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Classical description of angular-momentum motion due to optical pumping

K. A. Nasyrov
Institute of Automation and Electrometry, Novosibirsk, 630090, Russia

~Received 12 April 2000; published 7 March 2001!

The Wigner representation of angular-momentum orientation in the classical limit onJ@1 has been used to
derive an equation of angular-momentum motion in the case of a closed two-level system interacting with an
arbitrary polarized radiation. This equation enables us to carry out a theoretical analysis of angular-momentum
motion and consider final states of the quantum system for all types of dipole transitions. We have found that
in the case of a zero magnetic field in the final state of the system withJ→J or J→J11 optical transition, the
angular momentum is directed along or opposite to the wave vector of the radiation depending on the sign of
the polarization ellipsity, while for a linear polarization the angular momentum is isotropically distributed on
the plane orthogonal to the polarization vector. For theJ→J21 transition two directions of angular momen-
tum are possible in the final state. These directions are determined by the ellipsity of polarization. The spatial
size of the final distribution of the angular momentum has been defined by the quantum uncertainty, 1/AJ, of
the angular-momentum orientation. In the case of theJ→J21 or J→J, transition particles come into ‘‘dark’’
states while for theJ→J11 transition they occupy the ‘‘brightest’’ state. In the presence of a nonzero
magnetic field, particles withJ→J transition have in the final state only one angular-momentum orientation,
i.e., along or opposite to the direction of the magnetic field depending on the polarization ellipsity sign. For the
J→J11 transition both directions are possible, i.e., along and opposite to the magnetic field. In the case of the
J→J21 transition the directions of the angular momentum form a cone around the magnetic field.

DOI: 10.1103/PhysRevA.63.043406 PACS number~s!: 32.80.2t, 03.65.Sq, 33.80.Be
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I. INTRODUCTION

Spatial orientation of the atomic angular momentum
optical pumping between ground magnetic sublevels i
well-known phenomenon@1,2#. The angular-momentum mo
tion is a result of the repeated cycles of the resonant abs
tion of the polarized light followed by the spontaneous em
sion. Finally, after a long time of interaction with ligh
atoms come into their final stationary states. If the relaxat
is only caused by spontaneous emission, then for some t
of optical transitions (J→J21,J→J) the final states coin-
cide with so-called atomic stationary coherent states@3#. In
these states the atom does not interact with polarized ra
tion ~‘‘dark’’ states!. For an elliptical polarization of light
and an arbitrary value ofJ, exact solutions for the stationar
coherent states have been found in Refs.@3,4#. However, this
theory only analyses final atomic states and cannot desc
angular-momentum motion. The analytical description of
optical pumping process of magnetic sublevels is only p
sible for a smallJ, such asJ50,1/2,1@5#.

In recent work@6# the process of the interaction of a
open two-level quantum system having a large value of
gular momentum (J'10) with elliptically polarized light has
been investigated by numerical methods. The open sys
means that a spontaneously emitted photon does not b
the system back to its original ground state but popula
other levels that are not affected by radiation. This cas
typical for molecules. The result is that this interaction p
duces an anisotropic distribution of angular-momentum
entation in the ground state. However this anisotropy is
effect of the population depletion of the open system cau
by an anisotropy of the interaction potential, rather than
actual effect of angular-momentum motion. For the clos
two-level system the population depletion of the ground s
1050-2947/2001/63~4!/043406~9!/$20.00 63 0434
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does not exist, so that in this case we have got a pure e
of angular-momentum motion.

In the present paper we consider a process of the orie
tion of the closed two-level system with a large value ofJ,
which interacts with elliptically polarized light. The cond
tion J@1 enables us to use the classical description of
angular-momentum motion based on the Wigner represe
tion of rotational motion@7,8#. This approach significantly
simplifies the solution of the problem in comparison with
quantum-mechanical description.

The closed two-level model is valid rather more for atom
than for molecules. For example for alkali atoms, part of
optical transitions of theD2 line are closed. Unfortunately
almost all alkali atoms in the ground state have a small va
of total atomic momentumF5I1J, here I is nuclear mo-
mentum andJ is total electronic momentum. Neverthele
the approximationF@1 can be applied for a few atoms lik
Fr208 and Fr210, having sufficiently high value of nuclear mo
menta:I 57 andI 56, respectively. Note that francium iso
topes are the best candidates for parity nonconservation
periments@9#. Also we assume that there are a few ato
interacting with light and radiation trapping is negligible.
particular, this case is typical for a francium magneto-op
trap @10#.

Here it is worth noticing that the ‘‘classical’’ approach i
Ref. @6# does not correspond to a correct classical descrip
of angular-momentum motion because the equations use
Ref. @6# for the density matrix in the coherent-state repres
tation @7,11# are only valid in the limit ofJ→`. However it
is easy to show that in this limit there is no angula
momentum motion caused by a resonant interaction w
light. Indeed, for each cycle of the resonant photon abso
tion followed by the spontaneous emission, the orientation
the angular momentum is changed by the angleDu
©2001 The American Physical Society06-1
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K. A. NASYROV PHYSICAL REVIEW A 63 043406
;DM/J;1/J ~where uDM u<1 for the dipole optical transi-
tion!. In the limit of J→` we haveDu50, which means
there is no angular-momentum motion. Therefore, in
classical limit, for a correct description of angula
momentum motion we have to assume a large but fi
value of J. Formally it means that in the equation for th
density matrix we have to take into account terms at leas
order 1/J. These additional terms have a differential for
and the procedure to obtain them is presented in Refs.@7,8#.

Here after we show that angular-momentum motion
pends strongly on the polarization of light and the type of
optical transition. Due to the motion the system comes i
dark states (J→J21,J→J) or into the brightest state (J
→J11) for an arbitrary polarization of light. Final orienta
tions of the angular momentum have been found for all ty
ri-
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of optical transitions and results have been generalized
the case of a nonzero magnetic field.

II. EQUATIONS FOR ANGULAR-MOMENTUM MOTION

Consider a model system of the two-level system w
angular momentaJn andJm for the groundn and excitedm
states, respectively, which degenerated on the projection
angular momentaMn , Mm . The resonant electromagnet
field induces the transition between the levels and popul
the level m. Let us assume that the system has one o
relaxation channel, i.e., the excited levelm spontaneously
decays back to the ground leveln.

The dynamic of the quantum system is described by
equation for the density matrixr̂, which in theJM represen-
tation has the form@12#
S d

dt
1GmD r~JmMmuJmMm8 !52

i

\ (
Mn

@V~JmMmuJnMn!r~JnMnuJmMm8 !2r~JmMmuJnMn!V~JnMnuJmMm8 !#,

d

dt
r~JnMnuJnMn8!52

i

\ (
Mm

@V~JnMnuJmMm!r~JmMmuJnMn8!2r~JnMnuJmMm!V~JmMmuJnMn8!#

1Gm (
Mm ,Mm8 ,s

CJn ,Mn ;1,s
Jm ,Mm C

Jn ,M
n8 ;1,s

Jm ,Mm8 r~JmMmuJmMm8 !, ~1!

S d

dt
1

1

2
Gm1 ivmnD r~JmMmuJnMn!52

i

\ F(
Mn8

V~JmMmuJnMn8!r~JnMn8uJnMn!

2(
Mm8

r~JmMmuJmMm8 !V~JmMm8 uJnMn!G .
ar-

lar

m.
Herevmn is the frequency of the optical transitionn2m and
Gm is the rate of the spontaneous decay.V(JmMmuJnMn) is
the matrix element of the electrodipole interactionV5
2dE(t), d is the dipole moment, andE(t) is the monochro-
matic electric field

E~ t !5Ee2 ivt1E* eivt, ~2!

whereE is a complex vector of the amplitude of the elect
cal field. The last term in the right-hand side of Eq.~1! for
density-matrix elements of the ground state, describes
contribution into the ground state, related to the spontane
decay of them level. CJn ,Mn ;1,s

Jm ,Mm is the Clebsh-Gordan coef

ficient @13#.
Further, instead of theJM representation we introduce th

Wigner representation of rotational motion. For this spec
problem it is more convenient to use the Wigner represe
tion of the angular-momentum orientation@7# or fua repre-
sentation@8#. The transition fromJM to fua representation
is given by the transformation@8#
he
us

c
a-

rJ1J2
~f,u,a!5 (

k,q,M1 ,M2

A2k11

AJ11J211
~21!J22M2

3CJ1 ,M1 ;J2 ,2M2

k,q Dq,J12J2

k* ~f,u,a!

3r~J1M1uJ2M2!, ~3!

where Dq,J12J2

k* (f,u,a) is the Wigner D matrix @13#,

rJ1J2
(f,u,a) is the Wigner function in thefua representa-

tion, f, u are azimuthal and polar angles of the angul
momentum orientation, and the anglea defines the position
of the rotator axis in the plane orthogonal to the angu
momentum. Note, ifJ15J25J, according to Eq.~3!, the
Wigner function is independent of the anglea so that
rJJ(f,u) means a spatial distribution of angular momentu

Equations~1! in the fua representation take the form@8#

S d

dt
1GmD rmm52 ieiŵ/2JGrnm1 ie2ŵ/2JG* rmn ,
6-2
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CLASSICAL DESCRIPTION OF ANGULAR-MOMENTUM . . . PHYSICAL REVIEW A63 043406
d

dt
rnn5 ie2 iŵ/2JGrnm2 ieiŵ/2JG* rmn1Ĝmrmm,

S d

dt
1

Gm

2
2 i ~v2vnm! D rmn52 ieiŵ/2JGrnn

1 ie2 iŵ/2JGrmm,

rnm5rmn* , 2J5Jm1Jn11. ~4!

Here we use notations

rkl[rJkJl
~f,u,a!,

G~f,u,a!5
VJmJn

~f,u,a!

\
eivt

5(
s

GsDs,Jn2Jm

1 ~f,u,a!5G̃~f,u!ei ~Jm2Jn!a,

G̃~f,u!5(
s

GsDs,Jn2Jm

1 ~f,u,0!,

Gs5~21!Jn2Jm21
dmn

\A2J11
Es , ~5!

wheredmn is the reduced matrix element of the dipole m
ment, andEs(s521,0,1) are circular components of th

electric field vectorE. The termĜmrmm describes the in-
come to the ground state due to the spontaneous decay o
excited atoms in thefua representation. The explicit form o

the operatorĜm is given in Appendix A.
The action of the operatorŵ is defined by the rule@8#

ŵPQ5S ]

]f
2cosu

]

]a D P
]

] cosu
Q

2
]

] cosu
PS ]

]f
2cosu

]

]a DQ. ~6!

For simplicity, consider the case of the exact resona
v5vmn and the limit of the weak intensityG!G. This limit
means that the population of the excited level is alwa
much less than one for the ground level so that we can
glect rmm everywhere in the comparison withrnn and omit
the time derivatives in the equations forrmm,rmn . Summing
up the equations onrmm and rnn in this approximation we
come to the equation

]

]t
rnn52 sinS ŵ

2JD ~Grnm1G* rmn!1~ Ĝm2Gm!rmm.

~7!

This equation describes the dynamics of angular mom

tum. In the limit J→` we get Ĝm5Gm ~see Appendix A!
and after that Eq.~7! yields
04340
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]

]t
rnn50.

It means that there is no motion of angular momentum in
limit J→` as it was mentioned above. Only the terms
order 1/J in Eq. ~7! give the correct classical limit of the
angular-momentum motion. We leave in Eq.~7! terms with
accuracy up to 1/J2, because they play the main role in th
determining of the space width of the final distribution
angular momentum. Therefore, the operatorĜm2Gm can be
written in the form

Ĝm2Gm

Gm
5

Jm2Jn

J S 11
Jm2Jn

2J D1
1

sJ2 D, ~8!

whereD is angular Laplacian,s52 for Jm5Jn , ands54 for
Jm5Jn61 ~Appendix A!, and it suffices to findrmn ,rmm
from Eq. ~4! with accuracy 1/J

rmm52
i

Gm
~Grnm2G* rmn!1

ŵ

2JGm
~Grnm1G* rmn!,

rmn52
2i

Gm
Grnn1

ŵ

JGm
Grnn , ~9!

rnm5
2i

Gm
G* rnn1

ŵ

JGm
G* rnn .

First of all we derive an equation for angular-momentu
motion in the classical limit holding in Eq.~7! the terms of
order 1/J only. From Eqs.~7!, ~8!, ~9! we obtain

d

dt
rnn1

]

] cosu
ucosurnn1

]

]f
ufrnn50,

ucosu5
2

JGm
F i S ]G̃

]f
G̃* 2G̃

]G̃*

]f
D 22~Jm2Jn!uGu2 cosuG ,

uf5
2i

JGm
F ]G̃

] cosu
G̃* 2G̃

]G̃*

] cosu
G . ~10!

Equation~10! looks like an ordinary equation of continuity
which means the conservation law of the particle numb
According to this equation the redistribution of particl
upon their angular-momentum orientation~f, u! occurs due
to fluxesrnnucosu andrnnuf along coordinates cosu andf,
respectively. In the approximation used, the population
the excited level is related to one of ground level by t
equation

rmm5
4uGu2

Gm
2 rnn . ~11!

From Eq.~10! it follows that the characteristic scale of th
velocity of angular-momentum motion isu;uGu2/JGm .
This is quite clear because every spontaneously emitted
ton can change the angular-momentum projection byuDM u
<1 and, subsequently, the angle of momentum orienta
6-3
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K. A. NASYROV PHYSICAL REVIEW A 63 043406
by Du;DM /J;1/J. The number of photons spontaneous
emitted per unit of time isGmrmm. Thus, Eq.~11! enables us
to estimateu;DuGmrmm;uGu2/JGm .

In the system of coordinates, where thez axis is directed
along the wave vector and thex axis coincides with the ma
jor axis of the ellipse of the wave polarization, the values
velocitiesucosu anduf for all possible dipole transitions ar

Jm5Jn11:

ucosgv5
sin2 u

JGm
@ uG21u2~11cosu!2uG11u2~12cosu!

12uG11G21ucosu cos 2f#, ~12!

uf5
2uG11G21u

JGm
sin 2f,

Jm5Jn :

ucosu5
2 sin2 u

JGm
@ uG21u22uG11u2#, ~13!

uf50,

Jm5Jn21:

ucosu5
sin2 u

JGm
@ uG21u2~12cosu!2uG11u2~11cosu!

22uG11G21ucosu cos 2f#, ~14!

uf52
2uG11G21u

JGm
sin 2f.

Note that in this particular coordinate systemG050.

III. ANGULAR-MOMENTUM MOTION AND THE FINAL
STATES

We start our analysis with the consideration of the opti
transitionJm5Jn . According to Eq.~13! there is no flux of
angular momentum alongf. A motion exists only along
cosu. We can see thatucosu.0 for anyu if uG21u.uG11u. It
means that for any initial orientation of angular momentum
moves towards the direction of the wave vector (cosu→1).
At the final point of the motion all particles have angul
momenta oriented along the wave vector (u50). The inter-
action strength is defined by the valueuGu2, which is

uGu25
sin2 u

2
~ uG21u21uG11u212uG21G11u cos 2f!,

~15!

for the Jm5Jn transition. For the final state (u50) we ob-
tain uGu250. The result means that the particles come to
dark state where they do not interact with light. Obvious
for the light polarizationuG21u,uG11u, angular momenta o
the particles are oriented in the opposite direction of
wave vector.
04340
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Due to our approximation, the Eq.~10! gives a d-like
distribution of particle angular momentum at the final sta
(u50). To find the real spatial distribution of angular m
mentum we have to take into account in Eqs.~7!, ~8!, and~9!
the next terms of order 1/J2. Moreover, it is easy to see tha
for the linear polarization (uG21u5uG11u) the velocityucosu
@Eq. ~13!# vanishes so that for this particular light polariz
tion the equation with terms of 1/J2 should be used in orde
to describe correctly angular-momentum motion. We sh
later on that for this polarization, angular momenta in t
final state are always oriented along the plane orthogona
the wave vector. It is important to notice that atJ@1 the
small deviation of the light polarization from a linear on
that could be measured by valueiG21u2uG11i /(uG21u
1uG11u)>1/J, forces angular momentum to take an orie
tation along or opposite to thez axis.

Now consider angular-momentum motion for the case
the optical transitionJm5Jn11, Eq. ~12!. In contrast with
the transitionJm5Jn , in this case the velocityuf is nonzero
and ucosu is a variable quantity of anglef. This makes the
picture of angular-momentum motion more complicate
However the remarkable fact thatuf does not depend on
angleu enables us to consider the motion only along an
f. The velocityuf as a function of anglef is shown in Fig.
1~a!. It is clear that all particles move with the anglef to-
wards thep/2 or 3p/2 angle for anyu. The velocityucosu for
the points of the convergencef* 5p/2,3p/2 is so

ucosu5
sin2 u

2JG
~ uG21u2uG11u!@ uG21u1uG11u

1~ uG21u2uG11u! cosu#. ~16!

FIG. 1. The velocityuf as a function of anglef for ~a! Jm

5Jn11 and~b! Jm5Jn21 transitions. Arrows show the points o
convergence.
6-4



he

on

t

la

la

th

pl
g

ut

le

r a

m,
e

of

or
al
les
tum

ds

be
t

-

was

rms
an

o-
r-

on
n-

tum

lar-
i-
r

t.

on-

CLASSICAL DESCRIPTION OF ANGULAR-MOMENTUM . . . PHYSICAL REVIEW A63 043406
Thus we obtain thatucosu.0 for the light polarization
uG21u.uG11u but ucosu,0 if uG21u,uG11u, for the arbi-
trary angleu. Again angular momentum moves towards t
z-axis direction ~for certainty we assumeuG21u.uG11u),
and in the final state all angular momenta are aligned al
the z axis ~i.e., along the wave vector! u50. For theJm
5Jn11 transition the interaction strength is

uGu25uG21u2
~11cosu!2

4
1uG11u2

~12cosu!2

4

1
sin2 u

2
uG21G11ucos 2f. ~17!

It reaches its maximal valueuGumax
2 5uG21u2 for the final state

and it means that this state is the brightest state.
For the linear polarization of light the velocityucosu50

@Eq. ~16!#. This case requires separate consideration tha
given below.

So, it is easy to see that the final orientation of the angu
momentum is identical for bothJm5Jn andJm5Jn11 tran-
sitions. The differences are in the path which the angu
momentum uses to come into the final state. For theJm
5Jn transition the angular momentum goes directly to
z-axis direction whereas for theJm5Jn11 transition, the
angular-momentum orientation moves on a more com
cated path. At first it comes to the convergent points of an
f and then moves towards thez axis. Another difference is
that for theJm5Jn transition the final state is a dark one b
it is the brightest state for theJm5Jn11 transition.

At last, consider angular-momentum motion of partic
with theJm5Jn21 optical transition. According to Eq.~14!
the motion over anglef is independent of the angleu and
particles are gathered near convergent pointsf* 50,p @Fig.
1~b!#. For these anglef* the velocityucosu is

ucosu5
sin2 u

2JG
~ uG21u1uG11u!@ uG21u2uG11u

2~ uG21u1uG11u! cosu#. ~18!

This velocity as a function of cosu is shown in Fig. 2. From
this picture it is clear that particles must be gathered nea
angleu* , which is defined by the equation

cosu* 5
uG21u2uG11u
uG21u1uG11u

. ~19!

FIG. 2. The velocityucosu @Eq. ~18!# as a function of cosu for
the Jm5Jn21 transition.
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Thus, for a quantum system with theJm5Jn21 transition,
there are two possible final directions of angular momentu
i.e., u* ,f* 50,p. This conclusion is in agreement with th
exact solution for coherent stationary states@14# for the
given type of the optical transition. In the particular case
linear polarizationuG21u5uG11u, we haveu* 5p/2, and it
means that the final angular momentum is directed along
opposite to the polarization vector. Note that if the initi
distribution of angular momentum is isotropic then partic
are gathered near these directions of the angular momen
with the same number@Fig. 3~b!#. What final direction of the
angular momentum will be occupied by a particle depen
only on an initial azimuthal anglef. For example, if the
initial value of anglef is within the regionp/2,f,3p/2
then the final direction of the angular momentum must
u* , f* 5p. It is easy to find by direct calculation tha
uG(u* ,f* )u250 for the Jm5Jn21 transition and, conse
quently, the final state is a dark one.

As mentioned above Eq.~10! gives ad-like distribution of
angular momentum for final states, because this equation
derived within accuracy of 1/J. To describe the final distri-
butions in more detail we have to take into account the te
of order 1/J2. This equation within acceptable accuracy c
be obtained on the base of Eqs.~7!, ~8!, and ~9!. Here, for
simplicity, we consider the final distributions of angular m
mentum only in two cases of a circularly and linearly pola
ized radiation.

For instance consider the circular polarizationuG11u50,
uG21uÞ0 and the quantum system with the optical transiti
Jm5Jn . In this case the final distribution of angular mome
tum satisfies the stationary equation

22JuGu2rnn1uGu2
]

] cosu
rnn1sin2 u

]

] cosu
uGu2rnn50.

~20!

SinceuGu2}sin2 u for the given light polarization and the
transition type, it is easy to obtain the solution of Eq.~20!

rnn5
J

p F&1cosu

&11
G J/&21F &21

&2cosu
G J/&11

'
J

p
e2Ju2

,

~21!

for normalization condition

E rnn sinududf51. ~22!

Thus, we see that in the final state the angular momen
should be distributed within the angle widthDu51/AJ near
the directionu50 @Fig. 3~a!#. Note that the value 1/AJ char-
acterizes a scale of the quantum uncertainty of the angu
momentum orientation@7#. We can find that the same distr
bution of angular momentum is valid for the circula
polarization of light andJm5Jn61 optical transitions.

Now consider the case of a linear polarization of ligh
We choose a coordinate system with thez axis directed along
the polarization vector and, therefore, there is one only n
6-5
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K. A. NASYROV PHYSICAL REVIEW A 63 043406
zero circular componentE0 of the electric-field vector. For
the Jm5Jn transition the final distribution of angular mo
mentum satisfies the equation

DuGu2rnn50.

Obviously, the solution of this equation isuGu2rnn5const.
Because ofrmm}uGu2rnn @see Eq.~11!# this fact means tha
in the final state the excited particles have an isotropic
tribution of angular momentum. This conclusion is in agre
ment with Ref.@4#. Since for theJm5Jn transition and the
linear polarizationuGu2}cos2 u, the particles in the ground
state have the distribution

rnn}cos22 u, ~23!

and rnn is formally divergent atu5p/2. This divergence
indicates that for the correct description of angular mom
tum in this particular case we have to treat the equation
rnn ~7! with more accuracy than 1/J2. Nevertheless it is clea
from Eq.~23! that in the final state the angular momentum
distributed isotropically on anglef in the plane orthogona
to the polarization vector@Fig. 3~c!#.

For a quantum system with theJm5Jn11 transition and
for the linear light polarization we can derive the equati
for the final distributionrnn

22JuGu2 cosurnn1uGu2 cos2 u
]

] cosu
rnn

1sin2 u
]

] cosu
uGu2rnn50, ~24!

and the solution of this equation is (uGu2}sin2 u)

rnn;~11cos2 u!22J'e22J~u2p/2!2
. ~25!

Thus in the case of theJm5Jn11 transition the angula
momentum is distributed isotropically within the plane o
thogonal to the polarization vector. The spatial width of th
distribution again is defined by the quantum uncertainty 1AJ
of the momentum direction.

The case of theJm5Jn21 transition can be easily ana
lyzed by the replacementJ→2J in Eq. ~24! so that instead
of Eq. ~25! the final angular-momentum distribution has t
form

FIG. 3. The final distributions of angular momentum for~a!
Jm5Jn11, Jm5Jn and ~b! Jm5Jn21 transitions for the elliptical
polarization of light, and~c! for the linear polarization in the case o
Jm5Jn11, Jm5Jn transitions.
04340
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r

rnn;~11cos2 u!2J. ~26!

The equation shows the distribution with two possible ma
mums: atu50 andu5p. For instance, for the angleu close
to u50, this equation can be approximated as

rnn;e2Ju2
, ~27!

that describes the particle angular momentum directed a
the polarization vector and distributed within the quantu
uncertainty angle 1/AJ.

IV. ANGULAR-MOMENTUM MOTION IN THE CASE
OF A NONZERO MAGNETIC FIELD

Here we consider angular momentum motion for a no
zero magnetic fieldH. In the system of coordinates with th
z axis directed along magnetic field, Eq.~10! can be easily
generalized by the substitution

]

]t
→ ]

]t
1vH

]

]f
, ~28!

where vH5mBgH is the Larmor frequency of momentum
precession,mB is the Bhor magniton, andg is the Lande
factor for the ground state. We assume that the direction
wave vector and the light polarization are arbitrary. We co
sider the most interesting case when Larmor frequency
much less than the spontaneous decay ratevH!Gm , but it is
much greater than the velocity of angular-momentum mot
due to the interaction with light,vH@uGu2/JGm . In this case
it is clear that Wigner functionr̄nn , averaged over the time
period larger than 1/vH , does not depend on the anglef.
From Eq.~10! it is easy to derive the equation forr̄nn .

]

]t
r̄nn1

]

] cosu
~ ūcosur̄nn!50, ~29!

where

ūcosu5
1

2p E
0

2p

ucosu df. ~30!

In particular for theJm5Jn optical transition we obtain

ūcosu5
sin2 u

JG
~ uG21u22uG11u2!, ~31!

so that if uG21u.uG11u, the value of the velocityūcosu is
positive everywhere and it means that the angular mom
tum moves towards thez axis direction. Thus in the fina
state the angular momentum of particles must be orien
along the magnetic field@Fig. 5~a!#. It is important that the
velocity ūcosu @Eq. ~31!# does not depend on theE0 compo-
nent of the vector polarization and its value is exactly det
mined by the projection of the electrical-field vector on t
6-6
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plane orthogonal to the magnetic field only. This conclus
is valid for other types of optical transitions.

For theJm5Jn11 optical transition we obtain

ūcosu5
sin2 u

2JG
@ uG21u2~11cosu!2uG11u2~12cosu!#,

~32!

and ūcosu as a function of cosu is shown in Fig. 4~a!. This
velocity is equal to zero at

cosu* 5
uG11u22uG21u2

uG21u21uG11u2
. ~33!

This point is divergent because angular momentum mo
towards u→0 for the initial state withu,u* and u→p
if u.u* . Thus angular momenta of the particles a
oriented along or opposite the magnetic-field direction
pending on what side ofu* it was in the beginning@Fig.
5~b!#.

At last consider the angular-momentum motion of t
quantum system with theJm5Jn21 optical transition. In
this case

ūcosu5
sin2 u

2JG
„uG21u2~12cosu!2uG11u2~11cosu!….

~34!

We can see@Fig. 4~b!# that the angle defined by the equatio

cosu* 5
uG21u22uG11u2

uG21u21uG11u2
, ~35!

where the velocityūcosu is equal to zero, is a convergen
point and the angular momentum moves towards this an

FIG. 4. The velocityūcosu as a function of cosu for ~a! Jm

5Jn11 and~b! Jm5Jn21 transitions.
04340
n

s

-

le

u→u* independent of its initial direction. Thus the fina
distribution has the form of a cone with angleu* at the cone
top @Fig. 5~c!#. Note, the angleu* defined by Eq.~35! does
not coincide with one defined by Eq.~19!. In the particular
case, for exampleuG11u50, this cone of angular-momentum
orientations is degenerated into one direction along the m
netic field. The picture is in agreement with the exa
quantum-mechanical solution@14# for this special case o
mutual orientations of the magnetic field and the polarizat
of light.

V. CONCLUSION

We have derived an equation that describes a class
motion of the angular momentum of the closed two-lev
system that interacts with a resonant radiation. The equa
has enabled us to describe the behavior of the angu
momentum orientation on the basis of introduced velociti
ucosu anduf . As the result of this motion the system com
into a final state, that is the dark one, forJm5Jn , Jm5Jn

21 transitions, but the brightest one for theJm5Jn11 tran-
sition and the arbitrary polarization of light. The results ha
been generalized for the arbitrary mutual orientation of
polarization vector and the direction of a nonzero magne
field.

In the present analysis we have used the approximatio
the weak light intensityuGu!Gm , however the proposed ap
proach might easily be applied in the analysis of angu
momentum motion in the case of the high intensity lim
uGu@Gm . The results of this consideration will be present
elsewhere.
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FIG. 5. The final distributions of angular momentum for~a!
Jm5Jn , ~b! Jm5Jn , and~c! Jm5Jn21 transitions for the elliptical
polarization of light in the case of nonzero magnetic field.
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APPENDIX

The term of the contribution into the ground staten due to the spontaneous decay of the excited statem has the form@12#

Gm (
Mm ,Mm8 ,s

GJn ,Mn ;1,s
Jm ,Mm C

Jn ,M
n8 ;1,s

Jm ,Mm8 r~Jm ,MmuJm ,Mm8 !.

Due to the transformation~3! we can get this term in the following form

Ĝmrmm~uf!5Gm (
Mm ,Mm8 ,s

(
k,q

A2k11

A2Jn11
~21!Jn2Mn8Dq,0

k* ~f,u,0!CJn ,Mn ;Jn ,2M
n8

k,q
CJn ,Mn ;1,s

Jm ,Mm C
Jn ,M

n8 ;1,s

Jm ,Mm8 r~JmMmuJmMm8 !.

~A1!

By summing overs in Eq. ~A1!, we come to

Ĝmrmm~uf!5Gm (
Mm ,Mm8 ,s

(
k,q

~2Jm11!A2k11

A2Jn11
~21!Jn2Mn8Dq,0

k* ~f,u,0!CJm ,Mm ;Jm ,2M
m8

k,q
~21!11Jn1Jm1k

3H Jn 1 Jm

Jm k Jn
J r~Jm ,MmuJm ,Mm8 !

or, using the relation between 6j symbols and theV function @13#, to

Ĝmrmm~uf!5Gm (
Mm ,Mm8

(
k,q

~2Jm11!A2k11

A2Jn11
~21!Jm2Mm8 Dq,0

k* ~f,u,0!

3CJm ,Mm ;Jm ,2M
m8

k,q F ~2Jn2k!! ~2Jm2k!!

~2Jn1k11!! ~2Jm1k11!! G
1/2

Vk~Jn , 1, Jm!r~Jm , MmuJm , Mm8 !. ~A2!
The explicit form of theV function for Jm5Jn andJm5Jn
61 transitions is@13#:

Vk~J,1,J!52@2J~J11!2k~k11!#
~2J21!! ~2J1k11!!

~2J12!! ~2J2k!!
,

Vk~J,1,J11!5
~2J!! ~2J1k13!!

~2J13!! ~2J2k!!
,

Vk~J,1,J21!5
~2J22!! ~2J1k11!!

~2J11!! ~2J2k22!!
.

In particular, for the case ofJm5Jn , we get

Ĝmrmm~uf!5G (
Mm ,Mm8

(
k,q

A2k11

A2Jn11
~21!Jm2Mm8

3Dq,0
k* ~f,u,0!CJm ,Mm ;Jn ,2M

m8
k,q

3F12
k~k11!

2Jn~Jn11!Gr~Jn ,MmuJn ,Mm8 !.

By using the fact that the equation

DDq,0
k* ~f,u,0!52k~k11!Dq,0

k* ~f,u,0!,

is valid and due to the transformation~3!, we finally obtain
04340
Ĝmrmm~uf!5GmF11
D

2Jn~Jn11!Grmm~uf!.

In the caseJm5Jn11, Eq. ~A2! takes the form

Ĝmrmm~uf!5Gm (
Mm ,Mm8

(
k,q

A2k11A2Jm11

2Jn11

3~21!Jm2Mm8 Dq,0
k* ~f,u,0!CJm ,Mm ;Jm ,2M

m8
k,q

3F S 12
k~k11!

2~2Jm21!Jm
D

3S 12
k~k11!

2~2Jm11!Jm
D G1/2

3r~Jm ,MmuJm ,Mm8 !. ~A3!

Assuming thatJn@1, we can transform Eq.~A3! to

Ĝmrmm~uf!'
2Jm11

2Jn11
GmF11

D

4Jm
2 Grmm~uf!.

In the same way forJm5Jn21 we can derive

Ĝmrmm~uf!'
2Jm11

2Jn11
GmF11

D

4Jn
2Grmm~uf!.
6-8



.

.

ci.

D.

i,

CLASSICAL DESCRIPTION OF ANGULAR-MOMENTUM . . . PHYSICAL REVIEW A63 043406
@1# A. Kastler, J. Phys. Radium11, 55 ~1950!.
@2# W. Happer, Rev. Mod. Phys.44, 169 ~1972!.
@3# V. S. Smirnov, A. M. Tumaikin, and V. I. Yudin, Zh. Eksp

Teor. Fiz.96, 1613~1989! @Sov. Phys. JETP69, 913 ~1989!#.
@4# A. B. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G

Nienhuis, Zh. Eksp. Teor. Fiz.108, 415 ~1995! @Sov. Phys.
JETP81, 224 ~1995!#.

@5# J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B6,
2023 ~1989!.

@6# V. Milner, B. M. Chernobrod, and Y. Prior, Phys. Rev. A60,
1293 ~1999!.

@7# K. A. Nasyrov and A. M. Shalagin, Zh. Eksp. Teor. Fiz.81,
1649 ~1981! @Sov. Phys. JETP54, 877 ~1981!#.
04340
@8# K. A. Nasyrov, J. Phys. A32, 6663~1999!.
@9# G. D. Sprouse and L. A. Orosco, Annu. Rev. Nucl. Part. S

47, 429 ~1997!.
@10# J. E. Simsarian, A. Chost, G. Gwinner, L. A. Orosco, D.

Sprouse, and P. A. Voytas, Phys. Rev. Lett.76, 3522~1996!.
@11# M. Ducloy, J. Phys.~Paris! 36, 927 ~1975!.
@12# S. G. Rautian and A. M. Shalagin,Kinetic Problems of Non-

linear Spectroscopy~Elsevier, Amsterdam, 1991!.
@13# D. A. Varshalovich, A. N. Moskalev, and A. N. Khersonski

Quantum Theory of Angular Momentum~Nauka, Leningrad,
1975!.

@14# A. M. Tumaikin and V. I. Yudin, Zh. Eksp. Teor. Fiz.98, 81
~1990! @Sov. Phys. JETP71, 43 ~1990!#.
6-9


