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Fluidity aspects of Bose-Einstein condensed systems
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We analyze some aspects of the fluidity of Bose-Einst@E) condensed systems. We show that a two-fluid
picture of a condensed system holds true. The condensate is a quantum fluid component of the system. This
component of the fluid satisfies the continuity equation and a generalized Bernoulli equation. Under certain
conditions, the condensate component becomes a classical superfluid. We suggest that condensed systems
might exhibit mechanochalorical and thermomechanical effects, in close analogy with superfluid helium-4.
Quantized vortices are also expected to appear in a BE condensed system. We discuss the structure of quan-
tized vortices.

DOI: 10.1103/PhysRevA.63.043607 PACS nuntder03.75.Fi, 05.30.Jp, 02.70.Rr

. INTRODUCTION H=K[Ve,p,V]+H[p]. (1.4

In a recent paper, we presented the hydrodynamic quan- The kinetic term is the one defined in terms of the figld
tization approach in order to understand some properties of as
Bose-Einstein condensed system. In R&f, we relied on a

variational method in order to find the wave function of the Vi (X)- Vip(X)
condensed state as well as the wave function of excited KX)=——— (1.5
states.
In this paper, we analyze the problem of Bose-Einsteinyhere y(x) = \p(x)e'*®).
condensation from a different standpoint. Here the quantiza- By ysing Eq.(1.5), we get for the kinetic term
tion is achieved by using the functional integral method.
Within the functional integral method, physical quantities R R p(x) 1 .
such as partition function are expressed as sums over aK[P(X),VP(X),WP(X)]:W[VQD(X)]ZJF ﬁ[VVP(X)]z-
possible field configurations with an appropriate weight. The (1.6)

hydrodynamical approach requires that we sum over all pos-

sible densities and phase configurations. For example, by As we shall see later, the last term of the kinetic density
using these hydrodynamical variables, the partition functiorhas a quantum origin. In the case of spiparticles, this

of a many-body system is obtained as a sum over all possiblgrm is associated to the zitterbewegung of these particles.
phases and densities with a weight given by the Lagrangian Averages over the ensemble of a physical quantity

density L. That is, (O(x)) are defined as the following sum over densities and

phases:
Z=J jD[<p]D[p]eif£[""P“9MP‘?M‘°]_ (1.2 L
<©(X)>EZJ J'Dp Do O(x)eV~, 1.7
The free energyF is defined, as usual, as
Z=glF. (1.2) We shall see, in Sec. Il, that the equation of motion is

valid in the sense of averages over the ensemble. This re-
The Lagrangian densitg is written, in terms of the hy- duces the problem to that of summing over all densities and
drodynamical variables, as phases with a weight given by the action.
In Sec. Ill, we compute the contribution of phase eigen-
de - - states to the average over the ensemble. This leads to the
—LLp,¢:0,p:0,¢] —Pat +H[Ve.,p,Vpl, (1.3 equation for the condensate wave function. We show explic-
itly that this wave function is associated to a fully condensed
where the Hamiltonian can be separated into a kinetic term system(all particles are in the condenspate
(containing derivatives of the fielfland an interaction term In Sec. IV, we show that the condensate is a quantum
depending only on the density. We write liquid. This quantum liquid becomes superfluid for a quasi-
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uniform condensate. Under this condition, we drop the so- We define the local momentum operator as the gradient of

called quantum velocity contribution. the phase operator. That is,
In Sec. V, we show that a two-fluid picture emerges A
whenever the system is condensed. The velocity and density P(x)=Vo(x). (2.8

can be separated in such a way that it becomes obvious that
the condensate becomes, in general, a component of the The momentum equation of motion can be formally writ-

fluid. ten under the form of Newton’s law:
In Sec. VI, we consider nonuniform condensate wave
functions. Solutions describing quantized vortices are built alg(x) .
explicitly. p =F(x). (2.9

We end this paper by drawing some conclusions.
By taking the gradient of Eq2.5), we can identify the

force operato[’lf(x)] with the operator
In this section, we shall study averages over the ensemble

II. EHRENFEST THEOREMS

of time evolution equations. We refer to these averages as - | sH
Ehrenfest theorems. FX)=-Vl|3 X (2.10
Within the field-theoretical approach, we associate to the P
spin-0 boson a complex fielh The equation of motion sat-  Any of the quantum versions of the equations of motion
isfied by the fieldy(x) is (2.1) and(2.2) and(2.5) and(2.6), are obviously valid in the
sense of expectation values. Defining the trace of an operator
ap(x) VP N SH' _ OH as
I ot - 2m l//(X) 51!,* [lr// (X)llp(x)]_ 5(!’*()()1 )
T,O(x)= OX)| ) ——, 2.1
2.1 000=2 (WO s (219
au* (X) V2 SH' SH we can write the following equations:
i — _* R E —
[ ST (0 + 50 [ (%), $(X)] 50X ; .
—(T,o(X)=—T,| ——], 2.1

Within the hydrodynamical approad¢h] we use, instead J B A
of ¢, the density{p(x)] and phasd ¢(x)] variables. They 5 (TeP()) =T, So0x) |’ (213
are formally defined as

p(X)=¢* (X) (), (2.3 i %(Tr;//(x))zn(%) . (2.14
P00 = p(x) €. (24 Ehrenfest theorems are defined here as averages over the

ensemble of quantum equations. In order to define averages
dver the ensemble, we define the guantum-mechanical parti-
tion function of a Bose system.
I(X) SH Remembering that the quantum-mechanical actois

= (2.5 defined as the integral of the Lagrangian density,

In terms of these hydrodynamical variables, the equation
of motion are written as

at Sp(x)’
ap(X) S5H S= | dx£[x], (2.15
e :+5(p(x), (2.6) f

we define the partition function as

where’H in Egs. (2.5 and(2.6) is the Hamiltonian density. )
From the above equations it follows thafx) and ¢(x) are Z=T,€'S. (2.16
canonically conjugated variables.

Quantization stands, as usual, for changing the classicathis is just an extensiofto the resulk of the usual finite-
fields into the quantum field operator. The commutation retemperaturéT) definition
lation satisfied by the field operators and the canonically con-
jugated field is the basis of the quantization procedure. We Z=T,(e MK, (2.1

write
The average over the ensemble of a physical quantity

[p(X),o(X")]=186(x—x"), (2.7 O(x) is, as usual, defined by

043607-2



FLUIDITY ASPECTS OF BOSE-EINSTEIN CONDENSED.. . . PHYSICAL REVIEW @8 043607

1 - Eq. (2.22, we can write Eq(2.14) as
(000)=7T{e*00}- (218 )
io . 2 -
From Egs.(2.18, (2.5, and (2.6), it follows that, in the gt (T =| =50+ U(X))Tf‘/’(x)”f
sense of averages over the ensemble, equation analogous to
Egs.(2.12 and(2.13 are valid: XJ dx’ &(X)V(x—x’)&*(x’)z}(x’).
H p(X)) oH (
S 3.0
at Sp(x)/’ 219
Since the vacuum is supposed to B€l)-invariant, the
A p(x)) - oH contribution of the vacuum state and Fock states to the above
- ' (2.20 equation is zero. For the vacuum state we can write
ot S¢p(X)
where H(x) = {[ P(x) p(X) P(x) ]/2m} + H' (* (X) (X)). (Olg(x)|0)=0. (3.2

We assume that the interaction Hamiltonian density has N .
the general form For any Fock states we expect that it will give no contribu-

’ tion at all to Eq.(3.1). For any Fock state we can write
HL* () $()]=U ) () () + H™ @ (X) (X)), o
(P **Pal ¥(X) [Py - Pn) = 0. 33

(2.2 The above result can be understood by taking the decompo-
whereU(x) is an external potentiaH™(y* (x)#(x)) in Eq.  sition of the fieldy in terms of creation fofy*) and annihi-
(2.21) takes into account the interaction of the boson par{ation (for ) operatorsh® (k) andb(k).
ticles among themselves. The general form of |etus consider now the contribution to E.1) of states
H™(y* (x) () is that we have identified in Refl] as phase eigenstates. For

HIM(o(x))= p(X)e(X,p), (2.22 these states

wheree(x,p) is the per-particle internal energy.
Using Eq.(2.21), we can write the following Ehrenfest where o(x) is a classical phase.

e¥0]y)=e' e y), (3.4

theorems: For phase eigenstates, the following factorization property
. holds true:
He(x)) [ PAX)
o ~\2m +Ux)+(h(x)), (2.23 1 A i
W(‘lfhlf(xl)“‘l/f(xn)W):l!f(Xl)"'llf(Xn)- (3.9
K p(x)) 1 v B 50
g m (p(x) P(x)), (2.24 These states are coherent states of the field for which the

number of particles is uncertain. This is clear from the com-
mutation relations between the phase and density operators.

> +Fed(X)—V(h(x)), (2.25  States with a well-defined phase have a quite uncertain num-
ber of particles.

HPX)) [ P2X)
at 2m
In Eqg. (3.4), we have used the density representation of

where the algebra of operators in which the density operator is a
se(y,p(y)) classicalc-number density. That is,
<h(X)>:<e(X,P)>+<P(X) J dy5—(>()>’ A
p (2.26 p(x)=p(x) (3.6)
R . and the phase operator is represented by the operator
Fexd(X)=—=VU(X). (2.27
R )
We shall refer to these equations as the quantum Ber- P(x)= i Sp(x)° (3.7
noulli equation[Eq. (2.23], the continuity equatioEqg.
(2.24], and the quantum force equatipid. (2.25]. The statey{p] in Eq. (3.4) has the following form, when
written as a functional of the density:
1. QUANTUM COHERENCE AND BOSE-EINSTEIN ]
CONDENSATION Y[ p]=eTp0etdx (3.9
In this section, we consider the equation for the figid The most general states
and we take into account only two-body interaction through
a potentialV(x—x'). Under these circumstances, and using Yol p]= el PO de(xdx (3.9
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describe a condensed state since the wave function associ- Taking into account excited states, we would get a precise
ated to it is expression forF. We shall deal with this problem in the
future.
n The main conclusion is that coherent states of the phase
ey X0) = e(x0) (%) =1 #e(x)). (310 field gives a nonzero contribution to the average of the en-
' semble of certain equations of motion. These states are states
.(x) is then the condensed state wave function. describing all particles in the condensate. The expectation

Together with Eq(3.5), we can see that the condensatevalue of the field among these states is the order parameter of

wave function contributes to the average over the ensembl%‘ﬁ phgse tranS|tl?mnc<;r:1densedfto c;pndefntsr?d BE dstate N
This contribution leads us to the equation for the condensat € order parameter IS the wave function of the condensate.

wave functiony.(x),
¢C( ) IV. BOSE-EINSTEIN CONDENSATION

J V2 AND SUPERFLUIDITY
It e0= T on U(X)) Ye(X) We shall show now that the Bose-Einstein condensed sys-
tem is a quantum fluid that, under certain conditions, be-
+ / TNk " comes superfluid.
j X YOVIX=XT) e (X the(X") First of all, we analyze the conditions under which super-
(3.11) fluid flow occurs. We just recall that, as pointed out by Pen-
' rose and Onsagé¢B], the relevant feature of superfluidity is
Within the hard-sphere approximation, we write the generalized factorization of the density mafd],
2 p(XX")=(¢* (X)h(x"))=F*(X)f(X"). 4.9
. _ 2
<'E+ ﬁ) e(X)=U(X) e(X) + N[ b ()] ¢re(X), Later on, Beliaev[5] extended the above factorization
(3.12 property tox- and x%-dependent Green’s functions. For the
two-point Green'’s functions, the factorization property im-
where\ is related to the scattering lengéhdefined by plies
Ama (P (XX (X' x"0))=*(X,xO)F (X', x'0). (4.2
AN=—-. (3.13
m The factorization propertiegt.1) and (4.2) are the basis

) ) ) ) . of the “off-diagonal long-range order{ODLRO) hypoth-
Equation(3.12 is the generalized Gross-Pitaevskii equa-gsis[2,4]. Assuming ODLRO, we write

tion.

Our conclusion is that coherent states of the field give g (% x%))= /ps()zyxo)ehps(i,xo) (4.3
nonzero expectation value to the average over the ensemble
of the field, =(h(X1,X9) (%, X0))
~ — . - 0 — . -0
<1,b| l//(X)| ¢> = (%) (3.14 = \/ps(xl,xg)e'%(xl,xl). /Ps(xn ’Xg)enps(xn Xn)
—————=(X). .
(¢l @4

As first advanced by Andersdr2], when BE condensa-
tion occurs the system undergoes a spontaneous symmettrix
breakdown of thdU(1) symmetry andy.(x) becomes the
(local) order parameter of the system.

The free energy of the condensate is

The above approximation is also known as the factoriza-
n approximatior{ 6]. We have shown that the above prop-
erties follow from quantum coherence. This coherence is a
result of BE condensation.
Now we shall see that, as far as superfluidity is concerned,
i the factorization condition is, in fact, necessary but not suf-
fff dx5 [ COLae ()] = [auhs 00 J9e(X)] ficient. o
Considering the Hamiltonian given by E@.21) and tak-
VE&*(X) . §¢C(X) ing intq account exte_zrngl fields, the corresponding equations,
Cc
_ o H Y () he(X)]. (3.15 assuming the factorization, become

_ _ Iee(X) _ (Vee(x)—eA)?
The above expression holds true when we consider ali— . ’m
particles in the condensate. We know that only a fraction of
all particles are in the condensate. In order to get more con- 1 [1(Vpu(x) 2 Ap(X)
sistent expressions for the thermodynamics of the system, we am| 2 0 )
have to take into account the contribution of other states, Pc Pe
such as the excited states. (4.5

+U(X)+h(x)
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and The quantum Bernoulli equation with=0 becomes, for
a particle of spin 0,
P _ % 5% 4.6
at o ' de(x)  PEx)  (PHx) V-jUx)
T T om + m 2 ) +U(x)+h(x).
whereh(x) is the per-particle enthalpy, defined in £g.26). Pe (4.15

Using Eq.(2.19,
Let us assume that the quantum velocity contribution be-

deind(y,p(y)) comes negligible. This clearly is the case whenvaries
00 =em(xpo +pex) [ 2T ay. ap Gonse R Y e
C ]

We shall see later that ﬁzpc(x)<pc(x) and [ﬁpc(x)]z<p§(x). (4.16
P(x) We have called these condensates quasi-incompressible
h(X) = €n(X, pc) + m (4.8)  condensates. Under these circumstances, we can write
Cc
52
whereP(x) is the pressure. _ 9¢c(X) _ Pe(x) +UX)+h(x) 4.17)
Equations(4.5) and(4.6) describe a condensed system of ot 2m '
particles under the action of external electric and magnetic _ .
fields whose associated potentials &rex) and A(x). whereas for the quantum force defined b (x)
The momentum of the condensate is =9gP.(x)/ ot we get
5 ()= 4V AP (X | P2x)| . R
Pe(x)=+Voo(x) 49 ;t( ) —v[ S|~ Vho0+Fox). (418

whereas the velocity of the condensate is
By using Eq.(4.10 for A=0, we can write Eq(4.18

- Pe(x)—eA(x) under the alternative form
Ve(x)= ————— (4.10
D If’c(x) - -
and the current is i~ Vh(¥)+Feq(X), (4.19

. . pe(X) - " = = —F
Fi3) = puX)Vo(x) = Cm [P.(x)—eAX)]. (4.1 whereF ¢,(X) VU(x) andD/Dt stands for the operator

J - -
Let us see now under which condition the condensate be- Dt 4t (Ve V). (4.20
comes superfluid.

Equation (4.5 shows that the condensate becomes a From Eq.(4.18) it follows that, in the absence of external
quantum fluid. In fact, the quantum fluid associated to theforces, Eq.(4.18 describes the potential flow of a nonvis-
condensate is a generalized Madelung fluid. This Madelungous fluid[8]. This means superfluidity.
fluid becomes superfluid under certain conditions. This con- If the external potential (x) and the Hamiltoniari2.22
dition implies neglecting the quantum velocity contribution. do not depend explicitly on the time, then one can look for a

We define, for a particle of spin 0, the quantum velocity sojution of Eq.(4.17), with A=0, under the form
as the quantity

) Po(X,1) = — pt+ (). (4.2
- 1. PA(x) ] ]
Va(x)= EV[In Vp(X)]= - (4.12 For ¢.(X,t) given in Eq.(4.21) one gets
. . - P2(x)
For particles of spirs (different from zerg, the definition pu=———+h(x)+U(x). (4.22
is [7] 2m
R 1. In the case of superfluidHe, the constanu in Eq. (4.22
Vi(x)= aVX[In p(X)S] (4.13 should be identified with the chemical potential. This can be

inferred from the paper by Beliadb] as well as from the

and the quantum velocity, in this case, has its origin in afaCt that by making the substitution

guantum effect, namely the zitterbewegung of the particle. P(X)— €H(x) 4.23
We define the quantum current as

_ . we get the usualkN term in the thermodynamic potential
1900 = pe(X)VI(X). (414 (1.3.
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The context of Bernoulli's equation is simple: along a V. TWO-FLUID PICTURE

streamline, the chemical potential is constant. In this sense, One of the advantages of the functional intearal approach
Bernoulli's equation is just an extension of the well-known . 9 9 PP

result that the equilibrium condition of a body in an externalfatnhgtlv\c;hesnsre)eg‘r);trg'Tﬁesgé?jri%\ﬁiroﬁh;f;sei%iggg:g{gig:
field is the constant of the chemical potential. In fact by Y P

oL ) o the rest(the particles that are not in the condengaiée can
fﬁf'”g[zi(x) =0in Eq.(4.29, one gets the equilibrium con- ite formally the densities and phases as a sum of two con-
ition

tributions,
#=h09+UX). (4.24 P(X)=pe(X) + pn(X), (5.1
't one writes #(¥)=9c(X) + (), (52
h(x)=e(x)+m P(x) , (4.25 wher_epc (¢¢) is the densit_y(phasé of the condensate ang,
pc(X) (¢y) is the “normal” density(phase of the other component
) . . of the fluid.
we get Bernoulli's equation. That is, Taking the gradient of Eq5.2), the velocity of the fluid

. can be written as being due to two contributions:
P P(x) . »
A= m Ty g U0 (426 V() = V(%) +Vy(X), (5.3

Assuminge(x) constant andJ(x)=0, we get the usual Wwhere
expression for Bernoulli’s equation, . .
Vodx) - Ven(x)

Vi | PX) Ve)=—— Vp0=—2"". (54

5 + Tx)=const. (4.27)
Pe The conclusion is that it is natural to assume a two-fluid

The extension of conditio4.17 to finite temperatures Picture when BE condensation occurs. _
will be analyzed later. If the particles interact only through _ The number of particles in the condensatdfism Eq.

binary forces, then, from Eq3.11), we write 5.0]
dpc(x) 1 1 [1(Vp(x)\? Ape(x) dx=N... 5
e amTeoPe (S J paseen. °

In this paper, we shall be mainly concerned with some
+U(X)+j V(X=x")pe(x")dx". (428  properties of the condensate component. The other compo-
nent will be denoted, from now on, the normal component.
Equation(4.28 assumes the form of the Hamiltonian Ja-  The free energy of the condensate is, from Eg}15),
cobi equation for a single particle that is under the action ogiven by
an external potential(x) and under the average potential

produced by the others, }.C:f dx — pu(x) <9<P;t(x)_ P;(r;o (¥ 0u(x)]2
V(X)= | V(x—x")pe(x")dx’. 4.2 1 .
= vepecres 29 o (TG0 - M pel0]. 56

For V defined in Eq{4.29, one writes One can think of the free energy as a functional of the

density and phase. We define
(?(PC(X) _ 1 = 2 N
3 = %[V%(x)] +UMX)+V(x). (4.30

17 -
e

—p(x)

f[p(X),(p(X)]=f dx
Finally, independently of the details of the interparticle
potential, one can write for the superfluid component 1
) — 5[V P=Hp(x)|. (57
dpe(X) == - pe(X)Vec(x)
g V)=V m - (43) In this section, we shall take (x)=0.
Following Anderson[2,4], the free energy can now be

Our conclusion is that the condensate is a quantum fluidhought of as a functional of order parameter. The conden-
obeying a generalized Bernoulli equation and continuitysate is associated to the field configurations for whicks
equation. Quasiuniform quantum fluids are superfluids. minimum. That is,
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SF Under this condition, Eq4.22 becomes
5 =0, (5.9
Plp=p, P2(X) .
0= o +h(X). (5.15
oF =0 5.9
S oo e 5.9 Particles belonging to the nonuniform condensate have a

momentum that does not exceed a critical value. There is a
From the above expression follow Eq4.5 and (4.6), critical velocity. One can establish an upper bound for this
whereA=0. Anderson’§ 2] supercurrent is defined as critical velocity. One gets

> —OF Ve<Umax=

s(X)=———. (5.10
o(Ve(x)) . :
where e is the per-particle energy of the ground state. For
From our expressiofb.7) it follows that the supercurrent “He, e=—6x10"*eV/at andm=3.5x10° eV,
is

e |12
—%) , (5.1

U max= 90 m/s. (5.17
P = oF _ pc(X)( Vﬁ%(x)) . This resultis close to the simple estimate made by Landau
5V (X)) R based on the phonon dispersion relatioh
(5.1 VI. QUANTIZED VORTICES
Anderson’s supercurrent is just the current associated to \we shall argue in this section that, in close analogy with
the condensate quantum fluid. superfluid “He, quantized vortices will appear in Bose-

We would like to call attention to the fact that this fairly Ejnstein condensed system. This topic has been quite well
simple dependence of the free energy is due to the fact thalxplored in several recent publicatiofis0] and even ob-
we have considered all particles in the condensate. We knowerved experimentaljl1]; nevertheless, we offer additional
that there is always depletion as a result of quantum effectsjiscussion on this topic. In fact, we will show that quantized

A more accurate method will be developed in a future pub-Vortices are just solutions of Eq&4.5) and (4.6), whereA

lication. = . . .
In order to establish more analogies with Anderson's~0- They provide an explicit example of nonuniform con-
nsates.

work, one notes that the average over the ensemble of t X L ,
energy exhibits a functional dependence with the phase in a BY Using cylindrical coordinates (z, ) and from the fact
way very similar to that proposed by Andersi#i. We get that the wave function of the condensate is single-valued, it
for a totally condensed system follows that

() L Po(r,2,0+27,8) = i(r,2,0,1). (6.2)

Ulgel= | dx——[Veo(x) ]2+ | =—{V[Vp(x)]}?
[oc] J’ x> [VedX)] me{ [Voc(X)]} Uolr 2,04 270) = (1 2,0.1). 6.2
+f dxHin[p]. (5.12 We(r,2,0+27,1) = (r,2,0,1). (6.3

The phase dependence is such that The velocity potentialp.(r,z, 6) is such that

o(r,z2,0+2m)=@(r,z,0)+ 2. (6.4
SUlec _ pelx)

AVes(x)]2 2m’

(5.13 The generalized equilibrium condition permits us to shed
some light on the structure of quantized vortices. Assuming
that the fluid rotates around tteaxis, one can associate a

which differs only by a factor of 2 from Anderson’s result C%raight vortex line to @-independent solution of

[2]. The discussion of some dynamical consequences, su

as the Josephson junction, could be done from now on along SF SF
Anderson’s proposdR]. 5 =0, —— =0.
In the condensed phase, the chemical potential vanishes. oY (x) P ()= (X) oY(x) P(X) = ()
We shall see that particles belonging to the condensate have
a critical velocity. Let us designate by °™ such a solution and write
We shall analyze the solutio@.21) assumingu=0 for '
the nonuniform condensate. For the nonuniform time- SO, 0,t) = \pl(r)e! (T Htnd, (6.5

independent condensate, we write
wheren is an integer number that ensures conditi6ri).
@c(X)=pe(X). (5.149 From Eq.(4.9) it follows that
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. n_ The cutoff value obtained here is very close to the so-
Pe(r)=—8, (6.6)  called coherence length 8He [6].
The relevant quantity for physical applications, in the case

so that for a closed loop around theaxis the quantization ©f the vortex solution(6.1), is the energy per unit length of

condition follows, the vortex(“tension” of the line). This physical quantity is
defined as the difference between the free energy associated
. - to the vortex and the free energy associated to the uniform
§ Pc-dl=2mn. 6.7 order parameterg,) [12]:
Let us assume further the following asymptotic condi- 1
tions: AT= E{f[lﬂ\éortex] —Fll}, (6.16
lim pl(r)= . .
r—0 pe(n=0, 69 where g, = \Jppe'®, « arbitrary phase.
AT defined in Eq(6.16 gives the excess energyr free
lim pg(r)=pp, (6.9  energy that results from the appearance of a single vortex in
r—co the superfluid.
Once again field theory provides, through expression
wherepy, is the uniform Bogoliubov condensate. (5.7), a well-defined scheme for computinyZ. We shall

Condition(6.6) implies that close to the origin of the vor-  discuss next the results obtained under simple approxima-
tex there is Only normal fluid. There are two ways of Check'tionsl Let us discuss first the kinetic-energy density_

ing this. From Eqgs.(5.1) and (6.6) it follows that p,(0) The kinetic-energy density of a vortex is
=p(0). Theother way is just to remember that at the origin

(#y=0 and consequently at the origin the fluid can be VAx) 1

treated as an ordinary fluid. Far away from the origin, there K\C'mtef(r):mpg(r) A ﬁ{V*[\/pg(x)]}Z

is a uniform condensate.

Let us turn now to the analysis of the asymptotic value of
pc(r). Fore(r,0,z,t) given in Eq.(6.3), we get, from Eq.
(4.10, whereA=0,

_pe(r) n?pe(r)
T2 mr? 8m

(Ve(x)). (6.17)

Neglecting the quantum velocity, the kinetic-energy con-

- n
Ve(r)= ﬁéa- (6.10 tribution to the tension will then be
' mn? (=dr
It follows from the above expression that arto=T (TG0, 6.19
> mL Jor
lim V.(r)=0. (6.11

r—o

If one takes forp.(r) in Eq. (6.16 the asymptotic value
Consequently far away from the vortex, solutié.3) (6.7), the vortex tension diverges logarithmically in the long
should tend to the uniform Bogoliubov condensate and short distance limits. In both limits we have, however,
’ natural cutoffs. For the long distance we can take the radius

lim p2(r)=pc(*)=pp. (6.1  of the vessel as the cutofR) and for the short distance we
r—w taker. defined in Eq.(6.12. One can then write
From Eqgs.(4.11), (6.9), and(6.10 it follows that for vor- mn2 R
tices ATR=—1p In —). (6.19
mL re
lim j.(r)=0. (6.13

It is possible to make improvements in the determination
of the vortex tension oncgg(r) is known. In order to find
We have pointed out that there is an upper limit for thepg(r), one has to find the solution of the generalized equi-
superfluid velocity. If we take fov, the upper boungs.16,  librium equation,
we get a lower bound for the size of a vortex:

r—oo

112 oF 0 and SF
* = an
(614) 5$ (X) o* (X):lp:vortex(x) 6{/I(X)

=0.
P)= " x)
(6.20

. _( 2
e im—e)

In the case ofHe, we get

For F given in Eq.(5.7) we get, for two-body interac-
re~2.5A. (6.15  tions,
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V2 The dominant term in E(6.26) is the one coming from
— i, 0)— ﬁwg(r,a)JrU(r,a)w@(r,a) the kinetic term. One can then write that
Ny > wn? (=dr .
+J V(=) e (1 01 r’ ,0') i (r, 6)=0. AT——f Or—@c) mL Jo 7 Per (629
(6.21

The above equation is just the one proposed by Gross in VIl. CONCLUSIONS

his analysis of the structure of vortices. If we consider the  The conclusions that can be drawn from this paper are the
hard-sphere approximation and=0, then, in the low- following.

density limit, we get The condensate behaves like a quantum fluid. The most
1 n2 important equation governing this fluid is the generalized
P+ = o, — 2>(p8)1’2(r)+>\(p‘é)3’2(r) Bernoulli equation. When the condensate fluid is quasi-

~2m 2 incompressible, the condensate becomes superfluid.

Particles belonging to the superfluid have a critical veloc-
ity whose upper bound is

e 1/2
Umax=| ~ 5]

— p(pY)YAr)=0. (6.22

Bogoliubov’'s condensate is, in this case, given by

2m
po=". 6.23
wheree is the per-particle energy of the ground state.
We introduce the variablesandp: We suggest further that condensed systems will exhibit
12 mechanochaloric as well as the_rmomechanical effects. We
Fer\2me ?:(&) i (6.24) suggest also that London'’s relation will hold true.
¢ \p ' ' A two-fluid picture is valid in the sense of Landau. That

is, the density and the phase variables can be written as a
then, from Eqs(6.2) and(6.22), Eq.(6.20 can be written as  sum over two contributions. We claim that the functional
[13] integral approach leads to a well-defined framework for
separating out these contributions. As a result, we have writ-

2
_ ( a%+ i&r__ 2_2 +(pY)%— 45%0. (6.25 ten explic_:itly the free energy in the totally conde_nsed phase.
r r Quantized vortices are expected to appear in BE quan-
tized systems. At the origin of the vortices, we can find only
For smallr we get normal fluid. As we move far away from the vortices, we
find the Bogoliubov condensate. We analyze the structure of
p2(r)=pLA 2 : .
P(1) = PpAmdar) (6.26 these quantized vortices.
whereas for large one gets the serigd3] Qu_anti_zed v_ortices are particular solutions of Madelung_’s
equation in which we take into account the quantum velocity
2 n*\ 1 term. They are nontrivial solutions of a nonuniform conden-
PE(N=| 1= 5| 0P+ 5 | t
c o 8 /T sate.
4 1
—l8+2n2+ — |—— _ _ ACKNOWLEDGMENTS
o _ This work was partially supported by Fun@dacde Am-
The vortex tension is given by the integral paro aPesquisa do Estado dé®®&aulo(FAPESP, Con-
selho Nacional de Desenvolvimento Cidisb e Tecno-
TPb logico (CNPg, and by Programa de Apoio KUcleos de
M_Jd—{ 2 0 o2 1 [y 2— 12! gico (CNPg, and by Prog p
(pe) 15 (pc) 2 [(p)" 1 Excelacia (PRONEX. We express special thanks to L. G.
(6.28 Marcassa.
[1] G. C. Marques and V. S. Bagnato, Phys. Rev61 053607 (Addison-Wesley, Reading, MA, 1983
(2000; G. C. Marques, Phys. Rev. &4, 12 485(199)); G. C. [5] S. T. Beliaev, Zh. Eksp. Teor. Fi34, 417 (1958 [Sov. Phys.
Marques, Int. J. Mod. Phys. B, 1577(1993. JETP7, 289(1958].
[2] P. W. Anderson, Rev. Mod. Phy38, 298 (1966. [6] L. Nozieres and D. PinesThe Theory of Quantum Liquids
[3] O. Penrose and L. Onsager, Phys. REM, 576 (1956). (Addison-Wesley, New York, 1990

[4] P. W. AndersonBasic Notions of Condensed Matter Physics [7] E. Recami and G. Salesi, Phys. Rev5A& 98 (1998.

043607-9



G. C. MARQUES, V. BAGNATO, AND D. SPEHLER PHYSICAL REVIEW /A3 043607

[8] N. M. Hugenholtz and D. Pires, Phys. R&dl6 489(1959. bard,ibid. 84, 806 (2000; B. P. Anderson, P. C. Haljan, C. E.
[9] L. Landau, Statistical Physics(Addison-Wesley, Reading, Wieman, and E. A. Cornelibid. 85, 2857(2000.
MA, 1980). [12] D. Bazeia, O. J. P. Ieoli, J. M. Cuerva, and G. C. Marques,
[10] Emil Lundh and P. Ao, Phys. Rev. &1, 063612(2000; V. V. Phys. Rev. D39, 1838(1987); J. M. Guerra, G. C. Marques,
Konotop and V. M. Perez-Garci#id. 62, 033610(2000. and S. J. Rodriguesbid. 42, 2022(1990).
[11] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. [13] H. Kleinert, Gauge Fields in Condensed MattéNorld Scien-
E. Wieman, and E. A. Cornell, Phys. Rev. Le83, 2498 tific, Singapore, 1980 Vol. 1.

(1999; K. W. Madison, F. Chevy, W. Wohlleben, and J. Dali-

043607-10



