2 2

wC wC

?(p)[P<0>—§<p>]]. (A3)
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If we now apply the inverse Laplace transformation to these 1 o veilvacC
: . : —i0;t?a9.i [ Ypj
expressions, we find the full time dependence of the opera- Map()=—= > Ree ¥ - . (A7)
. . . o j C C Up’j
tors A, X, andP. The inverse Laplace transformation is a
contour integration over the Bromwich contour that includes

the whole imaginaryp axis. After transforming to frequency Mxe(t) =eoMap(t), (A8)
variables, the contour includes poles frdn (p), which
are in the lower half plane and moreover, poles on the real Mya(t)=eoMEgp(t), (A9)

frequency axis arising frorﬁ( p). The latter are important in
the calculation of the long-time solutions of the operators in K2c2 v v c
. . . . s X g" "
Sec. IV. However, in the calculation of the coefficients Myx(t) = — — E Re{e mJtTJ(ﬂ__)
(O

M mn(t), which we will discuss here, they play no role. Let C  Upj
us consider, as an example, the coefficieht:(t) 5 )
Uy i w
1 [(ietn - X 1—%+2—°Z)], (A10)
Mag(t)=—5— dp €D (p) c® Kk
27T| —iwe+7y
1 (= g iot goke o vgifvp; € \?
=— 0w— Myp(t)=— 02 > Im e'thﬂ(ﬂ——) ,
27 -2 g(w)w?—k3c? a® ] C 1 C vpj
1 (o e iot e-iot (Al1)
_ 1 J dw( _
dmke )« N(w)w—kc n(w)w+kc M pe(t) =eoM ax(t), (A12)
1 —in Vg
= > Im| e, (A4) Mpa(t)=eoMex(t), (A13)
Note thatM g(t) is exponentially damped because @l in 21,33 _ 2 2\2
2 . . . _intUQ,l Up,j @
the exponentials have negative imaginary parts. The otheMpy(t)=—— Z Imfe ™ =1 1-—=+——1 |,
coefficients can be calculated in a similar way. The results wceo | ¢ c kc
are (A14)
Maa(t) =MEgg(t), (A5) M pp(t) =M yx(1). (A15)
2 2
M ax(t) = — a_k > Im| e ity | 1— m+ @e With the sum rules discussed in Sec. Ill, one can see that the
wZeqc? ] 9! c®  Kk3? “diagonal” coefficients in this list equal 1 at timé=0
(AB) whereas the other coefficients have the initial value 0.
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