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Free precession decay in selective reflection
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A theory of free precession in selective reflection is presented. In contrast to standard theories of free
precession in which transmission signals decay in a time on the order of the inverse of the inhomogeneous
width, the selective reflection signal decays in a time of order of the inverse ¢iotinegeneouwidth. Both
short-pulse excitation and continuous-wdae®/) excitation are considered. In the case of cw excitation, it is
possible to observe beating between the contributions to the signal that are first and third order in the amplitude
of the excitation field.
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I. INTRODUCTION rates for Bloch vectors corresponding to different velocity
subgroups of atoms. What may not be appreciated fully,

Selective reflection at a dielectric-vapor interfdde-3]  however, is that the rapid decay depends critically on the fact
has proven to be an interesting technique for probing théhat there is a symmetric precession corresponding to atoms
effects of collisions between atoms in the vapor and the dimoving with both positive and negative velocities. If this
electric surface, as well as collisional effects in optically Symmetry is broken, it is possible for the linear response to
dense medid4,5]. There are basically two features of the last for a time equal to the inverse of themogeneoudecay
atom-dielectric interaction that are important, the van derate rather than the inhomogeneous d®ppler width.
Waals interaction between the atoms and the dielef@c Since selective reflection provides exactly this type of sym-
which modifies the atomic response and collisions with thenetry breaking, one expects to see a qualitatively different
surface that quench any atomic excitation and change theP response in selective reflection than in traditional FP.
velocity of the atoms. There have been several studies ofhis slow decay is the transient analog of the sub-Doppler
these phenomena including both lind&3] and nonlinear  structure in selective reflection in the frequency domain. The
interactiong 7—9] between the atoms and the incident fields.response for short-pulse excitation and the linear response
One somewhat surprising feature in the linear response is f@r cw excitation turns out to be the same for atoms ap-
sub-Doppler structure that manifests itself in selective reflecproaching and leaving the interface, as in the frequency do-
tion [1—4]. This feature can be attributed to wall collisions main[2—4]. The third-order response for cw fields differs for
that quench the atomic excitation and change the atomic veatoms approaching and leaving the interface, and it is pos-
locity. Owing to the quenching and the velocity change,sible to observe beating between the first- and third-order
there is a fundamental difference in the response of atom&sponses.
moving towards or away from the interface. Despite this
asymmetry, the contribution to the reflected field from atoms
moving towards or away from the surface is the same in
linear response for a low-density vaga;3,7,10.

Most of the studies of selective reflection have involved It is perhaps useful to recall the standard FP transmission
continuous excitation by an incident field. In this paper, weresults for both short pulse and cw field excitatidd]. In
consider selective reflection involvingansient fields. In  both cases, the atoms are modeled as having two levels, 1
particular, we calculate the free-precessi®®) signal for and 2, separated in frequency by The decay rate of the
atoms in the vapor excited by pulsed or cw excitation. In theupper level is denoted by,, the coherencp,, decays at rate
case of cw excitation, the transient response is achieved by and the populationgd;;+ p,,) is conserved.
sudden turning off of the field—only the response to third  Short pulse excitatiomAn atomic vapor is irradiated with
order in the excitation field is considered for the cw case. Ifa field having electric vector
the effects of wall collisions are neglected, the FP response
for short-pulse excitation or following cw excitatigm lin-
ear respongdasts only for a time equal to the inverse Dop-
pler width (ku) ~! associated with the vapok € w/c, where
 is the atomic transition frequency ands the most prob- wherek,=Q/c~Kk is the field propagation constaif}, is the
able atomic speedIn the Bloch vector picture, this rapid field frequencyE is the field amplitudg¢assumed real f(t)
decrease in the FP signal is attributed to different precessiois the pulse envelope function centeredat0 having tem-

poral width 7 normalized such thaf”_.dt f(t)=7, and c.c.
stands for complex conjugate. It is assumed thakkur
*Permanent address: Michigan Center for Theoretical Physics ang€1 and that|A|r<1, whereA=Q—w is the atom-field
Physics Department, University of Michigan, Ann Arbor, Ml detuning. This field gives rise to a polarization in the vapor
48109-1021. that can be written as

Il. FP TRANSMISSION SIGNAL NEGLECTING WALL
COLLISIONS

E(Z,t)=21Ef(t) ekoZ 2y cc.,
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P(Z,t)=11P(t) ez 4 ¢ c. o cw excitation..ln t_his case a cw field is applied up until
timet=0, at which time it is abruptly turned off. At=0, to
=TuMpan(t) €*Z M cc], third order in the incident field, the density-matrix element

) ) ) ) }321(v,t) has achieved its steady-state value
where u is a dipole matrix elementaken to be rea) N is
the atomic density, an_d>21(t)_=<p21(\_/,t)) is a density- PV =pL W)+ (v), @)
matrix element, written in an interaction representation, av-
eraged over the velocity distribution

where
W(v)= o g vi? 1) —iy
a 24312 : A 4 S
(7TU ) le( ) (’)/_|A)+|kUZW(V) (8)
In turn, the polarization field gives rise to a signal field and
E{(Z,t)=11E4(t) 22 ¢ cc.
~@3) o 4ix3y
Using Maxwell’'s equations, one can relate the signal field to  p31'(V)= 2 W(v).
the polarization as Yol (y=iA) +ikv [ y?+ (A~ ku,)?] ©
ik L
Es(t)= 2_50.[0 dZ P(Z,1) For t>0, one finds
IkatW(v)
iNu 1)ty = —(y—id)t f 7
=" lolb), pi(=—ixe N TTA) Fike,
i 2
where _ X yZ1A Y. y—iA
I ku\/;ex;{( ku 1=¢(3 27k /)
L ~
|o(t)=kf0 dZpxa(Z,t) 2 (10

where ®@ is the error function. The linear response in this

and L is the sample length. The radiated signal is propor- case also decays in a time of ordémj~2, since, fory>1,

tional to|1|%. In order to neglect superradiant collective ef-
fects, we assume that\(?L) (y,/ku)<1 [12].

The evolution equations for density-matrix elements are - ex;{(%)z [1 q;(; y;lle)
dpar/dt=ix[2p~ W(V)]= 7(0)p21, (33 N
dpoa/dt=ix[po1— 12l W(V) — ¥2p22, (3b) - w—_lA
wherep,=p3;, x=—(nE/24) is a Rabi frequency, and 2 ku
2(v,)=y—iA+ikv,. (4) For y/ku<1 and|A|/ku=<1, the third-order response is

given by
It is easy to show that, following excitation by the pulse,
PR(t)=e (b

Pog(t) = —(i/2)sin(2X1-)e*(7*iA)‘J’ dv e kvaw(v)

4i 3 W(V efikuzt
dev X7 yYW(V)
Yl (

B i P 2 _ 2
:_(|/2)S|r’(2,\/7’) e—('y—iA)t(ll\/;)f dxe—iyxe—x2 Y IA)+|kvz][7 +(A kl)z) ]

= —(i/2)sin(2y7) e (1Dt gy (5)

’ )(2_7) \/;e—AZ/kzuze—Zyt. (11)
y?ku/ \ 72
where The third-order response decays in a time of ordewyl1ithe

y=Kkut. (6)  velocity subgroup of atoms havirlg ,= A= y provides the

B major contribution to the third-order response. These se-

From Eq.(2), it follows thatl ;=kLp,4(t); as a consequence, lected atoms act as lromogeneousample, having charac-
the FP signal decays in a time of orddwj . The factor teristic frequency widthy. Note the absence of a facte!;
e'“tin Eq. (5) is indicative of the fact that the atoms radiate in the laboratory frame, the selected atoms radiate at the laser
at the atomic frequency. frequency.
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For both short-pulse and cw excitatidin linear re- and cw excitation, there is no contribution to the polarization
sponsg, there is an important cancellation in the if Z<uv,t for atoms moving to the right, since an atom arriv-
contributions from atoms having,>0 andv,<0 for times  ing at positionZ at timet must have collided with the inter-
y>1. As is seen below, in selective reflection, this cancellaface atZ=0 at a time {—Z/v,)>0; as there is no external
tion no longer occurs and the linear response, FP signal pefield for t>0 and since any atomic state coherence is de-

sists for timesy>1. stroyed at the interface, an atom arriving at,t) for (Z
—v,t)<0 necessarily is in its ground state. Similarly, there
ll. SELECTIVE REFLECTION is no contribution to the polarization ifL(—Z)<—wv,t for

) ) _ _ ~atoms moving to the left.
We choose a geometry in which the dielectric-vapor in-  gport-pulse  excitatign yr<kur<1;|A|7<1. In this

t_erface coincides with th&=0 plane, with the vapor CON- case, E(t)=Ef(t). In analogy with Eq.(5), the density-
fined between the plan@s=0 andZ=L. At Z=L, thereis a matrix element?)ﬂ(z,t) is given by

second vapor-dielectric interface. For simplicity, it is as-
sumed that the incident field is totally absorbed at this sec-
ond interface[13]. The field entering the vapor from the p,y(Z,t)=—(i/2)sin(2x7) e*ﬂJ’ dve kvZW(v)
dielectric is given by
R _ X[O(—v,)O(L—Z+v,t)+0O(v,)O(Z—v,t)],

E(Z,t)=21E(t)e®*Z M icc,, 14
whereE(t) =[2n/(n+1)]E4(t), nis the index of refraction
of the dielectric, and4(t) is the incident field amplitude in
the dielectric[E4(t)=0 for t>0]. It is assumed that the E=y—iA, (15)
vapor is optically thin over a distance=2m/k. The coher-
ent response in the backward direction constitutes the reand®(x)=1 for x=0 and is O otherwise. The integrél3)
flected signal. This response is limited to a diffraction conecan be evaluated as
having an angle of ordex/a, wherea is the diameter of the
incident beam and =2mx/k,. The reflected field amplitude
in the backward direction, obtained from the Maxwell-Bloch
equations, i§3,7]

where

I= %sin(zxf)e—ftf dv (e e e O (~v,)

+ (eikuzt_ e*ikvztemkl-)@(uz)]W(V)

— 1 ik Ld e,ZikZ
Er_n+1 E_O o z P(Z,t) :%Sin(zx,r)efftf dv(eikvzt_efikvzteZikL)(UZ)W(V)
2 ik L . : City2 .
=—n+1' NMJ dZ %%p,y(Z,1), (12) =gsin(2yr)e” fe M [1-d(~iy/2)]
€ Jo

—eZK1-d(iy/2)]}, (16)

where P(Z,t) andp,1(Z,t) now depend orZ as well ast.
The reflected field can be detected by heterodyning it with
reference field. Here we calculate simply the reflected F
field intensity, which is proportional to

ssumingu/y<<L. It is interesting to note that the contribu-
§ons from atoms moving towards and away from the inter-
faces are equal, as [2,3]. The time scale for the decay is
now y~ 1, as can be seen from the asymptotic limit, valid for

S=|E,[2= _/\ﬂ)z“lz y=kut>1, given by
n+1 €o (i/2)(1+ezik")sin(2Xq-) e_(V—iA)t
- 17
where ks
D=k f 422, (13) Ihe factore'*! is a signature of emission at the atomic reso-
° ance frequency.

The reflected field given by Eq§12) and (13) originates

It is assumed that after a collision at an interface, atomdrom the slab of vapor that was excited by the pulse, subject
leave in their ground state. Consequently, in calculating théo the boundary condition that there be minimal reflection at
atomic response, one must distinguish atoms moving to th2=L [13]. In most theories of selective reflectioks as-
right from those moving to the left. At any giveiZ ), the  sumed to have a small imaginary péki, and the assump-
contribution to the polarization from atoms moving to thetion ekL>1 is used to eliminate the contribution from the
right arises only from those atoms that collided with the e?! term. This approach is justified if the vapor is optically
=0 interface at timet—Z/v, while the contribution from dense over a distance equaliand if e<1. In this limit, the
atoms moving to the left arises only from those atoms thatontributions to the reflected field average to zero for atoms
collided with theZ=L interface at time+(L—2Z)/v,(v,is  having positionsZ= (k) 1. For simplicity, we shall assume
negative for atoms moving to the IgfFor both short pulse that terms involvinge?" can be neglectefil4]. The solid
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05 f ' ' ] L . .
i I+=ke‘§tj dzé'sz dve 20 (v,)
Ly 1 0

04l ~
; XO(Z—v,t)pr(Z—v,t,v,0)

. L—uv,t .
=ke’§tj dve'kvzt(a(uz)fo dz €%%p,.(Z,v,0)

(1), To(t/kL

(21)

represent the contributions from atoms havimg<0 and
v,>0, respectively.

For atoms having positiver,, an atom reaching 4t
=0) underwent a collision at th&=0 interface and was
1t projected into its ground state at tinhes —Z/v,. For this

velocity subclass of atoms, the solution of E¢3). to third

FIG. 1. Graph of the selective reflection, free-precession signabrder in y is
[I(t)| as a function ofyt for pulsed excitatior(solid line) and the
conventional free-precession transmission sigfig(t)|/kL for 7)21(Z,v,0;vz>0)=B(211)(Z,v,0;vz>0)+7)(2"i)(Z,v,0;vZ>O),
pulsed excitation(dashed ling The signal is independent of the (22
value of A provided|A|r<1, wherer is the pulse duration.

where

curve in Fig. 1 is a plot ofl1(t)| vs yt=(y/ku)y for 2yr _ 0 )
=m/2 andy/ku=0.05. For comparison, a graph of a conven- p5(Z,v,0;,>0)=— iXW(V)f e7tdt’
tional FP signal,|lo(t)| (divided by kL), is shown as a 2l
dashed curve in Fig. 1. z )

cw excitation. In this case, E(t)=E[1—©(t)]. The = —iXW(V)v;lfo e A Z=20ag 7!

density-matrix elemenp,;(Z,t) is given by

(23)
Ezl(Z,t)=f dv[O(—v,)O(L=Z+u,t) and
- p(Z,v,0,0,>0)
+0(v)O(Z-v,t)]p2n(Z,V,1) .
_ :2iX3W(v)f olt'e’f@z)"ft dt’e” 72" =)
:e—étf dve [ @(—v,)O(L—Z+v,t) ~Zlv, —Zlv,
~ t” _ " _sm ok "_sm
+0(0)0(Z-v)]pauZ-vA V0,  (18) Xf ,, dee 7T e ]
~2Iv,
where the result has been expressed in termsfZ i3 a3 (%,o, Py
—u,t,v,0), which is a function ofy=—(uE/2%). The =2ix"W(V)v, fodz e eEm2IN
density-matrix elemenip,,(Z—v,t,v,0) differs for atoms
having positive and negative,. Combining Eqs(13) and % fzrdzr/ef'yz(Z'*Z")/vz
(18), one finds 0
I=1_+1., (19 % f Z"dzm[efn(vz)(z“zm)/vurefn*wz)(zwzm)/vz],
0
where (24)
—aft i o Combining Egs.(21)—(24), assumingyL/v,>1, and going
_ &t ikZ ikvt _ ’ z y
I-=ke fo dze fdve 7O(~va) over to dimensionless variables, one finds after considerable
algebra,
><@(L—Z—l—vzt)pzl(z—vzt,V,O) |+=|(+1)+|(f’), (25)
: L :
=ke*§‘f dve'k”zt®(—vz)f dzZ é%%p,(Z,v,0) where
—vt
T a—ét o a— X2 aixy wa—X2a—ixy
(20 I(f)z)(e f e~ ('a dx—ez”‘Lf idx,
2Jm | Jo E—ix 0 E+ix
and (269
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4}3e—§t

2w
e &M (y—2ix)

0 (£-iX)%(&" —3ix) (72— 2ix)
X 2 1

. —X“a—iX

ok Y d e e ™
e X—— ~2. /X 2
Y2Jo E+ix  y+(A—X)

(26b)

3=
+

y=kut and 8= B/ku for any variables.

From Eq.(21) it is seen that the integral ovet can be
considered to be a function &f =L —v,t. For atoms having
negativev,, one can change variablds,——v,,Z2—Z
—uv,t] to express the integrand in EO) as a function of
L’ and use the iterative solutions of E@S) to show that

|_(§)=—e®™ 1. (&)]*. 27
In this manner, one finds
=10+ ®) (28)
where
T A€t o —x2 ixy o —x2 —ixy
I(_1)=Xe feN (_3 dx—ez”‘Lf ;dx =1,
2 7 | Jo E—ix 0 E+ix
(299
~3.- ¢t
@A -
2
Y f“’d e ey 1
— X— = =
Y2 Jo E—ix [P+ (A+x)?7]
X o
2iij°°d e e ™(y+2ix)
—e X— = =
0 (E+ix)2(& +3ix)(y,+2ix)
(29b)

Let us analyze the linear and third-order contributions

separately, again neglecting contributions from -

terms. The linear response is the same for the atoms movin

in both directions. Explicitly, one finds

T A=t o,y —x2 ixy
e e e
1= D4 =X J dx. (30

m Jo E—ix

In general, this integral must be evaluated numerically; how- 02
ever, fory>1, it is possible to obtain an asymptotic expres-
sion. Fory>1, the major contribution to the integral comes
from values ofx<1, unless a resonance denominator ap- 09
pears in the integrand. The integrand contains an energy de-

nominator of the fornj y—i(x+A)]. ForA>0, there is no

PHYSICAL REVIEW @8 043410

o e—xzeixy 0 e—xzeixy
X= —dXx— —dx.
— g_lx —

o E—iX

o e—xzeixy
[
0 &—iX
The first term has been evaluated as Hd) and does not
contribute fory>1, while the second term no longer has a

resonant denominator. Thus, regardless of the sigh, dor
y>1 the major contribution to the integral comes from val-
ues ofx<<1, and one can approximate the linear response as

|(1>~}e_§tjwﬂ
m Jo E—ix

iy -
dx=%El<§y>. (3D)

whereE; is the exponential integrak,(z)= [ (e */x)dx.
For [€ly>1,

T (32

The signal is emitted at the atomic resonance frequency and
decays more rapidly thare™”!, but less rapidly than
e (kup?/a.

We now turn to the third-order response. In the perturba-
tion theory limit, (2y/y,)(x?/y?)<1, the third-order re-
sponse will always be less than the linear respansess
there is a contribution from a resonant denominator. The
presence of a resonance denominator allows the third-order
response to be comparable with the linear response within a
certain time window. It is easy to see from Eg6b) that no
such resonance exists for the atoms havigig 0, if the &'k-
term is neglected; thus, one can set

1®~0. (33

The first term of Eq.(29b) for I® contains a resonance

denominator, but only foA <0, corresponding to atoms that
have a velocityv,<0 that brings them into resonance with
the field. Thus the only possibility for a significant contribu-
tion from the third-order terms in the perturbation theory

1.0

0.8

0.6

HU]l3

0.4

1t

FIG. 2. Graph of the selective reflection, free-precession signal

resonance; on the other hand, B0, one can rewrite the |I(t)| as a function ofyt for cw excitation wherA =A/ku=—1

integral as

andy= y/ku=0.05. Note thay=kut= yt/y=20yt.
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A =1, respectively. The third-order response is at most 20%
of the linear response for these parameters and there is no
oscillatory behavior. To a first approximatiol(t) is given

by Eg.(31). There is a rapid initial falloff of the signal in a
time of order ku) ! followed by a slower decay that varies
ase” "/t for sufficiently long times. The signal strength at
t=0 in linear response is given by

~ 32
0= X [m{1- 0@} +iEL®)]
2\Jm
and is largest foA =0.
FIG. 3. Graph of the selective reflection, free-precession signal IV. DISCUSSION
|I(t)] as a function ofyt for cw excitation whend =A/ku=0 and It has been shown that the decay time for free precession
y= y/ku=0.05. (FP) in a Doppler-broadened vapor is of ordgr! when the

FP signal is viewed in selective reflection and the vapor is
limit occurs for A<0 andys1 (for y=<1, the linear re- excited by either a short pulse or a weak cw field. This result
sponse is dominahtin the limit y<1, A~ -1, andy>1,it  contrasts with the phase-matched, coherent FP emission in
follows from Egs.(29b), (32), and(33), that the direction of the exciting field, which decays with a time

constant of orderku) ~*<+y 1. Moreover, beating between

At ) the first- and third-order response is possibla ifs of order
_e_+z()_() (ﬂ) e‘zze‘“/‘} (34 1. Of course, the FP signal in the forward direction is
At 2\ y) | v, ' much larger in magnitude than that of selective reflection.
The relative magnitude of the two fields i\, since the

) o o entire vapor contributes to the forward signal but only a layer
The third-order contribution corresponds to radiation at thenaving length of ordei contributes to the coherent, selec-

laser frequency so there can be beating at frequén®e- e reflection signal14]. In general, there are contributions
tween the first- and third-order contributions. This feature is the selective reflective signal resulting from the boundary
seen in Fig. 2, wherd (t)|/x, as given by Egqs(19), (25,  conditions at both interface@lthough results were plotted
(26), (28), and (29), is plotted as a function oft for 3  neglecting contributions from the interface z¢L). If the
=0.05, (/7)%(2y/y,)=0.2, (2y/y,)=1, and A=—1. loss in the medium i:; negligible, there is a symmetry be-
The first- and third-order contributions are comparable in théween these contributions that can be expressdd @s) =

range 0.5 yt<1.5, as is evidenced by the fact that the sig-— € L1 +(—A)]*. In this limit, the selective reflection sig-
nal strength falls close to zero as it oscillates. nal is a symmetric function oA, if interference terms be-

tween the two contributions are neglected. There is also
spontaneous emission emitted in the backwards direction.
04 ‘ : ‘ : ‘ One can estimate that the ratio of spontaneous emission into
the diffraction cone of the selective reflection signal is less
than (WA2L) ~(ku/vy,)(L/a)? times that of selective reflec-
tion [15]. Since M\%L(y,/ku) can take on a maximum
value of order unity if superradiant effects are to be ne-
glected, one must choose>L to have the selective reflec-

xe "

R

Similar plots are shown in Figs. 3 and 4 fAr=0 and

0.3

w2 tion signal dominate. Alternatively, one could measure the
§°'2 selective reflection signal using heterodyne and phase-
sensitive detection to eliminate the spontaneous-emission
contribution altogether.
0.1
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