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Fermi systems with long scattering lengths

Henning Heiselberg
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 8 August 2000; published 14 March 2001!

Ground-state energies and superfluid gaps are calculated for degenerate Fermi systems interacting via long
attractive scattering lengths such as cold atomic gases, neutron, and nuclear matter. In the intermediate region
of densities, where the interparticle spacing (;1/kF) is longer than the range of the interaction but shorter than
the scattering length, the superfluid gaps and the energy per particle are found to be proportional to the Fermi
energy and thus differ from the dilute and high-density limits. The attractive potential increase linearly with the
spin-isospin or hyperspin statistical factor such that, e.g., symmetric nuclear matter undergoes spinodal de-
composition and collapses whereas neutron matter and Fermionic atomic gases with two hyperspin states are
mechanicallystable in the intermediate density region. The regions of spinodal instabilities in the resulting
phase diagram are reduced and do not prevent a superfluid transition.
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I. INTRODUCTION

Dilute degenerate Fermi systems with long scatter
lengths are of interest for nuclear and neutron star ma
~see, e.g.,@1#!. Recently, also dilute systems of cold Ferm
onic atoms have been trapped@2#. The number density is
sufficient for degeneracy to be observed and superfluidit
expected at critical temperatures similar to the onset of Bo
Einstein condensates,;102100 nK. S-wave scattering
lengths can be very long, e.g.,1 a522160 bohrs radii for
triplet 6Li and a;18.8 fm for neutron-neutron interaction
These scattering lengthsuau are much longer than the typica
range of the potentials, respectively,R;1 fm for strong in-
teractions andR;102100 Å for van der Waals forces. Gen
erally, whenuau@R, three density regimes naturally emerg
the low-density~or dilute, kF

21*uau), the high-density (kF
21

&R), and theintermediate density region(R&kF
21&uau).

The latter region of densities is the object of study here
will be shown that previous conjectures based on extrap
tions from the dilute limit fail. Instead it is found that bot
the energy per particle and the superfluid gaps scale with
Fermi energy. They depend only on statistical factors but
on the scattering length, range, or other details of the in
action. Consequently, phase diagrams are dramatically
tered and the stability criteria differ so that two spin syste
are actuallystable.

The paper is organized as follows. In Sec. II the scal
and poles of the effective scattering amplitude are studie
a homogeneous many-body system going from dilute to
termediate densities. In Sec. III the ground-state energies
calculated at intermediate densities and compared to w
known results from the dilute and high-density limits. In Se
IV extensions to finite temperatures are discussed an
phase diagram is constructed displaying regions of supe
idity and spinodal instabilities. In Sec. V the properties
finite systems of Fermions are investigated as they are

1The sign convention of negative scattering length for attrac
potentials is used. Also\5c51.
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evant for current experiments with magnetically trapped c
atoms. Finally, a summary and conclusion is given.

II. THE EFFECTIVE SCATTERING AMPLITUDE
AND SUPERFLUIDITY

Consider a homogeneous many-body system of fermi
of massm at density,r5nkF

3/6p2, wheren is the statistical
factor, e.g.,n54 for symmetric nuclear matter andn52 for
neutron matter as well as for the40K atomic gas with two
hyperspin states currently studied at JILA@2#. The scattering
lengths and Fermi momentumkF are assumed the same fo
all spin-isospin-hyperspin components in the system but
teresting effects of varying the relative densities of the va
ous components will be discussed at the end. Particles
assumed to be nonrelativistic and to interact through att
tive two-body contact interactions. The details of the pote
tial are not important, only its range;R and scattering
length a. We shall be particularly interested in cases whe
R!uau, which occur when, for example, the two-body pote
tial can almost support a bound state or resonance.

At dilute or intermediate densities the particles intera
via short-range interactions that appear singular on len
scales of the order of the interparticle distance;kF

21 . Such
systems are best described by resumming the multiple in
actions in terms of the scattering amplitude. The Galits
integral equations@3# for the effective two-particle interac
tion or scattering amplitude in the medium are given by
ladder resummation

G~p,p8,P!5G0~p,p8,P!1m(
k

G0~p,k,P!

3FN~P,k!

k22k2
2

1

k22k2GG~k,p8,P!. ~1!

Here, G054pa/m is the s-wave scattering amplitude in
vacuum; the total energy of the pair in the center of mas
k2/m; p,k,p8 are the relative momentum of the pair of in
teracting particles in the initial, intermediate, and final stat

e
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HENNING HEISELBERG PHYSICAL REVIEW A63 043606
respectively, andP the total momentum;N(P,k)511 for
particle-particle propagation (uP6ku>kF), N(P,k)521 for
hole-hole propagation (uP6ku<kF), and zero otherwise. Fo
spin independent interactions the amplitudes contain a fa
(12dn1n2

) that takes exchange into account between ide

cal spinsn15n2.
For obtaining BCS gaps it is sufficient to study pairs w

P50 where Eq.~1! is simply

G5G012m (
k<kF

G0

1

k22k2
G. ~2!

Note the factor of 2 due to particle-particle and hole-h
propagation each contributing by the same amount in n
dense systems. The ladder resummation implicit in Eq.~1!
insures that only momenta smaller than Fermi momenta
ter. G0 varies on momentum scales;1/R@kF only and can
therefore be considered constant at low and intermed
densities. Equation~2! is then easily solved for moment
near the Fermi surface

G5G0F12
2

p
kFaS 21

k

kF
ln

kF2k

kF1k D G21

. ~3!

The in-medium scattering amplitude has a pole due to C
per pairing when

D[
kF

22k2

m
5

~kF1k!2

m
expS p

2ka
22

kF

k D
.EF

8

e2
expS p

2kFaD , kFuau!1, ~4!

whereEF5kF
2/2m is the Fermi energy. The critical temper

ture is Tc5(g/p)D, whereg5eC and C50.577 is Euler’s
constant. Equation~4! is the BCS gap in the dilute limit
which agrees with gaps calculated in Ref.@4#.

However, Gorkov and Melik-Barkhudarov@5# showed
that spin fluctuations lead to a higher-order correct
;(kFa)2 in the denominator of Eq.~3! that is amplified by
logarithmic terms; ln(D);1/kFa. It contributes by a~nega-
tive! constant in the exponent and leads to a reduction of
gap in the dilute limit by a factor (4e)1/352.215. . . as com-
pared to Eq.~4! for two spins. Generally forn spins, isos-
pins, or hyperspins the gap is@6#

D5EF

8

e2
~4e!n/321 expF p

2akF
G . ~5!

In the intermediate density region pairing must still occ
since the interaction is attractive. The validity of the expr
sions of Eqs.~4! and ~5! in this density regime will be dis-
cussed further below. They predict that in the limitsa→
2` andR→0 the gap cannot depend on eithera, R, or other
details of the potential. For dimensional reasons the gap
therefore only be proportional to the Fermi energy.
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III. GROUND-STATE ENERGIES

The ground-state energy is another crucial property of
system. In terms of the on-shell effective scattering am
tude it is @3,7#

E5 (
k1n1

k1
2

2m
1

1

2 (
k1k2n1n2

G~p,p,P!~12dn1n2
!

5
3

5

kF
2

2m
N1

n~n21!

2 (
k1k2

G~p,p,P!. ~6!

Here,N5Vr is the number of particles and the summatio
n1 ,n2 include spin and isospin or hyperspin states. The f
tor (12dn1n2

) in the amplitude due to exchange, has no
been written explicitly. Antisymmetrization of the wav
function prevents identical particles from being in relatives
states. At low and intermediate densities,kFR!1, the ex-
change term is 1/n of the direct one for spin independen
interactions.

Before investigating the intermediate density region
brief review of results at low and high densities is given.

A. Low densities „dilute…: kF zaz™1

At low densities,kFuau!1, gaps are small and have littl
effect on the total energy of the system. Expanding the
fective scattering amplitude of Eq.~1! in the small quantity
kFa, the energy per particle is obtained from Eq.~6! by
summing over momenta of the two interacting particles

E

N
5EFH 3

5
1~n21!

2

3p
kFa1~n21!

4~1122 ln 2!

35p2

3~kFa!21O„~kFa!3
…J . ~7!

It consists of, respectively, the Fermi kinetic energy, t
standard dilute pseudopotential@8# proportional to the scat-
tering length and density, and orders (kFa)2 @9# and higher
@10#.

At zero temperature the hydrodynamic sound spe
squared can, at low temperatures, be expressed as

s25
1

m S ]P

]r D5
1

m

]

]r S r2
]E/N

]r D . ~8!

With the energy per particle of Eq.~7! at low densities, the
sound speed can be expanded as

s25
1

3
vF

2F11
2

p
~n21!kFa1•••G , ~9!

wherevF5kF /m is the Fermi velocity. It is commonly con
jectured from the first two orders that the Fermion~and
Bose! gases undergo spinodal instability when the sou
speed squared becomes negative, which occurs whenkFa
&2p/2(n21). However, at the same densities, the dilu
6-2
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FERMI SYSTEMS WITH LONG SCATTERING LENGTHS PHYSICAL REVIEW A63 043606
approximation leading to Eq.~7! fails and so does the con
jecture as will be shown below.

B. High densities,kFRš1

At high densities,kFR*1, the particle potentials overla
and each particle experience on average the volume inte
of the potentials. The energy per nucleon consists of
Fermi kinetic energy and the Hartree-Fock potential@see,
e.g.,@7#, Eq. ~40.14!#:

EHF

N
5

3

5
EF1

r

2E d3rV~r !F12
1

n S 3 j 1~rkF!

rkF
D 2G . ~10!

The latter term is the exchange energy, which vanishe
very high densities,kFR;R/r 0@1, leaving the Hartree po
tential term only. At lower densities,kFR;R/r 0!1, it is
identical to the first integral, i.e., the Hartree direct term isn
times the Fock exchange term as also found in the di
limit, Eqs. ~7!–~11!.

As shown in Ref.@11#, the Hartree potential is conside
ably less attractive than the dilute potential. In fact it va
ishes when the range of the interaction goes to zero and
scattering length to infinity. Take for example a square-w
potential of rangeR and depth2V0. Long scattering lengths
requireV0R2→p2/4m, and therefore the Hartree potential
}V0R3;R→0. Only in the Born approximation do the Ha
tree ~10! and dilute potentials~7! coincide since the Born
scattering length isaBorn5(m/4p)*d3rV(r ).

Short-range repulsion complicates the high-density lim
In nuclear and atomic systems the repulsive core is only
slightly shorter range than the attractive force. It makes
liquid strongly correlated and the Hartree-Fock approxim
tion fails @12,7#. How the short-range repulsion turns th
attraction to repulsion at these even higher densities w
however, not affect the intermediate density region.

C. Intermediate densities,zazškF
À1šR

At intermediate densities,uau@kF
21@R, the scattering

length expansion in Eq.~7! breaks down. Brueckner and Be
the and Goldstone@12# pioneered such studies for nucle
matter and3He where the range of interactions, scatteri
lengths, and repulsive cores all are comparable in magnit
In our case the range of interaction is small,kFR!1, and
therefore all particle-hole diagrams are negligible. High
order particle-particle and hole-hole diagrams do contrib
by orders of;G0(mkFG)n. It is evident from Eq.~4! that at
intermediate densitiesG no longer is proportional toG0 or
the scattering length but insteadG}(mkF)21. Due to the
very restricted phase space such higher-order terms are
ally neglected as in standard Brueckner theory. This trun
tion is similar to the Pade´ approximation.G of Eq. ~1! can
therefore be considered as a resummation of an impor
class of diagrams. The Cooper instability complicates
calculation ofG. If the gap is small the instability occur
only for pairs near the Fermi system with opposite mome
and spin and the effect on the total energy is small. T
momentum dependence of the effective scattering amplit
also complicates a self-consistent calculation. These com
04360
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cations can be dealt with by approximatingG by its momen-
tum average value in Eq.~1!. The momentum integrals ar
then analogous to those in the dilute limit~7!, and one ob-
tains from Eq.~6!

E

N
.EFF 3

5
1

~n21!
2

3p
kFa

12
6

35
p~1122 ln 2!kFa

G . ~11!

This expression is valid for dilute systems, where it rep
duces Eq.~7!, and approximately valid within the Galitski
ladder resummation at intermediate densities,R!kF

21!uau,
where it reduces to

E

N
5EFF3

5
2~n21!c1G5EFc1~nc2n!, ~12!

with c1535/9(1122 ln 2).0.40 and nc5113/5c1.2.5.
Both the attractive and the kinetic part of the energy p
particle are proportional to the Fermi energy at these in
mediate energies as found for the gaps above.

The other remarkable feature of Eq.~12! is that the energy
per particle changes sign for a critical number of degrees
freedom,nc.2.5. Fermi systems with more degrees of fre
dom such as symmetric nuclear matter have negative en
per particle and will therefore implode, undergo spinodal d
composition, and fragment@13#. Contrarily, systems withn
&nc such as neutron matter and atomic systems with o
two hyperspins have positive energy per particle and w
therefore explode, if not contained. This is also evident fr
the sound speed squared, which from Eqs.~8! and ~12! be-
comes

s25~5/9!c1~nc2n!vF
2 . ~13!

Calculations for pure neutron matter and symmet
nuclear matter at low densities by variational Monte Ca
@1# and in neutron matter by Pade’s approximants
R-matrix calculations@14# independently confirm the abov
results approximately in a limited range of intermediate d
sities. In the density ranger0*r*uau23.1024r0 the en-
ergy per particle is positive for neutron matter and negat
for symmetric nuclear matter@1#. They scale approximately
with r2/3 with coefficients compatible with Eq.~12!. In sym-
metric nuclear matter the intermediate density regime
however, limited since protons also interact through the tr
let channel, which has a shorter repulsive scattering len
at.5.4 fm, besides the singlet one,as5218.8 fm, relevant
for neutron matter. Nevertheless, the ladder resummatio
the Galitskii integral equation, Eqs.~11! and ~12!, are sup-
ported by dimensional arguments and quantitatively it s
cessfully predictsnc between that of neutron and symmetr
nuclear matter. The ladder resummation therefore seem
include the most important class of diagrams. However, e
small corrections can be important for the magnitude of
gap because they appear in the exponent as, e.g., foun
induced interaction@compare Eq.~5! with Eq. ~4!#. In addi-
tion, superfluidity decreases the energy of the system
;D2/2EF , which can be significant at intermediate densit
if gaps really are as large as the Fermi energy.
6-3
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HENNING HEISELBERG PHYSICAL REVIEW A63 043606
The interesting feature of the intermediate density regi
that energies and gaps are independent of the scatte
length, leads to the remarkable fact that the system is
insensitive to whether the scattering length goes to plus
minus infinity. In other words, a many particle system
insensitive to whether the two-body system has a margin
bound state just above or below threshold; the two-bo
bound state or resonance is dissolved in matter at sufficie
high density,kFuau*1. For positive scattering lengths a pa
condensate of molecules may form at low densities but t
dissolve at intermediate densities when the range of the t
body wave function exceeds the interparticle distance.

In Fig. 1 the energy per particle is shown as function
density extending from dilute and intermediate densiti
Eqs.~7! and ~11!, to high densities, Eq.~10!. At low densi-
ties the Fermi kinetic energy dominates but at intermed
densities,R&kF

21&uau, the attractive potential lowers th
energy by an amount proportional to the statistical fac
The two casesn52 andn54 are seen to saturate at positi
and negative energies, respectively. In the high-density l
the attractive~Hartree! potential of Eq.~10! dominates and
will lead to collapse of all Fermi systems in the absence
repulsive cores.

Figure 1 also shows the superfluid gaps of Eqs.~4! and~5!
for dilute and intermediate density Fermi systems. At lo
densities they decrease exponentially asD
;EF exp(22/pkFuau) whereas at intermediate densities t
gaps are a finite fraction of the Fermi energy. At high de
sities the gap generally decreases rapidly with density@15,7#.
For example, for an attractive square-well potential of ran
R and depthV0 with long scattering length~or marginally
bound state!, i.e., V0R2.p2/4m, the gap decrease expone
tially as D;exp(24kFR/p). When uau@R plateaus appea

FIG. 1. Ground-state energy and superfluid gaps for a dege
ate system of fermions interacting via attractive forces withR
!uau. The energy per particleE/N @Eq. ~11!, full curves# and the
BCS gapD @Eq. ~5!, dashed curves# are plotted in units of the Ferm
energy as function of density forn52 andn54. Dotted curves to
the right show qualitatively the gap and energy per particle at h
density~see text! as a function ofkFR ~upper axis!.
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for (E/N)/EF andD/EF . SinceEF also decreases with de
creasing density, the gap itself is narrowly peaked nearkF
.1/R as found in nuclear and neutron matter@15#.

Information on the density dependence can be obtai
independently from calculations within the Wigner-Seitz c
approximation that has recently been employed for
strongly correlated nuclear liquid@16#. The periodic bound-
ary condition is a computational convenience that conta
the important scale for nucleon-nucleon correlations giv
by the interparticle spacing. It naturally gives the corre
low-density Eq.~7! and high-density Eq.~10! limits. At in-
termediate densities one obtains

E

N
5EFF3

5
2c2

n21

n1/3 G . ~14!

Finite crystal momenta complicates the calculation ofc2. A
lower ~but reasonable! estimatec2.0.25 can be calculated
The potential energy in Eq.~14! is also proportional to the
kinetic one as found in Eq.~12! and of similar magnitude.
The scaling withn21/3 arises because energies scale with
square of the inverse particle spacing,r 0

22, in the Wigner-
Seitz cell approximation, andr5nkF

3/6p25(4pr 0
3/3)21;

thus r 0
22}n2/3. In addition a factor (n21)/n enters because

the exchange interaction energy has to be subtracted from
direct. The resultingn dependence of Eq.~14!, differs from
the scaling obtained from ladder resummations, Eq.~11!,
which indicates that the Wigner-Seitz cell approximation
not good enough. The energy per particle can be calcula
at all densities and finite values ofa andR and the crossove
between the three density regimes generally confirm the
ergy per particle shown in Fig. 1.

For bosons the Wigner-Seitz cell approximation
equivalent to the ‘‘lowest order constrained variationa
method whenr 0 is set equal to the healing distance@6#.
Consequently, bosons have similar iteraction energies as
mions at intermediate densitiesE/N}6\2/mr0

2, for large
positive and negative scattering lengths.

IV. PHASE DIAGRAM

Constructing a phase diagram from the low-temperat
degenerate regime to the high-temperature classical reg
requires a finite temperature generalization. For illustrat
we shall follow the procedure as in Ref.@17# and employ the
high-temperature approximation for the additional therm
pressure. At high temperatures quantal effects are neglig
and the energy per particle is simply given by the class
valueE/N.3T/2. The isothermal sound speed is within th
approximation

sT
25

T

m
1sT50

2 , ~15!

where the zero temperature sound speed is given by Eq~8!
with energy per particle from Eqs.~11! and~7!. The spinodal
instability conditionsT50, determines the line of collaps
T(r) for long-wavelength density fluctuations.

r-

h
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FERMI SYSTEMS WITH LONG SCATTERING LENGTHS PHYSICAL REVIEW A63 043606
The resulting phase diagram is shown in Fig. 2 forn52,
3, 4, 7, and 10 spin states. The lower (T&TF) and right
(kFuau*1) corner of the phase diagram is the spinoda
unstable region where the system collapses. The region
creases for fewer spin states and is absent forn52. For
comparison the spinodal lines forn52 andn53 are shown
when the dilute approximation of Eq.~7! is extrapolated into
intermediate densities. Generally, the spinodally unstable
gions based on the dilute approximation are substanti
overestimated.

The regions of superfluidity given byTc5(g/p)D and
Eq. ~5! are also shown in Fig. 2. As for the spinodally u
stable region it is the lower-right corner that is superflu
However, superfluidity extends to lower densities and the
fore mechanical instability does not prevent the BCS-ty
pairing in the case of fermions. The opposite conclusion w
reached for the pairing transition in Bose-Einstein cond
sates@17#. As cooling becomes increasingly difficult at tem
peratures below the Fermi temperature, we observe tha
superfluid transition is readily obtained by increasing
density abovekFuau*1.

The phase diagram is quantitatively correct at low as w
as high temperatures. Around the Fermi energy it give
qualitative description only due to the approximate therm
pressure employed. Furthermore, at intermediate dens
the superfluid gaps become large exceeding the Fermi en
for large spins, and the corrections to the ground-state e
gies can therefore not be ignored.

Molecular transitions and Efimov states must also be c
sidered at high densities for three and more spin states. E
though two-body bound states do not exist, bound state

FIG. 2. Phase diagram at low and intermediate densitiesr
5nkF

3/6p) for a gas of fermions interacting via a long~attractive!
scattering lengtha. Spinodal lines are shown with full curves an
the superfluid transition by dashed curves for various number
spin statesn, as labeled. The area constrained to the lower-ri
corner is the spinodally unstable and superfluid region. As syst
with two spin states only are stable at intermediate densities,
n52 spinodal line is absent. Contrarily, then52 spinodal line
based on extrapolating the dilute approximation to higher dens
~see text! is shown by dash-dotted curves.
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three or more particles may exist. Such molecules are
referred to as Efimov states@18#. For two spin states such
Efimov ‘‘molecules’’ do not exist due to Pauli blocking o
the third state and all the results described above there
apply to Fermion systems with two spin states, e.g., p
neutron matter. Nuclear matter will be unstable toward
molecular transition forming tritum,3He, helium and heavier
nuclei, but as it is also spinodally unstable the two instab
ties will compete. This competition applies generally
Fermi systems with four and more spin states. Fermi syst
with three spin states may be special because they wil
unstable towards forming Efimov states but not necessa
spinodally unstable becausen53 is marginal as discusse
above. Nucleons have the additional feature of the two-b
bound-state deuterium, which adds to the possible molec
transitions. Further study of the spinodal and the various m
lecular collapse time scales is required in order to determi
which one is the fastest and thus take place in nature.

V. FINITE SYSTEMS

The degenerate Fermi gases and Bose-Einstein con
sates~BEC! produced so far containn;1032106 magneti-
cally trapped alkali atoms. Some of them interact via lo
scattering lengths such as the triplet6Li fermions with a
522160 bohrs radii and singlet85Rb2 bosons with uau
*103 bohrs radii. Large scattering lengthsa→6` can be
taylored by using Feshback resonances, i.e., hyperfine s
close to threshold further tuned by magnetic fields. Fe
gases differ from BEC’s in several respects. Most imp
tantly, whereas bosons sit at zero-momentum states, fe
ons have considerable kinetic energy. Therefore, when in
actions are small, a BEC has energy per particle\v and size
aosc, wherev5(v'vz)

1/3 is the geometric average of th
magnetic trap frequencies andaosc5\/Amv is the oscillator
length. A degenerate gas ofN Fermionic atoms has a large
energy per particle;N1/3\v and sizeL;N1/6aosc. In cur-
rent experiments with degenerate Fermi gases and BEC’s
densities are low so that the dilute potential applies and
energy per particle is approximately

E

N
.

3

4 S 6

n D 1/3

N1/3\v1
n21

n

2pa

m

N

L3
, ~16!

where the average density in the trap has been approxim
by ^r&.N/L3 @19#. For a small number of trapped atom
with attractive scattering lengths the system is metastable
for a large number of trapped atoms,N*n@aosc/(n
21)a#6, the attractive potential overcomes the Fermi kine
energy and the degenerate Fermi gas becomes unstable
implodes. However, around the same densitykFuau*1 and
we enter the intermediate density region, where the poten
of Eq. ~11! should be applied instead of the dilute potenti
The gas is therefore mechanically stable for two hypersp
only contrary to conclusions based on the dilute poten
@2,20#.

A recent experiment on cold magnetically trapped Ferm
onic atoms@2# observed degeneracy for40K atoms in the two
hyperfine statesmF59/2,7/2. Current experimental oscillato

of
t
s
e

s

6-5



de

e
la

io
ti

o
a

nd
e

o-
s
ar
th

pe
r

a

in

th
it

be
av
uc

t
ps
th
a
a

ee

an

he

een
act-
-
ac-

on

rmi
the
.g.,
en-
reas
er-

iate
s in
he
pin-
ially
the

e-
his
ex-

ere
s of
in-
en-
ility

e
and
plo-

ri-

HENNING HEISELBERG PHYSICAL REVIEW A63 043606
lengths aosc.mm are less than one order of magnitu
longer than the atomic scattering lengthuau of 6Li. It should
be possible to reach intermediate densities,kFuau*1, by
trappingN*106 6Li atoms@20#. The atomic gases offer th
unique opportunity to vary the densities as well as the re
tive amount of the hyperfine states. Varying the composit
is a convenient way to vary the gaps and attractive poten
of Eqs. ~7!,~11!, and ~10! throughn for given density and
scattering length. In the limit where most atoms are in one
the states, the Fock and Hartree terms almost cancel
effectively n→11 .

More intricate systems of mixtures of fermions a
bosons, e.g.,39,40,41K isotopes can also be studied. If th
interaction is attractive it will contract the atomic cloud t
wards higher densities. Irrespective of whether the boson
fermions attract or repel, the induced interactions, which
of second order in the fermion-boson coupling, enhance
gap @6#.

An artificial ‘‘gravitational’’ or ‘‘Coulomb’’ force can be
exerted on the atoms by shining laser light on the trap
cloud from many directions@21#. It would add an energy pe
particle of order;GNm2/L to Eq. ~16!, whereG is propor-
tional to the laser field intensity. Such an interaction h
several interesting consequences. IfG is attractive, it would
contract the cloud towards higher densities, which would
crease gaps~see also@22#! and for sufficiently largeG the
intermediate density region is entered. Depending on
strengths and sign of the scattering amplitude and grav
tional interactions the kinetic energy of the atoms will
balanced by the magnetic trap and/or the scattering or gr
tational interactions. The resulting phase diagram is m
more complex.

If such a strong attractive laser field is suddenly applied
the gas, the Jeans instability sets in and the gas colla
until balanced again by the kinetic energy. Subsequently,
system will ‘‘bounce’’ analogous to the initial stages of
supernova explosion. If, however, intermediate energies
reached and the number of spins exceedn*2.5, then the
collapse will be further accelerated by the attraction betw
atoms. The corresponding critical particle number is

Nc.~Gm3a!23/2, ~17!

at zero temperature. It differs from the standard Ch
nt
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drasekhar mass by a factor (muau)3/2 because the instability
condition is kFuau.1, whereas stars go unstable when t
particles become relativistickF.m.

VI. SUMMARY

The energy per particle and superfluid gaps have b
calculated for an homogeneous system of fermions inter
ing via a long attractives-wave scattering length. In the in
termediate region of densities, where the interparticle sp
ing (;1/kF) is much longer than the range of the interacti
but much shorter than the scattering length oruau, the energy
per particle and superfluid gaps are proportional to the Fe
energy. The energy per particle increases linearly with
spin-isospin or hyperspin statistical factor such that, e
symmetric nuclear matter is unstable in the intermediate d
sity regions and undergoes spinodal decomposition whe
neutron matter and Fermionic atomic gases with few hyp
spin states are mechanically stable.

A phase diagram of Fermi gases at low and intermed
densities was constructed by including thermal pressure
the high-temperature classical approximation. With t
proper energy per particle at intermediate densities the s
odal region in the phase diagram was reduced substant
as compared to conjectures based on extrapolations from
dilute limit. Generally, mechanical instability does not pr
vent a superfluid transition for a wide range of densities. T
is contrary to Bose gases, where spinodal instabilities
clude pairing transitions@17#.

The interaction energies of the many-body system w
discussed for magnetically trapped cold degenerate gase
Fermi atoms. In such systems both superfluidity and the
termediate density region should be attainable. In these d
sity regions the superfluid gaps can be large and the stab
and sensitivity to the statistical factorn can be studied. Add-
ing a gravitationally like force by shining laser light on th
atomic cloud further increase densities whereby collapse
bounce, analogous to the early stages of supernova ex
sions may be studied.
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