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Fermi systems with long scattering lengths
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Ground-state energies and superfluid gaps are calculated for degenerate Fermi systems interacting via long
attractive scattering lengths such as cold atomic gases, neutron, and nuclear matter. In the intermediate region
of densities, where the interparticle spacingl(ke) is longer than the range of the interaction but shorter than
the scattering length, the superfluid gaps and the energy per particle are found to be proportional to the Fermi
energy and thus differ from the dilute and high-density limits. The attractive potential increase linearly with the
spin-isospin or hyperspin statistical factor such that, e.g., symmetric nuclear matter undergoes spinodal de-
composition and collapses whereas neutron matter and Fermionic atomic gases with two hyperspin states are
mechanicallystablein the intermediate density region. The regions of spinodal instabilities in the resulting
phase diagram are reduced and do not prevent a superfluid transition.
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[. INTRODUCTION evant for current experiments with magnetically trapped cold
atoms. Finally, a summary and conclusion is given.
Dilute degenerate Fermi systems with long scattering

lengths are of interest for nuclear and neutron star matter || THE EEFFECTIVE SCATTERING AMPLITUDE
(see, e.g.[1]). Recently, also dilute systems of cold Fermi- AND SUPERFLUIDITY
onic atoms have been trappg®]. The number density is ) )
sufficient for degeneracy to be observed and superfluidity s Consider a homogeneous many-body system of fermions
expected at critical temperatures similar to the onset of Bose2f massm at density,p= vki/6m?, wherev is the statistical
Einstein condensates,~10—100 nK. Swave scattering factor, e.g.»=4 for symmetric nuclear matter and=2 for
lengths can be very long, ela=—2160 bohrs radii for neutron matter as well as for fth”é’K atomic gas with two
triplet ®Li and a~ 18.8 fm for neutron-neutron interactions. NYPerspin states currently studied at JILZ. The scattering
These scattering lengtia| are much longer than the typical lengths and Fermi momentuky are assumed the same for
range of the potentials, respectiveR;-1 fm for strong in- all sp|_n-|sosp|n—hypersp_|n components n thg_system but n-
teractions an®~ 10— 100 A for van der Waals forces. Gen- teresting effects of varying the relative densities of the vari-

erally, when|a|> R, three density regimes naturally emer o OUS components will be discussed at the end. Particles are
Y : " e y Ieg . y 1 9€- assumed to be nonrelativistic and to interact through attrac-
the low-density(or dilute, ke “=|a|), the high-density K-

_ ) , , _1 tive two-body contact interactions. The details of the poten-
=R), and theintermediate density regiofR=kg"<|al). tial are not important, only its range-R and scattering
_The latter region of densities is the object of study here. lfengiha. We shall be particularly interested in cases where
v_v|II be shown th'at previous _conjecture§ pased on extrapoIaR<|a|, which occur when, for example, the two-body poten-
tions from the dilute limit fail. Instead it is found that both {5 can almost support a bound state or resonance.
the energy per particle and the superfluid gaps scale with the ot gilute or intermediate densities the particles interact
Fermi energy. They depend only on statistical factors but Noia short-range interactions that appear singular on length
on the scattering length, range, or other details of the inters.ales of the order of the interparticle distanek;l Such
action. Consequen_tly, pha_se (_jlagrams are dramatlcally Systems are best described by resumming the multiple inter-
tered and the stability criteria differ so that two spin SYSteMS,ctions in terms of the scattering amplitude. The Galitskii
are actuallystable integral equation$3] for the effective two-particle interac-

The paper is organi_zed as fOI!OWS' In _Sec. Il the Sc_alingtion or scattering amplitude in the medium are given by the
and poles of the effective scattering amplitude are studied L qder resummation

a homogeneous many-body system going from dilute to in-

termediate densities. In Sec. Il the ground-state energies are

calculated at intermediate densities and compared to well- F(p,p’,P)zFo(p,p’,P)+mE I'o(p.k,P)
known results from the dilute and high-density limits. In Sec. k

IV extensions to finite temperatures are discussed and a
phase diagram is constructed displaying regions of superflu-
idity and spinodal instabilities. In Sec. V the properties of
finite systems of Fermions are investigated as they are rel-

Here, 'y=4ma/m is the swave scattering amplitude in
vacuum; the total energy of the pair in the center of mass is

The sign convention of negative scattering length for attractivex?/m; p,k,p’ are the relative momentum of the pair of in-
potentials is used. Alsb=c=1. teracting particles in the initial, intermediate, and final states,

N(P,k)

K2_k2 K2_k2

rFk,p'.P). (@)
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respectively, and® the total momentumN(P,k)=+1 for Ill. GROUND-STATE ENERGIES

particle-particle pro_pagaiiorjl?i k|=ke), N(P,k)=—1 for The ground-state energy is another crucial property of the
hole-hole propagation = k|<k), and zero otherwise. For gystem " In terms of the on-shell effective scattering ampli-
spin independent interactions the amplitudes contain a factq(ye it is[3,7]

(1-90,,,,) that takes exchange into account between identi-
cal spinsv,=v,. K o1
For obtaining BCS gaps it is sufficient to study pairs with E=> =+ > T(ppP)(1-4,,)
K 2M 2 kKo, 12

P=0 where Eq(1) is simply
3kE  p(v—1)
1 =z 5N+ =5 2 T(p,p.P). (6)
I=Tg+2m > To———T. ) Kikp
k=<kp kc—k

Here,N=Vp is the number of particles and the summations

Note the factor of 2 due to particle-particle and hole-holev,, v, include spin and isospin or hyperspin states. The fac-
propagation each contributing by the same amount in nontor (1— 5V1V2) in the amplitude due to exchange, has now
dense systems. The ladder resummation implicit in @%. been written explicitly. Antisymmetrization of the wave
insures that only momenta smaller than Fermi momenta erfunction prevents identical particles from being in relative
ter.I'g varies on momentum scales1/R>kg only and can  states. At low and intermediate densitiégR<1, the ex-
therefore be considered constant at low and intermediatghange term is 1/ of the direct one for spin independent
densities. Equatior2) is then easily solved for momenta jnteractions.
near the Fermi surface Before investigating the intermediate density region, a

brief review of results at low and high densities is given.
ke— x|t
Ke+ «

3

2
1- ;k;:a

K
F:ro 2+ —In . . .
Ke A. Low densities (dilute): kr|a|<1

The in-medium scattering amplitude has a pole due to Coo- At low densitieske|a| <1, gaps are small and have little
per pairing when g amp P effect on the total energy of the system. Expanding the ef-

fective scattering amplitude of E@l) in the small quantity
kea, the energy per particle is obtained from E) by

2_ 2 2
A= Ke— « _ (ke %) X 77 —ZE summing over momenta of the two interacting particles
m m 2ka K
E_. [3+( b 2 " 1)4(11—2In2)
8[{77) —=Epi=t+(v—1)5—Kga+(v—1)————
=Er—exp 5—|, kelal<1, 4 N S 3m 3572
Fez 2k|:a. F| | ( )
2 3
WhereE,:zk,Z:IZm is the Fermi energy. The critical tempera- X (kea)*+O((kra) )] ' @)

ture isT.=(y/m)A, wherey=e® andC=0.577 is Euler's

constant. Equatiori4) is the BCS gap in the dilute limit, ¢ consists of, respectively, the Fermi kinetic energy, the

which agrees with gaps calculated in Ref]. standard dilute pseudopotent[&] proportional to the scat-
However, Gorkov and Melik-Barkhudarofb] showed  tgring length and density, and ordets-&)2 [9] and higher

that spin fluctuations lead to a higher-order correctio 10].

~(kga)? in the denominator of Eq3) that is amplified by At zero temperature the hydrodynamic sound speed

logarithmic terms~In(A)~1/kga. It contributes by dnega-  squared can, at low temperatures, be expressed as
tive) constant in the exponent and leads to a reduction of the

gap in the dilute limit by a factor (&*°=2.215. .. as com- 1 (ap

pared to Eq.4) for two spins. Generally fow spins, isos- ?=— %

m

190 2(7E/N
“map P o | ©
pins, or hyperspins the gap [i§] P P

With the energy per particle of E@7) at low densities, the

sound speed can be expanded as

. (5

8
— vI3—1
A=Ef o2 (4e) eXF{ZakF

2_1 2
In the intermediate density region pairing must still occur S 3F
since the interaction is attractive. The validity of the expres-
sions of Eqs(4) and(5) in this density regime will be dis- wherevg=kg/m is the Fermi velocity. It is commonly con-
cussed further below. They predict that in the limis» jectured from the first two orders that the Fermitmnd
— andR— 0 the gap cannot depend on eitleeR, or other Bose gases undergo spinodal instability when the sound
details of the potential. For dimensional reasons the gap caspeed squared becomes negative, which occurs Whan

therefore only be proportional to the Fermi energy. =-—m/2(v—1). However, at the same densities, the dilute

1+%(v—1)kFa+--- , (9)
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approximation leading to Eq7) fails and so does the con- cations can be dealt with by approximatifighy its momen-

jecture as will be shown below. tum average value in Eql). The momentum integrals are
then analogous to those in the dilute linii), and one ob-
B. High densities, kpR>1 tains from Eq.(6)
At high densitieskpR=1, the particle potentials overlap
and each particle experience on average the volume integral E 3 (V_1)3_7T kea
of the potentials. The energy per nucleon consists of the NzEF =+ 6 . (11
Fermi kinetic energy and the Hartree-Fock potenfige, 1-——m(11-2 In2)kea
e.g.,[7], Eq. (40.147: 35

Eqe 3 Pl 1/3j4(rke) )2 This expression is valid for dilute systems, where it repro-
d°rv(r) 1—; K . (10
F

—=—Eg+ > duces Eq.(7), and approximately valid within the Galitskii
NS 2 ladder resummation at intermediate densitRsk;'<|a],

The latter term is the exchange energy, which vanishes a\{yhere it reduces to

very high densitieskeR~R/ry>1, leaving the Hartree po- E

tential term only. At lower densitiekrR~R/ro<1, it is N:EF

identical to the first integral, i.e., the Hartree direct ternw is

times the Fock exchange term as also found in the dilutevith ¢;=35/9(11-21In2)=0.40 and v,=1+3/5c;=2.5.

limit, Egs. (7)—(11). Both the attractive and the kinetic part of the energy per
As shown in Ref[11], the Hartree potential is consider- particle are proportional to the Fermi energy at these inter-

ably less attractive than the dilute potential. In fact it van-mediate energies as found for the gaps above.

ishes when the range of the interaction goes to zero and the The other remarkable feature of Hg2) is that the energy

scattering length to infinity. Take for example a square-wellP€r particle changes sign for a critical number of degrees of

potential of rangeR and depth—V,. Long scattering lengths freedom,v.=2.5. Fermi systems with more degrees of free-

requireV,R2— m2/4m, and therefore the Hartree potential is d°M SUCh as symmetric nuclear matter have negative energy

«V,R3~R—0. Only in the Born approximation do the Har- per particle and will therefore implode, undergo spinodal de-

tree (10) and dilute potentialg7) coincide since the Born c<omp05|t|on, and fragmeri3]. antrarlly, systems W'.t?]’ |
scattering length isig, = (M/4m) [d3rV(r). =<, such as neutron matter and atomic systems with only

! d : ... two hyperspins have positive energy per particle and will
Short-range repulsion complicates the high-density IImIt}herefore explode, if not contained. This is also evident from

In nuclear and atomic systems the repulsive core is only o he sound speed sauared. which from and (12) be-
slightly shorter range than the attractive force. It makes th P q ' H@s. (12

3
g—(y—l)cl :EFcl(VC_V)' (12)

I~ ; mes

liquid strongly correlated and the Hartree-Fock approxima-

tion fails [12,7]. How the short-range repulsion turns the s?=(5/9)cy(ve— v)v2. (13
attraction to repulsion at these even higher densities will, ) _
however, not affect the intermediate density region. Calculations for pure neutron matter and symmetric

nuclear matter at low densities by variational Monte Carlo
[1] and in neutron matter by Pade’s approximants to
R-matrix calculationd14] independently confirm the above
At intermediate densities|a|>ks >R, the scattering results approximately in a limited range of intermediate den-
length expansion in Ed7) breaks down. Brueckner and Be- sities. In the density rangg,=p=|al] =10 “%p, the en-
the and Goldston¢12] pioneered such studies for nuclear ergy per particle is positive for neutron matter and negative
matter and®He where the range of interactions, scatteringfor symmetric nuclear mattdd]. They scale approximately
lengths, and repulsive cores all are comparable in magnitudevith p?2 with coefficients compatible with Eq12). In sym-
In our case the range of interaction is sm&lR<1, and metric nuclear matter the intermediate density regime is,
therefore all particle-hole diagrams are negligible. Higher-however, limited since protons also interact through the trip-
order particle-particle and hole-hole diagrams do contributéet channel, which has a shorter repulsive scattering length
by orders of~T'o(mkeI")". It is evident from Eq(4) that at  a,~=5.4 fm, besides the singlet one,= —18.8 fm, relevant
intermediate densitieE no longer is proportional td', or  for neutron matter. Nevertheless, the ladder resummation in
the scattering length but instedt(mkz) 1. Due to the the Galitskii integral equation, Eq§l1) and (12), are sup-
very restricted phase space such higher-order terms are usperted by dimensional arguments and quantitatively it suc-
ally neglected as in standard Brueckner theory. This truncaeessfully predicts . between that of neutron and symmetric
tion is similar to the PadapproximationI" of Eq. (1) can  nuclear matter. The ladder resummation therefore seems to
therefore be considered as a resummation of an importamclude the most important class of diagrams. However, even
class of diagrams. The Cooper instability complicates thesmall corrections can be important for the magnitude of the
calculation ofI". If the gap is small the instability occurs gap because they appear in the exponent as, e.g., found for
only for pairs near the Fermi system with opposite momentanduced interactioicompare Eq(5) with Eqg. (4)]. In addi-
and spin and the effect on the total energy is small. Theion, superfluidity decreases the energy of the system by
momentum dependence of the effective scattering amplitude- A%/2E, which can be significant at intermediate densities
also complicates a self-consistent calculation. These complif gaps really are as large as the Fermi energy.

C. Intermediate densities,|a|>kF >R
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keR for (E/N)/Eg andA/Eg. SinceEg also decreases with de-
1 10 creasing density, the gap itself is narrowly peaked rigar
' ' =1/R as found in nuclear and neutron matf#b].

Information on the density dependence can be obtained
independently from calculations within the Wigner-Seitz cell
05 F NN eemmmmmmmeeey 1 approximation that has recently been employed for the
strongly correlated nuclear liquid.6]. The periodic bound-
ary condition is a computational convenience that contains
0.0 boremomeanat \ N the important scale for nucleon-nucleon correlations given
\ by the interparticle spacing. It naturally gives the correct
\‘ low-density Eq.(7) and high-density Eq(10) limits. At in-

"\ termediate densities one obtains

1.0 r

05 ENE, L]
\ c oo .
-1.0 5 = 3 ) = '3“!‘ N 15 " ) .
10 10 10 10 10 10
klal Finite crystal momenta complicates the calculatiorcaf A

lower (but reasonableestimatec,=0.25 can be calculated.
FIG. 1. Ground-state energy and superfluid gaps for a degenefrhe potential energy in Eq14) is also proportional to the
ate system of fermions interacting via attractive forces WRh inetic one as found in Eq12) and of similar magnitude.
<|a|. The energy per particle/N [Eq. (11), full curved and the  The gcaling withy~ /3 arises because energies scale with the
BCS gapA [Eqg. (5), dashed curvdsare plotted in units of the Fermi square of the inverse particle spacimg_,2, in the Wigner-

energy as function of density far=2 andv=4. Dotted curves to . . .
9y vy 4 Seitz cell approximation, ang=rki/6m?=(4mr3/3) %

the right show qualitatively the gap and energy per particle at high 2 o3 .
density(see text as a function ok:R (upper axis. thusr, “ec =, In addition a factor {—1)/v enters because

the exchange interaction energy has to be subtracted from the

The interesting feature of the intermediate density regiondirect. The resulting’ dependence of Ed14), differs from
that energies and gaps are independent of the scatteriflge scaling obtained from ladder resummations, Bd),
length, leads to the remarkable fact that the system is als¢hich indicates that the Wigner-Seitz cell approximation is
insensitive to whether the scattering length goes to plus oot good enough. The energy per particle can be calculated
minus infinity. In other words, a many particle system isat all densities and finite values afandR and the crossover
insensitive to whether the two-body system has a marginallfetween the three density regimes generally confirm the en-
bound state just above or below threshold; the two-bodyergy per particle shown in Fig. 1.
bound state or resonance is dissolved in matter at sufficiently For bosons the Wigner-Seitz cell approximation is
high density ke|a|=1. For positive scattering lengths a pair €quivalent to the “lowest order constrained variational”
condensate of molecules may form at low densities but theynethod whenr, is set equal to the healing distanf@].
dissolve at intermediate densities when the range of the twd=onsequently, bosons have similar iteraction energies as fer-
body wave function exceeds the interparticle distance. mions at intermediate densiti€/Noc +#2/mry?, for large

In Fig. 1 the energy per particle is shown as function ofpositive and negative scattering lengths.
density extending from dilute and intermediate densities,
Egs.(7) and(11), to high densities, Eq.10). At low densi- IV. PHASE DIAGRAM

ties the Fermi kinetic energy dominates but at intermediate ) )
Constructing a phase diagram from the low-temperature

densities,Rsk;15|a|, the attractive potential lowers the ) - ' !
energy by an amount proportional to the statistical factord€generate regime to the high-temperature classical regime

The two cases=2 andv=4 are seen to saturate at positive requires a finite temperature generalization. For illustration

and negative energies, respectively. In the high-density limif'€ Shall follow the procedure as in R¢17] and employ the

the attractive(Hartreg potential of Eq.(10) dominates and Nigh-temperature approximation for the additional thermal

will lead to collapse of all Fermi systems in the absence of'€SSure. At high temperatures quantal effects are negligible

repulsive cores. and the energy per pgrtlcle is simply given by. the' cl'assu.:al
Figure 1 also shows the superfluid gaps of E4sand(5) valueE/N=3T/2. The isothermal sound speed is within this

for dilute and intermediate density Fermi systems. At low@PProximation

densities  they  decrease  exponentially  asA

~Egr exp(—2/mke|a]) whereas at intermediate densities the s$=1+32 (15)
gaps are a finite fraction of the Fermi energy. At high den- m =0

sities the gap generally decreases rapidly with def&iy7].

For example, for an attractive square-well potential of rangavhere the zero temperature sound speed is given by&tq.
R and depthV, with long scattering lengtifor marginally ~ with energy per particle from Eq¢ll) and(7). The spinodal
bound statg i.e., Vo,R?>=m?/4m, the gap decrease exponen- instability conditions;=0, determines the line of collapse
tially as A~exp(—4k:R/7). When |a|>R plateaus appear T(p) for long-wavelength density fluctuations.
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1 i — three or more particles may exist. Such molecules are also
--- Superfluid o referred to as Efimov statd48]. For two spin states such
— Spinodal 7] Efimov “molecules” do not exist due to Pauli blocking of
—-~ Spinodal (dilute) the third state and all the results described above therefore
’ apply to Fermion systems with two spin states, e.g., pure
neutron matter. Nuclear matter will be unstable towards a
molecular transition forming trituntHe, helium and heavier
nuclei, but as it is also spinodally unstable the two instabili-
ties will compete. This competition applies generally to
Fermi systems with four and more spin states. Fermi systems
with three spin states may be special because they will be
unstable towards forming Efimov states but not necessarily
spinodally unstable because=3 is marginal as discussed
above. Nucleons have the additional feature of the two-body
bound-state deuterium, which adds to the possible molecular
transitions. Further study of the spinodal and the various mo-
lecular collapse time scales is required in order to determined
FIG. 2. Phase diagram at low and intermediate densities ( Which one is the fastest and thus take place in nature.

= vk§/677) for a gas of fermions interacting via a lortgttractive
scattering lengtta. Spinodal lines are shown with full curves and V. FINITE SYSTEMS

the superfluid transition by dashed curves for various numbers of . . .
spin statesv, as labeled. The area constrained to the lower-right 1he degenerate Fermi gases and Bose-Einstein conden-

corner is the spinodally unstable and superfiuid region. As systemgates(BEC) produced so far contain~10°—10° magneti-

with two spin states only are stable at intermediate densities, thé@lly trapped alkali atoms. Some of them interact via long
y=2 spinodal line is absent. Contrarily, the=2 spinodal line ~ scattering lengths such as the tripRiti fermions with a
based on extrapolating the dilute approximation to higher densities=—2160 bohrs radii and singlef®Rb, bosons with|a|
(see textis shown by dash-dotted curves. =10° bohrs radii. Large scattering lengths— +« can be
taylored by using Feshback resonances, i.e., hyperfine states
The resulting phase diagram is shown in Fig. 2 fer2, close to_threshold further_ tuned by magnetic fields._ Fermi
3, 4, 7, and 10 spin states. The lowdF<(T¢) and right gases differ from BEC's in several respects. Most impor-
(kgla|=1) corner of the phase diagram is the spinodallytantly’ whereas bosons sit at zero-momentum states, fermi-
unstable region where the system collapses. The region d ns have considerable kinetic energy. Therefore, whe.n Inter-
creases for fewer spin states and is absentifer2. For actions are small, a BESSh.aS energy per _parﬁaleand slze
comparison the spinodal lines fer=2 andv=3 are shown dosc: w-herew=(wi wZ). Is the geometrlg average of the
when the dilute approximation of E€7) is extrapolated into Magnetic trap frequencies aags = 7/ Jm is the oscillator
dength. A degenerate gas hf Fermionic atoms has a larger

gnergy per particle-NY*4 w and sizel ~N5

10

! ’

TIE,

gions based on the dilute approximation are substantiall _ _ N™asc. In cur-
overestimated. rent experiments with degenerate Fermi gases and BEC's the
The regions of superfluidity given b¥.=(/7)A and densities are low so that the dilute potential applies and the
C . . .
Eq. (5) are also shown in Fig. 2. As for the spinodally un- energy per particle is approximately

stable region it is the lower-right corner that is superfluid. 13
However, superfluidity extends to lower densities and there- E: E(E) NY3% 0 v-1 Zia ﬁ (16)
fore mechanical instability does not prevent the BCS-type N 4\v m 3

pairing in the case of fermions. The opposite conclusion was
reached for the pairing transition in Bose-Einstein condenwhere the average density in the trap has been approximated
sateg17]. As cooling becomes increasingly difficult at tem- by (p)=N/L3 [19]. For a small number of trapped atoms
peratures below the Fermi temperature, we observe that theith attractive scattering lengths the system is metastable but
superfluid transition is readily obtained by increasing thefor a large number of trapped atom$\=i[a,s./(v
density abovekg|a|=1. —1)a]’, the attractive potential overcomes the Fermi kinetic

The phase diagram is quantitatively correct at low as welenergy and the degenerate Fermi gas becomes unstable and
as high temperatures. Around the Fermi energy it gives @amplodes. However, around the same denkitja|=1 and
qualitative description only due to the approximate thermakle enter the intermediate density region, where the potential
pressure employed. Furthermore, at intermediate densitiesf Eq. (11) should be applied instead of the dilute potential.
the superfluid gaps become large exceeding the Fermi enerdihe gas is therefore mechanically stable for two hyperspins
for large spins, and the corrections to the ground-state eneonly contrary to conclusions based on the dilute potential
gies can therefore not be ignored. [2,20].

Molecular transitions and Efimov states must also be con- A recent experiment on cold magnetically trapped Fermi-
sidered at high densities for three and more spin states. Evemic atomg2] observed degeneracy f6# atoms in the two
though two-body bound states do not exist, bound states dfyperfine statemg=9/2,7/2. Current experimental oscillator

043606-5



HENNING HEISELBERG PHYSICAL REVIEW A63 043606

lengths a,q=um are less than one order of magnitude drasekhar mass by a factanfa|)*? because the instability
longer than the atomic scattering leng#t of SLi. It should ~ condition iskg|a|=1, whereas stars go unstable when the
be possible to reach intermediate densitiesla|=1, by particles become relativistic-=m.
trappingN=10° °Li atoms[20]. The atomic gases offer the
unique opportunity to vary the densities as well as the rela- VI. SUMMARY
tive amount of the hyperfine states. Varying the composition . )
is a convenient way to vary the gaps and attractive potential The energy per particle and superfluid gaps have been
of Egs. (7),(11), and (10) through » for given density and _calcu_lated for an homogeneous system of fermions interact-
scattering length. In the limit where most atoms are in one ofd Vvia a long attractives-wave scattering length. In the in-
the states, the Fock and Hartree terms almost cancel arf@rmediate region of densities, where the interparticle spac-
effectively v—1, . ing (~1/k) is much longer than the range of the interaction

More intricate systems of mixtures of fermions and Put much shorter than the scattering lengthajr the energy
bosons, e.g.3%%%4K isotopes can also be studied. If the Per particle and superfluid gaps are proportlo.nal to the. Fermi
interaction is attractive it will contract the atomic cloud to- €nergy. The energy per particle increases linearly with the
wards higher densities. Irrespective of whether the bosons &Pin-isospin or hyperspin statistical factor such that, e.g.,
fermions attract or repel, the induced interactions, which aréymmetric nuclear matter is unstable in the intermediate den-
of second order in the fermion-boson coupling, enhance thé&ity regions and undergoes spinodal decomposition whereas
gap[6]. neutron matter and Fermionic atomic gases with few hyper-

An artificial “gravitational” or “Coulomb” force can be  SPin states are mechanically stable. _ _
exerted on the atoms by shining laser light on the trapped A phase diagram of Fermi gases at low and intermediate
cloud from many directionf21]. It would add an energy per densities was constructed by including thermal pressures in
particle of order~GNN?/L to Eq.(16), whereG is propor-  the high-temperature classical approximation. With the
tional to the laser field intensity. Such an interaction hag?roper energy per particle at intermediate densities the spin-
several interesting consequencesGlfs attractive, it would —0dal region in the phase diagram was reduced substantially
contract the cloud towards higher densities, which would in-2S compared to conjectures based on extrapolations from the
crease gapssee alsq22]) and for sufficiently largeG the  dilute limit. Generally, mechanical instability does not pre-
intermediate density region is entered. Depending on th¥€nta superfluid transition for a wide range of densities. This
strengths and sign of the scattering amplitude and gravitdS contrary to Bose gases, where spinodal instabilities ex-
tional interactions the kinetic energy of the atoms will be clude pairing transitiong17].
balanced by the magnetic trap and/or the scattering or gravi- 1h€ interaction energies of the many-body system were
tational interactions. The resulting phase diagram is mucKliscussed for magnetically trapped cold degenerate gases of
more complex. Fermi atoms. In such systems both superfluidity and the in-

If such a strong attractive laser field is suddenly applied tgérmediate density region should be attainable. In these den-
the gas, the Jeans instability sets in and the gas collaps€§Y regions the superfluid gaps can be large and the stability
until balanced again by the kinetic energy. Subsequently, thand sensitivity to the statistical factercan be studied. Add-
system will “bounce” analogous to the initial stages of a INg @ gravitationally like force by shining laser light on the
supernova explosion. If, however, intermediate energies aratomic cloud further increase densities whereby collapse and
reached and the number of spins exceed2.5, then the Pounce, analogous to the early stages of supernova explo-
collapse will be further accelerated by the attraction betwee&iONS may be studied.
atoms. The corresponding critical particle number is
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