
s

PHYSICAL REVIEW A, VOLUME 63, 043809
Transient QED effects in absorbing dielectrics
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The spontaneous-emission rate of a radiating atom reaches its time-independent equilibrium value after an
initial transient regime. In this paper, we consider the associated relaxation effects of the spontaneous-decay
rate of atoms in dispersive and absorbing dielectric media for atomic-transition frequencies near material
resonances. A quantum mechanical description of such media is furnished by a damped-polariton model in
which absorption is taken into account through coupling to a bath. We show how all field and matter operators
in this theory can be expressed in terms of the bath operators at an initial time. The consistency of these
solutions for the field and matter operators are found to depend on the validity of certain velocity sum rules.
The transient effects in the spontaneous-decay rate are studied with the help of several specific models for the
dielectric constant, which are shown to follow from the general theory by adopting particular forms of the bath
coupling constant.
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I. INTRODUCTION

The rate and the spectral and spatial characteristics o
spontaneous decay of an atom depend on the propertie
the atom and of the radiation field, and on the interact
between them. The radiation field changes by the presenc
other matter@1#. One can try and manipulate the emissi
properties once the influence of this medium is understo

In quantum optics of linear dielectrics, one tries to d
scribe the material medium in an effective way with the h
of the classical dielectric function«(r ,v), which, in general,
is a complex function of both position and frequency and
this full generality describes the propagation and loss of li
at each point in the dielectric. Sometimes it is possible
neglect the spatial variations~including local field effects!,
dispersion, and losses altogether. The spontaneous-emi
rate of an atom in such a simple dielectric is the refract
index n of the medium times the rateG0 in vacuum@2–4#.

The situation becomes more complicated when mate
dispersion has to be taken into account@5–11#. Since the
Kramers-Kronig relations tell that dispersion and loss alw
come together~be it not always at the same frequencies!, one
should like to include losses as well in order to describe
frequencies in one theory. The damped-polariton model@12–
15# provides us with such a microscopic theory. From t
theory it was shown that the radiative spontaneous-emis
rate equalsG0 times the real part of the refractive index
the transition frequency@16#.

The quantum mechanical treatment of dissipative syst
is more complicated than the classical one because of
extra requirement that equal-time commutation relations
not change over time@17,18#. Based on the damped
polariton model and on the fluctuation-dissipation theore
phenomenological quantization theories were construc
that meet these requirements. In these theories, the diele
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function is an input function and the Maxwell field operato
satisfy quantum Langevin equations with both loss and qu
tum noise terms@19,20#. With the use of a Green-function
approach, the phenomenological quantization theories h
been generalized to inhomogeneous dielectrics, first
multilayer systems and later for general«(r ,v) @21,22#.
Field commutation relations turn out only to depend on
analytical properties of the Green function. However, the c
culation of spontaneous emission inside such a med
would involve the actual computation of the Green functio
which for general«(r ,v) is not easy.

A special case of the former theories is the quantum
tical description of inhomogeneous systems at frequen
where both dispersion and losses can be neglected. Th
description in terms of modes is possible, where the m
functions are harmonic solutions of the classical wave eq
tion featuring a position-dependent dielectric ‘‘constan
«(r ) @23#. This encompasses the now theoretically and
perimentally very active research area of the so-called p
tonic crystals@24#, where a periodic modulation of the re
fractive index at the scale of the wavelength of light c
drastically modify the mode structure compared to vacuu
By increasing the refractive-index contrast, even a photo
band gap can open up giving rise to a frequency interval
which waves cannot travel in the crystal in any direction
that spontaneous emission would be inhibited complet
Until now, such a band gap has not been found conclusiv
in the optical regime@25#. It has been proposed to look fo
frequencies close to material resonances, where refrac
indices can be quite substantially higher or lower than 1@26#.

Interesting new effects have been predicted for band-
systems such as photon-atom bound states and nonexpo
tial spontaneous decay at the edges of the gap@27#. A current
debate is whether the Weisskopf-Wigner approximation
be used in the calculation of spontaneous emission nea
edge of a photonic band gap. This question seems to dep
strongly on the analytic or singular behavior of the density
©2001 The American Physical Society09-1
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MARTIJN WUBS AND L. G. SUTTORP PHYSICAL REVIEW A63 043809
states at the edges of the gap, which has recently been
culated for face-centered-cubic and diamondlike crys
structures@28#. If near the edge of the band gap a large p
of the modes has a cavitylike structure, producing nonz
dwell times near the emitting atom, then an emitted pho
has a nonzero probability of being reabsorbed, which wo
give Rabi-like oscillations of the atomic population that a
missed in the Weisskopf-Wigner approximation.

Nonexponential decay can also be caused by the inte
ence of possible decay channels: for short times after
excitation of the atom, a larger frequency interval of t
medium states plays a part in the decay process than for
times. Ultimately, only the refractive index at the atom
transition frequency plays a role, all in concordance with
energy-time uncertainty relation. This interference proc
already happens for spontaneous emission in vacuum. H
ever, when the medium has a strong jump in the density
states around the atomic-transition frequency, the inter
ence effect will change substantially.

To separate the latter cause of nonexponential decay f
the former, it is interesting to consider the spontaneous em
sion inside homogeneous lossy dielectrics with strong
narrow material resonances, where the density of states
also change very rapidly. Here all states correspond to sim
plane-wave modes, so that real reabsorption processes d
play a role. In this paper, we use the damped-polariton mo
formulated by Huttner and Barnett@13,14# to study the inter-
ference effects of spontaneous emission. If absorption is
glected in the damped-polariton model, then we are left w
the Hopfield model of a dielectric@8,29#, which has a fre-
quency band gap inside which the refractive index is pur
imaginary. The analogy between this polariton band-gap s
tem and photonic crystals was drawn in@30#.

The organization of the paper is as follows: In Sec. II w
introduce the theory and solve its equations of motion us
Laplace transformations. In Sec. III we show that the con
tency of our solutions depends on the validity of a numbe
velocity sum rules, which are then proved. In Sec. IV,
find that for long times all field operators can be expresse
terms of the initial bath operators, and we give an interp
tation of the result. We also show how to relate the resul
phenomenological quantization theories. Before we can
cuss transient effects of spontaneous emission in Sec. VI
discuss in Sec. V the Lorentz oscillator model and the po
scattering model. We show how both these models can
found from the damped-polariton theory by choosing a s
able coupling to the bath. The paper ends with a discus
of the results and with conclusions in Sec. VII.

II. THE MODEL AND SOLUTIONS OF THE EQUATIONS
OF MOTION

The damped-polariton theory describes the interaction
light with an absorbing homogeneous medium. The coup
of the matter to a frequency continuum is the cause of
light absorption. The continuum could be a phonon bath
something else, but for the moment that is not specified:
a collection of harmonic oscillators with a frequenc
dependent coupling to the matter fields. Since the medium
04380
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homogeneous, the dynamics can be separated into a t
verse and a longitudinal part. In this paper we concentrate
the transverse excitations as described by the follow
Hamiltonian@13,14#:

H5Hem1Hmat1Hbath1H int , ~1!

with

Hem5E d3k \ k̃c a†~l,k,t !a~l,k,t !, ~2!

Hmat5E d3k \ṽ0 b†~l,k,t !b~l,k,t !, ~3!

Hbath5E d3kE
0

`

dv \v bv
† ~l,k,t !bv~l,k,t !, ~4!

H int5
1

2E d3kE
0

`

dv \V~v!@b~l,k,t !1b†~l,2k,t !#

3@bv
† ~l,k,t !1bv~l,2k,t !#

1
i

2E d3k \vcAṽ0

k̃c
@a~l,k,t !1a†~l,2k,t !#

3@b†~l,k,t !2b~l,2k,t !#. ~5!

We use the same notations as in@14#. In particular,k̃c stands
for Ak2c21vc

2, where the frequencyvc equalsa/Ar«0,
with a the coupling constant between field and matter anr
the density. The resonance frequencyv0 of the polarization
field is renormalized toṽ0, which is the positive-frequency
solution of

ṽ0
25v0

21ṽ0E
0

`

dv V2~v!/v. ~6!

The k integrals in the Hamiltonian are understood to a
denote a summation over the two transverse polarization
rections labeled byl. The creation and annihilation opera
tors satisfy standard bosonic commutation relations. T
Heisenberg equations of motion for the bath annihilation
erators are

ḃv~l,k,t !52
i

2
V~v!@b~l,k,t !1b†~l,2k,t !#

2 ivbv~l,k,t !, ~7!

and similarly for the creation operators. In the following, w
drop the (l,k) labels. We solve implicitly for the bath vari
ables as was done in@31# in a classical treatment of th
model,
9-2
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bv~ t !52
i

2
V~v!E

0

t

dt8@b~ t8!1b†~ t8!#

3e2 iv(t2t8)1bv~0!e2 ivt. ~8!

The annihilation operators are defined in terms of the~trans-
verse! physical fields,

a~ t !5A «0

2\ k̃c
@ k̃cA~ t !2 iE~ t !#,

b~ t !5A r

2\ṽ0
F ṽ0X~ t !1

i

r
P~ t !G , ~9!

and similarly for the creation operators. HereA andE are the
vector potential and the electric field, respectively,X the po-
larization field andP its canonical conjugate. Insertion of th
solution ~8! and its Hermitian conjugate in the equations
motion gives

Ė~ t !5~ k̃c!2A~ t !1~vc
2/a!P~ t !, ~10!

Ȧ~ t !52E~ t !,
s-
th

f
es

04380
f

Ẋ~ t !5~vc /a!2«0P~ t !1~vc
2/a!«0A~ t !,

Ṗ~ t !52a2ṽ0
2/~«0vc

2!X~ t !1a2ṽ0 /~2«0vc
2!

3E
0

t

dt8 F~ t2t8!X~ t8!2B~ t !.

In the last equation, the bath operatorB(t) is defined as

B~ t ![A\ṽ0r

2 E
0

`

dv1V~v1!@bv1
~0!

3e2 iv1t1bv1

† ~0!eiv1t#, ~11!

whereas the functionF in the convolution in~10! is

F~ t ![2E
0

`

dv1 V2~v1!sin~v1t !. ~12!

We get a system of algebraic equations by taking the Lap
transform, which we denote by a bar
S p 2 k̃2c2 0 2vc
2/a

1 p 0 0

0 2«0vc
2/a p 2«0vc

2/a2

0 0 a2ṽ0
2/~«0vc

2!@12F̄~p!/~2ṽ0!# p

D S Ē~p!

Ā~p!

X̄~p!

P̄~p!

D 5S E~0!

A~0!

X~0!

P~0!2B̄~p!

D . ~13!
rs-
tion
o

q.
-
-

l

Through the operatorB̄(p) the bath remains part of the sy
tem of equations: this is as far as we can ‘‘integrate out’’
bath variables.

Now we can determine the dielectric function«(v),
which is aclassicalquantity, by putting the determinant o
the (434) coefficient matrix to zero. The determinant giv
the dispersion relation

D̄~p![«̄~p!p21k2c250, ~14!

with the ‘‘Laplace dielectric function’’

«̄~p!511
vc

2

p21ṽ0
22 1

2 ṽ0F̄~p!
. ~15!

The functionF̄(p) is the Laplace transform ofF(t), which
was defined in Eq.~12!. From this we find the dielectric
function

«~v!5 «̄~2 iv1h!512
vc

2

v22ṽ0
21 1

2 ṽ0F~v!
, ~16!
e
with infinitesimal positiveh and

F~v![F̄~2 iv1h!

5E
0

`

dv1V2~v1!S 1

v12v2 ih
1

1

v11v1 ih D .

~17!

The difference betweenF(v) and F(t) is denoted by their
arguments. The dielectric function satisfies the Krame
Kronig relations and has the property of a response func
that «(2v* ) equals«* (v). It can be shown that it has n
poles in the upper half plane provided that the integral in E
~6! exists. Previous authors@14,31,32# assumed that the ana
lytical continuation ofV2(v) to negative frequencies is an
tisymmetrical in frequency. Then Eq.~16! reduces to the
dielectric constant in@31# where it was shown to be identica
to the more complicated expression in@14#.

We combine Eqs.~13! and ~15! and write the Laplace
fields in terms of the fields at timet50 with coefficients that
are functions of the Laplace dielectric function«̄(p) and
susceptibilityx̄(p)5 «̄(p)21. For the electric field we find
9-3
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Ē~p!5D̄21~p!H pE~0!1@p2x̄~p!1k2c2#A~0!

1
a

«0
pF p2

vc
2
x̄~p!21GX~0!

1
1

a
p2x̄~p!@P~0!2B̄~p!#J . ~18!

The other Laplace operators can be found in the same
and are listed in the Appendix. The inverse Laplace tra
form gives the fields at timet in terms of the fields at time
t50,

E~ t !5MEE~ t !E~0!1MEA~ t !A~0!1MEX~ t !X~0!

1MEP~ t !P~0!1BE~ t !, ~19!

where, for instance,

MEE~ t !5
1

2p i E2 i`

i`

dp ept D̄21~p!p. ~20!

The operatorBE(t) in Eq. ~19! is the contribution of thet
50 bath operators to the electric field. This term will b
analyzed in more detail in Sec. IV.

The equal-time commutation relations of the field oper
tors are

@A~l,k,t !,2«0E~l8,2k8,t !#5@X~l,k,t !,P~l8,2k8,t !#

5 i\dll8d~k2k8!. ~21!

All other inequivalent combinations of operators commu
In particular,A and X are independent canonical variable
Hence, we have the property@A,2D#5@A,2«0E# with the
displacement fieldD defined as«0E2aX. With the help of
Eqs. ~19! and ~21!, we can also calculatenonequal-time
commutators, for example,

@E~l,k,t !,E~l8,2k8,0!#

5MEA~ t !@A~l,k,0!,E~l8,2k8,0!#

52
i\

«0
MEA~ t !dll8d~k2k8!. ~22!

In principle we have solved the complete time evoluti
of the field operators. In Sec. III we analyze in more de
their short-time behavior, whereas in Sec. IV we consider
long-time limit.

III. SHORT-TIME LIMIT: SUM RULES

For fixed k, the zeros of the dispersion relation~14! are
the poles of the integrand in Eq.~20!. We assume that the
are simple first-order poles and rewrite the integral~20! as an
integral over frequenciesv5 ip. Then, using contour inte
gration in the lower frequency half plane, we find the co
ficients for the electric field
04380
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MEE~ t !5(
j

ReFvp, jvg, j

c2
e2 iV j tG ,

MEA~ t !52kc(
j

ImFvp, j
2 vg, j

c3
e2 iV j tG ,

~23!

MEX~ t !52
ak2c2

vc
2«0

(
j

ReFvp, jvg, j

c2 S 12
vp, j

2

c2
1

vc
2

k2c2D
3e2 iV j tG ,

MEP~ t !5
kc

a (
j

ImFvg, j

c S 12
vp, j

2

c2 D e2 iV j tG .

Some details of the calculation and a list of coefficien
Mmn(t) of other operators can be found in the Appendix.
these expressions, the frequenciesV j5V j (k) are the
complex-frequency solutions of the dispersion relati
v2«(v)2k2c250. All V j (k) have a negative imaginar
part. Since«(2v* )5«* (v), it follows that 2V j* (k) is
also a solution of the dispersion relation. We can cho
V j (k) to be the solution with a positive real part. The sum
mation overj is a summation over all the polariton branch
of the medium. For each branch, the complex phase velo
is defined asvp, j (k)5V j (k)/k and the group velocity as
vg, j (k)5dV j (k)/dk. For convenience, we leave out the
explicit k dependence in the following.

From Eq.~19! we can see that the ‘‘diagonal’’ coefficien
MEE(t) in Eq. ~23! should have the value 1 at timet50 and
the ‘‘off-diagonal’’ coefficients MEA(0),MEX(0), etc.,
should have the value 0. The coefficients of the other fi
operators should also follow this rule. If these constraints
satisfied, the nonequal-time commutators like Eq.~22! get
the right equal-time limits as well. The coefficients@Eq. ~23!#
can only have the rightt50 limits if certain velocity sum
rules are satisfied.

Velocity sum rules can be derived in a systematic way
evaluating the following two types of integrals:

E
2`

`

dv
~v1 id!n

«~v!v22k2c2
, for n521,0,1, ~24!

E
2`

`

dv
~v1 id!mx~v!

«~v!v22k2c2
, for m521,0,1,2,3. ~25!

Here«(v) is anarbitrary dielectric function that satisfies th
Kramers-Kronig relations, so it is not necessarily of the s
cific form ~16!. The integrals can be evaluated using conto
integration in the complex-frequency plane. We can close
contours either in the upper or in the lower half plane. Equ
ing the two answers gives a velocity sum rule. In this w
one finds for all wave vectorsk
9-4



be
r-
-
n

ifi
he
th
,

ric
a
d

-

an

ng

s,
able

e

are
rs-

c-

the
ped
me

the

ns
we
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(
j

Re~vg, jvp, j /c2!51, ~26!

(
j

Re~vg, j /vp, j !51. ~27!

These sum rules can be found from Eq.~24! with n51 and
n521, respectively. Both relations have been obtained
fore @8,14,33,34#. The second was coined the Huttne
Barnett sum rule in@33# because of its importance in phe
nomenological quantum theories of dielectrics. A seco
group of sum rules has the form

(
j

Im~vg, jvp, j
2q !50, for q521,0,1. ~28!

The rules withq521 andq51 follow from Eq. ~25! with
m50 and m52, respectively; the case withq50 follows
from Eq. ~24! with n50.

All of these sum rules are independent of any spec
form of the dielectric function as long as it satisfies t
Kramers-Kronig relations. Other sum rules do depend on
behavior of«(v) for high or low frequencies. For example
from Eq. ~25! with m521 we find

(
j

Re~c2vg, j /vp, j
3 !5«~0!. ~29!

This sum rule depends on the static limit of the dielect
function. For conductors the dielectric function is singular
v50 @35#, but for dielectric functions that can be foun
from the damped-polariton model,«(0) is finite. Two other
sum rules can be derived when for high frequenciesv2x(v)
approaches a constant value that we name2v lim

2 . From Eq.
~25! with m53, we then find

(
j

Re~vg, jvp, j
3 /c4!511v lim

2 /~kc!2. ~30!

Moreover, if v2x(v)1v lim
2 falls off faster thanv21, then

the integral

E
2`

`

dv
v2@v2x~v!1v lim

2 #

«~v!v22k2c2
~31!

produces the sum rule~28! with q52.
Returning now to the time-dependent coefficients~23!

~and the other ones in the Appendix!, one finds, by inspec
tion, that one needs all the above sum rules except Eq.~29!
to prove that the coefficients have the right limits fort50. In
particular, from Eq.~16! it follows that the frequencyv lim as
defined above exists in the damped-polariton model
equalsvc . Then with Eqs.~27! and~30! we see that indeed
one hasMEX(0)50 in Eq. ~23!.

It is easy to prove the above sum rules in the followi
one-resonance model:
04380
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«~v!512
vc

2

v22v0
2

. ~32!

This «(v) is real and violates the Kramers-Kronig relation
but it can be considered as a limiting case of an accept
dielectric function. The high-frequency limit ofv2x(v) in-
deed equals2vc

2 . The two sum rules~26! and ~27! were
shown to be valid for this model@14# and we want to check
Eq. ~30! as well. The dispersion relation is

v42~v0
21vc

21k2c2!v21k2c2v0
250, ~33!

which has two~real! solutionsV1
2 and V2

2 with sum (v0
2

1vc
21k2c2) and productk2c2v0

2 . It follows that for allk

vp,1
3 vg,11vp,2

3 vg,25
1

4k3

d

dk
~V1

4 1V2
4 !

5
1

4k3

d

dk
@~V1

2 1V2
2 !222V1

2 V2
2 #

5S 11
vc

2

k2c2D c4, ~34!

in agreement with Eq.~30!. The other sum rules can also b
checked for this simple model. The sum rules@Eq. ~28!#
obviously hold because all group and phase velocities
real in this model. In models that respect the Krame
Kronig relations, these sum rules are nontrivial.

IV. LONG-TIME LIMIT

A. Field and medium operators

The coefficientsMEE(t), etc., in Eq.~23! damp out expo-
nentially in time. Every polariton branch has its own chara
teristic damping timet j (k)51/@ Im V j (k)#. After a few
times the maximum characteristic damping period with
maximum taken over all branches, the exponentially dam
coefficients can be neglected. We call this the long-ti
limit. The speed at which it is attained depends on«(v) and
on k. For long times,only the bath operatorBE(t) in Eq. ~19!
survives because it has poles on the imaginary axis in
complexp plane:

BE~ t !52
1

2p ivc
A\ṽ0

2«0
E

0

`

dv1 V~v1!

3E
2 i`

i`

dp ept
p2x̄~p!

«̄~p!p21k2c2
F bv1

~0!

p1 iv1
1

bv1

† ~0!

p2 iv1
G .

~35!

Hence, in the long-time limit, all field operators are functio
of the initial bath operators alone. For the electric field,
find
9-5
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E~ t !→El~ t !52
1

vc
A\ṽ0

2«0
E

0

`

dv1 V~v1!

3Fv1
2x~v1!bv1

~0!e2 iv1t

«~v1!v1
22k2c2

1
v1

2x* ~v1!bv1

† ~0!eiv1t

«* ~v1!v1
22k2c2 G , ~36!

where the subscriptl denotes the long-time limit. The tem
poral ~and spatial! Fourier components of the long-time s
lutions are

El
1~v!52

1

vc
A\ṽ0

2«0

V~v!v2x~v!bv~0!

«~v!v22k2c2
,

Al
1~v!5

i

vc
A\ṽ0

2«0

V~v!vx~v!bv~0!

«~v!v22k2c2
,

~37!

Xl
1~v!52

1

avc
A\ṽ0«0

2

V~v!~v22k2c2!x~v!bv~0!

«~v!v22k2c2
,

Pl
1~v!5

ia

vc
3
A\ṽ0

2«0

V~v!~v22k2c22vc
2!vx~v!bv~0!

«~v!v22k2c2
,

where the superscript1 denotes the positive-frequency com
ponent of the operator. For future reference we also give
long-time limit of the electric field operator as a function
position and time:

El~r ,t !52A \ṽ0

2~2p!3«0vc
2E dk (

l51,2
el~k!E

0

`

dv1

3FV~v1!v1
2x~v1!bv1

~l,k,0!

«~v1!v1
22k2c2

ei (k•r2v1t)1H.c.G .

~38!

Similar expressions can be given for the other operators.
tice that these long-time solutions indeed are solutions of
equations of motion~10! and of the Maxwell equations. Th
canonical commutation relations~21! should be preserved in
this long-time limit. Also, the nonequal-time commutatio
relations like in Eq.~22! should be time-translation invarian
The commutation relations can be verified with the equa

pṽ0

2vc
2

V2~v!ux~v!u25Im x~v!5Im «~v![« i~v!,

~39!

which follows from Eqs.~16! and ~17!. Since« i(v) is anti-
symmetric inv, all commutators can be shown to be propo
tional to integrals over the whole real-frequency axis. Co
tour integration then leads to the required results.
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The solutions found above can be related to those
tained by explicit diagonalization of the full Hamiltonian o
the model. In@14#, this diagonalization was carried out b
using Fano’s technique. In that way the field and medi
operators were written in terms of the diagonalizing anni
lation operators@calledC(k,v) in @14## and the correspond
ing creation operators. If one replaces the bath annihila
operatorsbv(k,0) in the long-time solutions~37! by the di-
agonalizing annihilation operatorsC(k,v) and if one makes
similar replacements for the creation operators, the exp
sions for the field and medium operators in@14# are recov-
ered.

The long-time solutions can be interpreted as follow
when the dielectric medium is prepared in a state that is
an eigenstate of the Hamiltonian and if the couplingV(v) is
nonzero for all the frequencies, then the medium tends to
equilibrium that is determined by the state of the bath. T
time taken for this equilibrium to settle down is the time aft
which the long-time solutions can be used for the field o
erators. So, one can always use the long-time solutions in
calculations unless the medium has been specially prep
in a nonequilibrium state a short time before one does
experiment. The interpretation of the long-time solution w
become clearer in Sec. VI where we calculate spontane
emission.

In summary, for times long aftert50, all field operators
can be expressed solely in terms of the bath operators at
t50. The time evolution is governed by the bath Ham
tonian alone. The field operators still satisfy Maxwell’s equ
tions and the canonical commutation relations. Classical
pressions for the Maxwell fields would have die
exponentially to zero in this long-time limit.

B. Relation with phenomenological theories

The long-time solutions of the field operators can be
lated to expressions in phenomenological theories, as we
show presently. In phenomenological quantum mechan
theories of homogeneous absorbing dielectrics@19–21#, a
noise current density operatorJ is added to the Maxwell
equations in order to preserve the field commutation re
tions:

¹3E1~r ,v!5 ivB1~r ,v!, ~40!

¹3B1~r ,v!52 ivm0D̃1~r ,v!1m0J1~r ,v!. ~41!

The displacement fieldD̃1 in the last equation is defined i
terms of the electric field and the dielectric function as

D̃1~r ,v!5«0«~v!E1~r ,v!. ~42!

We write D̃ to stress the difference with the microscop
displacement fieldD in Sec. II. After taking the spatial Fou
rier transform and usingB15¹3A1 and E15 ivA1, so
that the first of the Maxwell equations is satisfied, one fin
from the second equation
9-6
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@v2«~v!2k2c2#A1~l,k,v!52
1

«0
J1~l,k,v!. ~43!

The vector potential and all Maxwell fields can be calcula
in terms of the noise current densityJ. The canonical com-
mutation relations are preserved if for the noise current d
sity one chooses@19,20#

†J1~l,k,v!,@J1~l8,k8,v8!#†
‡

5
\v2«0« i~v!

p
dll8d~k2k8!d~v2v8!. ~44!

Instead of using the noise current density, one defines b
bosonic operators

f ~l,k,v!5A p

\v2«0« i~v!
J1~l,k,v!, ~45!

so that these operators satisfy simple commutation relat

@ f ~l,k,v!, f †~l8,k8,v8!#5dll8d~k2k8!d~v2v8!.
~46!

Now we turn to the long-time solutions of the field oper
tors that we determined in Sec. IV A. The long-time soluti
of the vector potential in~37! obviously is a solution of the
following inhomogeneous wave equation:

@«~v!v22k2c2#Al
1~l,k,v!

5
i

vc
A\ṽ0

2«0
V~v!vx~v!bv~l,k,0!. ~47!

This kind of equation is well known in Langevin theorie
@17,18#: the coupling to a bath gives a damping term~here: a
complex dielectric constant! in the equations of motion o
the system. Besides damping, there is an extra term th
neglected classically. This term is the quantum noise op
tor, which features the bath operators at timet50.

The long-time solution~47! can justify the phenomeno
logical equation~43! if we identify

f l~l,k,v!52 i
V~v!x~v!

uV~v!x~v!u
bv~l,k,0!, ~48!

where we used Eq.~39!. We see that up to a phase factor, t
bath operatorsbv(l,k,0) from the microscopic theory serv
as basic bosonic operatorsf (l,k,v) in the phenomenologi-
cal theories. We want to stress that the identification~48! is
only valid in the long-time limit when the medium is i
equilibrium with the bath.

In Sec. II we saw that2«0E is the canonical conjugat
field of A and that@A,2D# gives the canonical result a
well. Since we can make the identification~48!, the same
relations hold in the phenomenological theory that was
scribed in this section. But now let us calculate the comm
tator @A,2D̃# with D̃1 defined as in Eq.~42! andD̃2 as its
Hermitian conjugate. We can use the long-time solutions
cause the commutation relations are preserved:
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@A~l,k,t !,2D̃~l8,2k8,t !#

5
2i\

p
dll8d~k2k8!E

0

`

dv
« r~v!« i~v!v3

u«~v!v22k2c2u2
,

~49!

with e r(v) the real part of the dielectric constant. The sym
metry of the integrand enables us to rewrite the right-ha
side as an integral over all real frequencies. When us
contour integration, one cannot replace«* (v) by «(2v* ),
but the analytical continuation to complex frequencies
«* (v)5«(2v) must be used instead:

@A~l,k,t !,2D̃~l8,2k8,t !#

5 i\dll8d~k2k8!(
j

Re@«~2V j !vp, jvg, j /c2#,

~50!

where we assumed, as before, that all poles of the disper
relation are first-order poles. Note that«(2V j ) depends on
the behavior of the dielectric function in theupper half
plane. Contrary to a statement in@20#, the commutator does
not give the canonical result because in general there is
sum rule for the right-hand side of the equation. In oth
words, (D2«0E) is canonically independent ofE, but (D̃
2«0E) is not. The operator (D2D̃) is proportional to the
Langevin noise term in the wave equation for the elec
field.

Now let us neglect absorption at all frequencies. Stric
speaking, the limit« i(v)→0 is unphysical because it vio
lates the Kramers-Kronig relations, but the limit is som
times taken for dielectrics that show negligible absorption
optical frequencies@21,33#. When «(v) becomes real, the
solutionsV j become real and in that limit one has«(2V j )
→«(V j )5(c/vp, j )

2. Inserting this in Eq.~50! and using the
Huttner-Barnett sum rule( jRe(vg, j /vp, j )51, we immedi-
ately find the canonical result for@A,2D̃#. We compare this
with the results in@33# where the dielectric function is as
sumed to be real. There a phenomenological Lagrangian
introduced and the fieldsA and2D̃ were correctly identified
as a canonical pair. The Huttner-Barnett sum rule was
voked to show that their commutator indeed had the can
cal form. It was concluded that it is misleading that al
@A,2«0E# has the canonical form. Here we have learnt th
this misleading result is not surprising: in the limit of re
dielectric constantsand only then, both @A,2«0E# and

@A,2D̃# can have the canonical form in the same gauge,
reason being thatD̃ approachesD in that limit.

V. MODEL DIELECTRIC FUNCTIONS

Phenomenological theories as discussed in Sec. IV B h
expressions for«(v) as input. In practice, this input will be
the outcome of measurements of the dielectric function.
choosing the appropriate microscopic coupling constants
resonance frequencies in the damped-polariton model,
9-7
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MARTIJN WUBS AND L. G. SUTTORP PHYSICAL REVIEW A63 043809
can hope to find a given dielectric function, thus providing
connection with phenomenological theories. It was argue
@31# that the well-known Lorentz oscillator form of the d
electric function could not be found from the dampe
polariton theory in this way. We shall reconsider this iss
below.

A dielectric function that follows from the damped
polariton Hamiltonian~2! will have a single resonance be
cause there is only one resonance frequencyv0 in the matter
fields. Experimentally, one may find more resonances
«(v). This should not be used as an objection to
damped-polariton model because, in principle, one co
easily extend the theory with more material resonances
this section, we consider two of these one-resonance mo

A. The Lorentz oscillator model

We want to find microscopic coupling constants in t
damped-polariton theory so that the resulting«(v) has the
following Lorentz oscillator form:

«Lor~v!512
vc,Lor

2

v22v res
2 12ivk0

. ~51!

Here v res is the resonance frequency of the medium a
vc,Lor is a frequency that is related to the coupling stren
between the electromagnetic and the matter field. Identify
«(v) from Eq. ~16! with «Lor(v), we find, apart from the
trivial identificationvc5vc,Lor ,

E
0

`

dv1V2~v1!F 1

v12v2 ih
1

1

v11v1 ihG
54S v

ṽ0
D ik01D, ~52!

where the frequency shiftD is defined such thatv res
2 5ṽ0

2

2ṽ0D/2. The couplingV2(v1) is fixed by the identification
of the imaginary parts and for all frequencies it equ
V2(v1)54k0v1 /(pṽ0). However, if we insert this cou
pling in the equation for the real parts, we find that the f
quency shiftD is infinitely large. Also, the renormalized fre
quencyṽ0 in Eq. ~6! blows up. We can solve this problem
by introducing a frequency cutoff in the coupling, name
V2(v1)54k(v1)v1 /(pṽ0) with

k~v1!5
k0V2

V21v1
2

. ~53!

With this choice one findsṽ05Av0
212k0V, which clearly

has a strong dependence on the cutoff frequency. The shD
becomes both finite and frequency dependent.
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D~v!5
4

pṽ0

PE
0

`

dv1v1k~v1!S 1

v12v
1

1

v11v D
54k~v!

V

ṽ0

. ~54!

The principal-value integral can be evaluated by means
contour integration in the complex-frequency plane. In t
way we arrive at the following expression for the dielect
function

«~v!512
vc

2

v22v0
222V@k02k~v!#12ivk~v!

.

~55!

We can chooseV arbitrarily high ~but finite!. Quite unlike
ṽ0, the optical resonance frequencyv resapproachesv0 from
above, the higher we choose the cutoff, since one hasv res

2

.v0
212k0v0

2/V. Note that the dielectric function~55! has
the right high-frequency limitv2x(v)→2vc

2 as required in
Sec. III.

It is well known that there are two branches of solutio
of the dispersion relation when the dielectric function is
the form ~51!: an upper and a lower polariton branch. Th
dielectric function~55! gives rise toanotherbranch: it has a
purely imaginary frequency with magnitude of the order
the cutoff frequency. This ‘‘cutoff branch’’ has negligiblek
dependence. In fact, the leadingk-dependent term for large
V is 2ivc

2k0k2c2/V4. Clearly, the group velocity on this
branch is practically zero so that the contribution of the c
off branch to the velocity sum rules of Sec. III can be n
glected.

We conclude that high cutoff frequencies can be cho
such that in the optical frequency regime the dielectric fu
tion cannot be discerned from a Lorentz dielectric functi
with resonance frequencyv res5v0 and damping constan
k0. The solutions of the dispersion relation of the upper a
the lower polariton branch together satisfy the sum rules
Sec. III.

B. The point scattering model

In general the dielectric function«(v) describes the
propagation of a coherent light beam in a fixed direction
an isotropic medium. A complex«(v) means that there is
extinction, which can be caused either by scattering or
sorption or both. The dielectric function does not conta
information about the extinction mechanism. A well-know
dielectric medium showing polariton behavior is the dilu
gas, which can be described as a collection of point dipo
that scatter light independently. If only one type of elas
scatterers is present, each having only one resonance,
the dielectric function is given by@36#

«sc~v!512
4pc2Gen

v22v res
2 1 2

3 iGev
3/c

, ~56!
9-8
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where n5N/V is the density of the scatterers@not to be
confused with the refractive indexn(v)# and Ge
5e2/(4p«0mec

2) is the classical electron radius. This d
electric function can also be found if one supposes that
medium consists of classical harmonically bound po
charges whose motion is described by the Abraham-Lore
equation. The dielectric function~56! has the property tha
the correspondingT matrix t(v) satisfies the optical theorem
with t(v) defined as«(v)512nt(v)(c/v)2. However, Eq.
~56! is not a proper response function since it has a pole n
the very largepositiveimaginary frequency 3ic/(2Ge). This
can be related to the need for the a-causal phenome
called preacceleration to avoid so-called runaway soluti
of the Abraham-Lorentz equation@37#.

Although we know that in the damped-polariton theo
only proper response functions can be found, we proc
like in the previous subsection and try to find coupling co
ci
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stants that in the optical regime give rise to the dielec
function ~56!. Equating with Eq. ~16! we get vc

2

54pc2Gen andV2(v1)54G(v1)v1
3/(3pṽ0c) with

G~v1!5
GeV

4

V41v1
4

. ~57!

Here we have inserted a convenient frequency cutoff fr
the start in order to keep finite the frequencyṽ0 and the shift
D. Contour integration givesṽ0

25v0
21A2GeV

3/(3c) and

D~v!5
2A2

3ṽ0c
G~v!V~V21v2!. ~58!

The dielectric function has the form
«~v!512
4pc2Gen

v22v0
21@A2V3~V22v2!/~3v2c!#@Ge2G~v!#1 2

3 iG~v!v3/c
. ~59!
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In this case, the resonance frequency shifts to frequen
lower thanv0 and the shift is larger for larger cutoff fre
quencies. However, since the classical electron radius i
much smaller than an optical wavelength, it is very w
possible to choose a cutoff frequency such thatv0!V
!c/Ge . Then for optical frequencies, the dielectric functio
~59! is of the form ~56!. Note that for high frequencie
v2x(v)→2vc

2 for the dielectric function~59!, but not for
Eq. ~56!.

Again, the frequency cutoff introduces a cutoff branch.
Fig. 1 we plot the real parts of the three solutionsV j (k) of
the dispersion relation. As a measure of the damping,
introducek, which is given byGev0

2/(3c). For the purpose
of presentation, the numerical values of bothvc andk were
chosen artificially large for a dilute gas. The frequencies
the cutoff branch are of the same magnitude as the cu

FIG. 1. Real parts of the three solutionsV j of the dispersion
relation with«(v) as in Eq.~59!. Numerical values of the param
eters:V510v0 , vc50.5v0, andk50.01v0. The solid line is the
lower polariton branch, the upper polariton branch is dashed and
cutoff branch is dotted.
es

so
l

e

n
ff

frequency V, much higher than the optical regime. Th
imaginary parts of the upper and lower polariton branch
are plotted in Fig. 2. The imaginary part of the cutoff bran
is large, negative, and practically constant for parameter
given in Fig. 1. Again, since the group velocity on the cuto
branch is practically zero, the upper and lower polarit
branches together satisfy the sum rules of Sec. III. In part
lar, Fig. 2 illustrates that the upper and lower polariton gro
velocitiesvg,u and vg,l satisfy the sum rule Im(vg,u1vg,l)
50.

The cutoff, which was necessary to produce the dielec
function in the damped-polariton theory, neatly removes
preacceleration behavior associated with a pole in the up
half plane and leads to a good response function. The f
of the couplingV(v) given above Eq.~57! has the following
physical interpretation. By equating the damped-polariton
electric function with Eq.~56!, we assumed that the dilut

he

FIG. 2. Imaginary parts of the lower~solid line! and upper
~dashed line! polariton solutionsV j of the dispersion relation with
«(v) as in Eq.~59!. Numerical values of the parameters as in t
previous plot. Not shown is the imaginary part of the cutoff bran
which is also negative and about a 1000 times larger in magnitu
9-9
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MARTIJN WUBS AND L. G. SUTTORP PHYSICAL REVIEW A63 043809
gas can be described as a homogeneous dielectric. The
scattering by the gas molecules can be accounted for b
absorptive coupling to thefree electromagnetic field as lon
as only single scattering of light is relevant. Then scatte
light is lost for propagation in the original direction. If th
matter-bath coupling is dipole coupling, then for optical fr
quencies the productV2(v1)/v1 should be proportional to
the density of states of the electromagnetic field, which g
quadratically in frequency. This is indeed the case.

VI. SPONTANEOUS EMISSION

The spontaneous-emission rate, in principle, is a tim
dependent quantity. In this section we investigate the tr
sient dynamics of the spontaneous-emission rate of a g
atom in an absorbing medium when the transition freque
of the guest atom is close to a material resonance of
medium. We show how our results relate to previous tre
ments of spontaneous emission in absorbing dielectr
where Fermi’s golden rule was used to show that the tim
independent ~equilibrium! value for the spontaneous
emission rate equalsG0 Re@n(vA)# @11,16#. Recently, local
field effects have been included in quantum electrodynam
formulations of the problem@3,6,9,11,38#, but we shall not
focus on them in this paper.

We model the guest atom as a two-level atom with grou
state ug& and excited stateue& and Hamiltonian HA
5\vAue&^eu. The medium~with fields and bath included! is
described by the damped-polariton model with Hamilton
HM given by Eq.~1!. The total Hamiltonian isH5H01V
with H05HM1HA and V52mA•E(rA). HereV is the di-
pole interaction between the atom and the medium,mA is the
atomic dipole moment operator, andE(rA) is the electric
field operator at the positionrA of the atom.

Suppose that the damped-polariton system is prepare
time 0 in a state described by a density matrixrM(0). We do
not assume thatrM(0) commutes withHM nor that it factor-
izes into a product of a density operator for the bath an
density operator for the undamped-polariton system~as is
often assumed for convenience@39#!. At time t0.0 we bring
the guest atom in its excited state and couple it to
damped-polariton system. Using perturbation theory, one
calculate@18# the time-dependent probability that the gue
atom has emitted a photon at timet.t0. We define the de-
rivative of this quantity as the instantaneous spontaneo
emission rateG(t). It is given as

G~ t !5
2

\2
ReE

t0

t

dt8eivA(t2t8)

3Tr@rM~0!m•E~rA ,t !m•E~rA ,t8!#, ~60!

wherem is now the dipole transition matrix element of th
guest atom.

If the guest atom is excited a long time after the init
preparation of the medium, all transient effects in the elec
field have damped out. Hence, the field may be replaced
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its long-time limitEl(rA ,t), which is given in Eq.~38!. Since
El depends only on the bath operators att50, we may write
Eq. ~60! in the form

G~ t !5
2

\2
ReE

t0

t

dt8eivA(t2t8)

3Trbath@r red~0!m•El~rA ,t !m•El~rA ,t8!#. ~61!

Here r red is the reduced density matrix obtained by traci
out the electromagnetic and material degrees of freed
r red(0)5Trem,matrM(0). For thespecial case that the initia
density matrixrM(0) factorizes, the reduced density matr
is the bath density matrixrbath(0) at t50. In general, the
initial state of the electromagnetic and material degrees
freedom att50 does not play a role in the emission rate.

Spontaneous emission in its pure form arises if the
duced density matrix describes the ground state of the b
Let us assume this is indeed the case. Upon inserting
~38! in Eq. ~61! we can perform thet8 integral, the integrals
over the wavevector, and the summations over the polar
tion directions. This leads to

G~ t !5
m2

3p2\«0c3
ReE

0

`

dvv3n~v!
sin@~v2vA!~ t2t0!#

v2vA
,

~62!

with n(v)5Ae(v) the complex refractive index.
For times (t2t0) that are large enough, one may repla

sin@(v2vA)(t2t0)#/(v2vA) by pd(v2vA). However, the
time scale at which this replacement is valid depends on
resonance structure of the refractive indexn(v). Since we
want to study just this time scale, we will not make th
replacement. To evaluate the integral, we multiply the in
grand by a convergence factorV4/(V41v4) with V@vA .
The specific choice of the cutoff frequencyV will only af-
fect G(t) at time differencest2t0 much smaller than a single
optical cycle. We need to use a high-frequency cutoff at t
point because the dipole approximation is incorrect for h
frequencies.

For the dielectric function, we take the Lorentz oscillat
form ~55! and we choose the cutoff frequency in that mod
to be identical to the one inserted in Eq.~62!. In Fig. 3, we
give the real part of the refractive index which clear

FIG. 3. Real part of the refractive index in the Lorentz oscilla
model when «(v) is given by Eq. ~55! with parametersk0

50.01v0 , vc50.5v0, andV510v0.
9-10
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TRANSIENT QED EFFECTS IN ABSORBING DIELECTRICS PHYSICAL REVIEW A63 043809
changes rapidly nearv5v0. It is a familiar figure and it
shows that the refractive index does not change much w
increasing the cutoff frequencyV from 10v0 to infinity. The
density of radiative modes around the material resonanc
proportional tov2 Re@n(v)#.

With this model for the dielectric function and the param
eters as in Fig. 3, we calculatedG(t) in the case that the
transition frequencyvA exactly equalsv0. Since the inte-
grand in Eq.~62! is rapidly fluctuating, it is expedient to us
complex contour deformation to evaluate the integral. W
add an infinitesimal positive imaginary part to the denom
nator and split the sine into two complex exponentials. T
contour of the integral with exp@i(v2vA)(t2t0)# in the inte-
grand is deformed towards the positive imaginary axis. T
contribution from the pole arising from the convergence f
tor can be neglected at time scalest2t0@vA

21 . Likewise,
the integration contour of the integral with exp@2i(v2vA)(t
2t0)# is deformed towards the negative imaginary ax
Again, the pole contribution from the convergence factor
negligible. Further contributions, which cannot be neglect
arise from the branch cuts ofn(v)5A«(v) and from the
pole atvA . The latter contribution is easily evaluated a
yields the equilibrium valueG(`)5G0 Ren(vA). In con-
trast, the branch cuts yield time-dependent contributions
G(t). For large V they are situated atv152 ik0

1Av0
22k0

2 andv252 ik01Av0
21vc

22k0
2. Aroundv1 and

v2, we can approximate the dielectric function by

«~v12 ideiw!.2 ivc
2e2 iw/~2dAv0

22k0
2!, ~63!

«~v22 ideiw!.22ideiwAv0
21vc

22k0
2/vc

2 . ~64!

The branch cut atv1 gives the following contribution to the
spontaneous-emission rate:

2
G0

pvA
3
Re@exp$2 ip/42k0~ t2t0!

2 i ~Av0
22k0

22vA!~ t2t0!%J~ t !#, ~65!

whereJ(t) is defined as
u

xi

rg
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is

e
-
e

e
-

.
s
,

to

J~ t !5E
0

`

dl
e2l(t2t0)@Av0

22k0
22 i ~l1k0!#3

Al@Av0
22k0

22vA2 i ~l1k0!#

3F2vc
2Av0

22k0
21 il~l214v0

21vc
224k0

2!

4~v0
22k0

2!1l2 G 1/2

.

~66!

The branch cut aroundv2 gives a similar contribution.
The integrals arising from the branch cuts and from

imaginary axis can easily be evaluated numerically sin
their integrands are no longer rapidly fluctuating. The res
is the solid line in Fig. 4. We see that the spontaneo
emission rate builds up until it finally reaches the tim
independent equilibrium valueG0 Ren(vA).

The dashed line in Fig. 4 is an analytical approximati
for G(t), which captures the main features of the time d
pendence at least qualitatively. It is derived by retaining o
the contribution~65! in the time-dependent part ofG(t) as
this is dominant for larget. Moreover, we approximateJ(t)
by the first term in its asymptotic expansion for larget2t0.
In this way we arrive at the following approximate expre
sion for G(t):

FIG. 4. Normalized spontaneous-emission rateG(t)/
@G0 Ren(vA)# in an absorbing dielectric as a function of time whe
the transition frequencyvA is equal tov0. Choice of parameters in
the Lorentz oscillator model:k050.01v0 , vc50.5v0, andV5`.
The solid line is the exact result for Eq.~62! and the dashed line is
the approximate expression~67!.
G~ t !.G0 ReFn~vA!2
vc~v0

22k0
2!5/4

A2pvA
3~Av0

22k0
22vA2 ik0!

exp$2 ip/42k0~ t2t0!2 i @Av0
22k0

22vA#~ t2t0!%

~ t2t0!1/2 G . ~67!
the
ela-

de-
me-
at a
stics
As explained, this approximation contains only the contrib
tion from the branch cut atv1; the branch cut atv2 gives a
faster decaying term, which goes likee2k0(t2t0)/(t2t0)3/2.
The contributions from the integrals along the imaginary a
decay even faster.

It can be seen from Eq.~67! that the amplitude of the
time-dependent part ofG(t) falls off as e2k0(t2t0)/(t
2t0)1/2 and also that the amplitude of the extra term is la
est around resonance whenvA.Av0

22k0
2. Away from reso-
-

s

-

nance, oscillations with frequencyAv0
22k0

22vA are
present. Figure 4 shows the on-resonance case when
time-dependent term shows no oscillations, but has a r
tively large amplitude.

The main result of the present discussion is the time
pendence of the spontaneous-emission rate. The ti
independent value is not reached instantaneously, but
time scale that is governed by the resonance characteri
of the medium. In fact, the smaller the resonance widthk0,
9-11
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the longer it takes to reach the time-independent value. T
cally, it takesv0 /k0 optical cycles as follows from the ex
ponentiale2k0(t2t0) in the approximate expression~67!. For
narrow resonances withv0 /k0 large, the transient dynamic
may take a substantial amount of time.

VII. DISCUSSION AND CONCLUSIONS

We have solved the equations of motion for the field o
erators in the damped-polariton model using Laplace tra
formations. The solutions of the field and medium operat
are the sum of a transient and a permanent part. The latte
expressed solely in terms of the initial bath operators. Lo
after the initial time, all field and medium operators are fun
tions of the bath operators alone provided the coupling to
bath is nonzero for all frequencies. The long-time solutio
satisfy quantum Langevin equations in which the initial ba
operators figure as the quantum noise source. The same
tinuum that produces the absorption also forms the no
source that keeps the commutation relations in order. Th
conceptually simpler than expressing the quantum Lange
noise in terms of the creation and annihilation operators
diagonalize the total Hamiltonian of the damped-polarit
model @14#.

The effects of the initial state of the field and mediu
variables on the expectation values at a later time are no
able only during a short period that is determined by
characteristic relaxation times of the damped-polari
modes. Once these transient effects have died out the ex
tation values are determined by the reduced density ma
which follows from the full density matrix at the initial time
by taking the trace over the degrees of freedom of field
matter~without bath!. If the full density matrix at the initial
time factorizes, the reduced density matrix equals the in
bath density matrix.

The method of long-time solutions can be used for ot
dissipative quantum systems as well. For models in wh
the Hamiltonian can be diagonalized completely, it is an
ternative to the Fano diagonalization technique. The la
can be quite complicated@14,40#, whereas our long-time so
lutions are found after the simple inversion of a 434 matrix,
as one sees from Secs. II and IV. More generally, the lo
time method may be useful for dissipative systems with
bilinear coupling to a harmonic oscillator bath whose d
namics can be integrated out.

We employed the method of long-time solutions to stu
transient effects in a medium described by a Lorentz osc
tor dielectric function. This dielectric function~and that of
the point-scattering model as well! can be derived from the
damped-polariton model by taking a suitable bath coupli
Although a cutoff procedure turns out to be indispensab
the essential physics in the optical regime can be represe
adequately in this way. Once the connection with t
damped-polariton model has been established, spontane
emission processes by a guest atom in a Lorentz oscill
dielectric can be investigated by means of the long-ti
method. Although transient effects due to the initial prepa
tion of the dielectric have damped out after a few medi
relaxation periods, transient behavior of a different ty
04380
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shows up in the initial stages of the decay process. T
transient behavior, which is related to the preparation of
guest atom in its excited state, leads to a nonexponen
decay—or in other words to a time-dependent spontane
emission rate—if the atomic transition frequency is nea
resonance of the dielectric. The nonexponential dynam
takes place at time scales that are inversely proportiona
the width of the resonance. As we have shown, the cha
teristics of the time-dependent decay rate can be capture
an analytic asymptotic expression of which the qualitat
features are corroborated by numerical methods.
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APPENDIX: LAPLACE OPERATORS
AND TIME-DEPENDENT COEFFICIENTS

In Sec. II the electric-field operatorĒ(p) was given in
terms of the operators att50. Here we give the analogou
expressions for the other Laplace operators. Furthermore
show how to evaluate the time-dependent coefficie
Mmn(t) like in Eq. ~23! for the electric-field operator. Fi-
nally, we list the expressions for the coefficients of the oth
operators.

The expression forĒ(p) in Eq. ~18! has the following
analogous expressions for the other Laplace operators:

Ā~p!5
1

D̄~p!
H 2E~0!1pA~0!2

a

«0
F p2

vc
2
x̄~p!21GX~0!

2
1

a
px̄~p!@P~0!2B̄~p!#J , ~A1!

X̄~p!5
1

D̄~p!
H 2

«0

a
px̄~p!E~0!1

«0

a
p2x̄~p!A~0!

1S k2c2

vc
2

1
p2

vc
2

11D px̄~p!X~0!

1
«0

a2
~p21k2c2!x̄~p!@P~0!2B̄~p!#J , ~A2!

P̄~p!5
1

D̄~p!
H 2aF p2

vc
2
x̄~p!21GE~0!1apF p2

vc
2
x̄~p!21G

3A~0!1
a2

«0
F p2

vc
2
x̄~p!21G S k2c2

vc
2

1
p2

vc
2

11D X~0!

1pS k2c2

vc
2

1
p2

vc
2

11D x̄~p!@P~0!2B̄~p!#J . ~A3!
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If we now apply the inverse Laplace transformation to the
expressions, we find the full time dependence of the op
tors A, X, and P. The inverse Laplace transformation is
contour integration over the Bromwich contour that includ
the whole imaginaryp axis. After transforming to frequenc
variables, the contour includes poles fromD̄21(p), which
are in the lower half plane and moreover, poles on the
frequency axis arising fromB̄(p). The latter are important in
the calculation of the long-time solutions of the operators
Sec. IV. However, in the calculation of the coefficien
Mmn(t), which we will discuss here, they play no role. L
us consider, as an example, the coefficientMAE(t)

MAE~ t !52
1

2p i E2 i`1h

i`1h
dp eptD̄21~p!

5
1

2pE2`

`

dv
e2 ivt

«~v!v22k2c2

5
1

4pkcE2`

`

dvS e2 ivt

n~v!v2kc
2

e2 ivt

n~v!v1kcD
5

1

kc (
j

ImS e2 iV j t
vg, j

c D . ~A4!

Note thatMAE(t) is exponentially damped because allV j in
the exponentials have negative imaginary parts. The o
coefficients can be calculated in a similar way. The res
are

MAA~ t !5MEE~ t !, ~A5!

MAX~ t !52
ak

vc
2«0c4 (

j
ImFe2 iV j tvg, j S 12

vp, j
2

c2
1

vc
2

k2c2D G ,

~A6!
tt

rd

et

ys

04380
e
a-

s

al

n

er
ts

MAP~ t !5
1

a (
j

ReFe2 iV j t
vg, j

c S vp, j

c
2

c

vp, j
D G , ~A7!

MXE~ t !5«0MAP~ t !, ~A8!

MXA~ t !5«0MEP~ t !, ~A9!

MXX~ t !52
k2c2

vc
2 (

j
ReFe2 iV j t

vg, j

c S vp, j

c
2

c

vp, j
D

3S 12
vp, j

2

c2
1

vc
2

k2c2D G , ~A10!

MXP~ t !52
«0kc

a2 (
j

ImFe2 iV j t
vg, j

c S vp, j

c
2

c

vp, j
D 2G ,

~A11!

M PE~ t !5«0MAX~ t !, ~A12!

M PA~ t !5«0MEX~ t !, ~A13!

M PX~ t !5
a2k3c3

vc
4«0

(
j

ImFe2 iV j t
vg, j

c S 12
vp, j

2

c2
1

vc
2

k2c2D 2G ,

~A14!

M PP~ t !5MXX~ t !. ~A15!

With the sum rules discussed in Sec. III, one can see tha
‘‘diagonal’’ coefficients in this list equal 1 at timet50
whereas the other coefficients have the initial value 0.
-
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