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Classical description of angular-momentum motion due to optical pumping
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The Wigner representation of angular-momentum orientation in the classical lidi#-dnhas been used to
derive an equation of angular-momentum motion in the case of a closed two-level system interacting with an
arbitrary polarized radiation. This equation enables us to carry out a theoretical analysis of angular-momentum
motion and consider final states of the quantum system for all types of dipole transitions. We have found that
in the case of a zero magnetic field in the final state of the systemwith or J—J+ 1 optical transition, the
angular momentum is directed along or opposite to the wave vector of the radiation depending on the sign of
the polarization ellipsity, while for a linear polarization the angular momentum is isotropically distributed on
the plane orthogonal to the polarization vector. ForiheJ—1 transition two directions of angular momen-
tum are possible in the final state. These directions are determined by the ellipsity of polarization. The spatial
size of the final distribution of the angular momentum has been defined by the quantum uncertaihtpf 1/
the angular-momentum orientation. In the case ofltheJ—1 orJ—J, transition particles come into “dark”
states while for the]—J+1 transition they occupy the “brightest” state. In the presence of a nonzero
magnetic field, particles witi—J transition have in the final state only one angular-momentum orientation,
i.e., along or opposite to the direction of the magnetic field depending on the polarization ellipsity sign. For the
J—J+1 transition both directions are possible, i.e., along and opposite to the magnetic field. In the case of the
J—J—1 transition the directions of the angular momentum form a cone around the magnetic field.
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[. INTRODUCTION does not exist, so that in this case we have got a pure effect
. . . . of angular-momentum motion.
Spatial orientation of the atomic angular momentum or . .

In the present paper we consider a process of the orienta-

optical pumping between ground magnetic sublevels is fion of the closed two-level system with a large valueJpf
well-known phenomenoft.,2]. The angular-momentum mo- \ yicn interacts with elliptically polarized light. The condi-

tion is a result of the repeated cycles of the resonant absorrﬁ-on J>1 enables us to use the classical description of the

tion of the polarized light followed by the spontaneous emis'angular-momentum motion based on the Wigner representa-

sion. Finally, after a long time of interaction with light, (o of rotational motion[7,8]. This approach significantly
atoms come into their final stationary states. If the reIaxatlorgimp"ﬁeS the solution of the problem in comparison with a
is only caused by spontaneous emission, then for some tyP@Riantum-mechanical description.
of optical transitions {—J—1,J—J) the final states coin-  The closed two-level model is valid rather more for atoms
cide with so-called atomic stationary coherent std8sin  than for molecules. For example for alkali atoms, part of the
these states the atom does not interact with polarized radiaptical transitions of thé@, line are closed. Unfortunately,
tion (“dark” states). For an elliptical polarization of light almost all alkali atoms in the ground state have a small value
and an arbitrary value af, exact solutions for the stationary of total atomic momentuniF=1+J, herel is nuclear mo-
coherent states have been found in RESgY]. However, this  mentum andJ is total electronic momentum. Nevertheless
theory only analyses final atomic states and cannot descrilibe approximatior->1 can be applied for a few atoms like
angular-momentum motion. The analytical description of theFr,pg and Fpyo having sufficiently high value of nuclear mo-
optical pumping process of magnetic sublevels is only posmenta:l =7 andl =6, respectively. Note that francium iso-
sible for a smallJ, such as]=0,1/2,1[5]. topes are the best candidates for parity nonconservation ex-
In recent work[6] the process of the interaction of an periments[9]. Also we assume that there are a few atoms
open two-level quantum system having a large value of aninteracting with light and radiation trapping is negligible. In
gular momentumJ~ 10) with elliptically polarized light has particular, this case is typical for a francium magneto-optic
been investigated by numerical methods. The open systetrap[10].
means that a spontaneously emitted photon does not bring Here it is worth noticing that the “classical” approach in
the system back to its original ground state but populateRef.[6] does not correspond to a correct classical description
other levels that are not affected by radiation. This case isf angular-momentum motion because the equations used in
typical for molecules. The result is that this interaction pro-Ref.[6] for the density matrix in the coherent-state represen-
duces an anisotropic distribution of angular-momentum oritation[7,11] are only valid in the limit ofJ]—. However it
entation in the ground state. However this anisotropy is ams easy to show that in this limit there is no angular-
effect of the population depletion of the open system causetchomentum motion caused by a resonant interaction with
by an anisotropy of the interaction potential, rather than adight. Indeed, for each cycle of the resonant photon absorp-
actual effect of angular-momentum motion. For the closedion followed by the spontaneous emission, the orientation of
two-level system the population depletion of the ground staté¢he angular momentum is changed by the andl@
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~AM/J~1/) (where|AM|=<1 for the dipole optical transi- of optical transitions and results have been generalized for
tion). In the limit of J—« we haveA #=0, which means the case of a nonzero magnetic field.

there is no angular-momentum motion. Therefore, in the
classical limit, for a correct description of angular- !l EQUATIONS FOR ANGULAR-MOMENTUM MOTION

momentum motion we have to assume a large but finite  consider a model system of the two-level system with
value of J. Formally it means that in the equation for the gngular momentd, andJ,, for the groundn and excitedn
density matrix we have to take into account terms at least odtates, respectively, which degenerated on the projections of
order 10. These additional terms have a differential form angular momentaM,, M. The resonant electromagnetic
and the procedure to obtain them is presented in Réf8].  field induces the transition between the levels and populates
Here after we show that angular-momentum motion dethe levelm. Let us assume that the system has one only
pends strongly on the polarization of light and the type of therelaxation channel, i.e., the excited leval spontaneously
optical transition. Due to the motion the system comes intalecays back to the ground level
dark states J—J—1,J—J) or into the brightest stateJ( The dynamic of the quantum system is described by the
—J+1) for an arbitrary polarization of light. Final orienta- equation for the density matrix, which in theJM represen-
tions of the angular momentum have been found for all typesation has the fornj12]

d i
a +rm) p(JmM m|‘]m|\/I "n)z - gME [V(IuM ml‘]nMn)p(‘]nMn|‘]mM r,n)_P(‘]mM ml‘]nMn)V(JnMn|JmM r,n)]r

d i
ap(‘]nM n|‘]n|vI r,1) == g ME [V(IM n|‘]m|vI m) p(JmM m|‘]n'\/I r,1) —p(IM n|‘]mM mV{IaM m|JnM r,1)]
m

Im:Mm Jo .M/ ,
tlm 2 Cyun,C G (OnMlInMy), (1)

Mm.Mp.0
d 1 i , ,
dt + Erm+ fomn|p(InM m|‘]nMn): 7 2 V(InM m|‘]nMn)P(‘]nMn|‘JnMn)
Mg
=2 pIuMulInM )V (InMp 3Mp) |
M
|
Her.ewmn is the frequency of the optical transitior- m and V2k+1
I, is the rate of the spontaneous decdyJ M |J,M,) is P33, #,0,0)= D> (-1 M
the matrix element of the electrodipole interactidf= «aMpMz VI3 +Jp+1
—d&(t), dis the dipole moment, ané(t) is the monochro- x.q K%
matic electric field X Ca M9, -m,P03,-3,( .0, )
Xp(J1M1[IMp), 3
E(t)=Ee "'+ E*e'", ()

where Dgﬁl,J2(¢,0,a) is the Wigner D matrix [13],
whereE is a complex vector of'the amplitu'de of the electri- ps,3,(¢,0,a) is the Wigner function in thepfa representa-
cal field. The last term in the right-hand side of E#) for oy & ¢ are azimuthal and polar angles of the angular-
density-matrix elements of the ground state, describes thgomentum orientation, and the angtedefines the position
contribution into the ground state, related to the spontaneouyss the rotator axis in the plane orthogonal to the angular

InMm . ;
decay of them level. CJn,M is the Clebsh-Gordan coef- momentum. Note, |le:\]2:\]’ accordmg to Eq(3), the

1o

ficient [13]. ! Wigner function is independent of the angte so that

Further, instead of th&M representation we introduce the pJi(¢,6) means a spatial distribution of angular momentum.
Wigner representation of rotational motion. For this specific Equations(1) in the ¢6a representation take the forf8]
problem it is more convenient to use the Wigner representa-
tion of the angular-momentum orientatipf| or ¢« repre-
sentation8]. The transition fromIM to ¢« representation
is given by the transformatiof8]

d . .
dt + Fm) Pmm= — iGIWIZJGan+ ie_VV/ZJG*Pmny
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d d

apnn:ie_iW/ZJGan_ieiW/zje* Prnt L nPmms Epnnzo-
d T, o It means that there is no motion of angular momentum in the
FT 7—I(w—wnm) pmn=—1€"2Gp, limit J—o as it was mentioned above. Only the terms of
order 10 in Eq. (7) give the correct classical limit of the
+ie WG, angular-momentum motion. We leave in E@) terms with
accuracy up to TP, because they play the main role in the
pom=pEo 2=+ da+1. (4) determining of the space width of the fitlal distribution of
angular momentum. Therefore, the operdtgy—TI',,, can be
Here we use notations written in the form
pklszle(¢,0,a), Fm—Fm: Jm_Jn \]m_Jn n iA, (8)
I, J 2J sF

Vi o, (é.0,0) . ;
G(¢,0,a)=————¢'t whereA is angular Laplaciars=2 for J,,=J,,, ands=4 for

h Jn=J,=1 (Appendix A), and it suffices to findo,n,Pmm
from Eq. (4) with accuracy 1J

=2 G,DL; _; (6,0,0)=C(¢,0)en e,

o n m | . W .

Pmm= — T (Gpnm—G* pmn) + 23T (GpnmtG* pmn),
m m

G(¢,0)=2 G,D;; _; (4,6,0), i W
Pmn= — F_Gpnn+ FGPnn! ©)
m m
Amn
S LI S 2 W
hy2J+1 pnmzr_G*pnn+ r G*pan-
m m

wheredm, is the reduced matrix element of the dipole mo- First of all we derive an equation for angular-momentum

ment, andg,(o=-1,0,1) are C|Icu|ar components of the motion in the classical limit holding in Ed7) the terms of
electric field vectorE. The termI,py,y describes the in-  order 14 only. From Eqs(7), (8), (9) we obtain
come to the ground state due to the spontaneous decay of the

excited atoms in théfa representation. The explicit form of d d d

- — pont ———u +—Uypnn=0,
the operatof,, is given in Appendix A. dtPrn™ Gcosg costPnn™ g BePnn

The action of the operatat is defined by the rul¢8]

2 '(a%* 62|~ 2(3,- 3,/ cost
J J J Ucoso= 3 | 1| 51 - - m~— Yn Cos/v |,
0 =|—- — | \do d¢
WPQ ((9¢> Coseaa)P&cosaQ
2i | oG .. . 9G*
P P P U e | 10
- 0 -— ¢
acosgp((ng COS@,M)Q- (6) JT| d cos dcosf

For simplici ider th £ th Equation(10) looks like an ordinary equation of continuity,
B or simplicity, consider the case of the exact resonancghich means the conservation law of the particle number.
= wmy and the limit of the weak intensig <I'. This limit  According to this equation the redistribution of particles

means that the population of the excited level is alwayqJpon their angular-momentum orientatiéf, 6) occurs due

much less than one for the ground level so that we can ne, fluXes ppUicesy @Nd patls along coordinates cesand ¢,

glect pyy everywhere in the comparison wigiy, and omit  rognectively. In the approximation used, the population of
the time derivatives in the equations {8, pmn- SUMMING  the excited level is related to one of ground level by the
up the equations op,,, and p,,, in this approximation we equation
come to the equation
4|G|?
Pmm™ 2 Pnn - (11
m

d (W A
ﬁpnn:2 SW(E (GpamtG* prmn) + (U= L) Pmm-

(7)  From Eq.(10) it follows that the characteristic scale of the
_ _ _ _ velocity of angular-momentum motion is~|G|%/JT,.
This equation describes the dynamics of angular momenrhjs is quite clear because every spontaneously emitted pho-
tum. In the limit J—o~ we getT',=T, (see Appendix A  ton can change the angular-momentum projectior M|
and after that Eq(7) yields =<1 and, subsequently, the angle of momentum orientation
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by A6~AM/J~1/J. The number of photons spontaneously a)
emitted per unit of time i$" ,0,ym- Thus, Eq(11) enables us U,
to estimateu~ A 6T pmm~|G|2/IT .

In the system of coordinates, where thexis is directed
along the wave vector and thxeaxis coincides with the ma-
jor axis of the ellipse of the wave polarization, the values of

velocitiesuc,y andu,, for all possible dipole transitions are \/ \/ 0

In=J,+1:

Sir? 9 5 5
Ucosgo =3 L|G-1/*(1+c0s6) — |G, 4|*(1~cos)
+2|G.,G_,|cosd cos 2], (12) U
2|G41G_y|
ud,—Tsm 2¢,
0 n
Jn=3J,: ]
2 sirf 0 ) 5
ucosez—HG—l' _|G+l| 1, (13
Jr,
U¢:0, . .
FIG. 1. The velocityu, as a function of anglep for (a) Jp,
Jo=3 -1 =J,+1 and(b) J,,=J,—1 transitions. Arrows show the points of
moesn convergence.
sir? 6 ) 5 N . :
ucosg=T[|G_1l (1—cosf) —|G,1|“(1+cos6) Due to our approximation, the Eq10) gives a &like
m distribution of particle angular momentum at the final state
—2|G,,G_,|cosé cos 2], (140  (6=0). To find the real spatial distribution of angular mo-
mentum we have to take into account in EGS, (8), and(9)
2|G,1G_4 the next terms of order 7. Moreover, it is easy to see that
Ugp=— Tsin 2¢. for the linear polarization|G_,|=|G, 1|) the velocityu.,sy
m [Eqg. (13)] vanishes so that for this particular light polariza-
Note that in this particular coordinate syste&g=0. tion the equation with terms of 37 should be used in order

to describe correctly angular-momentum motion. We show
later on that for this polarization, angular momenta in the
final state are always oriented along the plane orthogonal to
the wave vector. It is important to notice that 1 the
We start our analysis with the consideration of the opticalsmall deviation of the light polarization from a linear one
transitionJ,=J,. According to Eq.(13) there is no flux of that could be measured by valye&s_;|— |G, 1l/(|G_4]
angular momentum along. A motion exists only along +|G,;|)=1/J, forces angular momentum to take an orien-
cosé. We can see that.,,,>0 for anygif |G_4|>|G,4|. It  tation along or opposite to theaxis.
means that for any initial orientation of angular momentum it Now consider angular-momentum motion for the case of
moves towards the direction of the wave vector (@esl).  the optical transition),,=J,+1, Eq.(12). In contrast with
At the final point of the motion all particles have angular the transition],,=J,, in this case the velocity , is nonzero
momenta oriented along the wave vectér<0). The inter- andug,, is a variable quantity of anglé.. This makes the

I1l. ANGULAR-MOMENTUM MOTION AND THE FINAL
STATES

action strength is defined by the vall@|?, which is picture of angular-momentum motion more complicated.
2 However the remarkable fact that, does not depend on

sin” ¢ angle 6 enables us to consider the motion only along angle
|GI2="5—(IG_1|*+]G.4*+2|G_1G. 4| cos 2), E y alond ang

2 ¢. The velocityu, as a function of angle is shown in Fig.
(15 1(a). It is clear that all particles move with the angfeto-
wards then/2 or 37/2 angle for anyd. The velocityu s, for

tain |G|?=0. The result means that the particles come to the

dark state where they do not interact with light. Obviously, siré 0

for the light polarizatioG_,|<|G. ;|, angular momenta of Ucosa:N—F(|G—1|— |GG 1[+]|G 4]

the particles are oriented in the opposite direction of the

wave vector. +(|G_1|—|G44]) cosa]. (16)
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Ucosg Thus, for a quantum system with tldg,=J,—1 transition,
there are two possible final directions of angular momentum,
i.e., 0*,¢*=0,7. This conclusion is in agreement with the

exact solution for coherent stationary stafd<l| for the
\ X given type of the optical transition. In the particular case of
= — - linear polarizationNG_,|=|G 4|, we haved* = =/2, and it

means that the final angular momentum is directed along or
opposite to the polarization vector. Note that if the initial
distribution of angular momentum is isotropic then particles
FIG. 2. The velocityu.,sy [EQ. (18)] as a function of cog for  are gathered near these directions of the angular momentum
the J,,=J,— 1 transition. with the same numbégFig. 3(b)]. What final direction of the
angular momentum will be occupied by a particle depends
Thus we obtain thatu.,>0 for the light polarization only on an initial azimuthal angle. For example, if the

|G_1|>|G 1| but ucsy<O if |G_4|<|G,4|, for the arbi- initial value of angle¢ is within the regionm/2< ¢p<3/2
trary angled. Again angular momentum moves towards thethen the final direction of the angular momentum must be
z-axis direction(for certainty we assum¢G_4|>|G4]), 0*, ¢*=m. It is easy to find by direct calculation that

and in the final state all angular momenta are aligned alonfG(6*,¢*)|2=0 for the J,,=J,—1 transition and, conse-
the z axis (i.e., along the wave vectprd=0. For theJ,,  quently, the final state is a dark one.

=J,+1 transition the interaction strength is As mentioned above E10) gives as-like distribution of
5 ) angular momentum for final states, because this equation was
Gl2=|G |2(1+cosﬁ) e |2(1—cosﬂ) derived within accuracy of 4/ To describe the final distri-
-1 4 +1 4 butions in more detail we have to take into account the terms
) of order 102. This equation within acceptable accuracy can
n sir® 0|G G.,|cos 2 17) be obtained on the base of Edg), (8), and(9). Here, for
2 Sl ' simplicity, we consider the final distributions of angular mo-

mentum only in two cases of a circularly and linearly polar-
It reaches its maximal valy&|?,,,=|G_,J? for the final state ized radiation.
and it means that this state is the brightest state. For instance consider the circular polarizati@, ;| =0,
For the linear polarization of light the velocity,,s,=0 |G _4/#0 and the quantum system with the optical transition
[Eq. (16)]. This case requires separate consideration that id,,=J,,. In this case the final distribution of angular momen-

given below. tum satisfies the stationary equation

So, it is easy to see that the final orientation of the angular
momentum is identical for both,,=J, andJ,=J,+ 1 tran- ) ) , 0 2 d 5
sitions. The differences are in the path which the angular ~23/G|*Pnnt[Gl*——pntsin - |G|*pn,=0.
momentum uses to come into the final state. For dphe (20)
=], transition the angular momentum goes directly to the
z-axis direction whereas for thé,=J,+1 transition, the Since|G|?«sir? ¢ for the given light polarization and the

angular-momentum orientation moves on a more complitransition type, it is easy to obtain the solution of E20)
cated path. At first it comes to the convergent points of angle

¢ and then moves towards tlzeaxis. Another difference is 3[v3+cose Vi1

that for theJd,,=J,, transition the final state is a dark one but p,,=—| —— —_—

it is the brightest state for thé,=J,+ 1 transition. T v2+1 v2—cos6
At last, consider angular-momentum motion of particles (21)

with the J,,=J,,— 1 optical transition. According to Eq14) o .

the motion over angleb is independent of the angléand O normalization condition

particles are gathered near convergent poits- 0,7 [Fig.

Jv2—-1 JV2+1

J
~—e
a

—J6?
H

1(b)]. For these angle* the velocityu,ysy is f prnsinfdadg=1 (22)
nn .
Sir? 6
UcosoZZJ—rﬂG—ﬂ+|G+1|)[|G—1|—|G+1| Thus, we see that in the final state the angular momentum
should be distributed within the angle widt¥=1/\/J near
—(|G_4|+]G4|) cosh]. (18 the directiond=0 [Fig. 3(@)]. Note that the value 3/J char-

) . . ) o acterizes a scale of the quantum uncertainty of the angular-
This velocity as a function of cagis shown in Fig. 2. From  momentum orientatiofi7]. We can find that the same distri-
this picture it is clear that particles must be gathered near agytion of angular momentum is valid for the circular

angle %, which is defined by the equation polarization of light and),,=J,* 1 optical transitions.
Now consider the case of a linear polarization of light.
cosH* = [G-a[ =[G _ (19) We choose a coordinate system with #exis directed along
|G_1|+|G. 4] the polarization vector and, therefore, there is one only non-
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0 3 pan~ (1+cog ). (26)
The equation shows the distribution with two possible maxi-
mums: atf=0 andé= 7. For instance, for the angleclose

to #=0, this equation can be approximated as

a2
Pnn~€ Ja, (27)

x

FIG. 3. The final distributions of angular momentum f@  that describes the particle angular momentum directed along
Jn=3,+1,3,=J, and(b) J,,=J,—1 transitions for the elliptical the polarization vector and distributed within the quantum
polarization of light, andc) for the linear polarization in the case of uncertainty angle 1]3
Imn=J,+1, J,=J, transitions.

IV. ANGULAR-MOMENTUM MOTION IN THE CASE

zero circular componert, of the electric-field vector. For
OF A NONZERO MAGNETIC FIELD

the J,=J, transition the final distribution of angular mo-

mentum satisfies the equation Here we consider angular momentum motion for a non-
5 zero magnetic fieldH. In the system of coordinates with the
A|G|*pna=0. z axis directed along magnetic field, EQ.0) can be easily

Obviously, the solution of this equation |&|?p,,= const. generalized by the substitution

Because 0pmn|G|%pnn [See Eq(11)] this fact means that

in the final state the excited particles have an isotropic dis- i_, i+ wHi’ (28)
tribution of angular momentum. This conclusion is in agree- gt ot d¢

ment with Ref.[4]. Since for thel,,=J,, transition and the

linear polarization|G|?x=cog 6, the particles in the ground where w=puggH is the Larmor frequency of momentum

state have the distribution precessionug is the Bhor magniton, and is the Lande
factor for the ground state. We assume that the direction of
Prn®*COS 26, (23)  wave vector and the light polarization are arbitrary. We con-

sider the most interesting case when Larmor frequency is
and p,, is formally divergent atf=/2. This divergence much less than the spontaneous decayagteT ,,, but it is
indicates that for the correct description of angular momenmuych greater than the velocity of angular-momentum motion
tum in this particular case we have to treat the equation fofue to the interaction with lightp,;>|G|%/JT",,. In this case
pan (7) with more accuracy than J7. Nevertheless itis clear it is clear that Wigner functiop,,, averaged over the time
from Eq.(23) that in the final state the angular momentum isperiod larger than s, does not depend on the angle

distributed isotropically on anglé in the plane orthogonal From Eq.(10) it is easy to derive the equation fpf,,,.
to the polarization vectdrFig. 3(c)].

For a quantum system with thlg,=J,,+ 1 transition and P 9
for the I_inear-light plolarization we can derive the equation Eﬁmﬁ m(mosgﬁm)=0, (29
for the final distributionp,
) 2 002 J where
—2J|G|*cosbp,,+|G|*co ampm -
Ucosez_f Ucosp d . (30)
+sj 2 — 2 0
sir? 9(9CO30|G| Prn=0, (24

and the solution of this equation i6G|2sir? 6) In particular for thel,,=J, optical transition we obtain

2
pon(1+ 008 )" e BT (29 ALY (3D

Thus in the case of thd,,=J,+1 transition the angular
momentum is distributed isotropically within the plane or-so that if|G_;|>|G.,|, the value of the velocityi,.s, is
thogonal to the polarization vector. The spatial width of thispositive everywhere and it means that the angular momen-
distribution again is defined by the quantum uncertaint{d1/ tum moves towards the axis direction. Thus in the final
of the momentum direction. state the angular momentum of particles must be oriented

The case of the,,=J,— 1 transition can be easily ana- along the magnetic fielfFig. 5@]. It is important that the
lyzed by the replacemedt— —J in Eq. (24) so that instead velocity U, [EQ. (31)] does not depend on tH&, compo-
of Eq. (25) the final angular-momentum distribution has the nent of the vector polarization and its value is exactly deter-
form mined by the projection of the electrical-field vector on the
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a) _ Q) L4
Ucos
. oo S/.i”//\l
~—— cos ©
>
b) ﬁwse

FIG. 5. The final distributions of angular momentum f@
Jn=3Jn, (b) In=1J,, and(c) J,,=J,— 1 transitions for the elliptical

l/\ polarization of light in the case of nonzero magnetic field.
- \cios o* 1

T~ o6

0— 6* independent of its initial direction. Thus the final

distribution has the form of a cone with anglé at the cone

top [Fig. 5(c)]. Note, the angl&##* defined by Eq(35) does

FIG. 4. The velocityli,, as a function of cos for (a) J,, not coincide with one defineq by EGL9). In the particular

=J,+1 and(b) J,,=J,—1 transitions. case, for examplgG ;4| =0, this cone of angular-momentum
orientations is degenerated into one direction along the mag-
netic field. The picture is in agreement with the exact

plane orthogonal to the magnetic field only. This conclusionquantum-mechanical solutiofi4] for this special case of

is valid for other types of optical transitions. mutual orientations of the magnetic field and the polarization
For theJd,,=J,+ 1 optical transition we obtain of light.
Tonerm o 11621+ cos6) - G421 cost)]
Ucoso= 57 LG cosf) — —cosb)],
cos0 20r ! o V. CONCLUSION

(32

We have derived an equation that describes a classical
motion of the angular momentum of the closed two-level
system that interacts with a resonant radiation. The equation

|G, |G_4|? has enabled us to describe the behavior of the angular-
cosg* = [G_J2+]G. > (33)  momentum orientation on the basis of introduced velocities,
- i Ucosp @nduy, . As the result of this motion the system comes
This point is divergent because angular momentum moveito a final state, that is the dark one, fif=J,, Jn=Jn
towards 6—0 for the initial state with6<6* and 60— —1 transitions, but the brightest one for the=J,+1 tran-
if #>60*. Thus angular momenta of the particles aresition and the arbitrary polarization of light. The results have
oriented along or opposite the magnetic-field direction debeen generalized for the arbitrary mutual orientation of the
pending on what side of* it was in the beginningFig.  polarization vector and the direction of a nonzero magnetic
5(b)]. field.

At last consider the angular-momentum motion of the |n the present analysis we have used the approximation of

quantum system with thd,,=J,—1 optical transition. In  the weak light intensityG|<T',, however the proposed ap-

andug,sy as a function of co8 is shown in Fig. 4a). This
velocity is equal to zero at

this case proach might easily be applied in the analysis of angular-
Sir 0 momentum motion in the case of the high intensity limit
Ugoss= o= (|G _1|2(1—cos6) — |G 1|?(1+cosh)). |G|>T",. The results of this consideration will be presented
2Jr elsewhere.
(34)
We can segFig. 4(b)] that the angle defined by the equation
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where the velocityu..ss is equal to zero, is a convergent sions. This work was supported by the Russian Foundation
point and the angular momentum moves towards this angléor Basic ResearcliGrant No. 98-02-17924
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APPENDIX

The term of the contribution into the ground statdue to the spontaneous decay of the excited steltas the forn{12]

Jm,M ImMp,
Ty E, GJmMmMCJ”‘M PO Mol 3 M.
Mm,Mm,(r

Due to the transformatiof8) we can get this term in the following form

T pmml 06) =Ty 2 2 ji( 1)’ MiDEE(6.0.0C3 s Co 1(,ij§/1 P(IMlInM ).
’ (A1)
By summing overos in Eq. (Al), we come to
(23, +1)J2K—+
V23,1

fmpmm(ﬁ(f)):F E Eq —1)7n n—Mp Da"’(f)(d,’g,o)c q " (—1) It Imtx

B

o) Jrn,My|Jm, M
X !
I Jn p(Jm, m| m:Mm)

or, using the relation betweerj &ymbols and th&/ function[13], to

~ 2),+1)V2k+1
Poom 68) =T S 3 IW2KHL e D% ,6,0
Mm'Mr,n K,q 2Jn+1

1/2

(23— )23~ K)!
ViIn, 1, In)p(Im, Mm|‘]m- Mr/n) (A2)

x,q
<G, M2+ k+ D)1 (2Tt k+1)!

m:’

M 5d

m:

The explicit form of theV function forJ,,=J, andJ,,=J, . A
+1 transitions ig13]: Fmpmm(0¢) =T 1+ 23.00.+1) Pmn 0¢h).
(23-1)1(23+k+1)! In the casel,,=J,+ 1, Eq.(A2) takes the form
Vo(3,10) = 21203+ )= klk+1)] = 55— o
. 2kt 1323 +1
(20)1(23+ k+3)! Copmm 08)=Tr 2 2 23 11
V,.(J3,1J+1)= : i MM/ <d n

(23+3)1(23—w)!"

(23-2)1(23+ k+1)! X(= 1) MD( . 6.0C) Ly oy,
- . K .

VK(J’l’J_l):(2J+1)!(2J—K—2)!' uirs Kk(rk+1)
. 2(23,—1)J,
In particular, for the case of,,=J,, we get
«|1 k(k+1) 12
V2k+1 Y 223+ 1)
Copmnl 06)=T 2 % ———= T
Mim My, 9 V2 X p(Im Ml M ). (A3)
DQ,’&((ﬁ,49,O)C3‘;1q’,\,|m;3n',Mrfn Assuming thatl,>1, we can transform EqA3) to
_ Kt 3 M 20,+1 [ A
2Jn(‘]n+1) p( ns»Vimi¥n, m)- mpmm(0¢) 2J +1F -1+mpmm(0¢)
By using the fact that the equation In the same way fod,=J,—1 we can derive
Dio(¢.6.00=—«k(k+1)Dg5(6,6,0), ) 20 41 [ A
. . . . . Ipmm( 0¢) ~ 2] +1F 1+4J2 P 0).
is valid and due to the transformatid®), we finally obtain n
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