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Photoionization spectra in parallel electric and magnetic fields
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We present a quantum-mechanical method to evaluate photoionization spectra of atoms in parallel applied
electric and magnetic fields, valid for a wide range of energies and field strengths. We identify different
symmetry regions in configuration space and Bseatrix propagation, a frame transformation and a two-
dimensional matching procedure to asymptotically defined solutions to solve thed®gmoequation over all
space. We use quantum defect theory to take into account nonhydrogenic atomic cores. We illustrate the
method for the hydrogen atom in laboratory strength fields and for strong fields. We analyze the main features
of the photoionization spectra for electric and magnetic-field strengths of 51.4 k¥ and 470 T, respec-
tively. We identify three types of resonances, defined by their behavior upon varying the external fields and we
explain this behavior in terms of the associated wave functions.
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[. INTRODUCTION region. We define appropriate asymptotic solutions for par-
allel fields in cylindrical coordinates and then match them
The analysis of the spectrum of an atom in a magneti¢hrough a two-dimensional matching procedure to the propa-
field has proved very fruitful as it provides an example of angated solutions, in order to obtain the solution over all space
experimentally accessible system whose classical Hamiland hence the photoionization cross section. We illustrate the
tonian is chaotic for certain field strengths and energymethod for the hydrogen atom and we show how to classify
ranges. Much has been learned about the effects of classic@ifferent cases depending on the relative strength of the ap-
chaos through the semiclassical analysis of such real systerR§ed electric and magnetic fields. We consider the case of
[1]. In addition, newab initio quantum-mechanical tech- both strong fields and of laboratory strength fields. We ex-
niques have been developed to calculate the photoabsorpti@mine the effect of changing the electric and magnetic fields
and photoionization cross sections for an atom in a magnetien the positions of the resonances and we identify different
field [2—4]. types of resonances from plots of their associated wave func-
An atom in a parallel static electric and magnetic field istions. _
an example of a nonseparable Hamiltonian system with less The paper is structured as follows. In Sec. Il we show
symmetry than an atom in a magnetic field alone, due to th@OW we partition configuration space depending on the
asymmetry introduced by the applied electric field. The elecStrength of the potentials acting on the ionizing electron and
tric field also changes the asymptotic nature of the potentialoW we propagate the solution to the asymptotic region. We
from a one-dimensional Coulomb potential to a Stark poten€Xplain in Sec. IlI, through the study of a one-dimensional
tial, which in general destroys the Coulomblike Rydberg seimodel, how to to generate analytic asymptotic solutions for
ries of bound and resonance states. In fact in many experfhe problem. In Sec. IV we show how adiabatic curves can

ments it is difficult to remove small residual stray electric P used to give physical insight and to make the numerical
fields so that the combined field problem is of practical sig-Work more efficient. In Secs. V and VI we discuss the match-

nificance in addition to its fundamental interest. ing procedure, the evaluation of the cross section and the use
In recent years a number of calculations have been pepf the complex coordinate rotation method to examine the
formed for atoms in parallel fields, both in the bound state€sonance wave functions. Atomic units will be used
region of the spectrunisee Ref[5] and references thergin throughout unless otherwise stated.
and in the continuuni6,7]. The theoretical methods used to
calculate the photoexcitation cross sections follow proce-
dures very similar to the ones used in atoms in a magnetic
field only. There also exists some experimental data for The most obvious effect in imposing external parallel
bound-state spectf&]. fields is the definition of a preferential direction in space, the
We present in this paper a fully quantum-mechanicaldirection of the parallel applied fields. This breaks the rota-
method to calculate the photoionization spectrum of an atonional symmetry of the atom. The nonrelativistic Hamil-
in parallel electric and magnetic fields for a wide range oftonian operator for a hydrogen atom in parallel fields di-

energies and field strengths. The approach is based on tligcted along the axis can be written, using spherical polar
method developed by O’Mahony and Mota-Furtado for magcoordinates 1(, 6, ¢), as

netic fields[3] and adapted by MosdB] to cover a very
wide energy range. We ugematrix propagatio10,11] to
propagate the solution of the Schimger equation in spheri-
cal coordinates from a small initial radius to the asymptotic

II. PARTITION OF COORDINATE SPACE

1 1 1
H=— V2= —+BL,+ 5 B2 sir 6—frcosg, (1)
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Energy (a.u.) < affect strongly the Rydberg states or states excited to the
' continuum. There is then a competition between the fields,
which is reflected in a competition between the spherical-
cylindrical nature of the potentials and is directly responsible
500 for the onset of chaos in the system’s classical counterpart.
An asymptotic region can be identified when the ionizing
electron is mainly affected by the applied fields, which are
p axis (a.u.) several orders of magnitude greater then the Coulomb field
felt at that distance.

FIG. 1. Lines of constant potential for an atom in parallel We can then describe in general the motion of an electron
electric and magnetic fields of strengths 51.4 kVém(1 in a hydrogen atom excited to a continuum stateindeed to
X107° a.u.) and 470 T (¥10 ® a.u.), respectively. The dotted a Rydberg stadeby dividing space into three different re-
line represents the Stark saddle energy that corresponds to the clagions. The boundaries between these regions will depend on
sical ionization threshold for zero magnetic field. The lines havethe magnitude of the external fields. The radial ranges indi-
been reflected through=0 to give a clearer picture. The graph cated below are for laboratory strength fields and will as-
shows the presence of a harmonic oscillatopiproduced by the  syme different values for stronger fields. They are as follows:
quadratic Zeeman term and the breaking of the symmetz/bip (i) an internal region where the Coulomb field dominates,
the electric field. for r<a=100 a.u.:

(i) a strong-mixing region where all the fields are equally

where we take the proton mass to be infinjge= B/ ch (Bc  important and have to be treated on an equal footingafor
=4.7<10°T) and f=F/F (F;=5.14<10° Vcm™') rep-  _ 100 ausr<b=1000 a.u.-

resent the mggnetic- ar!d electric-field strengths, respectively, (iii) an asymptotic region where the external fields domi-
in atomic units, and., is the z component of the angular ate forr=b=1000 a.u.

momentum. The externally applied potential is represented \ye will solve the Schidinger equation in each of these
by the terms, regions separately using an appropriate procedure and then
find the solution over all space by enforcing continuity of the
Loy luti d their derivati t thei boundari
Vex== B2r2sir? 6—fr cosé, (2)  solutions and their derivatives at their common boundaries.
2 The motion of the electron in the first region can be de-

scribed as in the field-free case, in terms of regular Coulomb

apgrt from the linear Zeeman Ferm., and is indgpendent of the,nctions. An important task consists then of describing the
azimuthal anglep. Hence, in this alignment of fields, the full |, iion of the electron in regiofii) where the problem is

Hamiltonian is also independent ¢fand the magnetic quan- ,nsenarable. Regidiii ) is chosen so that we can define an
tum numbem is a good quantum number, is a conserved  ,ocyrate asymptotic solution. Nonhydrogenic atoms are con-
quantity and only contributes to the uniform energy shift of 5jjereq by subdividing regiofi) in order to take into ac-

magnitudeSm. Equation(1) can also be expressed using .ount the multielectron atomic core region.
cylindrical polar coordinatesp( ¢,z), as

0

500 -500
z axis (a.u.) 1000

1 1 1 A. The internal region
H=—-V?— ———+B8L,+ - B%p?—fz, (3)

2 p2+ 72 2 1. Hydrogen atom
howi hat th iitonian d hibit reflecti In this region the Coulomb term-1/r is dominant and
showing t ?)t t eh H_aml tlonlan h_oe_s not ex (ijlft reflectionine effect of the external fields is negligible. Hence we con-
symmetry about the=0 plane. This is a major difference 1o gjyer the region to be spherical and to extend up to a radial
the magnetic field case as now we have to deal with differenfjicioncer —=a for which the applied fields can still be ne-
asymptotic behavior depending on thg two p.OSSIble'llmItS "Nylected; we use spherical coordinatest(¢) within the re-
the directionsz— + 20 andz— —ce. lonization is physically " gion “ 5o that the Schdinger equation associated with
restricted to the positive direction of space as illustrated by Hamiltonian (1) becomes separable. We solve it by decom-
the diagram of the lines of constant potential for an atom ”bosition in partial waves, according to the orbital angular

parallel glectrlc and magnetic fields, in Fig. 1 . momentum quantum numbérand we write theth partial
Equation(2) can be used to show the relative importance

of the applied fields. For fields typically of laboratory wave at an energy, (1), as

strength, i.e.f~107%:8~10%, in the region contained in-

side of a sphere of a radius of the order of 10 a.u., the s, (1)

Coulomb field is of order I/~10"! a.u>V,,,. Therefore, Ya(N)=—"—Yim(0.9), (4)
in this region, the problem has spherical symmetry as the

Coulomb field is dominant and the applied fields act as small

perturbations. One can thus identify a spherical region thatheres,, is the regular Coulomb functiofi2] evaluated at
contains the ground state and the low excited states, whicénergye andYy, are the spherical harmonics.

are unaffected by the applied fields. For larger radii the Cou- The total wave function?”(r), at an energy, can then
lomb potential and the external fields are comparable anth general be written as B
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radiusr=b and as no approximations can be made, the full
‘I’E(Q=E| A tha (1), (5)  Hamiltonian must be considered. The radiusb is chosen
large enough so that the solutions obtained for the Schro

where theA,,’s are constants to be determined later when thélinger equation for>b are the asymptotic solutions, which
solutions are matched across their common boundaries. A¥ill be expressed in cylindrical coordinates.

our method uses thR matrix, i.e., the inverse of the loga- e will solve the Schidinger equation in the region
rithmic derivative of the solution, knowledge of the solution [& P] by using the R-matrix method. We diagonalize the full

(4), and its derivative in this region, determines Renatrix ~ Hamiltonian in Eq.(1) plus the Bloch operatar given by
at the boundary =a, R(a), namely,
Sij 9

1 d d
L=z|8(r—b)-——48(r—a)5
Ri(a)=s.(a)[sy(a)] 15 . (6) 2[ (PG oy
in a basis set of shifted Legendre polynomiglgr) and
spherical harmonic¥,,( 6, ¢), over regior a,b]. The Bloch
For nonhydrogenic atoms the internal region needs to bgperator[13] ensures the Hermiticity ol +L in the finite
divided into two subregions: region [a,b]. The shifted Legendre polynomialég,(r)},
(i) subregion(la—an inner multielectron region where defined by
the ionizing electron interacts with all the other electrons and

2. Nonhydrogenic atoms

the nucleus of the atom; 2n—1 2 b+a

(i) subregion(l b)—a Coulomb region where the ionizing gn(r)=1/ b_a Pn—l{b_a r———/ (10
electron moves under the influence of the Coulomb field
alone as the external fields are negligible. where P,, is a Legendre polynomial of degree form an

Typically the value of the boundary radius between theserthonormal basis set over the regidi©]. All of the matrix
two regions is of about 10 a.u., so that the inner subregioRlements oH + L can be calculated analytically in this basis.
contains the atomic core of the atom. The ionizing electron i;ssuming this diagonalization yields eigenvectafs and
initially excited in this region and interacts with the other eigenvalues,, we can express the matrix atr =b, R(b),
particles in the core. Once it goes to subregibh), it is  in terms of theR matrix atr=a, R(a), as follows (see

outside the core and moves in the Coulomb field of the iongayjaet al.[10] for further detail$. Rearranging the Schro
then thelth partial solution of the Schdinger equation is dinger equation in the form

written as
(H+L—-e)¥, =LVY,, (11
Sei(M) +Co(r)tanmu
Per(r)= r Yim(6, ), () and using the fact that the eigenvalugsand eigenfunctions
. from the diagonalization are such that

wherec,, is the irregular Coulomb function evaluated at en-
ergy €, and u, are the field free quantum defects, which (H+L)liho) =il ¢ (12
represent the effect of the core on the excited electron’s wave
function [12]. Quantum defects can be either calculasdd
initio or obtained from experimental energy levels. Usually
m =0 for |>4, as the atomic centrifugal barrier keeps W)= [l (H+L =&)Y g Wt [L| W)
higher angular momentum states outside of the core region. k'

en we can writeW¥,) as

The total wave function? .(r), can be evaluated at amyin (13
the range 10 a.ssr=<a=100 a.u. by the use of Ed5), or
with the Ith partial wavey, (r) given by expressiof7).
The method we present here remains the same as for hy- | )L ,)
drogen, once the wave function in the internal region is de- |\I’e>:; T (14

fined as above, leading to a differéRtmatrix at the bound-

ary r=a, which includes the effect of the quantum defects, The full wave function?’, can be expressed in a general way
namely, as the sum of the product of theh radial functionU,(r) and

the spherical harmoni¥,,,(6, ), as
Ri(a)=[s.(a)+c,(a)tanmy,] P im(0, )

X[s)(a)+c)(atanmm] 16, . (®) =3 2y 6.0, 15
|

B. The strong-mixing region Thekth eigenfunctions from the diagonalizationtéfr L are

In this region the competition between the sphericallygiven similarly by
symmetric Coulomb potential and the cylindrical symmetry
of the diamagnetic potential renders the Hamiltonian non- |l/fk>=2 Ulk(r)Yl (6,) (16)
separable. The region extends from a radissa to a large T r e
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with (see Stecheét al. [11]). Using this method we carry out a
diagonalization in each of the smaller sectors and construct
Un(r)=2>, cKan(r), (17)  local sector matrices, tor, as above. We can derive analo-
n gous expressions to Eq4L9) and (20) for the whole region
_ _ with the four matrices; to r,, replaced by the so-called
wheregy(r) are shifted Legendre polynomials. global sectoR matrices that is the four matricé®; to R,.
Using this notation directly in Eq14), we get The global sectoR matrices are built up iteratively from the
matricesr, to r, during the propagation of the solution over
2 Ui(r)Ym(6,9) the whole region. We finally end up with a relationship of
! the form (23) betweenR(a) and R(b), wherer; to r, are
replaced by the global sector matricés, to R,. We can
=3 Ui(r) Yim(6, ) thus calculate thék matrix R(b) at the asymptotic radius
X T e—e 2 r=Db. To determine the solution over all space we need to
match to the asymptotic solutionsatb.
r=a)

(18) The asymptotic region is reached when the ionizing elec-

Projecting out the angular functions by integrating over tron is moving in a region where the applied fields dominate

and ¢, and evaluating the expression at radica and and the problem becomes separable again. Considering
r=b, respectively, we get Hamiltonian (3) written in cylindrical coordinatesg( ¢,z),
the potential assumes the form

dUl’
—Ulfk(a)T

r=b

X2

1’

dUII
U|/k(b)w

C. The asymptotic region

U(a)=r2C;—U —rlc;—u , (19 1 Lo,
Mizp Miza V(r)=— > 2""55 p—fz (29)
- Vp tz
and
40 40 In the limit of large values of, i.e., z—, the Schre
Ub)=rs— —rz—1 (200  dinger equation associated to Hamilton{@becomes sepa-
dri _, dri, _, rable in these coordinates, since

where the four matrices, to r,, are defined as

1 Up(a)U,(a 1 U (@)U, (b
r1=52 (@)U (a) S k(@) Ik()’

V(r)~—i+E 2p2—fz+0
r |Z| Z'BP

1
Hg) . (25

" ey— € ’ 2T 4 ey—€
The motion inp is bounded due to the presence of the mag-
U (b)U;:(b) netic field, as shown in Fig. 1. Accordingly, we choose the
E - . __ asymptotic region to be cylindrical witb<<z<e and O<p
1) <, taking the boundarg=c to be large enough that the
potential can be approximated by its separable limit in Eq.
Using the formal definition of theR matrix at a radius (25). Also we choose<b, so that there is an overlap be-

1 o Up(b)U (@) 1
o=y 3 R 2

k ExT € k Ex— €

r=a, tween this region and the strong-mixing region. When solv-
40 ing the Schrdinger equation associated with the asymptotic
U(a)= R(a)d_ 22) Hamiltonian
r r=a 1 1
and similarly for R(b), one obtains the following relation H=— EVZ_H+ E,szz—fz, (26)

between theR matrix atr =a and theR matrix atr=b

R(b)=r,—r3[r;+R(a)]'r, (23)  the solution of the equation corresponding to the motiop in
leads to the so-called Landau stategp, ¢), which are the
fror[T)1 Eqs.0(|_19) anq[r(]zog.. Id st ths th b b eigenfunctions of a two-dimensional harmonic oscillator.
-epending on the Tield strengths the f?gim ]m_ay %€ The eigenenergies are representedep)E; = 8(2i +1) with

quite large. When the region is large, direct application 0f(i=0 1 ), form=0]. A full solution at an energy can
E_q. (23). may mvolve the diagonalization of very Iarge.ma-_ then be expressed in terms of the following analytic expres-
trices since our basis set would have to span the entire d'sé'ion for theith linearlv independent solution. as
tance[a,b]. To minimize the size of the matrices and to ’ ! y P '

reduce program running time, we may subdivide the range

[a,b] into smaller sectors and propagate tRe matrix V.= B.(p,P)[S(2)5: +Ci(2)K;i], (27)
through these sectors, using the above procedure recursively 49 ' J
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0.5 To leading order the asymptotic Hamiltonian can then be
—— With electric field .
---- Without electric field written as
H Ld® 1 f 32
=232 g (32

which is precisely the same as the asymptotic Hamiltonian in
the coordinate for the full problem of an atom in parallel
electric and magnetic fields, given by HgS).
Two asymptotic limits are to be considered depending on
W TG0 5 6 5 10 15 z z— —o, where the excited electron is bound by the Stark
z potential barrier an@— +«, where the excited electron is
free to move and ionizes under the influence of the two com-
peting fields, the Coulomb and the electrical field. Asymp-
totically, if we could neglect completely the Coulombic term
in the Hamiltonian of Eq(32), we would obtain a Schro
dinger equation that can be solved analytically. E210, the
solution is an oscillatory Airy function, while for<0 the
solution is given by the exponentially decreasing Airy func-
tion. However the 1/ nature of the Coulombic term influ-
ences the solution even at very large distar{dés16| and
12 1 hence its effect must be included in the definition of the
Hy=—5——=——=—fz (28) asymptotic solutions if we are to match solutions at reason-
able sized radii.

FIG. 2. A plot of the quasi-Coulombic potential in the presence
of an electric field of strength 210 2 a.u.(solid line) compared
to the field-free potentialdashed ling

whereS;, C; are diagonal matrices art}; is the reactance
matrix, or K matrix. S;(z) andC;(z) are two linearly inde-
pendent solutions of the Sclinger equation associated
with the asymptotic Hamiltonian ig,

with the corresponding energy=¢— E;. The form of these

solutions and their behavior is of central importance for the A. Choice of asymptotic solutions

problem as it will allow us to calculate thk matrix by A straightforward procedure to obtain accurate asymptotic
matching the solutions in the Strong-mixing region to thOS%OmtionS is by numerica”y integrating the Scdmger equa-

in the asymptotic region, on the arc=b. To get a better tion corresponding to HamiltoniatB2) from a very large
understanding of the solutions of E8) and the resonances distance where the analytic form is known.

they could give rise to, we have used a one-dimensional |f however we want to use analytic asymptotic solutions
model system that has the same asymptotic form a¢ZB).  for this system, we have to find accurate asymptotic solu-
but doesn't have a singularity at=0. tions for the differential equation,

d2
Tz +PDx(2=0, 33)

[ 1
fz+ m-f—si

whereg; represents the energy of the system. Possible meth-

Such a model was previous|y used by Su and Eb[é_rN in ods of solution include the use of iterated WKB approxima-
the field free case and in intense laser fields. The potentialions as used by Seaton for Coulomb functiphg| or of the

Ill. A ONE-DIMENSIONAL MODEL SYSTEM

We define a one-dimensional model system in the pres-
ence of an applied electric field with Hamiltonian operatoryith v(2) given by
given by

H=——-——— —f7. (29

: (34

given by so-called modified Airy functionsMAF) [18]. These func-
tions are obtained from Airy functions by incorporating
1 terms into the argument of the functions, which mimic the
V=— W—fz, (300 Coulomb behavior for large. Both of these methods were

investigated and checked against one another. We have cho-

h tem that | biected t bindi tential en to use the MAF solutions in what follows. The linearly
shows a system that IS subjected 1o a binding potential o dependent solutions of E33) can be written as

Coulomb type but where the singularity at origin is avoided

(Fig. 2. For large values of the coordinate this model

system behaves as a normal Coulomb potential in the pres- ss_(g(z)):w and Cg_(g(z))zw,
ence of an electric-field potentiat fz, since ' V&' (2) ' VE'(2) 5
3
1 1 1 1 1 ) , . . .
==t =_+o(_3)_ (31)  where Ai and Bi are the regular and irregular Airy functions
Vi+z2 12l 2|7 || 2| and where the argume#tz) is given by
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3 (2 213 [2i—1 2 b+a
&(2)= Ej V=742 )dz when ?(z)<0, 0i(2)= —P;_4|——| z— , (42)
20 b—a b—a 2
(36)
where P;(z) is a Legendre polynomial of degreeWithin
3 (2 213 ) this particular basis set, the majority of matrix elements en-
§(2)=— Ef V+934(2)dz' when y“(2)>0. countered can be evaluated analytically. The diagonalization
‘ 37) gives eigenvalues, and eigenvector@}‘, which satisfy the
equation
If we refer to a turning point=z, of the potential, the case B
¥*(z)<0 corresponds ta>z,, and the case?(z)>0 cor- (H+L)¢n(2) = exihi(2), (42)
responds t@<zy, i.e., motion under the barrier. : :
The MAF solutions are valid if with i(2) given by
’ 1 (3(5”)2 & <l - ‘r/fk(z):; Cfg;(2). (43)
()% 4¢ 2 '

In our one-dimensional problem we consider the internal
Given that, for largez, y*(z) in Eq. (34) varies approxi- region limited by two values af given by —a andb, where
mately linearly withz, the resultant higher-order differentials a,b>0; z=—a is selected so as to be under the potential
of £(z) in Eq. (38) will be very small in comparison t§(z) barrier on the ¢ z) side and the value af=b is chosen to
and the criterion38) will be met. MAF solutions are finite be large enough to meet the accuracy critef®®) imposed
for all z, avoiding problems of divergence in the vicinity of on the definition of the solution§8i(§(z)) and Cei(g(z)),
classical turning points*(z)=0, common to the WKB ap- according to Eq(35). Sincez= —a was chosen to be in the
proximation. This is an important point when addressing theslassically forbidden region, the asymptotic solution is then
full problem of an atom in parallel electric and magnetic given by the exponentially decreasing function, labeled by
fields where the solutions may need to be evaluated neae, [¢(—a)] previously, which gives the wave function at

classical turning points. The final solution is then given by &,_ _ 2 TheR matrix atz= —a and energye; , is obtained
linear combination of the two asymptotic solutions in Ed: from tHe asymptotic solution, in the form H

(35), as
C ) —
Ai(£(2)) Bi(¢(2)) R(—a,gj)= M (44)

x(2)=Cy +C, : (39 - CLE(-a)
VE'(2) VE'(2) '
The R matrix once defined at= —a, is then propagated to

whereC, andC, are constants. z=b, following the procedure outlined in the subsection of
the strong-mixing region. At=b, the asymptotic solution is
defined by a combination of solutions as in Eg9) which,
B. Photoexcitation of the one-dimensional system for convenience, we write in the form

To check our asymptotic analysis and to get insight into _ n
the resonances induced by the asymptotic potential, we Xz,(D) =S4 (D) + €, (b)tans, (45
solved the one-dimensional system for the Hamiltonian in

. . : here 6 is a phase shift; az=b, we match theR matrix
Eq. (29 by applying theR matrix method over a region Whe o ’ P . .
[Ea,b] an)(/j mF;Ft)cyhingg to the asymptotic MAF solutiong. I:Ordeflned from the inside and tHRmatrix obtained using Eq.

the case of an atom in an electric field, the Hamiltonian in,E_A's)’fto dﬁtermtmeb‘ and thl_JI_Shth? fulll cor;_tlnuum Waveffunc—
Eqg. (29) is no longer symmetric with respect to the plane lonfor all z, at energye; . The final continuum wave tunc-

z=0 and the corresponding Scklinger equation can only tion is norr_nahzed per unit energy. B_ound-stgte energies and
; glgenfuncnons can also be determined using Ramatrix

method[19] allowing the calculation of photoabsorption and
photoionization spectra.
The method was used to determine photoabsorption and

the solution over all space, at a particular enesgyreferred
to by\Ifsi(z), we expand the solution in the internal region in

terms of a basis sgt/(2)}, following photoionization spectra in the field free case and in an elec-
tric field. Results obtained were in excellent agreement with
V. (2)=2 A, Wi(2), (400  semianalytical WKB based methofia0]. As we were espe-
I K [

cially interested in testing the accuracy of our asymptotic
~solutions in the photoionization case, we show in Fig. 3 the
where theA_ |’s are a set of energy-dependent coefficientsiesyits for the photoionization spectrum of the model system
to be determined. Thig/(z)} are given by diagonalizing the for various electric field$. As the potential is bound in the
operator H+L). We use a basis set of orthonormal shifted —z direction, the spectra exhibit a resonance structure due to
Legendre polynomialg,gi(z)}, as before where potential in —z. We see that the resonances have regular
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FIG. 3. Photoionization spectra for the model system in an elec-
tric field of strengthf, for transitions from the ground state. The
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ness of our asymptotic solutions, which will be used in the
main problem of an atom in parallel electric and magnetic
fields.

C. The MAF asymptotic solutions in the full parallel field
problem

Given that the asymptotic Hamiltonian infor the full
problem of an atom in parallel field28) is the same as for
the one-dimensional problem, we can use the same
asymptotic solutions iz in both cases. However, in the case
of parallel fields, the use of the proper Coulomb term allows
the integrals(36) and (37) to be solved analytically. In the
proper Coulomb term, we substitutg(z) with I'?(z), de-
fined as

Fz(z)zz{fz+ i-i-s} (46)
lzZ| )"

For both of the limitsI'?(z)>0 andI'?(z)<0 the expres-
sions foré&(z) in Egs.(36) and(37) are known in analytical
form, in terms of incomplete elliptic integrals of first and
second kind21]. It can also be shown in this case that in the
limit z— + the above defined MAF solutions become pure
Airy functions as we would expect. In fact the functié(e)
becomes

&2)=(2H)" , (47)

+ 2
Z PR—
f

which is the argument of the Airy function solution when the
Coulomb term is removed.

IV. ADIABATIC EIGENVALUE CURVES

Before describing in detail the matching between solu-
tions at the asymptotic boundary, we describe how adiabatic
solutions for the full parallel field Hamiltonian are con-
structed as they will be used in the matching procedure. They
also give additional physical insight into the problem and
may be used in certain cases to greatly simplify the numeri-
cal effort[9].

An important step in the method we developed consists in
the use ofR-matrix propagation technique in the strong-

energy is relative to the classical ionization threshold and henc8"Xing region, which allows the evaluation of tRematrix at

zero energy denotes the Stark saddle en&gyFour sets of spec-
tra are produced for differing field strengths) f=1x10"2 a.u,
(b) f=5x10% au, (0 f=1x10"2% au,

xX10™% a.u.

and (d)

a distance =b from the known value at=a. This however
leads to anR matrix atr=b containing many unwanted
channels, due to the use of spherical coordinates to represent
a problem that has already a symmetry very close to cylin-
drical. A key point is to eliminate these extra channels by

spacings as is usual in Stark spectra and that the distan&&lculating local adiabatic solutions. We consider an adia-
between resonances decreases with electric field as does thBftic Hamiltonian, obtained from the full Hamiltonian at a
intensity. The one-dimensional nature of the potential allowdixed radiusr =ry,, which is given from Eq(1), as

for the deduction of an analytical condition using WKB giv-
ing the distance between resonan¢28]. This was com-
pared with the above numerical calculations and excellent

L2

1 1,
Hag==—3— — +BL,+ = B?rf sir? 9—fry, cosd,

agreement was obtained. These results show the effective- (48)
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FIG. 4. Adiabatic eigenvalue curves for a hydrogen atom in FIG. 5. Adiabatic eigenvalue curves for a hydrogen atom in
parallel electric and magnetic fields of strengths 51.4 kV tifil parallel electric and magnetic fields of strength_s 51.4 MVém
X107° a.u.) and 470 T (X102 a.u.) respectively. (1x10°% a.u.) and 470 T (X102 a.u.), respectively.

where L? is the total angular momentum operator. Thisfield begins to dominate over the Coulomb potential and the
Hamiltonian has eigenvalues,(r,) and eigenfunctions curves begin to approach straight lines.

&, (ry;0,¢), which satisfy the adiabatic Schiinger equa- In addition the analysis of the AEC allows the identifica-
tion tion of two different cases, which can be understood in terms
of the corresponding adiabatic angular potential at successive
Hag®n(Tp; 0,0)=e,\(ry) da(ry; 0,9). (49)  radiiry [20]. Figures 4 and 5 show the different behavior of

the AEC obtained for different relative values of the electric-
Diagonalizing the Hamiltonian in a basis set of sphericaland magnetic-field strengths. Figure 5 displays a behavior
harmonics yields a set of eigenvalugqr,) and eigenvec- similar to the magnetic field only case and can be solved
torsc, , from which the eigenfunction, (r,,; 8,¢) are ob-  with methods developed for the case of an atom in a mag-
tained as netic field only[9]. In Fig. 4, forr<100 a.u., the AEC are
approximately the same as obtained in the magnetic field
only case, because in this region ofthe Coulomb field
d’%(rb;‘g"ﬁ):Z CnYim(6, ). (50 dominates. At around=100 a.u. the splitting of each curve
can be seen, exhibiting the breaking of symmetry with re-

These functions give an exact description of the angular sosPECt 10 the plane=0, due to the presence of the electric
lutions of the Schidinger equation at=r, and provide a field. One of the split lines represents a channel where the

very good angular basis set in which to diagonalize the ful€!€ctron is moving in thet z direction (with the electric
Hamiltonian(1), whenr is nearr =r . In addition, this adia- f|eld) anql the other reprgsents a.channel wher_e the electron is
batic procedure enables us to calculate the so-called adiabafi0Ving in the —z direction (against the electric fiejd For

eigenvalue curve$AEC) by varyingr,, in the intervala<r  radil ”Iarger tr:jan 400 a.u. the cur]\c/eﬁ are appro]c)gir;’(ljat_(la_lr]y
<b, and by plotting at each radius=r,, the corresponding equally spaced as a consequence of the magnetic field. This

set of eigenvalues, (r,). The resultant AEC are shown in spacing corresponds to the Landau energy level spacing of a

Fig. 4 for electric- and magnetic-field strengths of particle in a magnetic field. Much of the structure observed

51.4 kV cni* and 470 T, respectively. These curves give alh Figs. 4 and 5 can also be understood from the form of the
great deal of physical insight into the full problem, as theyam;JUIar potential from Eq48),
show how the different potentials of the system dominate at 1 1
different radii. _ 2.2 i

At small radial distances from the nucleus the centrifugal Vag Ny ALzt 2’8 " Sif® = fry cosd. (51)
barrier and then the Coulomb term dominate. Then, at in-
creasing radial distance from the nucleus the influence of th# can be shown that for certain combinations of field
external fields starts to become important. The splitting ofstrengths and radii, f< 8%r},), the two angular potentials
the curves due to the breaking of tzesymmetry by the produced by the two external fields give rise to a double
electric field becomes obvious and shows the existence of theotential well in  [20]. Within each of these wells lie a
two different limits corresponding ta— —« (where the series of states that correspond to the channels of the full
electron encounters a potential barriemd z— +« (for  system and have an approximate spacing 6f B can also
which the electron ionizes freely at an energy above thée shown that if the condition for the double potential well is
Stark saddle energyIn a region ofr between 100 and met, i.e., §<pB%ry), then at integer multiples oB/f, the
200 a.u., avoided crossings occur and the competition beenergy positions of some of the states in both wells become
tween the Coulomb potential and the external fields is preequal (neglecting tunneling effectsThis degeneracy mani-
dominant. The Stark saddle point, obtained at a radius fests itself in Fig. 4, where,=f/82=10 a.u., in the form of
=1/\f~316 a.u., represents the radius where the electricrossings as displayed in the AEC at integer multiples of
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B/f=100 a.u. for those field strengths. In the casewith ¢,(b;6,¢) as defined in Eq50) andF,(r) the corre-

(f=p2%r,), because only one well exists, we do not getspondlng radial solution at the given radius. TRematrix

crossings; however, the relative increase in strength of théxpressed in terms of this new adiabatic basisRgf, , is

electric field has meant the spacing is now dependent on theptained fromR;;», with the following frame transformation

electric field and matching radius and is given approximately

by B2+ flr,,. Figure 5 illustrates this case and for clarity

we plot the AEC up toa radius of=200 au. R =2 Cu/RyiCpy (53
The AEC are also important to determine which channels n’

play a role in the photoionization, for a particular energy and

Z:: glr;osss?fri]egailﬁﬁglr:\?vgag;ggéeAs(:'C?r:glnognteostTgcglliEz%HCginph?el‘?he R matrix is then contracted to the number of channels of

. : ) ) o . . ‘physical interest for a given energy.

—z side of thez axis, which have positive gradient, are said phy g 9y

to be closed, and the ones localized on-tg side, which

have negative gradient, are said to be open. Each of thesg tHE MATCHING PROCEDURE AND THE K MATRIX

two classes of channels needs to be subdivided again, ac- . . - _

cording to the total energy of the system and the particular We finally are in a position to match the solutions be-

radius considered. For a rading=b, given an energf, all  tween the strong-mixing and asymptotic regions in order to

the closed channels for whids, <E are said to be locally ~determine the full solution over all space, and at each energy.

open, and all the open channels for whigjx>E are said to In the method to be followed in the matching we use the
be locally closed. AEC corresponding to the field strengths we are treating. For
each total energy, these curves will show the relation be-

V. FRAME TRANSEORMATIONS tween a particular choice of matching radius and the number

of channels, which should play a role in the process; this can
The general use of spherical harmonics as an angular béen be checked numerically.

sis set in the strong-mixing region is efficient for small val-  We exemplify the method by considering the hydrogen
ues ofr but becomes less efficient for larger valueg ofor  atom for magnetic and electric fields of intensities
which the symmetry becomes predominantly cylindrical. The51.4 kV cmi * and 470 T, respectively, which correspond to
AEC give us guidance on how to propagate the solutionshe AEC given in Fig. 4.
across this strong-mixing region, depending on which of the The solutions in the asymptotic region are of the form
two cases {<3?r,) or (f=p2ry) correspond to the field (27) and reflect the cylindrical symmetry in the region. They
intensities of the problem. Forf & B2r,), where no cross- are known in terms of the reactance matrix, tematrix,
ings exist, expansion an& matrix propagation in a local which is to be determined by matching tRematrices from
adiabatic basis s¢9] can be very efficiently used as for the the asymptotic region, and the strong-mixing region, at the
magnetic-field only problem. One uses the propagation proehosen matching radius=b.
cedure as described in Sec. Il B but uses local angular eigen- After representing the wave function in the basis set
functions obtained from the diagonalization of the adiabatiq ¢, (6, ¢)}, the R matrix R, , is obtained in the forni53).
Hamiltonian in each sector, instead of the spherical harmonit is then possible to match tiematrix in the new adiabatic
ics. This case is very similar to the magnetic-field only casebasisR,, ., to the asymptotidR matrix, over an arc at=Db,
and therefore will not be studied in here. However, forby performing a two-dimensional matchifg?2].
(f<pB?r), this method is inappropriate, due to series of We evaluate the solution§e, (0,4)} on the arc and
crossings and avoided crossings occurring, as seen in Fig. groject them onto the asymptotic solutiof®y), by integrat-
In such a case we use the propagation procedure as describigg over § and ¢; this is done by evaluating the overlap
in Sec. Il B but have the problem that tRematrix evaluated integral
atr=b, from the strong-mixing regiory;; . (b), will contain
many unwanted channels, since we are using a spherically
symmetric basis set to represent the cylindrical symmetry of _ _ _
the Hamiltonian at =b. We perform a frame transformation (hrl¥ei)r=p f OV ey, (54
to a more efficient basis set, by considering the adiabatic
Hamiltonian at fixed radius =b, as in Sec. IV, which is
diagonalized in a basis set of spherical harmonics, yieldin
eigenvectorsc,, and eigenvalueg, . New eigenfunctions
are then obtained according to E&O), which provide an

through the calculation of four matriceB,Q,P’,Q’, the el-
%ments of which are given by the following integrals

efficient basis set with which to represent the wave function [
atr=b and its vicinity, as they accurately describe the an- ka(b):f o\(0,6)2 Di(p,d)Sk(2)| dQ,
gular behavior of the Hamiltonian at that radius. Hence the . ' r=b
full wave function at the radius=r,, is written
_s B s Qub)= | | 4r(0.6)2 ©i(p,#)Ci(z)|  dO
qr(rlg,qg)_; — (b 0,¢) (52) Ak d\(0,0 2 P p,9)Cix o
] r=
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b, relationship between the radial part of the wave function at
P},\k(b):f Dr(0,0) > [sin 0——S(2) r=a and atr =b, following Egs.(19) and(20), with the use
' P of global sectorR matrices. This is shown in the following
dSy expression
+cos¢9<I>i(p,¢)E] dQ, ) ) )
r=b G(a)=R,F'(b)—R,G'(a), (58

, 0D, where matricefR; andR, are the globaR matrices defined
ka(b):f {%(014’)2 [Slnﬁgcik(Z) previously and determined numerically through the propaga-
tion. G andF are column vectors that contain the radial part
of the total wave function at=a andr =b, respectively. We
have defined the total wave function in the internal region by
Eq. (5), where we used the set of energy-dependent constants
where a prime denotes differentiation with respect to the raA_, . But we know thatG=SA, whereSis a diagonal matrix
dial component. We now have the asymptotic solutions on whose diagonal elements are the Coulomb funct®psind
an arcr =b, and using these we can express Rienatrix £ g vector with elementa,, . The matrixF atr =b is given
determined by propagatidR,, , in terms of theK matrix in by
Eq. (27), by equating the twdR matrices, as follows

dCi
+C0$0<Di(p,¢)E” dQ, (55
r=b

o F=P+QK, (59
R=[P+(QK)][P"+(Q"K)]™%, (56)
. ) i with P, Q, andK as defined in Eqg55) and(57), whereK
which gives theK matrix as is now known from the matching. From E@8), we obtain
K=[(RQ')—Q] Y (RP')—P]. (57) a set of linear equations, given by

The K matrix must include every physically open and (S+R1S)HA=RF'(b), (60)

locally open channel with enough additional closed channels . =

for it to be sufficiently converged. These numbers depend off M Which we can obtaivh and hence the total wave func-
the energy range under consideration and are obtained by ti#n in the internal region, via Eq5). The procedure for a
use of Fig. 4 as a guide, since it tells us, for any particulaf’onhydrogenic atom would be similar with,, in Eqg. (5)
energy, how many open channels exist. For example, for gefined by Eq(7).

magnetic-field strength of 470 T and an electric-field
strength of 51.4 kV cm?, there is a need to use between 1
and 4 open channels with an extra locally closed channel, in Before calculating the cross section, the final stage is to
order to get sufficient convergence of the spectra over arenormalize the wave function so as it becorBesatrix (the
energy range—5.325<10 -0 a.u. For simplicity, the scattering matrixnormalized. In this way the wave function
matching radius was always chosen to be under the barrier imas the correct asymptotic radial form of a superposition of
the —z side so that the so-called closed channels are abovan incoming and an outgoing spherical wa¢&]. The trans-
the system’s energy and we can limit ourselves to matchingpormation is simple and can be explained easily by consid-
solutions in thez>0 part of thez axis; the matching of ering the form of the radial wave functions as>o. From
solutions in thez<0 part of thez axis has then no effect in this we can express ti&matrix in terms of theK matrix

the K matrix, as the asymptotic solutions there are exponen- ) )

tially decreasing functions and therefore give no contribution S=(I+iK)(I-iK)~H, (61)

to the integralg55).

2. Transformation to S-matrix normalization

wherel is the unitary matrix; thus, to transform matrix
_ o _ normalization we multiply the wave function by the factor
A. Evaluation of the photoionization cross section

To evaluate the photoionization cross section we need the Ns=2(K—il)(K?+1)"1. (62)
continuum wave function in the region where the dipole in-
tegral is nonzero. If we consider transitions from low-lying
states, the corresponding wave functions are very Iocalizeg
about the nucleus and only the part of the continuum wav
function overlapping this region will be contributing to the
dipole matrix elements. This however means we must obtai
the coefficientsA,, in Eq. (5), and in order to do that we
need to discuss the renormalization of the full wave function. oo=damon|(dlr| )2, 63)

The wave function can be properly normalized now and
0 the photoionization cross section in parallel fielgs can
e evaluated for transitions from an initial bound stéfeto
a continuum state), . Note thaty, is energy normalized
gince our asymptotic solutions are normalized in this way.
The cross section can be expressed explicitly as

1. Renormalization of the internal region wave function wherew,, is the frequency of the transition ardthe fine-

As described in Sec. Il B, the general derivation of thestructure constant. The above expression for the cross section
propagation-by-sector method of Steckéll. [11], gives a  can be simplified by considering the form of the initial state
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FIG. 6. The photoionization spectrum corresponding to the tran- = ... Energy (10%a.u.)
sition from the ground state to the=0 final states of hydrogen in o~ Graph (11)
parallel electric and magnetic fields of field strengtis § 15
=514 KVem! (f=1x10°° au) and B=470 T (8=1 10 @ ©
x 1072 a.u.), respectively. The dotted line represents the Stark -%
saddle energy plus the first Landau threshold or zero-point energy. 25 )
o
@£
wave function and the dipole selection rules. If, for example, 8_%_25 _5.00 —4.75 —4.50

we consider transitions from the ground state, then we only
need to consider the form of the continuum wave function in

the internal region. Also, as the ground state will be unaf- FIG. 7. Diagram(i) shows photoionization spectra correspond-
fected by the external fields, it can be represented by thing to the transition from the ground state to the=0 final states of
bound state’s field-free wave function. The continuum wavenydrogen in parallel electric and magnetic fields of varying intensi-
function within the internal region will consist ddmatrix  ties. The spectrum in the center of the graph is for field strengths
normalized field free hydrogenic wave functions and henc&=5.14 kVcni! (f=1x10"° a.u.) and B=470 T (8=1

the usual selection rules apply in order to simplify the dipolex 102 a.u.). The upper half of the graph shows spectra where the
integral (63) further. In the example we are considering, themagnetic field is kept constant and the electric field is increased in
dipole selection rules dictate that ondyp transitions are increments of 2.57 kv em' (5X1077 a.u.). Similarly the lower
allowed. Hence, only thé=1 partial waves of the con- graph represents spectra where thg e!ectric field is held constant and
tinuum wave functions play a role and the cross section sim"® magnetic field is increased in increments of 11.75 T (2.5
plifies to a product of the field-free cross section andlthe <10~ au.). The smaller part of the central spectrum that is en-

> . losed by a dotted line i ded ii d displ th
=1 components ofA, obtained from Eq.(60), properly closed by a dotted line is expanded on grdphand displays the

- . L ) X resonances that are examined in detail, with corresponding wave
Smatrix normalized. The cross section is then written in thefunctions plotted in Figs. 9 and 10.

form

Energy (10°a.u.)

that correspond to the same atomic transition as in Fig. 6, but
for varying magnetic- and electric-field strengths. This study
. . L . in varying field strengths allowed us to uncover and identify
whereA is the vector containing the renormalization coeffi- e gifferent types of resonances, labeletaagb), and(c)
cients of the internal region antkr is the field-free hydro-  5nq shown in the smaller diagram dfi7. The difference is
gen cross section. All the effects of the external fields on thgeen more clearly by varying the electric field only. For type
photoionization cross section are therefore contained iNa) resonance, the resonance energy stays approximately con-
Asi=1- stant for increasing electric field, for tyge) the resonance
energy increases for increasing electric field and finally for
VIl. ATOMIC SPECTRA type (c) the resonance energy decreases with increasing elec-

We show in Fia. 6 the photoionizati " luat i}ric field. We explain this behavior qualitatively by consid-
€ showin Fg. € pholoionization spectrum evajuate ring the wave functions of each different class of resonance.
for hydrogen, using the method presented here. It corre-

sponds to transitions from the ground state torthe0 final ) )
states of hydrogen in parallel electric and magnetic fields of A. Calculation of wave functions

strength 51.4 kV cm® and 470 T, respectively. The dashed  The continuum wave function can be calculated using the
line corresponds to the Stark saddle energy plus the firghethod we described but we instead used a method devised
Landau threshold or zero-point energy, o= —2/f + 8. by Buchleitneret al. [23], who used the complex coordinate
The spectra betweds, and the zero-field threshold contains rotation method. This served as an independent test of our
mostly sharp well-isolated resonances, but above this levehethod to calculate the resonance structure in the continuum.
the spectra flattens as the resonances overlap and the caoie obtained excellent agreement between the two methods
tinuum contribution increases. In Figi¥we display spectra for the resonance positions, as shown in Fig. 8, where we test

UP:|A5|:1|20'FF, (64)
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FIG. 8. Position and width of the three resonances highlighted in | ;80
Fig. 7 for a hydrogen atom in parallel electric and magnetic fields of | 0 zaxis
field strengths 51.4 kVcmt (1X10°° a.u) and 470 T (1 ] 50
x 1072 a.u.), respectively, as calculated by the complex coordinate ] -100
method. These were calculated using a varying complex angle of ] 150
rotation # up to a value o¥=0.2 rad and a Sturmian basis set of at ] 2200

least 30 functions. The lower figure is the same as that of diagram _125' _7'5 ' 250 2'5 ' 7'5 ' 195
(i) in Fig. 7 and it is added for comparison. p axis
the position and width for the resonances highlighted(in.7

FIG. 9. Probability densities, from E66), of the resonances
The method as described by Delansteal. [2] involves the

labelled in Fig. 7. The wave functions have been reflected about

diagonalization of the rotated Hamiltonian p=0 to give a clearer picture.
a0 1 1 . : the diagram of Fig. (i), we calculated the wave functions
- g2_ ____ R2,.2/210__ 4 . '
H(6)= 2 v r +BL* 2'3 pe fze”, associated with each of them. In Fig. 9 we plot the probabil-

(65) ity densities obtained from Eq66) for each of the reso-
nancega), (b), and(c), as indicated. In Fig. 10 we show the
in a basis set of Sturmian functiorisadial basis s¢tand  corresponding probability densities for the resonance wave
spherical harmonicgangular basis sgt To compute reso- functions, on the plangs=0 andz=0, for clarity of analy-
nance wave functions[23]), applicable only to narrow reso- sis. Resonances of tyge) and (c) shift strongly in energy
nances, one defines the approximate square of the resonaneith varying applied electric fields, because their wave func-
wave function as tions are almost entirely localized along thaxis, with only
a small spread about the plape=0. The direction of the
) o2 shift can also be explained by observing that those reso-
| e=re,; ) (N[~ mRG{ Yig(re®)1%  (66)  npances shifted in the positive energy sense have their prob-
ability densities localized mainly on the z side, as shown
whereE, , is the eigenvalue of the resonance, ang(re'?) in Fig. 10; any such resonance Wi!l be shifted to a high_er
is the expansion of the wave function in the Sturmian basi§nergy when increasing the electric field, as the potential
evaluated at a complex radius. Re and Im denote real arfrier on the—z side will be raised. The reverse argument
imaginary parts, respectively. is valid for those resonances shifted backwards, for which
the increase of the electric field lowers the barrier on-tte
side.
The resonances of typ@ which are, to a large degree,
In order to gain a physical understanding of the threeunaffected by the electric field are, as shown in Figs. 9 and
types of resonances identified, labeled(@s (b), and(c) in 10, not entirely localized in the plaree=0, and have a fairly

B. Analysis of spectra
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FIG. 11. The photoionization spectrum of a hydrogen atom in
B D > 3 parallel electric and magnetic fields of strength 51.4 kVénjl
2 4/ © 3 © X10°% a.u.) and 470 T (X102 a.u.). Resonances markedta
b 3 "i 2 ag are those that are mainly unaffected by increase in electric field
% % (see Fig. 7 and we indicate the spacing between these resonances
£ 2 2 1 in terms of the cyclotron frequenay, .
£ 1 £
= 02 00120400 40130 200 = q o5 55 55055 75 185 classical trajectories that arise from the competition between
T axis T s the Coulomb and magnetic fields. Observation of such reso-

nances in the parallel field system is not surprising since, in
FIG. 10. Probability densities of the resonanéas (b), and(c) the spectrum we considered, the magnetic field is relatively
labelled in Fig. 7, showing the wave functions in the respectivestrong. The increase in spacing between the second and third
planesp=0 andz=0. resonances is caused by the modification of the orbit by the
. . . . electric field. Another interesting feature related to this par-
'aTge spread P their wave functions in the plane=0 are o, ar resonance is the possibility of wave funct&garring
fairly symmetric abouz=0 and are not altered much by the by a periodic orbit, which means that the wave function
electric field. e e . would show a localization in the vicinity of the classical
'When the magnetic field is [ncreasEdwgr half of Fig. _periodic orbit. This 0.64. orbit is known, in the magnetic-
7()] all the resonances are shifted to a higher energy. Thi eld only case, to leave the origin at an azimuthal angle of

can be explained by the positive definite nature of the dia54o; however, in the parallel field case, due to the breaking

magnetic term, which will always increase with the magnetic fth - h le will diff . hich si
field. The degree to which the shifting occurs can be ex0 thez parity, the angle will differ depending on which side

: 2 . o ‘of z=0 we consider. When an electric field is present, the
plained qualitatively by the wave-function localization—

resonances least affected by the electric field are the on angle in which the direction of ionization is orientattie
) Y . sitive z side in our casewill increase as the orbit widens
most shifted by the magnetic field. The reason for this be?)% e

havior is due to the | d inof th ,_~In the p direction to suppress ionization. In the direction
avior 1s due 1o theé large spread mor these resonance's pposite to the direction of ionization, the angle will de-

. . > 0
wave functions, so that a change in the magnetic field has th@rease. For our field strengths in Fig. 11, the initial angle of

greg:ﬁst gf{ect Otf‘ thfemi £ th ; b it the orbits trajectory in the direction of the electric field will
erinteresting teatures of th€ Spectrum can be pointegy, approximately 65°. The corresponding wave function

out by closer inspection of the resanances of t@q)el.e.., the . does indeed show signs of a localization or scarring about
resonances that are mostly unaffected by the electric appl|e¢ﬁs trajectory

field. In Fig. 11 we display three consecutive resonances o
this type, enlarged from Fig. 6, which show regular spacings
between them; in fact, between the first and second reso-
nances, labeled in the figure by and g, respectively, we One of the great advantages of our method is that it can be
measured a spacing of 065, and between the second and applied to calculate photoionization spectra of atoms in par-
the third, labeled by a a value of 0.68. was found. This allel electric and magnetic fields of any strength and over

spacing suggests these resonances are connected with resgtended energy regions. We show in Fig. 12 a spectrum
nances observed in the magnetic field alone case, which oobtained at laboratory strength fields for photoionization

curred at regular spacings of 064 [24,25. These reso- from the ground state of hydrogen in parallel electric and

nances are quasi-Landau type resonances and are relatedmagnetic fields of strengths 0.668 kV cfand 6.11 T, re-

C. Spectra at laboratory strength fields
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also used as a guide to the number of channels that play a
role in any given energy region and particularly at the match-
ing radius. The adiabatic approach can also be used to gen-
erate an efficient angular basis for tRenatrix method when
there are not multiple curve crossings.

We produced spectra for a hydrogen atom in parallel elec-
tric and magnetic fields for both laboratory and strong fields.
In order to obtain information about the resonance structure

Cross section (Mb)
o

in the spectrum, we calculated the spectra obtained for fixed
| LLL o] electric field and varying magnetic field and for fixed mag-
_Q/,25,';7,00_6_75_6_50_6,25_6,00_5_75_5,50 netic field and varying electric field, around the spectrum
Energy (10™a.u.) obtained for electric and magnetic fields of 51.4 kV ¢cm

and 470 T, respectively. We were able to identify three dif-
FIG. 12. The photoionization spectrum corresponding to theferent types of resonance. Their behavior was explained by
transition from the ground state to the=0 final states of hydrogen calculating the probability densities of the corresponding
in parallel electric and magnetic fields of field strengths waye functions. The resonances that shifted with increasing
0.668 kvem* (1.3x10 " a.u.) and 6.11 T (X10°° a.u), re-  field have a density mainly localized along thexis and so
spec.tlvely. The dotted line represents the Stark saddle energy pllf%spond to any variations of an electric field, which is orien-
the first Landau threshold. tated along the axis; the resonances shifting in the positive

. L , nergy direction have their probability distribution localized
spectively. When considering such strength fields, we musin thgg—z side and the onesr,J shiftingyi/n the negative energy

select a greater vajue of matching radus the effect of the direction have their distribution mainly on thez side. The

Coulomb potential will dominate over a larger distance. We . o
selected a matching radius f=4000 a.u. and obtained resonances unaffected by the changing electric field have

converged results their distributions concentrated in the direction perpendicular
' to the z axis and are fairly symmetric aboat=0. All the
resonances were shifted to a higher energy when the mag-
netic field was increased, due to the positive nature of the
In this paper we presented a general method to evalua@@magnetic term. We showed how our method works for
the photoionization cross section of an atom in parallel aplaboratory strength fields by calculating the spectrum of hy-
plied electric and magnetic fields of arbitrary strength. It isdrogen in  parallel electric and magnetic fields of
based on a previous method developed for an atom in a ma§-668 kV cm'* and 6.11 T, respectively. .
netic field only but takes into account the different problems  In the future it would be of interest to systematically study
faced in the parallel fields case, as for example, the breakingi€ Photoionization cross section and particularly the behav-
of the z symmetry in the associated Hamiltonian and thelOf (_)f the resonance widths near the ionization threshold over
difficulty associated with defining the asymptotic solution @ Wide range of field strengths, in order to compare quantum-
due to the combination of Coulomb and electric fields. We inmechanical calculations with the behavior predicted classi-
fact investigated three different possible forms of asymptotically by lhraet al. [26].
solution and found that the modified Airy functions proved
to be the most suitable for our purpose. We have found that
the adiabatic curves for this particular problem have been
very useful giving a physical understanding of the problem, We thank Professor P. O’'Mahony for useful discussions.
and allowing us to consider two different classes of prob-A.S.J. was supported by EPSRC, UK. We thank the EU for
lems, depending on the relative strengths of the applied pafinancial support under their Human Capital and Mobility
allel fields. In the method presented here, these curves asnd Human Research Potential programs.

VIIl. CONCLUSION
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