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Higher-order correlation on polarization beats in Markovian stochastic fields
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The correlation effects of sixth order on cascade three-level polarization beats are investigated using chaotic
field, phase-diffusion, and Gaussian-amplitude models. The polarization beat signal is shown to be particularly
sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. Different
stochastic models of the laser field only affect the sixth- and fourth-order coherence functions. The constant
background of the beat signal originates from the amplitude fluctuation of the Markovian stochastic fields. The
Gaussian-amplitude field shows fluctuations larger than the chaotic field, which again exhibits fluctuations
much larger than for the phase-diffusion field with pure phase fluctuations caused by spontaneous emission.
The cases that the pump beams have either narrowband or broadband linewidth are considered and it has been
found that for both cases a Doppler-free precision in the measurement of the energy-level difference of the
excited states can be achieved. The sixth-order coherence function theory is of vital importance in cascade
three-level polarization beats.
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I. INTRODUCTION

The statistical properties of the noisy light field are
particular importance for nonlinear optical processes si
these are often sensitive to higher-order correlations in
field. The effects of such correlations have been studied
several nonlinear processes characterized by either Mar
ian or non-Markovian fluctuations@1–5#. The Markovian
field is now described statistically in terms of the margin
and the conditional probability densities@6,7#. The atomic
response to non-Markovian fields is much less well und
stood@4#. This is primarily because the complete hierarc
of conditional probabilities must be known in order to d
scribe a non-Markovian process. Some non-Markovian p
cesses can be made Markovian by extension to higher
mensions.

The atomic response to Markovian stochastic opti
fields is now largely well understood@1–3,5#. When the laser
field is sufficiently intense that many photon interactions
cur, the laser spectral bandwidth or spectral shape, obta
from the second-order correlation function, is inadequate
characterize the field. Rather than using higher-order co
lation functions explicitly, three different Markovian field
are considered:~a! the chaotic field,~b! the phase-diffusion
field, and~c! the Gaussian-amplitude field. The chaotic fie
undergoes both amplitude and phase fluctuations and c
sponds to a multimode laser field with a large number
uncorrelated modes, or a single-mode laser emitting li
below threshold. Since a chaotic field does not possess
intensity stabilization mechanism, the field can take on a
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value in a two-dimensional region of the complex plane c
tered about the origin@5#. The phase-diffusion field under
goes only phase fluctuations and corresponds to an inten
stabilized single-mode laser field. The phase of the la
field, however, has no natural stabilizing mechanism@5#. The
Gaussian-amplitude field undergoes only amplitude fluct
tions. Although pure amplitude fluctuations cannot be p
duced by a nonadiabatic process, we do consider
Gaussian-amplitude field for two reasons. First, becaus
allows us to isolate those effects due solely to amplitu
fluctuations and second, because it is an example of a
that undergoes stronger amplitude~intensity! fluctuations
than a chaotic field. By comparing the results for the chao
and the Gaussian-amplitude fields we can determine the
fect of increasing amplitude fluctuations@6,7#.

This paper addresses the role of noise in the incid
fields on the nature of the wave-mixing signal—particula
in the time domain. This important topic has been alrea
treated extensively in the literature including the introducti
of a new diagrammatic technique~called factorized time cor-
relator diagrams! @8–14#. They have treated the higher-ord
noise correlators when circular Gaussian statistics ap
There should be two classes of such two component bea
In one class the components are derived from separate la
and their mixed~cross! correlators should vanish. In the se
ond case the two components are derived from a single l
source whose spectral output is doubly peaked. This can
created from a single dye laser in which two different dyes
solution together are amplified. The present paper deals
with the first class. That is to say, we are considering o
the class of two-color beams in which each color is deriv
from a separate laser source. In any case the literature
already explored, both theoretically and experimentally,
©2001 The American Physical Society02-1
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use of such multicolor noisy light in four-wave mixin
~FWM! @9,10#. Interestingly, that work only treats the seco
class of multicolored beams~a single laser source for th
multipeaked ‘‘tailored’’ light! in self-diffraction geometry.
Also that work does not treat the cascade three-level sys
with phase-conjugation geometry using three types of no
models, and furthermore its beam 3 is not noisy~it was
‘‘monochromatic’’! @9,10#.

The chaotic field, the Brownian-motion phase-diffusi
field, and the Gaussian-amplitude field are considered in
allel with a discussion on cascade three-level atom tra
tions. Cascade three level is an accepted nickname f
three-level system in which one color matches theu0&–u1&
energy gap, the second color theu1&–u2& energy gap~Fig. 1!.
This is different from the ‘‘cascade processes’’ in nonline
spectroscopies, which often refer to the buildup of high
order polarizations from two~or more! sequential lower-
order processes occurring on different spatially separa
centers@11#. We develop a unified theory that involves sixt
order coherence function to study the influence of part
coherence properties of pump beams on polarization be
Polarization beats, which originate from the interference
tween the macroscopic polarizations, have attracted a lo
attention recently@15–27#. It is closely related to the quan
tum beat spectroscopy, which appears in the conventio
time-resolved fluorescence and in the time-resolved non
ear laser spectroscopy. DeBeeret al. performed the first ul-
trafast modulation spectroscopy~UMS! experiment in so-
dium vapor@24#. Fu et al. @25,26# then analyzed the UMS
with phase-conjugate geometry in a Doppler-broadened
tem by a second-order coherence-function theory. T
found that a Doppler-free precision in the measuremen
the energy-level splitting could be achieved.

In this paper, we have investigated the effects of Mark
ian field fluctuations in cascade three-level polarizat
beats. Based on three types of models described above
have studied the influence of various quantities, such as l
linewidth, transverse relaxation rate, and longitudinal rel
ation rate. One of the relevant problems is the station
FWM with incoherent light sources, which is proposed
Morita and Yajima @28# to achieve an ultrafast tempora
resolution of relaxation processes. Since they assume
laser linewidth is much longer than transverse relaxat
rate, their theory cannot be used to study the effect of
light bandwidth on the Bragg reflection signal. Asakaet al.
@29# have considered the finite linewidth effect. Howev
the constant background contribution has been ignored

FIG. 1. Cascade three-level configuration to be treated
HOCPB.
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their analysis. Our higher-order correlation on polarizati
beats~HOCPB! includes both the finite light bandwidth ef
fect and constant background contribution. The differe
roles of the phase fluctuation and amplitude fluctuation h
been pointed out in the time domain. If HOCPB is employ
for the energy-level difference measurement, there are
vantages that the energy-level difference can be widely se
rated and a Doppler-free precision in the measurement
be achieved. HOCPB is closely related to the Doppler-f
saturated absorption spectroscopy~or two-photon absorption
spectroscopy with a resonant intermediate state! and the
three-pulse stimulated photon echo~or sum-frequency tri-
level photon echo! when the pump beams are narrowba
and broadband linewidth, respectively@21,22,25#. However,
it possesses the main advantages of these techniques i
frequency domain and in the time domain.

II. BASIC THEORY

HOCPB is a polarization phenomenon@15,16# originating
from the interference between one-photon and two-pho
processes. Let us consider a cascade three-level system~Fig.
1! with a ground stateu0&, an intermediate stateu1&, and an
excited stateu2&. States betweenu0& and u1& and betweenu1&
and u2& are coupled by dipolar transition with resonant fr
quenciesV1 andV2 , respectively, while states betweenu0&
and u2& are dipolar forbidden. We consider in this casca
three-level system a double-frequency time-delay FWM
periment in which beamsA andB consist of two frequency
componentsv1 and v2 , while beam 3 has frequencyv3
~Fig. 2!. We assume thatv1'V1 (v3'V1) and v2'V2 ,
thereforev1 (v3) andv2 will drive the transitions fromu0&
to u1& and from u1& to u2&, respectively. There are two pro
cesses involved in this double-frequency time-delay FW
First thev1 frequency component of beamsA andB induces
population gratings of statesu0& andu1&, which are probed by
beam 3 of frequencyv3 . This is a one-photon resonant d
generate FWM~DFWM! and the signal~beam 4! has fre-
quencyv3 . Second, beam 3 and thev2 frequency compo-
nent of beamA induce a two-photon coherence betweenu0&
and u2&, which is then probed by thev2 frequency compo-
nent of beamB. This is a two-photon nondegenerate FW
~NDFWM! with a resonant intermediate state and the f
quency of the signal equalsv3 again.

The complex electric fields of beamA, Ep1 , and beamB,
Ep2 , can be written as

y FIG. 2. Schematic diagram of the geometry of HOCPB.
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HIGHER-ORDER CORRELATION ON POLARIZATION . . . PHYSICAL REVIEW A63 043802
Ep15A1~rW,t !exp~2 iv1t !1A2~rW,t !exp~2 iv2t !

5«1u1~ t !exp@ i ~kW1•rW2v1t !#1«2u2~ t !

3exp@ i ~kW2•rW2v2t !#, ~1!

EP25A18~rW,t !exp~2 iv1t !1A28~rW,t !exp~2 iv2t !

5«18u1~ t2t!exp@ i ~kW18•rW2v1t1v1t!#

1«28u2~ t2t!exp@ i ~kW28•rW2v2t1v2t!#, ~2!

here« i ,kW i(« i8 ,kW i8) are the constant field amplitude and t
wave vector of thev i component in beamA ~beamB!, re-
spectively.ui(t) is a dimensionless statistical factor that co
tains phase and amplitude fluctuations.t is the time delay of
beamB with respect to beamA. On the other hand, the com
plex electric fields of beam 3 can be written as

EP35A3~rW,t !exp~2 iv3t !5«3u3~ t !exp@ i ~kW3•rW2v3t !#,
~3!

herev3 , «3 , andkW3 are the frequency, the field amplitud
and the wave vector of beam 3, respectively. Sincev1 and
v3 come from the same laser source, we haveu1(t)
5u3(t).

We employ perturbation theory to calculate the dens
matrix elements. In the following perturbation chains

~ I! r00
~0!→

A1

r10
~1! →

~A18!*

r00
~2!→

A3

r10
~3! ,

~ II ! r00
~0! →

~A18!*

~r10
~1!!* →

A1

r00
~2!→

A3

r10
~3! ,

~ III ! r00
~0!→

A1

r10
~1! →

~A18!*

r11
~2!→

A3

r10
~3! ,

~ IV ! r00
~0! →

~A18!*

~r10
~1!!* →

A1

r11
~2!→

A3

r10
~3! ,

~V! r00
~0!→

A3

r10
~1!→

A2

r20
~2! →

~A28!*

r10
~3! .

Chains ~I!–~IV ! correspond to the one-photon resona
DFWM, while chain~V! corresponds to the two-photon res
nant NDFWM.

Now, we consider the other possible perturbation cha
where the grating induced by beam 3 andv1 ~or v2) fre-
quency component of beamB is responsible for the genera
tion of the FWM signal. These gratings have much sma
fringe spacings, which equal approximately one-half of
wavelengths of the incident lights. For a Doppler-broaden
system, the gratings will be washed out by the atomic m
tion. Therefore, it is appropriate to neglect the FWM sign
from these perturbation chains@26#. In addition, some per-
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turbation chains involve the coherence between exc
statesu1& andu2&. For a system with the relaxation time ofr00
much longer than that ofr21 ~or r12), the FWM signal can be
reduced further. We have also neglected the contributi
from the perturbation chains, which give rise to a signal w
frequencyv456(v22v1)1v3 , therefore, it can be sepa
rated from the FWM signal with frequencyv3 by a mono-
chromator or a narrow-band filter. Furthermore, the m
strict requirement on the phase matching@27# and the in-
volvement ofr21 ~or r12) also make this process unimporta
@26#. In addition, for the static grating~the FWM signal has
the same frequency as the probe beam! the coherence length
is usually longer than the thickness of a typical sample.
the moving grating@the signal from moving grating has th
frequencyv36(v22v1)# the coherence length is usual
much smaller than the thickness of a typical sample. In t
case the contribution to the FWM signal from the movi
grating can be neglected@27#.

We obtain the third-order off-diagonal density-matrix e
ement r10

(3) which has wave vectorkW12kW181kW38 or kW22kW28

1kW3 . The nonlinear polarizationP(3) responsible for the
phase-conjugate FWM signal is given by averaging over
velocity distribution function W(nW ). Thus P(3)

5Nm1*2`
1` dnW w(nW )r10

(3)(nW ), here vW is the atomic velocity,
and N is the density of atoms. For a Doppler-broaden
atomic system, we havew(nW )5(1/Apu)exp@2(nW/u)2#.

The total polarization isP(3)5P(I )1P(II )1P(III )1P(IV)

1P(V). HereP(I ), P(II ), P(III ), P(IV), andP(V) correspond-
ing to polarization of the perturbation chain~I!, ~II !, ~III !,
~IV !, and~V!, respectively, are

P~ I!5S1~rW !exp@2 i ~v3t1v1t!#

3E
2`

1`

dnW w~nW !E
0

`

dt3 E
0

`

dt2 E
0

`

dt1

3exp@2 iu I~nW !#H1~ t1!H2~ t2!H3~ t3!

3u1~ t2t12t22t3!u1* ~ t2t22t32t!u3~ t2t3!, ~4!

P~ II !5S1~rW !exp@2 i ~v3t1v1t!#

3E
2`

1`

dnW w~nW !E
0

`

dt3 E
0

`

dt2 E
0

`

dt1

3exp@2 iu II~nW !#H1* ~ t1!H2~ t2!H3~ t3!

3u1~ t2t22t3!u1* ~ t2t12t22t32t!u3~ t2t3!, ~5!

P~ III !5S1~rW !exp@2 iv3t2 iv1t#

3E
2`

1`

dnW w~nW !E
0

`

dt3 E
0

`

dt2 E
0

`

dt1

3exp@2 iu I~nW !#H1~ t1!H4~ t2!H3~ t3!

3u1~ t2t12t22t3!u1* ~ t2t22t32t!u3~ t2t3!, ~6!
2-3
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P~ IV !5S1~rW !exp@2 iv3t2 iv1t#

3E
2`

`

dnW w~nW !E
0

`

dt3 E
0

`

dt2 E
0

`

dt1

3exp@2 iu II~nW !#H1* ~ t1!H4~ t2!H3~ t3!

3u1~ t2t22t3!u1* ~ t2t12t22t32t!u3~ t2t3!, ~7!

P~V!5S2~rW !exp@2 iv3t2 iv2t#

3E
2`

1`

dnW w~nW !E
0

`

dt3 E
0

`

dt2 E
0

`

dt1

3exp@2 iu III ~nW !#H3~ t1!H5~ t2!H3~ t3!

3u2~ t2t22t3!u2* ~ t2t32t!u3~ t2t12t22t3!,

~8!

here

S1~rW !52 i\NS m1

\ D 4

«1~«18!* «3 exp@ i ~kW12kW181k3!•rW#,

S2~rW !52 i\NS m1

\ D 2S m2

\ D 2

«2~«28!* «3

3exp@ i ~kW22kW281kW3!•rW#,

u I~nW !5nW •@kW1~ t11t21t3!2kW18~ t21t3!1kW3t3#,

u II~nW !5nW •@2kW18~ t11t21t3!1kW1~ t21t3!1kW3t3#,

u III ~nW !5nW •@kW3~ t11t21t3!1kW2~ t11t2!2kW28t3#,

H1~ t !5exp@2~G101 iD1!t#, H2~ t !5exp~2G0t !,

H3~ t !5exp@2~G101 iD3!t#, H4~ t !5exp~2G1t !,

H5~ t !5exp@2~G201 iD21 iD3!t#, m1 ~m2!

is the dipole-moment matrix element betweenu0& andu1& ~u1&
andu2&!, G0 (G1) is the population relaxation rate of stateu0&
~u1&!, G10 (G20) is the transverse relaxation rate of the tra
sition from u0& to u1& ~u0& to u2&!, and D15V12v1 , D2
5V22v2 , andD35V12v3 .

The FWM signal is proportional to the average of t
absolute square ofP(3) over the random variable of the sto
chastic procesŝuP(3)u2&, which involves sixth-, fourth-, and
second-order coherence function ofui(t) in phase-
conjugation geometry, while the FWM signal intensity
self-diffraction geometry is related to the sixth-order coh
ence function of the incident fields@24#. For the macroscopic
system where phase matching takes place, this signal m
be drawn from theP(3) developed on one ‘‘atom’’ multiplied
by the (P(3))* that is developed on another ‘‘atom,’’ whic
must be located elsewhere in space~with summation over all
such pairs! @8,12#. We first assume that the laser sources
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multimode thermal sources.ui(t) has Gaussian statistic
with its sixth-and fourth-order coherence function satisfyi
@6,7#

^ui~ t1!ui~ t2!ui~ t3!ui* ~ t4!ui* ~ t5!ui* ~ t6!&

5^ui~ t1!ui* ~ t4!&^ui~ t2!ui~ t3!ui* ~ t5!ui* ~ t6!&

1^ui~ t1!ui* ~ t5!&^ui~ t2!ui~ t3!ui* ~ t4!ui* ~ t6!&

1^ui~ t1!ui* ~ t6!&^ui~ t2!ui~ t3!ui* ~ t4!ui* ~ t5!&,

~9!

and

^ui~ t1!ui~ t2!ui* ~ t3!ui* ~ t4!&5^ui~ t1!ui* ~ t3!&^ui~ t2!ui* ~ t4!&

1^ui~ t1!ui* ~ t4!&

3^ui~ t2!ui* ~ t3!&. ~10!

Furthermore assuming that the laser sources in beamsA, B,
and 3 have Lorentzian line shape, then we have

^ui~ t1!ui* ~ t2!&5exp~2a i ut12t2u!, ~11!

here a i51/2dv i with dv i the linewidth of the laser with
frequencyv i . The form of the second-order coherence fun
tion, which is determined by the laser line shape, as
pressed in Eq.~11!, is general feature of the three differe
stochastic models@6,7#.

We now consider the case that the laser sources are
rowband so thata1 ,a2!G10,G20 andG0 ,G1!G10,G20. For
simplicity, here we neglect the Doppler effect. Performi
the tedious integration, the beat signal intensity then
comes

I ~t,r !}^uP~3!u2&}B11uhu2B21B3 exp~22a1utu!

1uhu2B2 exp~22a2utu!1exp@2~a11a2!utu#

3B2B3$h exp@ iDkW•rW1 i ~v22v1!t#1h*

3exp@2 iDkW•rW2 i ~v22v1!t#%, ~12!

where DkW5(kW12kW18)2(kW22kW28), h5m2
2/m1

2@«2* «28/«1* «18#,
B1 , B2 , and B3 mainly depending on the laser linewidth
and relaxation rate of the transition are constants.

Relation ~12! consist of five terms. The first and thir
terms are dependent on theu1(t) sixth-order coherence func
tion for DFWM, while the second and fourth terms are d
pendent on theu2(t) fourth- andu1(t) second-order coher
ence functions for NDFWM. The first and second term
originating from the amplitude fluctuation of the chaotic fie
are independent of the relative time delay between the
beamsA andB. The third and fourth terms indicate an exp
nential decay of the beat signal asutu increases. The fifth term
depending on theu1(t) fourth- andu2(t) second-order co-
herence functions, gives rise to the modulation of the b
signal.

Equation~12! indicates that beat signal oscillates not on
temporally but also spatially with a period 2p/Dk along the
2-4
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HIGHER-ORDER CORRELATION ON POLARIZATION . . . PHYSICAL REVIEW A63 043802
directionDkW , which is almost perpendicular to the propag
tion direction of the beat signal, hereDk'2pul1
2l2uu/l2l1 , u is the angle between beamA and beamB.
Physically, the polarization-beat model assumes that both
pump beams are plane waves. Therefore DFWM and N
FWM, which propagate alongkW s1

5kW12kW181kW3 andkW s2
5kW2

2kW281kW3 , respectively, are plane waves also. Since DFW
and NDFWM propagate along a slightly different directio
the interference between them leads to the spatial oscilla
Equation~12! also indicates that beat signal modulates te
porally with a frequencyv22v1 ast is varied. In this case
whenv1 andv2 are tuned to the resonant frequencies of
transitions fromu0& to u1& and fromu1& and u2&, respectively,
the modulation frequency equalsV22V1 . In the other
words, we can obtain beating between the resonant freq
cies of a cascade three-level system. A Doppler-free pr
sion can be achieved in the measurement ofV22V1 @17,19#.

III. HOCPB IN A DOPPLER-BROADENED SYSTEM

The beat signal can be calculated from a different vie
point. Under the Doppler-broadened limit~i.e.,k3u→`), we
have

E
2`

1`

dnW w~nW !exp@2 iu I~nW !#'
2Ap

k3u
d~ t32j1t1!, ~13!

E
2`

1`

dnW w~nW !exp@2 iu II~nW !#'
2Ap

k3u
d~ t31j1t1!, ~14!

E
2`

1`

dnW w~nW !exp@2 iu III ~nW !#'
2Ap

k3u
d~ t11t21t32j2t2!,

~15!

here we assumej2.1, j15k1 /k3 , j25k2 /k3 . When we
substitute Eqs.~13!–~15! into Eqs.~4!–~8! we obtain

I ~t,r !}^uP~3!u2&5^uP~ I!1P~ II !1P~V!u2&. ~16!

We first consider the case that the laser sources are
rowband so thata1 ,a2!G10,G20 andG0 ,G1!G10,G20. Per-
forming the tedious integration, the beat signal intensity

I ~t,r !}^uP~3!u2&5B41B5uhu21B6 exp~22a1utu!

1uhu2B7 exp~22a2utu!1exp@2~a11a2!utu#

3B6B7$h exp@ iDkW•rW1 i ~v22v1!t#1h*

3exp@2 iDkW•rW2 i ~v22v1!t#%, ~17!

whereB4 , B5 , B6 , and B7 mainly depending on the lase
linewidths and relaxation rate of the transition are consta
This equation is consistent with Eq.~12!.

We now consider the case that the laser sources are br
band so thata1 ,a2@G10,G20@G0 ,G1 . In this case, the bea
signal rises to its maximum quickly and then decays w
time constant mainly determined by the transverse relaxa
times of the system. Although the beat signal modulation
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complicated in general, at the tail of the signal~i.e., utu
@a1

21, utu@a2
21) we have

~i! t.0

I ~t,r !}^uP~3!u2&5B81uhu2B91B10exp~22G10
a utu!

1uhu2B11exp@22~G20
a 2G10!utu#1B10B11

3exp@2~G20
a 1G10

a 2G10!utu#

3$h exp@ iDkW•rW1 i ~V22V1!t

2 i ~j22j1!D3t#1h*

3exp@2 iDkW•rW2 i ~V22V1!t1 i ~j22j1!D3t#%,

~18!

whereB8 , B9 , B10, andB11 mainly depending on the lase
linewidths and relaxation rate of the transition, are consta
G10

a 5G101j1G10, G20
a 5G201j2G10.

Relation~18! also consist of five terms. The first and thir
terms are dependent on theu1(t) sixth-order coherence func
tion for DFWM, while the second and fourth terms are d
pendent on theu2(t) fourth- andu1(t) second-order coher
ence functions for NDFWM. The first and second term
originating from the amplitude fluctuation of the chaotic fie
are independent of the relative time delay between the
beamsA andB. The third and fourth terms indicate an exp
nential decay of the beat signal asutu increases. The fifth
term, depending on theu1(t) fourth- andu2(t) second-order
coherence functions, gives rise to the modulation of the b
signal. Equation~18! indicates that the modulation frequenc
of the beat signal equalsV22V1 , whenD350. The overall
accuracy of using HOCPB with broadband lights to meas
the energy-level difference of the excited states is limited
the homogeneous linewidths@17,19#.
~ii ! t,0

I ~t,r !}^uP~3!u2&5B81B9uhu21B12exp~22a1utu!

1uhu2B13exp~22a2utu!1exp@2~a11a2!utu#

3B12B13$h exp@ iDkW•rW1 i ~v22v1!t#1h

3exp@2 iDkW•rW2 i ~v22v1!t#%, ~19!

where, B12 and B13, mainly depending on the laser line
widths and relaxation rate of the transition, are consta
This equation is consistent with Eq.~12!. The requirement
for the existence of at-dependent beat signal fort,0 is that
the phase-correlated subpulses in beamsA and B are over-
lapped temporally. Since beamsA andB are mutually coher-
ent, the temporal behavior of the beat signal should coinc
with the case when the beamsA andB are nearly monochro-
matic @17,19#.

IV. PHOTON ECHO

It is interesting to understand the underlying physics
HOCPB with broadband nontransform limited quasi-c
~noisy! lights @28,29#. Much attention has been paid to th
2-5
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study of various ultrafast phenomena by using incoher
light sources recently@8–14,30#. For the phase-matchin
condition kW12kW181kW3 , the three-pulse stimulated photo
echo exists for the perturbation chain~I! and ~III !. For the
phase-matching conditionkW22kW281kW3 the sum-frequency tri-
level echo exists for the perturbation chain~V! @21,22,25#.

A. The chaotic field

The chaotic field is a complex Gaussian stochastic p
cess. Under the Doppler-broadened limit~i.e., k3u→`), if
assuming that the laser source has Gaussian line shape
we have

^ui~ t1!ui* ~ t2!&5expH 2F a i

2Aln 2
~ t12t2!G 2J

5exp$2@b i~ t12t2!#2%.

We now consider the case that the laser sources are br
band so thata1 ,a2@G10, G20@G0 ,G1 , then

^ui~ t1!ui* ~ t2!&5exp@2b i
2~ t12t2!2#'

Ap

b i
d~ t12t2!.

~20!

When we substitute Eqs.~9!, ~10!, and~20! into Eqs.~16! we
obtain as follows
~i! t.0

I ~t,r !}^uP~3!u2&5A11uhu2A21uA3u2 exp~22G10
a utu!

1uA4u2 exp@22~G20
a 2G10!utu#

1A3A4 exp@2a1uj12j2itu#

3exp@2~G20
a 1G10

a 2G10!utu#

3$h exp@ iDkW•rW1 i ~V22V1!t

1 i ~j22j1!D3t#1h*

3exp@2 iDkW•rW2 i ~V22V1!t

2 i ~j22j1!D3t#%, ~21!

where

A15
2

a1
2G10

a j1
S G01G1

2G0G1
1

1

G01G1
D ,

A25
j221

a2
2~G20

a 2G10!
2 , A35

2

a1

G01G1

G0G1
,

A452/a2(j221)utu. This equation is analogous to Eq.~18!.
~ii ! t,0
04380
nt

-

hen

ad-

I ~t,r !}^uP~3!u2&5A11uhu2A21
4

G10~j111!2a1
3

3$exp~22G0utu!1exp~22G1utu!

12 exp@2~G01G1!utu#%.

Photon echo does not exist for the perturbation chain~I!,
~III !, and ~V!. The requirement for the existence of
t-dependent beat signal fort,0 is that the phase-correlate
subpulses in beamsA and B are overlapped temporally
Since beamsA and B are mutually coherent, the tempor
behavior of the beat signal should coincide with the ca
when the beamsA andB are nearly monochromatic@17,19#.
Therefore, this case is consistent with Eq.~12!.

B. The phase-diffusion field

We have assumed that the laser sources are chaotic
in the above calculation. A chaotic field, which is used
describe a multimode laser source, is characterized by
fluctuation of both the amplitude and the phase of the fie
Another commonly used stochastic model is the pha
diffusion model, which is used to describe a amplitud
stabilized laser source. This model assumes that the am
tude of the laser field is a constant, while its phase fluctua
as a random process caused by spontaneous emission.
lasers have Lorentzian line shape, the sixth- and fourth-o
coherence function are@6,7#

^ui~ t1!ui~ t2!ui~ t3!ui* ~ t4!ui* ~ t5!ui* ~ t6!&

5exp@2a i~ ut12t4u1ut12t5u1ut12t6u1ut22t4u

1ut22t5u1ut22t6u1ut32t4u

1ut32t5u1ut32t6u!#exp@a i~ ut12t2u1ut12t3u

1ut22t3u1ut42t5u1ut42t6u1ut52t6u!#, ~22!

and

^ui~ t1!ui~ t2!ui* ~ t3!ui* ~ t4!&

5exp@2a i~ ut12t3u1ut12t4u1ut22t3u1ut22t4u!#

3exp@a i~ ut12t2u1ut32t4u!#. ~23!

We now consider the case that the laser sources are br
band so thata1 ,a2@G10, G20@G0 ,G1 . Then

^ui~ t1!ui* ~ t2!&5exp~2a i ut12t2u!'
2

a i
d~ t12t2! ~ i 51,2!.

~24!

When we substitute Eqs.~22!–~24! into Eq. ~16! we obtain
as follows
~i! t.0
2-6
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I ~t,r !}^uP~3!u2&5uA5u2 exp~22G10
a utu!1uhA6u2

3exp@22~G20
a 2G10!utu#1A5A6

3exp@2a1uj12j2itu#

3exp@2~G20
a 1G10

a 2G10!utu#

3$h exp@ iDkW•rW1 i ~V22V1!t1 i ~j22j1!D3t#

1h* exp@2 iDkW•rW2 i ~V22V1!

3t2 i ~j22j1!D3t#%, ~25!

whereA55(G01G1 )/a1G0G1 , A65t(j221)/a2 .
~ii ! t,0

I ~t,r !}^uP~3!u2&5
4

G10
a a1

3j1
$exp~22G0utu!

1exp~22G1utu!12

3exp@2~G01G1!utu#%.

Photon echo doesn’t exist for the perturbation chains~I!,
~III !, and~V!.

Relation~25! consist of three terms. The first term is d
pendent on theu1(t) sixth-order coherence function fo
DFWM, while the second term is dependent on theu2(t)
fourth- and u1(t) second-order coherence functions f
NDFWM. The first and second terms indicate an exponen
decay of the beat signal asutu increases. The third term de
pending on theu1(t) fourth- andu2(t) second-order coher
ence functions gives rise to the modulation of the beat sig
This case is consistent with the results of the second-o
coherence function theory@17,25,26#; the constant back
04380
al

l.
er

ground contribution has been ignored in their analys
Therefore, the sixth-order coherence function theory of c
otic field is of vital importance in HOCPB.

C. The Gaussian-amplitude field

The Gaussian-amplitude field has a constant phase bu
real amplitude undergoes Gaussian fluctuations. If the la
have Lorentzian line shape, the sixth- and fourth-order
herence function are@6,7#

^ui~ t1!ui~ t2!ui~ t3!ui~ t4!ui~ t5!ui~ t6!&5^ui~ t1!ui~ t4!&

3^ui~ t2!ui~ t3!ui~ t5!ui~ t6!&1^ui~ t1!ui~ t5!&

3^ui~ t2!ui~ t3!ui~ t4!ui~ t6!&1^ui~ t1!ui~ t6!&

3^ui~ t2!ui~ t3!ui~ t4!ui~ t5!&1^ui~ t1!ui~ t2!&

3^ui~ t3!ui~ t4!ui~ t5!ui~ t6!&1^ui~ t1!ui~ t3!&

3^ui~ t2!ui~ t4!ui~ t5!ui~ t6!&, ~26!

and

^ui~ t1!ui~ t2!ui~ t3!ui~ t4!&5^ui~ t1!ui~ t3!&^ui~ t2!ui~ t4!&

1^ui~ t1!ui~ t4!&

3^ui~ t2!ui~ t3!&

1^ui~ t1!ui~ t2!&

3^ui~ t3!ui~ t4!&. ~27!

When we substitute Eqs.~24!, ~26!, and ~27! into Eqs.~16!
we obtain as follows
~i! t.0
I ~t,r !}^uP~3!u2&5A71uhu2A81exp~22G10
a utu!$A91A10~exp@2~2j121!G0utu#2exp@2~2j111!G0utu# !

1A11~exp@2~2j121!G1utu#2exp@2~2j111!G1utu# !%1A12exp@22~G20
a 2G10!utu#1A13exp@2a1uj12j2itu#

3exp@2~G20
a 1G10

a 2G10!utu#$h exp@ iDkW•rW1 i ~V22V1!t1 i ~j22j1!D3t#1h* exp@2 iDkW•rW2 i ~V22V1!t

2 i ~j22j1!D3t#%, ~28!
d
-
e-
-

s
n-
lay
where

A75
4

a1
2

G0
21G1

216G0G1

G10
a G0G1~G01G1!

, A85
4~j221!

~a2G20
a !2 ,

A95
4~j111!

a1
2~2j111!

~G01G1!2

G0
2G1

2 ,

A105
3G01G1

2G0
2~G01G1!

, A115
3G11G0

2G1
2~G01G1!

,

A125~j221!2utu21
j211

4~D21j2D3!2 ,
A135
4~j221!utu

a1a2

G01G1

G0G1
.

~ii ! t,0, I (t,r )}^uP(3)u2&5A71uhu2A8 . Photon echo
doesn’t exist for the perturbation chains~I!, ~III !, and~V!.

Relation ~28! consist of five terms. The first and thir
terms are dependent on theu1(t) sixth-order coherence func
tion for DFWM, while the second and fourth terms are d
pendent on theu2(t) fourth- andu1(t) second-order coher
ence functions for NDFWM. The first and second term
originating from the amplitude fluctuation of the Gaussia
amplitude field are independent of the relative time de
between the two beamsA andB. The third and fourth terms
2-7
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YANPENG ZHANG, CID B. de ARAÚJO, AND EDWARD E. EYLER PHYSICAL REVIEW A63 043802
indicate an exponential decay of the beat signal asutu in-
creases. The fifth term depending on theu1(t) fourth- and
u2(t) second-order coherence functions gives rise to
modulation of the beat signal. Equation~28! also indicates
that beat signal oscillates not only temporally with a per
2p/uV22V1u544.9 fs but also spatially with a perio
2p/Dk50.51 mm along the directionDkW , which is almost
perpendicular to the propagation direction of the beat sig
~Fig. 3!. The three-dimensional plot of the beat signal inte
sity I (t,r ) versus time delayt and transverse distancer has
larger constant background caused by the intensity fluc
tion of the Gaussian-amplitude field. At zero relative tim
delay (t50), the twin beams originating from the sam
source enjoy perfect overlap at the sample of their co
sponding noise patterns. This gives maximum interferom
ric contrast. Asutu is increased, the interferometric contra
diminishes on the time scale that reflects material mem
usually much longer than the correlation time of t
light @13#.

FIG. 3. ~a! A three-dimensional plot of the beat signal intens
I (t,r ) versus time delayt and transverse distancer for the
Gaussian-amplitude field. The parameters areV22V15140 ps21,
Dk512.25 mm21, h5j i51, Ai50.6, G10

a 513.5 ps21, G20
a 2G10

514.5 ps21, G052.7 ps21, and G152.9 ps21. ~b! A two-
dimensional representation of the beat signal intensityI (t,r ).
04380
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It is important to note that these three types of fields c
have the same spectral density and thus the same sec
order coherence function. The fundamental differences in
statistics of these fields are manifest only in the higher-or
coherence functions. The term ‘‘higher-order’’ refers to
orders larger than the second. According to Gaussian st
tics, a chaotic field can be completely described by seco
order coherence function. But the phase-diffusion field a
Gaussian-amplitude field require all order coherence fu
tions @6,7#. In this paper, different stochastic models of t
laser field only affect the sixth- and fourth-order coheren

FIG. 4. The beat signal intensity versus relative time delay. T
three curves represent the chaotic field~solid line!, phase-diffusion
field ~dashed line!, and Gaussian-amplitude field~dotted line!. The
parameters areV22V15140 ps21, Dk50, h5j i51, Ai50.6,
while G10

a 52.7 ps21, G20
a 2G1052.9 ps21, G051.35 ps21, G1

51.45 ps21 for ~a! and G10
a 513.5 ps21, G20

a 2G10514.5 ps21, G0

52.7 ps21, andG152.9 ps21 for ~b!.

FIG. 5. Spectrum of DFWM when beamsA and B consist of
only v1 in which center wavelength is 589 nm.
2-8
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HIGHER-ORDER CORRELATION ON POLARIZATION . . . PHYSICAL REVIEW A63 043802
functions @20#. Figure 4 presents the beat signal intens
versus relative time delay. The three curves represent
chaotic field~solid line!, phase-diffusion field~dashed line!,
and Gaussian-amplitude field~dotted line!. The polarization
beat signal is shown to be particularly sensitive to the sta
tical properties of the Markovian stochastic light fields w
arbitrary bandwidth. This is quite different from the fourt
order partial-coherence effects in the formation of integrat
intensity gratings with pulsed light sources@31#. Their results
proved to be insensitive to the specific radiation models. T
constant background of the beat signal for a Gauss
amplitude field or a chaotic field is much larger than that
the signal for a phase-diffusion field in Fig. 4. The physic
explanation for this is that the Gaussian-amplitude field
dergoes stronger intensity fluctuations than a chaotic fi
On the other hand, the intensity~amplitude! fluctuations of
the Gaussian-amplitude field or the chaotic field are alw
much larger than the pure phase fluctuations of the ph
diffusion field.

The main purpose of the above discussion is that we
veal an important fact that the amplitude fluctuation play
critical role in the temporal behavior of the HOCPB sign
Furthermore, the different roles of the phase fluctuation
amplitude fluctuation have been pointed out in the time
main. This is quite different from the time delayed FW
with incoherent light in a two-level system@28#. For the
latter case, the phase fluctuation of the light field is cruc
But the HOCPB is analogous to the Raman-enhanced po

FIG. 6. DFWM signal intensity versus relative time delay wh
beamsA andB consist of onlyv1 . The square is the experiment
data; the solid curve is the theoretical curve witha1

52.731010 s21, B150.1, andB351.

FIG. 7. Spectrum of NDFWM when beamsA andB consist of
only v2 in which center wavelength is 616 nm.
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ization beats@32#. The amplitude fluctuation of the light field
is also crucial in the Raman-enhanced polarization beats
the other hand, because of^ui(t)&50 and ^ui* (t)&50, the
absolute square of the stochastic average of the polariza
u^P(3)&u2, which involves second-order coherence functi
of ui(t), cannot be used to describe the temporal behavio
the HOCPB@17,25,26#. The second-order coherence fun
tion theory is valid when we are only interested in t
t-dependent part of the beating signal. Therefore, the si
order coherence function theory is of vital importance
HOCPB. The application of these results to the HOCPB
periment yielded a better fit to the data than an express
involving only second-order coherence. We present exp

FIG. 8. NDFWM signal intensity versus relative time dela
when beamsA andB consist of onlyv2 . The square is the experi
mental data; the solid curve is the theoretical curve witha2

52.931010 s21, B250.2, andh51.

FIG. 9. Experimental result of the beat signal intensity vers
relative time delay.~a! Time delayt is varied for a range of 7.3 ps
~b! Time delayt is varied for a range of 0.5 ps.
2-9
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YANPENG ZHANG, CID B. de ARAÚJO, AND EDWARD E. EYLER PHYSICAL REVIEW A63 043802
mental results for the material response in cascade-leve
larization beats with phase-conjugation geometry using c
otic fields. BeamsA andB are identical in makeup. Each i
composed of the same two noisy fields centered at two
ferent colors,v1 and v2 , and carrying its own statistica
factors,u1(t) andu2(t). BeamsA andB differ only in their
wave vector, polarization vector, and time delay. At prese
it is difficult to achieve the polarization beat experiment
the phase-diffusion field or the Gaussian-amplitude fie
Therefore, it is more difficult to get a clear picture of phys
cal origins of the effects in each type of fluctuating field
the experiment.

V. EXPERIMENT AND RESULT

We perform the HOCPB for a sodium vapor, where t
ground state 3S1/2, the intermediate state 3P3/2, and excited
state 5S1/2 form a three-level system. Two dye lasers~DL1,
and DL2! pumped by the second harmonic of a Quanta-R
yttrium-aluminum-garnet~YAG! laser, are used to genera
frequencies atv1 and v2 . DL1 and DL2 have a linewidth
0.01 nm and a pulse width 10 ns. The values for the relev
transverse relaxation rate for the sodium vapor are 0.175
0.085 ps21 @33#. This is narrowband limit. DL1 is tuned to
589 nm, the wavelength of the 3S1/2-3P3/2 transition. DL2 is
tuned to 616 nm, the wavelength of the 3P3/2-5S1/2 transi-
tion. A beam splitter is used to combine thev1 and v2
components derived from DL1 and DL2, respectively,
beamsA and B, which intersect in the oven containing th
Na vapor. The relative time delayt between beamsA andB
can be varied. Beam 3, which propagates along the direc
opposite to that of beamA, is derived from DL1. All the
incident beams are linearly polarized in the same direct
The beat signal has the same polarization as the inci
beams and propagates along a direction almost opposi
that of beamB. It is detected by a photodiode.

We first perform a DFWM experiment with beamsA and
B, both consisted of onlyv1 frequency component. Figure
presents the spectrum of the DFWM. From the DFWM sp
trum we tunev1 to the resonant frequencyV1 , whose center
wavelength is 589 nm. The center dip of the DFWM spe
trum reflects the saturation behaviors of the chaotic fie
The relation of the DFWM signal intensity versus relati
time delay is showed in Fig. 6. We then perform a NDFW
experiment in which beamsA and B consist of only av2
frequency component, and we measure the NDFWM sp
trum by scanningv2 ~Fig. 7!, which shows a resonant profil
due to two-photon transition. From the NDFWM spectru
we tune v2 to the resonant frequencyV2 , whose center
wavelength is 616 nm. The relation of the NDFWM sign
intensity versus relative time delay is shown in Fig. 8. Af
that, we perform the HOCPB experiment by measuring
beat signal intensity as a function of the relative time de
when beamsA andB consist of both frequenciesv1 andv2 .
Figure 9 presents experimental result of the beat signa
tensity versus relative time delay. The signal modulates
nusoidally with period 45 fs. The modulation frequency c
be obtained more directly by making a Fourier transform
tion of the HOCPB data. Figure 10 shows the Fourier sp
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trum of the data in whicht is varied for a range of 7.3 ps
Then we obtain the modulation frequency 1.431014 s21 cor-
responding to the beating between the resonant frequen
of the transitions from 3S1/2 to 3P3/2 and from 3P3/2 to
5S1/2.

Now, we discuss the difference between HOCPB a
UMS @24# with self-diffraction geometry from a physica
viewpoint. The frequencies and wave vectors of the UM
signal arevs1

52v12v1 , vs2
52v22v2 , and kW s1

52kW18

2kW1 , kW s2
52kW282kW2 , respectively, which means that a ph

ton is absorbed from each of the two mutually correla
pump beams. On the other hand, the frequencies and w
vectors of the HOCPB signal arevs1

5v12v11v3 , vs2

5v22v21v3 , andkW s1
5kW12kW181kW3 , kW s2

5kW22kW281kW3 , re-
spectively, therefore photons are absorbed from and em
to the mutually correlated beamsA andB, respectively. This
difference between HOCPB and UMS has profound infl
ence on the field-correlation effects. We note that the role
beamsA and B are interchangeable in the UMS, this inte
changeable feature also makes the second-order cohe
function theory fail in the UMS. Becausêu(t1)u(t2)&50,
the absolute square of the stochastic average of the pola
tion u^P(3)&u2 cannot be used to describe the temporal beh
ior of the UMS@17,25,26#. Our sixth-order theory is of vital
importance in the UMS.

In conclusion, we have adopted chaotic, phase-diffus
and Gaussian-amplitude field models to study the effects
sixth-order coherence on polarization beats in a casc
three-level system. The polarization beat signal is shown
be particularly sensitive to the field statistics. Different s
chastic models of the laser field only affect the sixth- a
fourth-order coherence functions. The constant backgro
of the beat signal originates from the amplitude fluctuation
the Markovian stochastic fields. The Gaussian-amplitu
field shows fluctuations larger than the chaotic field, wh
again exhibits fluctuations much larger than for the pha
diffusion field with pure phase fluctuations caused by sp
taneous emission. We have considered the cases that p
beams have either narrow band or broadband linewidth
found that for both cases a Doppler-free precision in
measurement of the energy-level difference of the exc

FIG. 10. The square is Fourier spectrum of the experime
data in whicht is varied for a range of 7.3 ps. The solid curve is t
theoretical curve given by Eq.~12! with a152.731010 s21, a2

52.931010 s21, v22v151.431014 s21, Dk50, andh5Bi51.
2-10
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HIGHER-ORDER CORRELATION ON POLARIZATION . . . PHYSICAL REVIEW A63 043802
states can be achieved. It is worth mentioning that the as
metric behaviors of the polarization beat signals due to
unbalanced dispersion effects of the optical components
tween the two arms of the interferometer, do not affect
overall accuracy in the case using HOCPB to measure
energy-level difference@9,10,17#.
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