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Fluidity aspects of Bose-Einstein condensed systems
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We analyze some aspects of the fluidity of Bose-Einstein~BE! condensed systems. We show that a two-fluid
picture of a condensed system holds true. The condensate is a quantum fluid component of the system. This
component of the fluid satisfies the continuity equation and a generalized Bernoulli equation. Under certain
conditions, the condensate component becomes a classical superfluid. We suggest that condensed systems
might exhibit mechanochalorical and thermomechanical effects, in close analogy with superfluid helium-4.
Quantized vortices are also expected to appear in a BE condensed system. We discuss the structure of quan-
tized vortices.
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I. INTRODUCTION

In a recent paper, we presented the hydrodynamic qu
tization approach in order to understand some properties
Bose-Einstein condensed system. In Ref.@1#, we relied on a
variational method in order to find the wave function of t
condensed state as well as the wave function of exc
states.

In this paper, we analyze the problem of Bose-Einst
condensation from a different standpoint. Here the quant
tion is achieved by using the functional integral metho
Within the functional integral method, physical quantiti
such as partition function are expressed as sums ove
possible field configurations with an appropriate weight. T
hydrodynamical approach requires that we sum over all p
sible densities and phase configurations. For example
using these hydrodynamical variables, the partition funct
of a many-body system is obtained as a sum over all poss
phases and densities with a weight given by the Lagrang
densityL. That is,

Z5E E D@w#D@r#ei *L@r,w,]mr]mw#. ~1.1!

The free energyF is defined, as usual, as

Z5eiF. ~1.2!

The Lagrangian densityL is written, in terms of the hy-
drodynamical variables, as

2L@r,w,]mr,]mw#5r
dw

dt
1H@¹W w,r,¹W r#, ~1.3!

where the Hamiltonian can be separated into a kinetic termK
~containing derivatives of the fields! and an interaction term
depending only on the density. We write
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H5K@¹W w,r,¹W #1HI@r#. ~1.4!

The kinetic term is the one defined in terms of the fieldc
as

K~x!5
¹W c* ~x!•¹W c~x!

2m
, ~1.5!

wherec(x)5Ar(x)eiw(x).
By using Eq.~1.5!, we get for the kinetic term

K@r~x!,¹W r~x!,¹W w~x!#5
r~x!

2m
@¹W w~x!#21

1

2m
@¹W Ar~x!#2.

~1.6!

As we shall see later, the last term of the kinetic dens
has a quantum origin. In the case of spin-1

2 particles, this
term is associated to the zitterbewegung of these particle

Averages over the ensemble of a physical quan

^Ô(x)& are defined as the following sum over densities a
phases:

^Ô~x!&[
1

Z E E Dr Dw O~x!ei *L. ~1.7!

We shall see, in Sec. II, that the equation of motion
valid in the sense of averages over the ensemble. This
duces the problem to that of summing over all densities
phases with a weight given by the action.

In Sec. III, we compute the contribution of phase eige
states to the average over the ensemble. This leads to
equation for the condensate wave function. We show exp
itly that this wave function is associated to a fully condens
system~all particles are in the condensate!.

In Sec. IV, we show that the condensate is a quant
liquid. This quantum liquid becomes superfluid for a qua
©2001 The American Physical Society07-1
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uniform condensate. Under this condition, we drop the
called quantum velocity contribution.

In Sec. V, we show that a two-fluid picture emerg
whenever the system is condensed. The velocity and den
can be separated in such a way that it becomes obvious
the condensate becomes, in general, a component of
fluid.

In Sec. VI, we consider nonuniform condensate wa
functions. Solutions describing quantized vortices are b
explicitly.

We end this paper by drawing some conclusions.

II. EHRENFEST THEOREMS

In this section, we shall study averages over the ensem
of time evolution equations. We refer to these averages
Ehrenfest theorems.

Within the field-theoretical approach, we associate to
spin-0 boson a complex fieldc. The equation of motion sat
isfied by the fieldc(x) is

i
]c~x!

]t
52

¹W 2

2m
c~x!1

dHI

dc* @c* ~x!,c~x!#5
dH

dc* ~x!
,

~2.1!

2 i
]c* ~x!

]t
52

¹W 2

2m
c* ~x!1

dHI

dc
@c* ~x!,c~x!#5

dH
dc~x!

.

~2.2!

Within the hydrodynamical approach@1# we use, instead
of c, the density@r(x)# and phase@w(x)# variables. They
are formally defined as

r~x!5c* ~x!c~x!, ~2.3!

c~x!5Ar~x! eiw~x!. ~2.4!

In terms of these hydrodynamical variables, the equati
of motion are written as

]w~x!

]t
52

dH
dr~x!

, ~2.5!

]r~x!

]t
51

dH
dw~x!

, ~2.6!

whereH in Eqs.~2.5! and ~2.6! is the Hamiltonian density
From the above equations it follows thatr(x) andw(x) are
canonically conjugated variables.

Quantization stands, as usual, for changing the class
fields into the quantum field operator. The commutation
lation satisfied by the field operators and the canonically c
jugated field is the basis of the quantization procedure.
write

@ r̂~x!,ŵ~x8!#5 id~x2x8!, ~2.7!
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We define the local momentum operator as the gradien
the phase operator. That is,

PŴ ~x![¹W ŵ~x!. ~2.8!

The momentum equation of motion can be formally wr
ten under the form of Newton’s law:

]PŴ ~x!

]t
5FŴ ~x!. ~2.9!

By taking the gradient of Eq.~2.5!, we can identify the

force operator@FŴ (x)# with the operator

FŴ ~x!52¹W S dĤ
dr~x!

D . ~2.10!

Any of the quantum versions of the equations of moti
~2.1! and~2.2! and~2.5! and~2.6!, are obviously valid in the
sense of expectation values. Defining the trace of an oper
as

TrÔ~x!5(
c

^cuÔ~x!uc&
1

^cuc&
, ~2.11!

we can write the following equations:

]

]t
„Tr ŵ~x!…52Tr S dĤ

dr~x!
D , ~2.12!

]

]t
„Tr r̂~x!…5Tr S dĤ

dw~x!
D , ~2.13!

i
]

]t
„Tr ĉ~x!…5Tr S dĤ

dc* ~x!
D . ~2.14!

Ehrenfest theorems are defined here as averages ove
ensemble of quantum equations. In order to define avera
over the ensemble, we define the quantum-mechanical p
tion function of a Bose system.

Remembering that the quantum-mechanical actionŜ is
defined as the integral of the Lagrangian density,

Ŝ[E dx L̂@x#, ~2.15!

we define the partition function as

Z5Tre
iŜ. ~2.16!

This is just an extension~to the result! of the usual finite-
temperature~T! definition

Z5Tr~e2H/kT!. ~2.17!

The average over the ensemble of a physical quan
O(x) is, as usual, defined by
7-2
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^O~x!&5
1

Z
Tr$e

iŜÔ~x!%. ~2.18!

From Eqs.~2.18!, ~2.5!, and ~2.6!, it follows that, in the
sense of averages over the ensemble, equation analogo
Eqs.~2.12! and ~2.13! are valid:

]^w~x!&
]t

52 K dH
dr~x!L , ~2.19!

]^r~x!&
]t

51 K dH
dw~x!L , ~2.20!

whereH(x)5$@PW (x)r(x)PW (x)#/2m%1HI
„c* (x)c(x)….

We assume that the interaction Hamiltonian density
the general form

HI@c* ~x!c~x!#5U~x!c* ~x!c~x!1H int
„c* ~x!c~x!…,

~2.21!

whereU(x) is an external potential.H int
„c* (x)c(x)… in Eq.

~2.21! takes into account the interaction of the boson p
ticles among themselves. The general form
H int

„c* (x)c(x)… is

H int
„r~x!…[r~x!e~x,r!, ~2.22!

wheree(x,r) is the per-particle internal energy.
Using Eq. ~2.21!, we can write the following Ehrenfes

theorems:

2
]^w~x!&

]t
5K PW 2~x!

2m L 1U~x!1^h~x!&, ~2.23!

]^r~x!&
]t

52
1

m
¹W •^r~x! PW ~x!&, ~2.24!

]^PW ~x!&
]t

52¹W K PW 2~x!

2m L 1FW ext~x!2¹W ^h~x!&, ~2.25!

where

^h~x!&5^e~x,r!&1 K r~x! E dy
de„y,r~y!…

dr~x! L ,

~2.26!

FW ext~x!52¹W U~x!. ~2.27!

We shall refer to these equations as the quantum B
noulli equation @Eq. ~2.23!#, the continuity equation@Eq.
~2.24!#, and the quantum force equation@Eq. ~2.25!#.

III. QUANTUM COHERENCE AND BOSE-EINSTEIN
CONDENSATION

In this section, we consider the equation for the fieldc
and we take into account only two-body interaction throu
a potentialV(x2x8). Under these circumstances, and us
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Eq. ~2.22!, we can write Eq.~2.14! as

i ]

]t
~Tr ĉ~x!!5S 2

¹W 2

2m
1U~x! DTr ĉ~x!1Tr

3E dx8ĉ~x!V~x2x8!ĉ* ~x8!ĉ~x8!.

~3.1!

Since the vacuum is supposed to beU(1)-invariant, the
contribution of the vacuum state and Fock states to the ab
equation is zero. For the vacuum state we can write

^OucW ~x!uO&50. ~3.2!

For any Fock states we expect that it will give no contrib
tion at all to Eq.~3.1!. For any Fock state we can write

^pW 1¯pW nuĉ~x!upW 1¯pW n&50. ~3.3!

The above result can be understood by taking the decom
sition of the fieldc in terms of creation for~c* ! and annihi-
lation ~for c! operatorsb1(kW ) andb(kW ).

Let us consider now the contribution to Eq.~3.1! of states
that we have identified in Ref.@1# as phase eigenstates. F
these states

ei ŵ~x!uc&5eiw~x!uc&, ~3.4!

wherew(x) is a classical phase.
For phase eigenstates, the following factorization prope

holds true:

1

^cuc&
^cuĉ~x1!¯ĉ~xn!uc&5c~x1!¯c~xn!. ~3.5!

These states are coherent states of the field for which
number of particles is uncertain. This is clear from the co
mutation relations between the phase and density opera
States with a well-defined phase have a quite uncertain n
ber of particles.

In Eq. ~3.4!, we have used the density representation
the algebra of operators in which the density operator i
classicalc-number density. That is,

r̂~x!5r~x! ~3.6!

and the phase operator is represented by the operator

ŵ~x!52 i
d

dr~x!
. ~3.7!

The statec@r# in Eq. ~3.4! has the following form, when
written as a functional of the density:

c@r#5ei *r~x!w~x!dx. ~3.8!

The most general states

cc@r#5e*r~x!ln cc~x!dx ~3.9!
7-3
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describe a condensed state since the wave function as
ated to it is

cc~x1¯xn!5cc~x1!¯cc~xn!5)
i

n

cc~xi !. ~3.10!

cc(x) is then the condensed state wave function.
Together with Eq.~3.5!, we can see that the condensa

wave function contributes to the average over the ensem
This contribution leads us to the equation for the conden
wave functioncc(x),

i
]

]t
cc~x!5S 2

¹W 2

2m
1U~x! Dcc~x!

1E dx8cc~x!V~x2x8!cc* ~x8!cc~x8!.

~3.11!

Within the hard-sphere approximation, we write

S i
]

]t
1

¹W 2

2m
Dcc~x!5U~x!cc~x!1lucc

2~x!ucc~x!,

~3.12!

wherel is related to the scattering lengtha defined by

l5
4pa

m
. ~3.13!

Equation~3.12! is the generalized Gross-Pitaevskii equ
tion.

Our conclusion is that coherent states of the field giv
nonzero expectation value to the average over the ense
of the field,

^cuĉ~x!uc&

^cuc&
[cc~x!. ~3.14!

As first advanced by Anderson@2#, when BE condensa
tion occurs the system undergoes a spontaneous symm
breakdown of theU(1) symmetry andcc(x) becomes the
~local! order parameter of the system.

The free energy of the condensate is

Fc5E dx
i

2
@cc* ~x!@] tcc~x!#2@] tcc* ~x!#cc~x!#

2
¹W cc* ~x!•¹W cc~x!

2m
2HI@cc* ~x!cc~x!#. ~3.15!

The above expression holds true when we consider
particles in the condensate. We know that only a fraction
all particles are in the condensate. In order to get more c
sistent expressions for the thermodynamics of the system
have to take into account the contribution of other sta
such as the excited states.
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Taking into account excited states, we would get a prec
expression forF. We shall deal with this problem in the
future.

The main conclusion is that coherent states of the ph
field gives a nonzero contribution to the average of the
semble of certain equations of motion. These states are s
describing all particles in the condensate. The expecta
value of the field among these states is the order paramet
the phase transition~uncondensed to condensed BE stat!.
The order parameter is the wave function of the condens

IV. BOSE-EINSTEIN CONDENSATION
AND SUPERFLUIDITY

We shall show now that the Bose-Einstein condensed
tem is a quantum fluid that, under certain conditions,
comes superfluid.

First of all, we analyze the conditions under which sup
fluid flow occurs. We just recall that, as pointed out by Pe
rose and Onsager@3#, the relevant feature of superfluidity i
the generalized factorization of the density matrix@2,4#,

r~xW ,xW8!5^c* ~x!c~x8!&5 f * ~xW ! f ~xW8!. ~4.1!

Later on, Beliaev@5# extended the above factorizatio
property toxW - and x0-dependent Green’s functions. For th
two-point Green’s functions, the factorization property im
plies

^c* ~xW ,x0!c~xW8,x80!&5 f * ~xW ,x0! f ~xW8,x80!. ~4.2!

The factorization properties~4.1! and ~4.2! are the basis
of the ‘‘off-diagonal long-range order’’~ODLRO! hypoth-
esis@2,4#. Assuming ODLRO, we write

^c~xW ,x0!&5Ars~xW ,x0!eiws~xW ,x0! ~4.3!

5^c~xW1 ,x1
0!¯c~xWn ,xn

0!&

5Ars~xW1 ,x1
0!eiws~xW1 ,x1

0
!
¯Ars~xWn ,xn

0!eiws~xWn ,xn
0
!.

~4.4!

The above approximation is also known as the factori
tion approximation@6#. We have shown that the above pro
erties follow from quantum coherence. This coherence i
result of BE condensation.

Now we shall see that, as far as superfluidity is concern
the factorization condition is, in fact, necessary but not s
ficient.

Considering the Hamiltonian given by Eq.~2.21! and tak-
ing into account external fields, the corresponding equatio
assuming the factorization, become

2
]wc~x!

]t
5

~¹W wc~x!2eAW !2

2m

1
1

4m
F1

2
S ¹W rc~x!

rc~x!
D 2

2
Drc~x!

rc~x!
G1U~x!1h~x!

~4.5!
7-4
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and

]rc~x!

]t
52¹W •JW c~x!, ~4.6!

whereh(x) is the per-particle enthalpy, defined in Eq.~2.26!.
Using Eq.~2.19!,

h~x!5eint~x,rc!1rc~x!E deint~y,r~y!…

drc~x!
dy. ~4.7!

We shall see later that

h~x!5eint~x,rc!1m
P~x!

rc~x!
, ~4.8!

whereP(x) is the pressure.
Equations~4.5! and~4.6! describe a condensed system

particles under the action of external electric and magn
fields whose associated potentials areU(x) andAW (x).

The momentum of the condensate is

PW c~x!51¹W wc~x! ~4.9!

whereas the velocity of the condensate is

VW c~x!5
PW c~x!2eAW ~x!

m
~4.10!

and the current is

JW c~x!5rc~x!VW c~x!5
rc~x!

m
@PW c~x!2eAW ~x!#. ~4.11!

Let us see now under which condition the condensate
comes superfluid.

Equation ~4.5! shows that the condensate becomes
quantum fluid. In fact, the quantum fluid associated to
condensate is a generalized Madelung fluid. This Madel
fluid becomes superfluid under certain conditions. This c
dition implies neglecting the quantum velocity contributio

We define, for a particle of spin 0, the quantum veloc
as the quantity

VW q~x!5
1

m
¹W @ ln Ar~x!#5

PW q~x!

m
. ~4.12!

For particles of spins ~different from zero!, the definition
is @7#

VW q~x!5
1

m
¹W 3@ ln r~x!sW# ~4.13!

and the quantum velocity, in this case, has its origin in
quantum effect, namely the zitterbewegung of the particl

We define the quantum current as

jWq~x!5rc~x!VW q~x!. ~4.14!
04360
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The quantum Bernoulli equation withAW 50 becomes, for
a particle of spin 0,

2
]wc~x!

]t
5

PW c
2~x!

2m
1

~PW 2!q~x!

2m
2

¹W • jWq~x!

2rc~x!
1U~x!1h~x!.

~4.15!

Let us assume that the quantum velocity contribution
comes negligible. This clearly is the case whenr varies
slowly with x,

¹W 2rc~x!!rc~x! and @¹W rc~x!#2!rc
2~x!. ~4.16!

We have called these condensates quasi-incompres
condensates. Under these circumstances, we can write

2
]wc~x!

]t
5

PW c
2~x!

2m
1U~x!1h~x! ~4.17!

whereas for the quantum force defined byFW (x)
5]PW c(x)/]t we get

]PW c~x!

]t
52¹W F PW c

2~x!

2m
G2¹W h~x!1FW ext~x!. ~4.18!

By using Eq.~4.10! for AW 50, we can write Eq.~4.18!
under the alternative form

DPW c~x!

Dt
52¹W h~x!1FW ext~x!, ~4.19!

whereFW ext(x)52¹W U(x) andD/Dt stands for the operator

D

Dt
5

]

]t
1~VW c•¹W !. ~4.20!

From Eq.~4.18! it follows that, in the absence of externa
forces, Eq.~4.18! describes the potential flow of a nonvis
cous fluid@8#. This means superfluidity.

If the external potentialU(x) and the Hamiltonian~2.22!
do not depend explicitly on the time, then one can look fo
solution of Eq.~4.17!, with AW 50, under the form

wc~xW ,t !52mt1fc~xW !. ~4.21!

For wc(xW ,t) given in Eq.~4.21! one gets

m5
PW c

2~x!

2m
1h~x!1U~x!. ~4.22!

In the case of superfluid4He, the constantm in Eq. ~4.22!
should be identified with the chemical potential. This can
inferred from the paper by Beliaev@5# as well as from the
fact that by making the substitution

c~x!→eimtc~x! ~4.23!

we get the usualmN term in the thermodynamic potentia
~1.3!.
7-5
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The context of Bernoulli’s equation is simple: along
streamline, the chemical potential is constant. In this se
Bernoulli’s equation is just an extension of the well-know
result that the equilibrium condition of a body in an extern
field is the constant of the chemical potential. In fact
taking PW c(x)50 in Eq.~4.22!, one gets the equilibrium con
dition @8#

m5h~x!1U~x!. ~4.24!

If one writes

h~x!5e~x!1m
P~x!

rc~x!
, ~4.25!

we get Bernoulli’s equation. That is,

m5
PW c

2~x!

2m
1m

P~x!

rc~x!
1e~x!1U~x!. ~4.26!

Assuminge(x) constant andU(x)50, we get the usua
expression for Bernoulli’s equation,

VW c
2~x!

2
1

P~x!

rc~x!
5const. ~4.27!

The extension of condition~4.17! to finite temperatures
will be analyzed later. If the particles interact only throu
binary forces, then, from Eq.~3.11!, we write

2
]wc~x!

]t
5

1

2m
@¹W wc~x!#21

1

4m F1

2 S ¹rc~x!

rc~x! D 2

2
Drc~x!

rc~x! G
1U~x!1E V~x2x8!rc~x8!dx8. ~4.28!

Equation~4.28! assumes the form of the Hamiltonian J
cobi equation for a single particle that is under the action
an external potentialU(x) and under the average potenti
produced by the others,

V̄~x!5E V~x2x8!rc~x8!dx8. ~4.29!

For V̄ defined in Eq.~4.29!, one writes

2
]wc~x!

]t
5

1

2m
@¹W wc~x!#21U~x!1V̄~x!. ~4.30!

Finally, independently of the details of the interpartic
potential, one can write for the superfluid component

]rc~x!

]t
52¹W JW c~x!52¹W •

rc~x!¹W wc~x!

m
. ~4.31!

Our conclusion is that the condensate is a quantum fl
obeying a generalized Bernoulli equation and continu
equation. Quasiuniform quantum fluids are superfluids.
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V. TWO-FLUID PICTURE

One of the advantages of the functional integral appro
is that when performing sums over phases and densities
can always separate the contribution of the condensate f
the rest~the particles that are not in the condensate!. We can
write formally the densities and phases as a sum of two c
tributions,

r~x!5rc~x!1rn~x!, ~5.1!

w~x!5wc~x!1wn~x!, ~5.2!

whererc ~wc! is the density~phase! of the condensate andrn
~wn! is the ‘‘normal’’ density~phase! of the other componen
of the fluid.

Taking the gradient of Eq.~5.2!, the velocity of the fluid
can be written as being due to two contributions:

VW ~x!5VW c~x!1VW n~x!, ~5.3!

where

VW c~x!5
¹W wc~x!

m
, VW n~x!5

¹W wn~x!

m
. ~5.4!

The conclusion is that it is natural to assume a two-flu
picture when BE condensation occurs.

The number of particles in the condensate is@from Eq.
~5.1!#

E rc~x!dx5Nc . ~5.5!

In this paper, we shall be mainly concerned with som
properties of the condensate component. The other com
nent will be denoted, from now on, the normal componen

The free energy of the condensate is, from Eq.~3.15!,
given by

Fc5E dxF2rc~x!
]wc~x!

]t
2

rc~x!

2m
@¹W wc~x!#2

2
1

2m
@¹W Arc~x!#22HI@rc~x!#G . ~5.6!

One can think of the free energy as a functional of t
density and phase. We define

F @r~x!,w~x!#5E dxF2r~x!
]w~x!

]t
2

r~x!

2m
@¹W w~x!#2

2
1

2m
@¹W Ar~x!#22HIr~x!G . ~5.7!

In this section, we shall takeU(x)50.
Following Anderson@2,4#, the free energy can now b

thought of as a functional of order parameter. The cond
sate is associated to the field configurations for whichF is
minimum. That is,
7-6
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dF
dr U

r5rc

50, ~5.8!

dF
dw U

w5wc

50. ~5.9!

From the above expression follow Eqs.~4.5! and ~4.6!,
whereAW 50. Anderson’s@2# supercurrent is defined as

jWs~x!5
2dF

d„¹W w~x!…
. ~5.10!

From our expression~5.7! it follows that the supercurren
is

jWs~x!5
2dF

d„¹W w~x!…
U

w5wcr5rc

5rc~x!S ¹W wc~x!

m
D .

~5.11!

Anderson’s supercurrent is just the current associate
the condensate quantum fluid.

We would like to call attention to the fact that this fair
simple dependence of the free energy is due to the fact
we have considered all particles in the condensate. We k
that there is always depletion as a result of quantum effe
A more accurate method will be developed in a future p
lication.

In order to establish more analogies with Anderso
work, one notes that the average over the ensemble of
energy exhibits a functional dependence with the phase
way very similar to that proposed by Anderson@2#. We get
for a totally condensed system

U@wc#5E dx
rc~x!

2m
@¹W wc~x!#21E 1

2m
$¹W @Arc~x!#%2

1E dxHin@r#. ~5.12!

The phase dependence is such that

dU@wc#

d@¹W wc~x!#2
5

rc~x!

2m
, ~5.13!

which differs only by a factor of 2 from Anderson’s resu
@2#. The discussion of some dynamical consequences,
as the Josephson junction, could be done from now on a
Anderson’s proposal@2#.

In the condensed phase, the chemical potential vanis
We shall see that particles belonging to the condensate
a critical velocity.

We shall analyze the solution~4.21! assumingm50 for
the nonuniform condensate. For the nonuniform tim
independent condensate, we write

wc~x!5fc~xW !. ~5.14!
04360
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Under this condition, Eq.~4.22! becomes

05
PW c

2~xW !

2m
1h~xW !. ~5.15!

Particles belonging to the nonuniform condensate hav
momentum that does not exceed a critical value. There
critical velocity. One can establish an upper bound for t
critical velocity. One gets

vc,vmax5S 2
«

2mD 1/2

, ~5.16!

where« is the per-particle energy of the ground state. F
4He, «>2631024 eV/at andm>3.53109 eV,

vmax>90 m/s. ~5.17!

This result is close to the simple estimate made by Lan
based on the phonon dispersion relation@9#.

VI. QUANTIZED VORTICES

We shall argue in this section that, in close analogy w
superfluid 4He, quantized vortices will appear in Bose
Einstein condensed system. This topic has been quite
explored in several recent publications@10# and even ob-
served experimentaly@11#; nevertheless, we offer additiona
discussion on this topic. In fact, we will show that quantiz
vortices are just solutions of Eqs.~4.5! and ~4.6!, whereAW

50W . They provide an explicit example of nonuniform co
densates.

By using cylindrical coordinates (r ,z,u) and from the fact
that the wave function of the condensate is single-valued
follows that

cc~r ,z,u12p,t !5cc~r ,z,u,t !. ~6.1!

cc~r ,z,u12p,t !5cc~r ,z,u,t !. ~6.2!

cc~r ,z,u12p,t !5cc~r ,z,u,t !. ~6.3!

The velocity potentialwc(r ,z,u) is such that

wc~r ,z,u12p!5wc~r ,z,u!12p. ~6.4!

The generalized equilibrium condition permits us to sh
some light on the structure of quantized vortices. Assum
that the fluid rotates around thez axis, one can associate
straight vortex line to az-independent solution of

dF
dc* ~x!

U
c* ~x!5c

c* ~x!

50,
dF

dc~x!
U

c~x!5cc~x!

50.

Let us designate bycc
vortex such a solution and write

cc
vortex~r ,u,t !5Arc

v~r !ei ~2mt1nu!, ~6.5!

wheren is an integer number that ensures condition~6.1!.
From Eq.~4.9! it follows that
7-7
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PW c~r !5
n

r
eW u, ~6.6!

so that for a closed loop around thez axis the quantization
condition follows,

R PW c•dW l 52pn. ~6.7!

Let us assume further the following asymptotic con
tions:

lim
r→0

rc
v~r !50, ~6.8!

lim
r→`

rc
v~r !5rb, ~6.9!

whererb is the uniform Bogoliubov condensate.
Condition~6.6! implies that close to the origin of the vor

tex there is only normal fluid. There are two ways of chec
ing this. From Eqs.~5.1! and ~6.6! it follows that rn(0)
5r(0). Theother way is just to remember that at the orig
^c&50 and consequently at the origin the fluid can
treated as an ordinary fluid. Far away from the origin, th
is a uniform condensate.

Let us turn now to the analysis of the asymptotic value
rc(r ). For wc(r ,u,z,t) given in Eq.~6.3!, we get, from Eq.
~4.10!, whereAW 50,

VW c~r !5
n

mr
eW u . ~6.10!

It follows from the above expression that

lim
r→`

VW c~r !50. ~6.11!

Consequently far away from the vortex, solution~6.3!
should tend to the uniform Bogoliubov condensate,

lim
r→`

rc
v~r !5rc~`!5rb . ~6.12!

From Eqs.~4.11!, ~6.9!, and~6.10! it follows that for vor-
tices

lim
r→`

jW c~r !50. ~6.13!

We have pointed out that there is an upper limit for t
superfluid velocity. If we take forVW c the upper bound~5.16!,
we get a lower bound for the size of a vortex:

r *r c5S 2

m~2«! D
1/2

. ~6.14!

In the case of4He, we get

r c;2.5 Å. ~6.15!
04360
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e

f

The cutoff value obtained here is very close to the
called coherence length of4He @6#.

The relevant quantity for physical applications, in the ca
of the vortex solution~6.1!, is the energy per unit length o
the vortex~‘‘tension’’ of the line!. This physical quantity is
defined as the difference between the free energy assoc
to the vortex and the free energy associated to the unif
order parameter (rb) @12#:

DT[
1

L
$F @cc

vortex#2F @cb#%, ~6.16!

wherecb5Arbeia, a arbitrary phase.
DT defined in Eq.~6.16! gives the excess energy~or free

energy! that results from the appearance of a single vortex
the superfluid.

Once again field theory provides, through express
~5.7!, a well-defined scheme for computingDT. We shall
discuss next the results obtained under simple approxi
tions. Let us discuss first the kinetic-energy density.

The kinetic-energy density of a vortex is

Kc
vortex~r !5mrc

v~r !
Vc

2~x!

2
1

1

2m
$¹W @Arc

v~x!#%2

5
rc

v~r !

2

n2

mr2 1
rc

v~r !

8m
~Vq2

~x!!. ~6.17!

Neglecting the quantum velocity, the kinetic-energy co
tribution to the tension will then be

DT ~K !5
p

m

n2

L E
0

` dr

r
rc

v~r !. ~6.18!

If one takes forrc(r ) in Eq. ~6.16! the asymptotic value
~6.7!, the vortex tension diverges logarithmically in the lon
and short distance limits. In both limits we have, howev
natural cutoffs. For the long distance we can take the rad
of the vessel as the cutoff~R! and for the short distance w
take r c defined in Eq.~6.12!. One can then write

DT~K !>
pn2

mL
rb ln S R

r c
D . ~6.19!

It is possible to make improvements in the determinat
of the vortex tension oncerc

v(r ) is known. In order to find
rc

v(r ), one has to find the solution of the generalized eq
librium equation,

dF
dc* ~x!

U
c* ~x!5c

c*
vortex~x!

50 and
dF

dc~x!
U

c~x!5c
c
vortex~x!

50.

~6.20!

For F given in Eq. ~5.7! we get, for two-body interac-
tions,
7-8
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2mcc
v~r ,u!2

¹W 2

2m
cc

v~r ,u!1U~r ,u!cc
v~r ,u!

1E d3rW8V~rW2rW8!cc*
v~r 8,u8!cc

v~r 8,u8!cc
v~r ,u!50.

~6.21!

The above equation is just the one proposed by Gros
his analysis of the structure of vortices. If we consider
hard-sphere approximation andU50, then, in the low-
density limit, we get

2
1

2m S ] r
21

1

2
] r2

n2

r 2 D ~r0
v!1/2~r !1l~rc

v!3/2~r !

2m~rc
v!1/2~r !50. ~6.22!

Bogoliubov’s condensate is, in this case, given by

rb5
m

l
. ~6.23!

We introduce the variablesr̄ and r̄:

r̄ 5rA2mm, r̄c
v5S rc

v

rb
D 1/2

; ~6.24!

then, from Eqs.~6.2! and~6.22!, Eq. ~6.20! can be written as
@13#

F2S ] r̄
21

1

r̄
] r̄2

n2

r̄ 2 D1~ r̄c
v!221G r̄c

v50. ~6.25!

For small r̄ we get

r̄c
v~ r̄ !5rbAmJnr̄ ), ~6.26!

whereas for larger one gets the series@13#

r̄c
v~r !>F12

n2

2r̄ 22S n21
n4

8 D 1

r̄ 4

2S 812n21
n4

16D n

r̄ 62OS 1

r̄ 8D G . ~6.27!

The vortex tension is given by the integral

DT5
prb

mL E
0

`

dr̄ r̄ H ~] r̄ r̄c
v!21

n2

r̄ 2 ~ r̄c
v!21 1

2 @~ r̄c
v!221#2J .

~6.28!
cs

04360
in
e

The dominant term in Eq.~6.26! is the one coming from
the kinetic term. One can then write that

DT>
prb

mL E
0

`

dr̄
n2

r̄
~ r̄c

v!25
pn2

mL E
0

` dr

r
rc

v . ~6.29!

VII. CONCLUSIONS

The conclusions that can be drawn from this paper are
following.

The condensate behaves like a quantum fluid. The m
important equation governing this fluid is the generaliz
Bernoulli equation. When the condensate fluid is qua
incompressible, the condensate becomes superfluid.

Particles belonging to the superfluid have a critical velo
ity whose upper bound is

vmax5S 2
«

2mD 1/2

,

where« is the per-particle energy of the ground state.
We suggest further that condensed systems will exh

mechanochaloric as well as thermomechanical effects.
suggest also that London’s relation will hold true.

A two-fluid picture is valid in the sense of Landau. Th
is, the density and the phase variables can be written
sum over two contributions. We claim that the function
integral approach leads to a well-defined framework
separating out these contributions. As a result, we have w
ten explicitly the free energy in the totally condensed pha

Quantized vortices are expected to appear in BE qu
tized systems. At the origin of the vortices, we can find on
normal fluid. As we move far away from the vortices, w
find the Bogoliubov condensate. We analyze the structur
these quantized vortices.

Quantized vortices are particular solutions of Madelun
equation in which we take into account the quantum veloc
term. They are nontrivial solutions of a nonuniform conde
sate.
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