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Photoionization spectra in parallel electric and magnetic fields
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Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

~Received 2 August 2000; published 19 March 2001!

We present a quantum-mechanical method to evaluate photoionization spectra of atoms in parallel applied
electric and magnetic fields, valid for a wide range of energies and field strengths. We identify different
symmetry regions in configuration space and useR-matrix propagation, a frame transformation and a two-
dimensional matching procedure to asymptotically defined solutions to solve the Schro¨dinger equation over all
space. We use quantum defect theory to take into account nonhydrogenic atomic cores. We illustrate the
method for the hydrogen atom in laboratory strength fields and for strong fields. We analyze the main features
of the photoionization spectra for electric and magnetic-field strengths of 51.4 k V cm21 and 470 T, respec-
tively. We identify three types of resonances, defined by their behavior upon varying the external fields and we
explain this behavior in terms of the associated wave functions.
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I. INTRODUCTION

The analysis of the spectrum of an atom in a magn
field has proved very fruitful as it provides an example of
experimentally accessible system whose classical Ha
tonian is chaotic for certain field strengths and ene
ranges. Much has been learned about the effects of clas
chaos through the semiclassical analysis of such real sys
@1#. In addition, newab initio quantum-mechanical tech
niques have been developed to calculate the photoabsor
and photoionization cross sections for an atom in a magn
field @2–4#.

An atom in a parallel static electric and magnetic field
an example of a nonseparable Hamiltonian system with
symmetry than an atom in a magnetic field alone, due to
asymmetry introduced by the applied electric field. The el
tric field also changes the asymptotic nature of the poten
from a one-dimensional Coulomb potential to a Stark pot
tial, which in general destroys the Coulomblike Rydberg
ries of bound and resonance states. In fact in many exp
ments it is difficult to remove small residual stray elect
fields so that the combined field problem is of practical s
nificance in addition to its fundamental interest.

In recent years a number of calculations have been
formed for atoms in parallel fields, both in the bound st
region of the spectrum~see Ref.@5# and references therein!
and in the continuum@6,7#. The theoretical methods used
calculate the photoexcitation cross sections follow pro
dures very similar to the ones used in atoms in a magn
field only. There also exists some experimental data
bound-state spectra@8#.

We present in this paper a fully quantum-mechani
method to calculate the photoionization spectrum of an a
in parallel electric and magnetic fields for a wide range
energies and field strengths. The approach is based on
method developed by O’Mahony and Mota-Furtado for m
netic fields @3# and adapted by Moser@9# to cover a very
wide energy range. We useR-matrix propagation@10,11# to
propagate the solution of the Schro¨dinger equation in spheri
cal coordinates from a small initial radius to the asympto
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region. We define appropriate asymptotic solutions for p
allel fields in cylindrical coordinates and then match the
through a two-dimensional matching procedure to the pro
gated solutions, in order to obtain the solution over all sp
and hence the photoionization cross section. We illustrate
method for the hydrogen atom and we show how to clas
different cases depending on the relative strength of the
plied electric and magnetic fields. We consider the case
both strong fields and of laboratory strength fields. We
amine the effect of changing the electric and magnetic fie
on the positions of the resonances and we identify differ
types of resonances from plots of their associated wave fu
tions.

The paper is structured as follows. In Sec. II we sh
how we partition configuration space depending on
strength of the potentials acting on the ionizing electron a
how we propagate the solution to the asymptotic region.
explain in Sec. III, through the study of a one-dimension
model, how to to generate analytic asymptotic solutions
the problem. In Sec. IV we show how adiabatic curves c
be used to give physical insight and to make the numer
work more efficient. In Secs. V and VI we discuss the mat
ing procedure, the evaluation of the cross section and the
of the complex coordinate rotation method to examine
resonance wave functions. Atomic units will be us
throughout unless otherwise stated.

II. PARTITION OF COORDINATE SPACE

The most obvious effect in imposing external paral
fields is the definition of a preferential direction in space, t
direction of the parallel applied fields. This breaks the ro
tional symmetry of the atom. The nonrelativistic Ham
tonian operator for a hydrogen atom in parallel fields
rected along thez axis can be written, using spherical pol
coordinates (r ,u,f), as

H52
1

2
“

22
1

r
1bLz1

1

2
b2r 2 sin2 u2 f r cosu, ~1!
©2001 The American Physical Society12-1



e
r
te

th
ll
-

o
g

on
o
e
i

y
i

ce
y

-
th

th
a

th
hi
ou
an

the
lds,
al-
ble
art.

ng
re
eld

ron

-
d on
di-
s-

ws:
es,

lly
r

i-

e
then
he
ies.
e-
mb
the

n
on-

n-
dial
-

h
m-
lar

le

d
c
v
h

A. S. JOHNSON AND F. MOTA-FURTADO PHYSICAL REVIEW A63 043412
where we take the proton mass to be infinite.b5B/Bc (Bc
54.73105 T) and f 5F/Fc (Fc55.143109 V cm21) rep-
resent the magnetic- and electric-field strengths, respectiv
in atomic units, andLz is the z component of the angula
momentum. The externally applied potential is represen
by the terms,

Vext5
1

2
b2r 2 sin2 u2 f r cosu, ~2!

apart from the linear Zeeman term, and is independent of
azimuthal anglef. Hence, in this alignment of fields, the fu
Hamiltonian is also independent off and the magnetic quan
tum numberm is a good quantum number.Lz is a conserved
quantity and only contributes to the uniform energy shift
magnitudebm. Equation ~1! can also be expressed usin
cylindrical polar coordinates (r,f,z), as

H52
1

2
“

22
1

Ar21z2
1bLz1

1

2
b2r22 f z, ~3!

showing that the Hamiltonian does not exhibit reflecti
symmetry about thez50 plane. This is a major difference t
the magnetic field case as now we have to deal with differ
asymptotic behavior depending on the two possible limits
the directionsz→1` andz→2`. Ionization is physically
restricted to the positivez direction of space as illustrated b
the diagram of the lines of constant potential for an atom
parallel electric and magnetic fields, in Fig. 1.

Equation~2! can be used to show the relative importan
of the applied fields. For fields typically of laborator
strength, i.e.,f '1026;b'1025, in the region contained in
side of a sphere of a radius of the order of 10 a.u.,
Coulomb field is of order 1/r'1021 a.u.@Vext . Therefore,
in this region, the problem has spherical symmetry as
Coulomb field is dominant and the applied fields act as sm
perturbations. One can thus identify a spherical region
contains the ground state and the low excited states, w
are unaffected by the applied fields. For larger radii the C
lomb potential and the external fields are comparable

FIG. 1. Lines of constant potential for an atom in paral
electric and magnetic fields of strengths 51.4 kV cm21 (1
31025 a.u.) and 470 T (131023 a.u.), respectively. The dotte
line represents the Stark saddle energy that corresponds to the
sical ionization threshold for zero magnetic field. The lines ha
been reflected throughr50 to give a clearer picture. The grap
shows the presence of a harmonic oscillator inr produced by the
quadratic Zeeman term and the breaking of the symmetry inz by
the electric field.
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affect strongly the Rydberg states or states excited to
continuum. There is then a competition between the fie
which is reflected in a competition between the spheric
cylindrical nature of the potentials and is directly responsi
for the onset of chaos in the system’s classical counterp
An asymptotic region can be identified when the ionizi
electron is mainly affected by the applied fields, which a
several orders of magnitude greater then the Coulomb fi
felt at that distance.

We can then describe in general the motion of an elect
in a hydrogen atom excited to a continuum state~or indeed to
a Rydberg state! by dividing space into three different re
gions. The boundaries between these regions will depen
the magnitude of the external fields. The radial ranges in
cated below are for laboratory strength fields and will a
sume different values for stronger fields. They are as follo

~i! an internal region where the Coulomb field dominat
for r<a5100 a.u.;

~ii ! a strong-mixing region where all the fields are equa
important and have to be treated on an equal footing, foa
5100 a.u.<r<b51000 a.u.;

~iii ! an asymptotic region where the external fields dom
nate, forr>b51000 a.u.

We will solve the Schro¨dinger equation in each of thes
regions separately using an appropriate procedure and
find the solution over all space by enforcing continuity of t
solutions and their derivatives at their common boundar
The motion of the electron in the first region can be d
scribed as in the field-free case, in terms of regular Coulo
functions. An important task consists then of describing
motion of the electron in region~ii ! where the problem is
nonseparable. Region~iii ! is chosen so that we can define a
accurate asymptotic solution. Nonhydrogenic atoms are c
sidered by subdividing region~i! in order to take into ac-
count the multielectron atomic core region.

A. The internal region

1. Hydrogen atom

In this region the Coulomb term21/r is dominant and
the effect of the external fields is negligible. Hence we co
sider the region to be spherical and to extend up to a ra
distancer 5a, for which the applied fields can still be ne
glected; we use spherical coordinates (r ,u,f) within the re-
gion, so that the Schro¨dinger equation associated wit
Hamiltonian~1! becomes separable. We solve it by deco
position in partial waves, according to the orbital angu
momentum quantum numberl and we write thel th partial
wave at an energy«, c« l(r ), as

c« l~r !5
s« l~r !

r
Ylm~u,f!, ~4!

wheres« l is the regular Coulomb function@12# evaluated at
energy« andYlm are the spherical harmonics.

The total wave functionC«(r ), at an energy«, can then
in general be written as

l

las-
e

2-2
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C«~r !5(
l

A« lc« l~r !, ~5!

where theA« l ’s are constants to be determined later when
solutions are matched across their common boundaries
our method uses theR matrix, i.e., the inverse of the loga
rithmic derivative of the solution, knowledge of the solutio
~4!, and its derivative in this region, determines theR matrix
at the boundaryr 5a, R(a), namely,

Rll 8~a!5s« l~a!@s« l8 ~a!#21d l l 8 . ~6!

2. Nonhydrogenic atoms

For nonhydrogenic atoms the internal region needs to
divided into two subregions:

~i! subregion~I a!—an inner multielectron region wher
the ionizing electron interacts with all the other electrons a
the nucleus of the atom;

~ii ! subregion~I b!—a Coulomb region where the ionizin
electron moves under the influence of the Coulomb fi
alone as the external fields are negligible.

Typically the value of the boundary radius between th
two regions is of about 10 a.u., so that the inner subreg
contains the atomic core of the atom. The ionizing electro
initially excited in this region and interacts with the oth
particles in the core. Once it goes to subregion~I b!, it is
outside the core and moves in the Coulomb field of the i
then thel th partial solution of the Schro¨dinger equation is
written as

c« l~r !5S s« l~r !1c« l~r !tanpm l

r DYlm~u,f!, ~7!

wherec« l is the irregular Coulomb function evaluated at e
ergy «, and m l are the field free quantum defects, whic
represent the effect of the core on the excited electron’s w
function @12#. Quantum defects can be either calculatedab
initio or obtained from experimental energy levels. Usua
m l50 for l .4, as the atomic centrifugal barrier kee
higher angular momentum states outside of the core reg
The total wave functionC«(r ), can be evaluated at anyr in
the range 10 a.u.<r<a5100 a.u. by the use of Eq.~5!,
with the l th partial wavec« l(r ) given by expression~7!.

The method we present here remains the same as fo
drogen, once the wave function in the internal region is
fined as above, leading to a differentR matrix at the bound-
ary r 5a, which includes the effect of the quantum defec
namely,

Rll 8~a!5@s« l~a!1c« l~a!tanpm l #

3@s« l8 ~a!1c« l8 ~a!tanpm l #
21d l l 8 . ~8!

B. The strong-mixing region

In this region the competition between the spherica
symmetric Coulomb potential and the cylindrical symme
of the diamagnetic potential renders the Hamiltonian n
separable. The region extends from a radiusr 5a to a large
04341
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radiusr 5b and as no approximations can be made, the
Hamiltonian must be considered. The radiusr 5b is chosen
large enough so that the solutions obtained for the Sch¨-
dinger equation forr .b are the asymptotic solutions, whic
will be expressed in cylindrical coordinates.

We will solve the Schro¨dinger equation in the region
@a,b# by using the R-matrix method. We diagonalize the f
Hamiltonian in Eq.~1! plus the Bloch operatorL given by

L5
1

2 Fd~r 2b!
d

dr
2d~r 2a!

d

drGd i j ~9!

in a basis set of shifted Legendre polynomialsgn(r ) and
spherical harmonicsYlm(u,f), over region@a,b#. The Bloch
operator@13# ensures the Hermiticity ofH1L in the finite
region @a,b#. The shifted Legendre polynomials,$gn(r )%,
defined by

gn~r !5A2n21

b2a
Pn21F 2

b2a S r 2
b1a

2 D G , ~10!

where Pn is a Legendre polynomial of degreen, form an
orthonormal basis set over the region@10#. All of the matrix
elements ofH1L can be calculated analytically in this basi
Assuming this diagonalization yields eigenvectorscnl

k and
eigenvalues«k , we can express theR matrix atr 5b, R(b),
in terms of theR matrix at r 5a, R(a), as follows ~see
Balujaet al. @10# for further details!. Rearranging the Schro¨-
dinger equation in the form

~H1L2«!C«5LC« , ~11!

and using the fact that the eigenvalues«k and eigenfunctions
ck from the diagonalization are such that

~H1L !uck&5«kuck& ~12!

then we can writeuC«& as

uC«&5(
k,k8

uck&^cku~H1L2«!21uck8&^ck8uLuC«&

~13!

or

uC«&5(
k

uck&^ckuLuC«&
«k2«

. ~14!

The full wave functionC« can be expressed in a general w
as the sum of the product of thel th radial functionUl(r ) and
the spherical harmonicYlm(u,f), as

uC«&5(
l

Ul~r !

r
Ylm~u,f!, ~15!

Thekth eigenfunctions from the diagonalization ofH1L are
given similarly by

uck&5(
l

Ulk~r !

r
Ylm~u,f!, ~16!
2-3
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with

Ulk~r !5(
n

cnl
k gn~r !, ~17!

wheregn(r ) are shifted Legendre polynomials.
Using this notation directly in Eq.~14!, we get

(
l

Ul~r !Ylm~u,f!

5(
k

(
l

Ulk~r !

«k2«

Ylm~u,f!

2

3(
l 8

S Ul 8k~b!
dUl 8
dr U

r 5b

2Ul 8k~a!
dUl 8
dr U

r 5a
D .

~18!

Projecting out the angular functions by integrating overu
and f, and evaluating the expression at radiir 5a and
r 5b, respectively, we get

UW ~a!5r2

dUW

dr
U

r 5b

2r1

dUW

dr
U

r 5a

, ~19!

and

UW ~b!5r4

dUW

dr
U

r 5b

2r3

dUW

dr
U

r 5a

, ~20!

where the four matricesr1 to r4, are defined as

r15
1

2 (
k

Ulk~a!Ul 8k~a!

«k2e
, r25

1

2 (
k

Ulk~a!Ul 8k~b!

«k2e
,

r35
1

2 (
k

Ulk~b!Ul 8k~a!

«k2e
, r45

1

2 (
k

Ulk~b!Ul 8k~b!

«k2e
.

~21!

Using the formal definition of theR matrix at a radius
r 5a,

UW ~a!5R~a!
dUW

dr
U

r 5a

~22!

and similarly for R(b), one obtains the following relation
between theR matrix at r 5a and theR matrix at r 5b

R~b!5r42r3@r11R~a!#21r2 ~23!

from Eqs.~19! and ~20!.
Depending on the field strengths the region@a,b# may be

quite large. When the region is large, direct application
Eq. ~23! may involve the diagonalization of very large m
trices since our basis set would have to span the entire
tance @a,b#. To minimize the size of the matrices and
reduce program running time, we may subdivide the ra
@a,b# into smaller sectors and propagate theR matrix
through these sectors, using the above procedure recurs
04341
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~see Stechelet al. @11#!. Using this method we carry out
diagonalization in each of the smaller sectors and const
local sector matricesr1 to r4 as above. We can derive analo
gous expressions to Eqs.~19! and ~20! for the whole region
with the four matricesr1 to r4, replaced by the so-called
global sectorR matrices that is the four matricesR1 to R4.
The global sectorR matrices are built up iteratively from th
matricesr1 to r4 during the propagation of the solution ove
the whole region. We finally end up with a relationship
the form ~23! betweenR(a) and R(b), wherer1 to r4 are
replaced by the global sector matrices,R1 to R4. We can
thus calculate theR matrix R(b) at the asymptotic radius
r 5b. To determine the solution over all space we need
match to the asymptotic solutions atr 5b.

C. The asymptotic region

The asymptotic region is reached when the ionizing el
tron is moving in a region where the applied fields domin
and the problem becomes separable again. Conside
Hamiltonian ~3! written in cylindrical coordinates (r,f,z),
the potential assumes the form

V~r !52
1

Ar21z2
1

1

2
b2r22 f z. ~24!

In the limit of large values ofz, i.e., z→`, the Schro¨-
dinger equation associated to Hamiltonian~3! becomes sepa
rable in these coordinates, since

V~r !'2
1

uzu
1

1

2
b2r22 f z1OS 1

uzu3D . ~25!

The motion inr is bounded due to the presence of the ma
netic field, as shown in Fig. 1. Accordingly, we choose t
asymptotic region to be cylindrical withc<z,` and 0<r
,`, taking the boundaryz5c to be large enough that th
potential can be approximated by its separable limit in E
~25!. Also we choosec,b, so that there is an overlap be
tween this region and the strong-mixing region. When so
ing the Schro¨dinger equation associated with the asympto
Hamiltonian

H52
1

2
“

22
1

uzu
1

1

2
b2r22 f z, ~26!

the solution of the equation corresponding to the motion inr
leads to the so-called Landau statesF i(r,f), which are the
eigenfunctions of a two-dimensional harmonic oscillat
The eigenenergies are represented byEi @Ei5b(2i 11) with
( i 50,1, . . . ), form50#. A full solution at an energye can
then be expressed in terms of the following analytic expr
sion, for thej th linearly independent solution, as

Ce j5(
i

F i~r,f!@Si~z!d i j 1Ci~z!Ki j #, ~27!
2-4
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whereSi , Ci are diagonal matrices andKi j is the reactance
matrix, or K matrix. Si(z) and Ci(z) are two linearly inde-
pendent solutions of the Schro¨dinger equation associate
with the asymptotic Hamiltonian inz,

Hz52
1

2

]2

]z2 2
1

uzu
2 f z, ~28!

with the corresponding energy« i5«2Ei . The form of these
solutions and their behavior is of central importance for
problem as it will allow us to calculate theK matrix by
matching the solutions in the strong-mixing region to tho
in the asymptotic region, on the arcr 5b. To get a better
understanding of the solutions of Eq.~28! and the resonance
they could give rise to, we have used a one-dimensio
model system that has the same asymptotic form as Eq.~28!
but doesn’t have a singularity atz50.

III. A ONE-DIMENSIONAL MODEL SYSTEM

We define a one-dimensional model system in the p
ence of an applied electric field with Hamiltonian opera
given by

H52
1

2

d2

dz2 2
1

A11z2
2 f z. ~29!

Such a model was previously used by Su and Eberly@14# in
the field free case and in intense laser fields. The poten
given by

V52
1

A11z2
2 f z, ~30!

shows a system that is subjected to a binding potentia
Coulomb type but where the singularity at origin is avoid
~Fig. 2!. For large values of the coordinatez, this model
system behaves as a normal Coulomb potential in the p
ence of an electric-field potential2 f z, since

1

A11z2
5

1

uzu
1

1

2uzu3 1•••5
1

uzu
1OS 1

uzu3D . ~31!

FIG. 2. A plot of the quasi-Coulombic potential in the presen
of an electric field of strength 231022 a.u. ~solid line! compared
to the field-free potential~dashed line!.
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To leading order the asymptotic Hamiltonian can then
written as

H52
1

2

d2

dz2 2
1

uzu
2 f z, ~32!

which is precisely the same as the asymptotic Hamiltonian
the coordinatez for the full problem of an atom in paralle
electric and magnetic fields, given by Eq.~28!.

Two asymptotic limits are to be considered depending
z. z→2`, where the excited electron is bound by the Sta
potential barrier andz→1`, where the excited electron i
free to move and ionizes under the influence of the two co
peting fields, the Coulomb and the electrical field. Asym
totically, if we could neglect completely the Coulombic ter
in the Hamiltonian of Eq.~32!, we would obtain a Schro¨-
dinger equation that can be solved analytically. Forz.0, the
solution is an oscillatory Airy function, while forz,0 the
solution is given by the exponentially decreasing Airy fun
tion. However the 1/r nature of the Coulombic term influ
ences the solution even at very large distances@15,16# and
hence its effect must be included in the definition of t
asymptotic solutions if we are to match solutions at reas
able sized radii.

A. Choice of asymptotic solutions

A straightforward procedure to obtain accurate asympto
solutions is by numerically integrating the Schro¨dinger equa-
tion corresponding to Hamiltonian~32! from a very large
distance where the analytic form is known.

If however we want to use analytic asymptotic solutio
for this system, we have to find accurate asymptotic so
tions for the differential equation,

d2x

dz2 1g2~z!x~z!50, ~33!

with g(z) given by

g2~z!52S f z1A 1

11z21« i D , ~34!

where« i represents the energy of the system. Possible m
ods of solution include the use of iterated WKB approxim
tions as used by Seaton for Coulomb functions@17# or of the
so-called modified Airy functions~MAF! @18#. These func-
tions are obtained from Airy functions by incorporatin
terms into the argument of the functions, which mimic t
Coulomb behavior for largez. Both of these methods wer
investigated and checked against one another. We have
sen to use the MAF solutions in what follows. The linear
independent solutions of Eq.~33! can be written as

S« i
„j~z!…5

Ai „j~z!…

Aj8~z!
and C« i

„j~z!…5
Bi„j~z!…

Aj8~z!
,

~35!

where Ai and Bi are the regular and irregular Airy functio
and where the argumentj(z) is given by
2-5
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j~z!5H 3

2Ez0

z
A2g2~z8!dz8J 2/3

when g2~z!,0,

~36!

j~z!52H 3

2Ez

z0A1g2~z8!dz8J 2/3

when g2~z!.0.

~37!

If we refer to a turning pointz5z0 of the potential, the case
g2(z),0 corresponds toz.z0, and the caseg2(z).0 cor-
responds toz,z0, i.e., motion under the barrier.

The MAF solutions are valid if

U 1

~j8!3 S 3~j9!2

4j8
2

j-
2 D U!uju. ~38!

Given that, for largez, g2(z) in Eq. ~34! varies approxi-
mately linearly withz, the resultant higher-order differentia
of j(z) in Eq. ~38! will be very small in comparison toj(z)
and the criterion~38! will be met. MAF solutions are finite
for all z, avoiding problems of divergence in the vicinity o
classical turning pointsg2(z)50, common to the WKB ap-
proximation. This is an important point when addressing
full problem of an atom in parallel electric and magne
fields where the solutions may need to be evaluated n
classical turning points. The final solution is then given b
linear combination of the two asymptotic solutions in E
~35!, as

x~z!5C1

Ai „j~z!…

Aj8~z!
1C2

Bi„j~z!…

Aj8~z!
, ~39!

whereC1 andC2 are constants.

B. Photoexcitation of the one-dimensional system

To check our asymptotic analysis and to get insight i
the resonances induced by the asymptotic potential,
solved the one-dimensional system for the Hamiltonian
Eq. ~29! by applying theR matrix method over a region
@2a,b# and matching to the asymptotic MAF solutions. F
the case of an atom in an electric field, the Hamiltonian
Eq. ~29! is no longer symmetric with respect to the pla
z50 and the corresponding Schro¨dinger equation can only
be characterized by the total energy. In order to determ
the solution over all space, at a particular energy« i , referred
to by C« i

(z), we expand the solution in the internal region

terms of a basis set$ck(z)%, following

C« i
~z!5(

k
A« i ,kck~z!, ~40!

where theA« i ,k’s are a set of energy-dependent coefficie

to be determined. The$ck(z)% are given by diagonalizing the
operator (H1L). We use a basis set of orthonormal shift
Legendre polynomials,$gi(z)%, as before where
04341
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gi~z!5A2i 21

b2a
Pi 21X 2

b2a S z2
b1a

2 D C, ~41!

where Pi(z) is a Legendre polynomial of degreei. Within
this particular basis set, the majority of matrix elements
countered can be evaluated analytically. The diagonaliza
gives eigenvalues«k and eigenvectorsCj

k , which satisfy the
equation

~H1L !ck~z!5«kck~z!, ~42!

with ck(z) given by

ck~z!5(
j

Cj
kgj~z!. ~43!

In our one-dimensional problem we consider the inter
region limited by two values ofz given by2a andb, where
a,b.0; z52a is selected so as to be under the poten
barrier on the (2z) side and the value ofz5b is chosen to
be large enough to meet the accuracy criterion~38! imposed
on the definition of the solutions,S« i

„j(z)… and C« i
„j(z)…,

according to Eq.~35!. Sincez52a was chosen to be in the
classically forbidden region, the asymptotic solution is th
given by the exponentially decreasing function, labeled
C« i

@j(2a)# previously, which gives the wave function a

z52a. The R matrix atz52a and energy« i , is obtained
from the asymptotic solution, in the form

R~2a,« i !5
C« i

„j~2a!…

C« i
8 „j~2a!…

. ~44!

The R matrix once defined atz52a, is then propagated to
z5b, following the procedure outlined in the subsection
the strong-mixing region. Atz5b, the asymptotic solution is
defined by a combination of solutions as in Eq.~39! which,
for convenience, we write in the form

x« i
~b!5S« i

~b!1C« i
~b!tand, ~45!

where d is a phase shift; atz5b, we match theR matrix
defined from the inside and theR matrix obtained using Eq
~45!, to determined and thus the full continuum wave func
tion for all z, at energy« i . The final continuum wave func
tion is normalized per unit energy. Bound-state energies
eigenfunctions can also be determined using theR-matrix
method@19# allowing the calculation of photoabsorption an
photoionization spectra.

The method was used to determine photoabsorption
photoionization spectra in the field free case and in an e
tric field. Results obtained were in excellent agreement w
semianalytical WKB based methods@20#. As we were espe-
cially interested in testing the accuracy of our asympto
solutions in the photoionization case, we show in Fig. 3
results for the photoionization spectrum of the model syst
for various electric fieldsf. As the potential is bound in the
2z direction, the spectra exhibit a resonance structure du
potential in 2z. We see that the resonances have regu
2-6
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PHOTOIONIZATION SPECTRA IN PARALLEL . . . PHYSICAL REVIEW A 63 043412
spacings as is usual in Stark spectra and that the dist
between resonances decreases with electric field as does
intensity. The one-dimensional nature of the potential allo
for the deduction of an analytical condition using WKB gi
ing the distance between resonances@20#. This was com-
pared with the above numerical calculations and excel
agreement was obtained. These results show the effec

FIG. 3. Photoionization spectra for the model system in an e
tric field of strengthf, for transitions from the ground state. Th
energy is relative to the classical ionization threshold and he
zero energy denotes the Stark saddle energyEs . Four sets of spec-
tra are produced for differing field strengths:~a! f 5131022 a.u,
~b! f 5531023 a.u, ~c! f 5131023 a.u., and ~d! f 55
31024 a.u.
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ness of our asymptotic solutions, which will be used in t
main problem of an atom in parallel electric and magne
fields.

C. The MAF asymptotic solutions in the full parallel field
problem

Given that the asymptotic Hamiltonian inz for the full
problem of an atom in parallel fields~28! is the same as for
the one-dimensional problem, we can use the sa
asymptotic solutions inz in both cases. However, in the cas
of parallel fields, the use of the proper Coulomb term allo
the integrals~36! and ~37! to be solved analytically. In the
proper Coulomb term, we substituteg2(z) with G2(z), de-
fined as

G2~z!52H f z1
1

uzu
1« i J . ~46!

For both of the limitsG2(z).0 andG2(z),0 the expres-
sions forj(z) in Eqs.~36! and ~37! are known in analytical
form, in terms of incomplete elliptic integrals of first an
second kind@21#. It can also be shown in this case that in t
limit z→1` the above defined MAF solutions become pu
Airy functions as we would expect. In fact the functionj(z)
becomes

j~z!5~2 f !1/3S z1
« i

f D , ~47!

which is the argument of the Airy function solution when th
Coulomb term is removed.

IV. ADIABATIC EIGENVALUE CURVES

Before describing in detail the matching between so
tions at the asymptotic boundary, we describe how adiab
solutions for the full parallel field Hamiltonian are con
structed as they will be used in the matching procedure. T
also give additional physical insight into the problem a
may be used in certain cases to greatly simplify the num
cal effort @9#.

An important step in the method we developed consist
the use ofR-matrix propagation technique in the stron
mixing region, which allows the evaluation of theR matrix at
a distancer 5b from the known value atr 5a. This however
leads to anR matrix at r 5b containing many unwanted
channels, due to the use of spherical coordinates to repre
a problem that has already a symmetry very close to cy
drical. A key point is to eliminate these extra channels
calculating local adiabatic solutions. We consider an ad
batic Hamiltonian, obtained from the full Hamiltonian at
fixed radiusr 5r b , which is given from Eq.~1!, as

Had5
L2

2r b
2 2

1

r b
1bLz1

1

2
b2r b

2 sin2 u2 f r b cosu,

~48!

c-

e
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where L2 is the total angular momentum operator. Th
Hamiltonian has eigenvalues«l(r b) and eigenfunctions
fl(r b ;u,f), which satisfy the adiabatic Schro¨dinger equa-
tion

Hadfl~r b ;u,f!5«l~r b!fl~r b ;u,f!. ~49!

Diagonalizing the Hamiltonian in a basis set of spheri
harmonics yields a set of eigenvalues«l(r b) and eigenvec-
torscll , from which the eigenfunctionsfl(r b ;u,w) are ob-
tained as

fl~r b ;u,f!5(
l

cllYlm~u,f!. ~50!

These functions give an exact description of the angular
lutions of the Schro¨dinger equation atr 5r b and provide a
very good angular basis set in which to diagonalize the
Hamiltonian~1!, whenr is nearr 5r b . In addition, this adia-
batic procedure enables us to calculate the so-called adia
eigenvalue curves~AEC! by varying r b in the intervala<r
<b, and by plotting at each radiusr 5r b , the corresponding
set of eigenvalues«l(r b). The resultant AEC are shown i
Fig. 4 for electric- and magnetic-field strengths
51.4 kV cm21 and 470 T, respectively. These curves give
great deal of physical insight into the full problem, as th
show how the different potentials of the system dominate
different radii.

At small radial distances from the nucleus the centrifu
barrier and then the Coulomb term dominate. Then, at
creasing radial distance from the nucleus the influence of
external fields starts to become important. The splitting
the curves due to the breaking of thez symmetry by the
electric field becomes obvious and shows the existence o
two different limits corresponding toz→2` ~where the
electron encounters a potential barrier! and z→1` ~for
which the electron ionizes freely at an energy above
Stark saddle energy!. In a region of r between 100 and
200 a.u., avoided crossings occur and the competition
tween the Coulomb potential and the external fields is p
dominant. The Stark saddle point, obtained at a radiur
51/Af '316 a.u., represents the radius where the elec

FIG. 4. Adiabatic eigenvalue curves for a hydrogen atom
parallel electric and magnetic fields of strengths 51.4 kV cm21 (1
31025 a.u.) and 470 T (131023 a.u.) respectively.
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field begins to dominate over the Coulomb potential and
curves begin to approach straight lines.

In addition the analysis of the AEC allows the identific
tion of two different cases, which can be understood in ter
of the corresponding adiabatic angular potential at succes
radii r b @20#. Figures 4 and 5 show the different behavior
the AEC obtained for different relative values of the electr
and magnetic-field strengths. Figure 5 displays a beha
similar to the magnetic field only case and can be solv
with methods developed for the case of an atom in a m
netic field only@9#. In Fig. 4, for r ,100 a.u., the AEC are
approximately the same as obtained in the magnetic fi
only case, because in this region ofr the Coulomb field
dominates. At aroundr 5100 a.u. the splitting of each curv
can be seen, exhibiting the breaking of symmetry with
spect to the planez50, due to the presence of the electr
field. One of the split lines represents a channel where
electron is moving in the1z direction ~with the electric
field! and the other represents a channel where the electro
moving in the2z direction ~against the electric field!. For
radii larger than 400 a.u. the curves are approximat
equally spaced as a consequence of the magnetic field.
spacing corresponds to the Landau energy level spacing
particle in a magnetic field. Much of the structure observ
in Figs. 4 and 5 can also be understood from the form of
angular potential from Eq.~48!,

Vad52
1

r b
1bLz1

1

2
b2r b

2 sin2 u2 f r b cosu. ~51!

It can be shown that for certain combinations of fie
strengths and radii, (f ,b2r b), the two angular potentials
produced by the two external fields give rise to a dou
potential well in u @20#. Within each of these wells lie a
series of states that correspond to the channels of the
system and have an approximate spacing of 2b. It can also
be shown that if the condition for the double potential well
met, i.e., (f ,b2r b), then at integer multiples ofb/ f , the
energy positions of some of the states in both wells beco
equal~neglecting tunneling effects!. This degeneracy mani
fests itself in Fig. 4, wherer b5 f /b2510 a.u., in the form of
crossings as displayed in the AEC at integer multiples

FIG. 5. Adiabatic eigenvalue curves for a hydrogen atom
parallel electric and magnetic fields of strengths 51.4 MV cm21

(131023 a.u.) and 470 T (131023 a.u.), respectively.
2-8
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b/ f 5100 a.u. for those field strengths. In the ca
( f >b2r b), because only one well exists, we do not g
crossings; however, the relative increase in strength of
electric field has meant the spacing is now dependent on
electric field and matching radius and is given approximat
by Ab21 f /r b. Figure 5 illustrates this case and for clari
we plot the AEC up to a radius ofr 5200 a.u.

The AEC are also important to determine which chann
play a role in the photoionization, for a particular energy a
at a chosen matching radius. According to the AEC, chan
are classified into two classes: the ones localized on t
2z side of thez axis, which have positive gradient, are sa
to be closed, and the ones localized on its1z side, which
have negative gradient, are said to be open. Each of t
two classes of channels needs to be subdivided again
cording to the total energy of the system and the particu
radius considered. For a radiusr b5b, given an energyE, all
the closed channels for whichEl,E are said to be locally
open, and all the open channels for whichEl.E are said to
be locally closed.

V. FRAME TRANSFORMATIONS

The general use of spherical harmonics as an angular
sis set in the strong-mixing region is efficient for small va
ues ofr but becomes less efficient for larger values ofr, for
which the symmetry becomes predominantly cylindrical. T
AEC give us guidance on how to propagate the soluti
across this strong-mixing region, depending on which of
two cases (f ,b2r b) or ( f >b2r b) correspond to the field
intensities of the problem. For (f >b2r b), where no cross-
ings exist, expansion andR matrix propagation in a loca
adiabatic basis set@9# can be very efficiently used as for th
magnetic-field only problem. One uses the propagation p
cedure as described in Sec. II B but uses local angular ei
functions obtained from the diagonalization of the adiaba
Hamiltonian in each sector, instead of the spherical harm
ics. This case is very similar to the magnetic-field only ca
and therefore will not be studied in here. However,
( f ,b2r b), this method is inappropriate, due to series
crossings and avoided crossings occurring, as seen in Fi
In such a case we use the propagation procedure as desc
in Sec. II B but have the problem that theR matrix evaluated
at r 5b, from the strong-mixing region,Rll 8(b), will contain
many unwanted channels, since we are using a spheric
symmetric basis set to represent the cylindrical symmetry
the Hamiltonian atr 5b. We perform a frame transformatio
to a more efficient basis set, by considering the adiab
Hamiltonian at fixed radiusr 5b, as in Sec. IV, which is
diagonalized in a basis set of spherical harmonics, yield
eigenvectorscl l and eigenvalues«l . New eigenfunctions
are then obtained according to Eq.~50!, which provide an
efficient basis set with which to represent the wave funct
at r 5b and its vicinity, as they accurately describe the a
gular behavior of the Hamiltonian at that radius. Hence
full wave function at the radiusr 5r b is written

C~r ,u,f!5(
l

Fl~r !

r
fl~b;u,f! ~52!
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with fl(b;u,f) as defined in Eq.~50! andFl(r ) the corre-
sponding radial solution at the given radius. TheR matrix
expressed in terms of this new adiabatic basis set,Rll8 , is
obtained fromRll 8 , with the following frame transformation

Rll85(
l l 8

cl8 l 8Rll 8cll . ~53!

TheR matrix is then contracted to the number of channels
physical interest for a given energy.

VI. THE MATCHING PROCEDURE AND THE K MATRIX

We finally are in a position to match the solutions b
tween the strong-mixing and asymptotic regions in order
determine the full solution over all space, and at each ene

In the method to be followed in the matching we use t
AEC corresponding to the field strengths we are treating.
each total energy, these curves will show the relation
tween a particular choice of matching radius and the num
of channels, which should play a role in the process; this
then be checked numerically.

We exemplify the method by considering the hydrog
atom for magnetic and electric fields of intensiti
51.4 kV cm21 and 470 T, respectively, which correspond
the AEC given in Fig. 4.

The solutions in the asymptotic region are of the fo
~27! and reflect the cylindrical symmetry in the region. Th
are known in terms of the reactance matrix, theK matrix,
which is to be determined by matching theR matrices from
the asymptotic region, and the strong-mixing region, at
chosen matching radiusr 5b.

After representing the wave function in the basis
$fl(u,f)%, theR matrix Rll8 , is obtained in the form~53!.
It is then possible to match theR matrix in the new adiabatic
basisRll8 , to the asymptoticR matrix, over an arc atr 5b,
by performing a two-dimensional matching@22#.

We evaluate the solutions$fl(u,f)% on the arc and
project them onto the asymptotic solutions~27!, by integrat-
ing over u and f; this is done by evaluating the overla
integral

^fluC« j& r 5b5E flC« jdV, ~54!

through the calculation of four matrices,P,Q,P8,Q8, the el-
ements of which are given by the following integrals

Plk~b!5E Ffl~u,f!(
i

F i~r,f!Sik~z!G
r 5b

dV,

Qlk~b!5E Ffl~u,f!(
i

F i~r,f!Cik~z!G
r 5b

dV,
2-9
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Plk8 ~b!5E Ffl~u,f!(
i

H sinu
]F i

]r
Sik~z!

1cosuF i~r,f!
dSik

dz J G
r 5b

dV,

Qlk8 ~b!5E Ffl~u,f!(
i

H sinu
]F i

]r
Cik~z!

1cosuF i~r,f!
dCik

dz J G
r 5b

dV, ~55!

where a prime denotes differentiation with respect to the
dial componentr. We now have the asymptotic solutions o
an arcr 5b, and using these we can express theR matrix
determined by propagationRll8 , in terms of theK matrix in
Eq. ~27!, by equating the twoR matrices, as follows

R5@P1~QK !#@P81~Q8K !#21, ~56!

which gives theK matrix as

K5@~RQ8!2Q#21@~RP8!2P#. ~57!

The K matrix must include every physically open an
locally open channel with enough additional closed chann
for it to be sufficiently converged. These numbers depend
the energy range under consideration and are obtained b
use of Fig. 4 as a guide, since it tells us, for any particu
energy, how many open channels exist. For example, fo
magnetic-field strength of 470 T and an electric-fie
strength of 51.4 kV cm21, there is a need to use between
and 4 open channels with an extra locally closed channe
order to get sufficient convergence of the spectra over
energy range25.32531023→0 a.u. For simplicity, the
matching radius was always chosen to be under the barri
the 2z side so that the so-called closed channels are ab
the system’s energy and we can limit ourselves to match
solutions in thez.0 part of thez axis; the matching of
solutions in thez,0 part of thez axis has then no effect in
the K matrix, as the asymptotic solutions there are expon
tially decreasing functions and therefore give no contribut
to the integrals~55!.

A. Evaluation of the photoionization cross section

To evaluate the photoionization cross section we need
continuum wave function in the region where the dipole
tegral is nonzero. If we consider transitions from low-lyin
states, the corresponding wave functions are very local
about the nucleus and only the part of the continuum w
function overlapping this region will be contributing to th
dipole matrix elements. This however means we must ob
the coefficientsA« l in Eq. ~5!, and in order to do that we
need to discuss the renormalization of the full wave functi

1. Renormalization of the internal region wave function

As described in Sec. II B, the general derivation of t
propagation-by-sector method of Stechelet al. @11#, gives a
04341
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relationship between the radial part of the wave function
r 5a and atr 5b, following Eqs.~19! and~20!, with the use
of global sectorR matrices. This is shown in the following
expression

GW ~a!5R2FW 8~b!2R1GW 8~a!, ~58!

where matricesR1 andR2 are the globalR matrices defined
previously and determined numerically through the propa
tion. GW andFW are column vectors that contain the radial p
of the total wave function atr 5a andr 5b, respectively. We
have defined the total wave function in the internal region
Eq. ~5!, where we used the set of energy-dependent const
A« l . But we know thatGW 5SAW , whereS is a diagonal matrix
whose diagonal elements are the Coulomb functionss« l and
AW a vector with elementsA« l . The matrixF at r 5b is given
by

F5P1QK , ~59!

with P, Q, andK as defined in Eqs.~55! and~57!, whereK
is now known from the matching. From Eq.~58!, we obtain
a set of linear equations, given by

~S1R1S8!AW 5R2FW 8~b!, ~60!

from which we can obtainAW and hence the total wave func
tion in the internal region, via Eq.~5!. The procedure for a
nonhydrogenic atom would be similar withc« l in Eq. ~5!
defined by Eq.~7!.

2. Transformation to S-matrix normalization

Before calculating the cross section, the final stage is
renormalize the wave function so as it becomesSmatrix ~the
scattering matrix! normalized. In this way the wave functio
has the correct asymptotic radial form of a superposition
an incoming and an outgoing spherical wave@12#. The trans-
formation is simple and can be explained easily by cons
ering the form of the radial wave functions asr→`. From
this we can express theS matrix in terms of theK matrix

S5~ I1 iK !~ I2 iK !21, ~61!

whereI is the unitary matrix; thus, to transform toS-matrix
normalization we multiply the wave function by the factor

NS52~K2 i I !~K21I !21. ~62!

The wave function can be properly normalized now a
so the photoionization cross section in parallel fieldssP , can
be evaluated for transitions from an initial bound statecn to
a continuum statec« . Note thatc« is energy normalized
since our asymptotic solutions are normalized in this w
The cross section can be expressed explicitly as

sP54ap2vn«u^cnur uc«&u2, ~63!

wherevn« is the frequency of the transition anda the fine-
structure constant. The above expression for the cross se
can be simplified by considering the form of the initial sta
2-10
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PHOTOIONIZATION SPECTRA IN PARALLEL . . . PHYSICAL REVIEW A 63 043412
wave function and the dipole selection rules. If, for examp
we consider transitions from the ground state, then we o
need to consider the form of the continuum wave function
the internal region. Also, as the ground state will be un
fected by the external fields, it can be represented by
bound state’s field-free wave function. The continuum wa
function within the internal region will consist ofS-matrix
normalized field free hydrogenic wave functions and he
the usual selection rules apply in order to simplify the dip
integral ~63! further. In the example we are considering, t
dipole selection rules dictate that onlys→p transitions are
allowed. Hence, only thel 51 partial waves of the con
tinuum wave functions play a role and the cross section s
plifies to a product of the field-free cross section and thl

51 components ofAW , obtained from Eq.~60!, properly
S-matrix normalized. The cross section is then written in
form

sP5uA« l 51u2sFF , ~64!

whereAW is the vector containing the renormalization coef
cients of the internal region andsFF is the field-free hydro-
gen cross section. All the effects of the external fields on
photoionization cross section are therefore contained
A« l 51.

VII. ATOMIC SPECTRA

We show in Fig. 6 the photoionization spectrum evalua
for hydrogen, using the method presented here. It co
sponds to transitions from the ground state to them50 final
states of hydrogen in parallel electric and magnetic fields
strength 51.4 kV cm21 and 470 T, respectively. The dashe
line corresponds to the Stark saddle energy plus the
Landau threshold or zero-point energy, i.e.,E0522Af 1b.
The spectra betweenE0 and the zero-field threshold contain
mostly sharp well-isolated resonances, but above this le
the spectra flattens as the resonances overlap and the
tinuum contribution increases. In Fig. 7~i! we display spectra

FIG. 6. The photoionization spectrum corresponding to the tr
sition from the ground state to them50 final states of hydrogen in
parallel electric and magnetic fields of field strengthsF
551.4 kV cm21 ( f 5131025 a.u.) and B5470 T (b51
31023 a.u.), respectively. The dotted line represents the S
saddle energy plus the first Landau threshold or zero-point ene
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that correspond to the same atomic transition as in Fig. 6,
for varying magnetic- and electric-field strengths. This stu
in varying field strengths allowed us to uncover and ident
three different types of resonances, labeled as~a!, ~b!, and~c!
and shown in the smaller diagram of 7~ii !. The difference is
seen more clearly by varying the electric field only. For ty
~a! resonance, the resonance energy stays approximately
stant for increasing electric field, for type~b! the resonance
energy increases for increasing electric field and finally
type ~c! the resonance energy decreases with increasing e
tric field. We explain this behavior qualitatively by consid
ering the wave functions of each different class of resonan

A. Calculation of wave functions

The continuum wave function can be calculated using
method we described but we instead used a method dev
by Buchleitneret al. @23#, who used the complex coordinat
rotation method. This served as an independent test of
method to calculate the resonance structure in the continu
We obtained excellent agreement between the two meth
for the resonance positions, as shown in Fig. 8, where we

-

rk
y.

FIG. 7. Diagram~i! shows photoionization spectra correspon
ing to the transition from the ground state to them50 final states of
hydrogen in parallel electric and magnetic fields of varying inten
ties. The spectrum in the center of the graph is for field streng
F55.14 kV cm21 ( f 5131025 a.u.) and B5470 T (b51
31023 a.u.). The upper half of the graph shows spectra where
magnetic field is kept constant and the electric field is increase
increments of 2.57 kV cm21 (531027 a.u.). Similarly the lower
graph represents spectra where the electric field is held constan
the magnetic field is increased in increments of 11.75 T (
31025 a.u.). The smaller part of the central spectrum that is
closed by a dotted line is expanded on graph~ii ! and displays the
resonances that are examined in detail, with corresponding w
functions plotted in Figs. 9 and 10.
2-11
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the position and width for the resonances highlighted in 7~ii !.
The method as described by Delandeet al. @2# involves the
diagonalization of the rotated Hamiltonian

H~u!52
e22iu

2
“

22
e2 iu

r
1bLz1

1

2
b2r2e2iu2 f zeiu,

~65!

in a basis set of Sturmian functions~radial basis set! and
spherical harmonics~angular basis set!. To compute reso-
nance wave functions~ @23#!, applicable only to narrow reso
nances, one defines the approximate square of the reson
wave function as

ucE5Re(Eiu)~r !u2'
1

puIm~Eiu!u
Re@c iu~reiu!#2, ~66!

whereEiu is the eigenvalue of the resonance, andc iu(reiu)
is the expansion of the wave function in the Sturmian ba
evaluated at a complex radius. Re and Im denote real
imaginary parts, respectively.

B. Analysis of spectra

In order to gain a physical understanding of the th
types of resonances identified, labeled as~a!, ~b!, and~c! in

FIG. 8. Position and width of the three resonances highlighte
Fig. 7 for a hydrogen atom in parallel electric and magnetic fields
field strengths 51.4 kV cm21 (131025 a.u.) and 470 T (1
31023 a.u.), respectively, as calculated by the complex coordin
method. These were calculated using a varying complex angl
rotationu up to a value ofu50.2 rad and a Sturmian basis set of
least 30 functions. The lower figure is the same as that of diag
~ii ! in Fig. 7 and it is added for comparison.
04341
nce

is
nd

e

the diagram of Fig. 7~ii !, we calculated the wave function
associated with each of them. In Fig. 9 we plot the proba
ity densities obtained from Eq.~66! for each of the reso-
nances~a!, ~b!, and~c!, as indicated. In Fig. 10 we show th
corresponding probability densities for the resonance w
functions, on the planesr50 andz50, for clarity of analy-
sis. Resonances of type~b! and ~c! shift strongly in energy
with varying applied electric fields, because their wave fun
tions are almost entirely localized along thez axis, with only
a small spread about the planer50. The direction of the
shift can also be explained by observing that those re
nances shifted in the positive energy sense have their p
ability densities localized mainly on the2z side, as shown
in Fig. 10; any such resonance will be shifted to a high
energy when increasing the electric field, as the poten
barrier on the2z side will be raised. The reverse argume
is valid for those resonances shifted backwards, for wh
the increase of the electric field lowers the barrier on the1z
side.

The resonances of type~a! which are, to a large degree
unaffected by the electric field are, as shown in Figs. 9 a
10, not entirely localized in the planez50, and have a fairly

in
f

te
of

m

FIG. 9. Probability densities, from Eq.~66!, of the resonances
labelled in Fig. 7. The wave functions have been reflected ab
r50 to give a clearer picture.
2-12
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large spread inr; their wave functions in the planer50 are
fairly symmetric aboutz50 and are not altered much by th
electric field.

When the magnetic field is increased@lower half of Fig.
7~i!# all the resonances are shifted to a higher energy. T
can be explained by the positive definite nature of the d
magnetic term, which will always increase with the magne
field. The degree to which the shifting occurs can be
plained qualitatively by the wave-function localization—
resonances least affected by the electric field are the o
most shifted by the magnetic field. The reason for this
havior is due to the large spread inr of these resonance’
wave functions, so that a change in the magnetic field has
greatest effect on them.

Other interesting features of the spectrum can be poin
out by closer inspection of the resonances of type~a!, i.e., the
resonances that are mostly unaffected by the electric app
field. In Fig. 11 we display three consecutive resonance
this type, enlarged from Fig. 6, which show regular spacin
between them; in fact, between the first and second re
nances, labeled in the figure by a1 and a2, respectively, we
measured a spacing of 0.65vc , and between the second an
the third, labeled by a3, a value of 0.69vc was found. This
spacing suggests these resonances are connected with
nances observed in the magnetic field alone case, which
curred at regular spacings of 0.64vc @24,25#. These reso-
nances are quasi-Landau type resonances and are rela

FIG. 10. Probability densities of the resonances~a!, ~b!, and~c!
labelled in Fig. 7, showing the wave functions in the respect
planesr50 andz50.
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classical trajectories that arise from the competition betw
the Coulomb and magnetic fields. Observation of such re
nances in the parallel field system is not surprising since
the spectrum we considered, the magnetic field is relativ
strong. The increase in spacing between the second and
resonances is caused by the modification of the orbit by
electric field. Another interesting feature related to this p
ticular resonance is the possibility of wave functionscarring
by a periodic orbit, which means that the wave functi
would show a localization in the vicinity of the classic
periodic orbit. This 0.64vc orbit is known, in the magnetic-
field only case, to leave the origin at an azimuthal angle
54°; however, in the parallel field case, due to the break
of thez parity, the angle will differ depending on which sid
of z50 we consider. When an electric field is present,
angle in which the direction of ionization is orientated~the
positivez side in our case! will increase as the orbit widen
in the r direction to suppress ionization. In the directio
opposite to the direction of ionization, the angle will d
crease. For our field strengths in Fig. 11, the initial angle
the orbits trajectory in the direction of the electric field w
be approximately 65°. The corresponding wave funct
does indeed show signs of a localization or scarring ab
this trajectory.

C. Spectra at laboratory strength fields

One of the great advantages of our method is that it can
applied to calculate photoionization spectra of atoms in p
allel electric and magnetic fields of any strength and o
extended energy regions. We show in Fig. 12 a spect
obtained at laboratory strength fields for photoionizati
from the ground state of hydrogen in parallel electric a
magnetic fields of strengths 0.668 kV cm21 and 6.11 T, re-

e

FIG. 11. The photoionization spectrum of a hydrogen atom
parallel electric and magnetic fields of strength 51.4 kV cm21 (1
31025 a.u.) and 470 T (131023 a.u.). Resonances marked a1 to
a3 are those that are mainly unaffected by increase in electric fi
~see Fig. 7! and we indicate the spacing between these resona
in terms of the cyclotron frequencywc .
2-13
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spectively. When considering such strength fields, we m
select a greater value of matching radiusb as the effect of the
Coulomb potential will dominate over a larger distance. W
selected a matching radius ofb54000 a.u. and obtaine
converged results.

VIII. CONCLUSION

In this paper we presented a general method to eval
the photoionization cross section of an atom in parallel
plied electric and magnetic fields of arbitrary strength. It
based on a previous method developed for an atom in a m
netic field only but takes into account the different proble
faced in the parallel fields case, as for example, the brea
of the z symmetry in the associated Hamiltonian and t
difficulty associated with defining the asymptotic soluti
due to the combination of Coulomb and electric fields. We
fact investigated three different possible forms of asympto
solution and found that the modified Airy functions prov
to be the most suitable for our purpose. We have found
the adiabatic curves for this particular problem have b
very useful giving a physical understanding of the proble
and allowing us to consider two different classes of pro
lems, depending on the relative strengths of the applied
allel fields. In the method presented here, these curves

FIG. 12. The photoionization spectrum corresponding to
transition from the ground state to them50 final states of hydrogen
in parallel electric and magnetic fields of field strengt
0.668 kV cm21 (1.331027 a.u.) and 6.11 T (131025 a.u.), re-
spectively. The dotted line represents the Stark saddle energy
the first Landau threshold.
n

04341
st

e

te
-

g-
s
g

n
c

at
n
,
-
r-
re

also used as a guide to the number of channels that pl
role in any given energy region and particularly at the mat
ing radius. The adiabatic approach can also be used to
erate an efficient angular basis for theR-matrix method when
there are not multiple curve crossings.

We produced spectra for a hydrogen atom in parallel e
tric and magnetic fields for both laboratory and strong fiel
In order to obtain information about the resonance struct
in the spectrum, we calculated the spectra obtained for fi
electric field and varying magnetic field and for fixed ma
netic field and varying electric field, around the spectru
obtained for electric and magnetic fields of 51.4 kV cm21

and 470 T, respectively. We were able to identify three d
ferent types of resonance. Their behavior was explained
calculating the probability densities of the correspond
wave functions. The resonances that shifted with increas
field have a density mainly localized along thez axis and so
respond to any variations of an electric field, which is orie
tated along thez axis; the resonances shifting in the positi
energy direction have their probability distribution localize
on the2z side and the ones shifting in the negative ene
direction have their distribution mainly on the1z side. The
resonances unaffected by the changing electric field h
their distributions concentrated in the direction perpendicu
to the z axis and are fairly symmetric aboutz50. All the
resonances were shifted to a higher energy when the m
netic field was increased, due to the positive nature of
diamagnetic term. We showed how our method works
laboratory strength fields by calculating the spectrum of
drogen in parallel electric and magnetic fields
0.668 kV cm21 and 6.11 T, respectively.

In the future it would be of interest to systematically stu
the photoionization cross section and particularly the beh
ior of the resonance widths near the ionization threshold o
a wide range of field strengths, in order to compare quantu
mechanical calculations with the behavior predicted cla
cally by Ihraet al. @26#.
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