
PHYSICAL REVIEW A, VOLUME 63, 043405
Entangled-state preparation using adiabatic population transfer

R. G. Unanyan,* B. W. Shore,† and K. Bergmann
Fachbereich Physik der Universita¨t Kaiserslautern, 67653 Kaiserslautern, Germany

~Received 4 August 2000; published 7 March 2001!

We describe an efficient and robust method for producing an entangled state of a two-spin system, using a
sequence of two pulse pairs. We show that the mixing angle of the entangled state has a purely geometrical
origin, so it is insensitive to small variations of the time-integrated pulse amplitude.
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I. INTRODUCTION

The recent developments in the theory of quantum inf
mation have stimulated interest in processes that could
used to entangle at least two quantum systems@1#. This pa-
per presents a method for constructing a quantum superp
tion of two individual spin states,

uC&5cosQu↓&1u↓&21sinQu↑&1u↑&2 , ~1!

where u↓& j is the ‘‘spin-down’’ state andu↑& j is the ‘‘spin-
up’’ state of thej th spin subsystem. If the mixing angleQ is
0 or p/2 then the stateuC& is the product of two factors
each describing a definite state of one of the two spins
general, the superposition stateuC& of Eq. ~1! cannot be
expressed as a single direct product of substates for the
spins, and so it is called an entangled state. WhenQ5p/4
the stateuC& is called the maximally entangled state of tw
quantum subsystems.

Contemporary work on quantum information process
@1# exploits the properties of coherent superpositions to fo
‘‘qubits,’’ elements that offer information manipulation tha
is not possible with the conventional binary ‘‘bits’’ used
classical operations. When the superposed states are t
selves composites of distinctly recognizable subsyste
such as is the case with the two spins discussed here, the
resulting entanglement of the probabilities of the two sp
offers opportunities for applications that exploit the most
markable features of quantum mechanics@1#.

There are a few physical systems in which entanglem
between quantum states of particles can be created and
ied. Examples include entanglement of trapped ions@2–6#,
the atoms in a high-Q cavity @7# as well as nuclei entangle
within molecules, as produced by nuclear-magne
resonance~NMR! methods@8#.

These methods rely on one of the elementary propertie
coherent excitation: the Rabi cycling of population betwe
two states, as a result of a pulsed interaction@9#. The key
parameter of such excitation is the Rabi frequency, ess
tially the interaction energy expressed in frequency units.
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controlling the time integral of the pulsed Rabi frequen
~the pulse area! one controls the number of Rabi cycles a
thereby controls the mixing angle of the states. The mix
angleQ is half the pulse area. When the pulse area isp/2,
the mixing angleQ is p/4, and the entanglement will b
maximal.

Methods that rely on carefully controlled Rabi oscillatio
require careful control of pulse shape, as parametrized by
pulse area; in this sense they are not robust. Successfu
perimental realization of the basic components of quant
information processing devices will require fault-tolera
quantum logic gates@10,11#. Intensity-sensitive excitation
can be avoided when one employs techniques that rely
another unusual property of quantum time evolution, the
called Berry~or geometric! phase@12#.

Berry @12# showed that when the Hamiltonian of a qua
tum system depends on a set of parameters~such as Rabi
frequencies! which evolve along a closed curve in the para
eter space, then a state vector corresponding to a simple
degenerate eigenvalue develops a phase~the Berry phase!
which depends only on the geometry of the curve in para
eter space. The Berry phase was generalized to the ca
degenerate levels by Wilczek and Zee@13#.

Unlike the integral of the Rabi frequency~the dynamical
phase!, the geometrical phase does not depend on the d
tion of the interaction. It is therefore, for instance, indepe
dent of the speed with which an atom moves through
interaction region. If a quantum system undergoes rand
motion, due to some irregular interaction with the enviro
ment, the geometrical phase remains unchanged.

Recently Joneset al. @14# demonstrated experimentally
new approach to quantum computation with nuclear m
netic resonance. They implement a conditional Berry ph
@12,15# and thus a controlled phase-shift gate. They us
spin-half nuclei as an example to demonstrate this new g
metrical approach, but the idea is more general.

In order to achieve excitation that does not depend
pulse area~i.e., a dynamical phase!, we need to devise a
procedure in which only the geometric phase occurs.
avoid any dynamical phase, we make the state vector a n
eigenvalue adiabatic state. Evolution of such a state ha
dynamical phase. This idea was earlier used for the crea
of an arbitrary superposition of two atomic states in a rob
way using a sequence of three laser pulses in a four-s
system@16–18#. That technique was based on the existen
of two degenerate dark states~the null-eigenvalue adiabati
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states! and their interaction. The mixing of the dark stat
@19# can be controlled by changing the relative delay of
pulses, and thus an arbitrary superposition state, can be
erated. As suggested in Refs.@20#, @21#, and @22# one can
modify the ordinary stimulated Raman adiabatic pass
~STIRAP! @23# to create a superposition from a single qua
tum state by maintaining a fixed ratio of laser interactio
This method requires the existence of three quantum sta

The STIRAP method has been proposed for the crea
of an entangled state for cavity QED two-atom systems@24#
and for aL atomic systems@25#.

In this paper we propose a simple method for entang
two subsystems. For definiteness we take these to be
spins. The method uses two-photon resonant excitation,
relies on the applicability of adiabatic evolution. It is simil
to the tripod STIRAP method in the sense that it requires
existence of two degenerate dark states. However, the ph
cal system differs from the tripod system. Here we consi
a two-particle problem with strong interaction between the
We show that for a two-spin system the situation is m
complicated than for a tripod system@16#. In the four-level
tripod atomic system we have used sequences of absor
and emission processes in order to transfer part of the p
lation from an initial state to a target state through an int
mediate state. For a two-spin system two absorption p
cesses are needed to create the entangled state defined
~1!. As a consequence the final populations of the sys
will depend on a relative phase accumulated along excita
paths.

II. TWO-SPIN SYSTEM

Although the suggested method is applicable to any tw
state system, we consider a simple model of two spins,
noted I and S, both of spin-1/2. We assume that the gyr
magnetic ratiosgS andg I are not the same.

As an example we can take a single1H nucleus as spinI,
and a 13C nucleus as spinS. These individual nuclear spin
serve as the qubits. The spins are at rest in a static mag
field of magnitudeB0 and interact weakly with each othe
via a scalar couplingAI "S. This system has been used in
experiment@14#. The constant of the spin-spin interactio
wasA.209.2 Hz. Spin-spin relaxation times were 3.9 s
1H and 0.3 s for13C. The spin-lattice relaxation times wer
7.6 s for 1H and 25.3 s for13C. These relaxation time
provide upper bounds for the time scale during which
processes must be completed.

We take the direction of the static magnetic field to defi
thez axis, which serves as the axis of quantization. The st
Hamiltonian for this system, in the absence of pulsed ex
tation, is

Hspin5gS\B0Sz1g IB0I z1AI "S. ~2!

We assume that the static magnetic fieldB0 is strong enough
so that we need to keep onlyASzI z from the spin-spin cou-
pling. In this approximation the Hamiltonian~2! can be rep-
resented as

Hspin5gS\B0Sz1g I\B0I z1A\I zSz . ~3!
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Because bothI z and Sz commute with the Hamiltonian o
Eq. ~3!, their eigenvalues are constants of motion, given

EmS ,mI
5gS\B0mS1g I\B0mI1A\mSmI ~4!

with the corresponding eigenvectors

uCmS ,mI
&5ums&umI&. ~5!

We use uncoupled states as a basis with the following n
tion ~see Fig. 1!

u↓&Su↓& I5u1&, E152
\B0~gS1g I !

2
1

A

4
, ~6!

u↓&Su↑& I5u2&, E252
\B0~gS2g I !

2
2

A

4
,

u↑&Su↓& I5u3&, E352
\B0~g I2gS!

2
2

A

4
,

u↑&Su↑& I5u4&, E45
\B0~gS1g I !

2
1

A

4
.

We denote byEj the static energy eigenvalue of stateu j &.

III. THE ROTATING WAVE APPROXIMATION
SCHRÖDINGER EQUATION

In the absence of the spin-spin interaction, whenA50,
the eigenvalue differencesEi2Ej yield two resonant fre-
quencies,

vS5gSB0 , v I5g IB0 .

With spin-spin coupling present each resonant freque
splits into two frequencies. The four frequencies are

vS6
A

2
, v I6

A

2
.

FIG. 1. Energy levels and linkages.~a! Opposite-sign detuning
D152D2; ~b! same-sign detuningD15D2.
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We assume that for each transition it is possible to app
resonantly tuned radio frequency pulse, so that the Ha
tonian will include couplings between pairs of states as in
cated in the loop configuration of Fig. 1.

Expanding the total wave functionuC& in the basis of the
eigenstates given by Eqs.~6!,

uC~ t !&5C1~ t !exp@2 iE1t/\#exp@2 iv1t#u1&

1C2~ t !exp@2 iE2t/\#exp@2 iv2t#u2&

1C3~ t !exp@2 iE3t/\#exp@2 iv3t#u3&

1C4~ t !exp@2 iE4t/\#u4&,

and substituting it into the Schro¨dinger equation we obtain
the set of differential equations for the amplitudes,

i
d

dt
C~ t !5W~ t !C~ t !, ~7!

where, with the rotating wave approximation applied,

W5F 0 V12~ t !eix V13~ t ! 0

V12~ t !e2 ix D1 0 V24~ t !

0 V13~ t ! D2 V43~ t !

0 V24~ t ! V43~ t ! 0

G . ~8!

Here D15v212v1, and D25v312v3 , vnk5(En2Ek)/\.
We consider the case when the two-photon resonance co
tion holds between transitions 1 and 4,

E11v11v35E45E11v21v4 .

The Rabi frequenciesV i j 5g I ,SBi j , whereBi j are ampli-
tudes of radio frequency pulses, have the following interp
tation: V12 flips spin I when spinS is in the stateu↓&, V43
flips spin I when spinS is in the stateu↑&, V13 flips spinS
when spinI is in the stateu↓&, andV24 flips spinSwhen spin
I is in the stateu↑&. Without loss of generality we assum
that V i j are real and positive. Herex5x122x241x43
2x13, wherex i j are phases of the matrix elements of t
transitionsi↔ j ( i , j 51,2,3,4), and is the relative phase b
tween two paths of transitions from state 1 to the states 2
3 ~absorption! and from state 4 to the same states 2 an
~emission!. Most modern NMR spectrometers allow the co
trol of the relative phasex.

Using these equations we can restate the problem.
assume that spins are initially in a nonentangled state,
cifically stateu1&5u↓↓&, i.e.,C1(2`)51, and at the end o
the interaction with the laser fields one wants to have sta
entangled with stateu4&5u↑↑&, i.e., C2(1`)5C3(1`)
50 and C1(1`)Þ0, C4(1`)Þ0. A similar task was
solved for a one-particle system using the tripod STIR
method, Ref.@16#, in which we applied three pulses under
two-photon resonance condition between initial and fi
states. We are here going to use this technique to crea
superposition state for the four-level loop system~1! ~see
Fig. 1!.
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The amplitudes of the quantum states at the end of
interaction are obtained by numerically solving Eq.~7! with
the initial conditions

C1~2`!51, C2~2`!50, C3~2`!50, C4~2`!50
~9!

for a model case assuming Gaussian pulses,

V12~ t !5a12exp@2~ t2t!2/T2#,

V13~ t !5a13exp@2~ t2t!2/T2#,
~10!

V24~ t !5b24exp@2~ t1t!2/T2#,

V34~ t !5b34exp@2~ t1t!2/T2#.

We consider two general pulse sequences: ‘‘intuitively’’ o
dered, in which initially populated states are accessed by
initial radiation, and ‘‘conterintuitively’’ ordered, in which
only unoccupied states are initially linked. Figure 2 sho
these sequences. We also consider two classes of detun
opposite signed,D152D2 @see Fig. 1~a!# and same signed
D15D2 @see Fig. 1~b!#. We will show below that in order
that there be two dark states we requirex50 @see Eq.~8!#.
Therefore we have assumedx50 in the modeling. Without
loss of generality we considera5a125a13 and b5b24
5b34.

Figure 3 shows the probabilities obtained from numeri
solution of Eqs.~7! with the initial conditions~9! as function
of delay for the opposite-signed detuningsD1
52D255/T @see Fig. 1~a!#. The peak Rabi frequencies ar
a5b510/T, whereT characterizes the pulse duration, s
Eq. ~10!. Negative delayst correspond to counterintuitive
ordering of pulses and positivet corresponds to intuitive
ordering of pulses. We see from this figure that the fin
populations of the states 1 and 4 are the same for ei
ordering of the pulses.

Furthermore we can control the final state of the quant
system by changing the parametert/T. For example, when
ut/Tu '0.25 or 1 we have a maximal entanglement betwe
two spins. Of particular interest is the observation, for t
same-signed detunings@see Fig. 1~b!# D15D255/T ~see Fig.
4!, that the final populations of the states 1 and 4 are tole
to ~small! change of the parametert/T nearut/Tu'0.6. Be-
cause the population is either in state 4 or in state 1,
choice of the detunings does not lead to an entangled s
This behavior of the population is similar to what occu
with STIRAP @23#, but here we have a robust populatio
transfer from the initial state to the target state for both
intuitive and counterintuitive pulse orderings. The insensit
ity to the pulse ordering is due to large intermediate det
ings,DT@1.

This method differs from the well-known quantum Ra
nutation method@9# as shown in Fig. 5, which displays how
the atomic populations at the end of the interaction dep
on the pulse area for the counterintuitive sequences
pulses. It is well known that with the area method t
5-3
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FIG. 2. Pulse sequence and linkages for~a! counterintuitive and
~b! intuitive pulse orderings.
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populations oscillate with increasing area of the laser pu
However, we see from Fig. 5 that a change ofaT causes a
monotonic variation of the populations. Thus for th
opposite-signed detuningsD152D2 we can control the final
populations of the stateu1& and u4& by changing externa
parameters, for instancet/T. In the next section we develop
for this case, an analytical solution of the Schro¨dinger equa-
tion ~7! in the adiabatic limit.

IV. ADIABATIC APPROXIMATION

A. Complete population transfer

In order to understand the physical mechanism of the
bust population transfer from the initial stateu1&5u↓↓& to
the target stateu4&5u↑↑&, or the creation of a controlled
superposition of these states, we consider in this section
same-signedD15D25D in the adiabatic approximation. W
consider the case whenV12(t)5V13(t)5V1(t) andV24(t)
5V34(t)5V4(t).

For this particular case the eigenvalues of the Hamilton
W(t) have the following form

FIG. 3. Probability for finding the population in state 1~dashed
line! or state 4~solid line! after the interaction with the radiation
field as a function oft/T. The parameters areD152D255/T, a
5b510/T. Negativet correspond to the intuitive sequences
pulses, and for positive case counterintuitive order. Maximum
tanglement is reached for several values oft/T indicated by the
circles.
l1,2~ t !5 1
2~ D6AD214V4

2~ t !14V1
2~ t !14AV4

4~ t !1V1
4~ t !12V1

2~ t !V4
2~ t ! cosx! ,

l3,4~ t !5
1

2
~ D6AD214V4

2~ t !14V1
2~ t !24AV4

4~ t !1V1
4~ t !12V1

2~ t !V4
2~ t ! cosx! .
All eigenvalues of the matrixW(t) are different except for
the case whenx5p and V4(t)5V1(t). The formulas for
eigenvectors of the HamiltonianW(t) in the general case o
same-signed whenD15D25D, are lengthy. We limit the
discussion to the case whenx50. For this case the following
eigenvectors are
5-4
F1~ t !5F cosq~ t !

0

0

2sinq~ t !

G , ~11!
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where

tanq~ t !5
V1~ t !

V4~ t !
~12!

and

F2~ t !5
1

N~ t !F V1~ t !

1
4 ~D2AD218V1

2~ t !18V4
2~ t !!

1
4 ~D2AD218V1

2~ t !18V4
2~ t !!

V4~ t !

G ,

~13!

F3~ t !5
1

N~ t !F V1~ t !

1
4 ~D1AD218V1

2~ t !18V4
2~ t !!

1
4 ~D1AD218V1

2~ t !18V4
2~ t !!

V4~ t !

G ,

~14!

whereN(t) is a normalizing function. The fourth eigensta
remains fixed at all times, and

F4~ t !5
1

A2F 0

1

21

0

G . ~15!

The eigenvalues are 0,12 (D2AD218V1
2(t)18V4

2(t)),
1
2 (D1AD218V1

2(t)18V4
2(t)) and D, respectively. Next

we show that for both intuitive and counterintuitive pul
ordering robust population transfer from the initial state 1
the target state 4, occurs in the adiabatic limitDT@1 and
max$V1(t),V4(t)%T@1.

The time evolution of the system for counterintuitiv
pulse ordering is the same as for STIRAP. The system
mains, at all times, in the trapped state equation~11! and the
state vector of the system rotates from coincidence with s
1 to coincidence with state 4. For the intuitive sequence
pulses the state vector of the system coincides with the
tor of Eq.~13! and robust population transfer occurs from t

FIG. 4. The same as for Fig. 3, butD15D255/T.
04340
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initial state 1 to the state 4. However, during the time
evolution the final state 4 will accumulate an addition
phase

1

2E2`

1`

~D2AD218V1
2~ t !18V4

2~ t !!dt.

This latter case is of interest when population transfer fr
the initial state 1 to the target state 4 is wanted, but is
suitable for the creation of the coherent-superposition pr
lem of Eq.~1!.

B. Partial population transfer: Creation of an entangled state

Next, we consider the opposite-signed detuning c
whenD152D25D. For this case we find the following fou
different eigenvalues of the HamiltonianW(t):

l1,2~ t !

56
1

A2
AV0

2~ t !2AV0
4~ t !216V1

2~ t !V4
2~ t !sin2

x

2
,

~16!
l3,4~ t !

56
1

A2
AV0

2~ t !1AV0
4~ t !216V1

2~ t !V4
2~ t !sin2

x

2
,

where

V0~ t !5A2V1
2~ t !12V4

2~ t !1D2. ~17!

For vanishing accumulated relative phase of the exc
tion, x50, the Hamiltonian has two degenerate eigenval
l1(t)5l2(t)50. In this case it is easy to show that th
matrix W(t) is unitarily equivalent to the tripod Hamiltonia
W̃(t) of Refs.@16# and @17#

W~ t !5UW̃~ t !U†, ~18!

where

FIG. 5. The final population of the states 1~dashed line! and 4
~solid line! as a function of the area of laser pulseaT. The param-
eters areD152D255/T, t/T50.5, a5a125a135b245b34.
5-5
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UÄ3
1 0 0 0

0
1

A2

1

A2
0

0
1

A2
2

1

A2
0

0 0 0 1

4 .

According to Refs.@16# and @17# the matrix

W̃~ t !5F 0 A2V1~ t ! 0 0

A2V1~ t ! 0 D A2V4~ t !

0 D 0 0

0 A2V4~ t ! 0 0

G
has two degenerated eigenvalues. Using the transforma
of Eq. ~18! we find the eigenvectors of the matrixW(t) in
terms of two time-dependent anglesq(t) Eq. ~12! andw(t):

tanw~ t !5
D

A2V1
2~ t !12V4

2~ t !
. ~19!

The two degenerate null-eigenvalue eigenvectors are@16,17#

F1~ t !5F cosq~ t !

0

0

2sinq~ t !

G ,

~20!

F2~ t !5
1

A2F A2 sinq~ t ! sinw~ t !

2cosw~ t !

cosw~ t !

A2 cosq~ t !sinw~ t !

G
while the remaining eigenvectors are

F3~ t !5
1

A23
sinq~ t !cosw~ t !

1

A2
~11sinw~ t !!

1

A2
~12sinw~ t !!

cosq~ t !cosw~ t !

4 ,

~21!

F4~ t !5
1

A23
sinq~ t !cosw~ t !

1

A2
~sinw~ t !21!

2
1

A2
~11sinw~ t !!

cosq~ t !cosw~ t !

4 .
04340
on

The analytic solution of the Schro¨dinger equation is found
for the limiting case of adiabatic evolution defined by t
conditions@16,17#

dq~ t !

dt
!V0~ t !,

dw~ t !

dt
!V0~ t !. ~22!

The anglesq(t) andw(t), defined in Eqs.~12! and ~19!,
reach the asymptotic valuesq(2`)50, w(2`)5p/2 for
the counterintuitive sequence of pulse@the quantum system
interacts first with the pulseV1(t) and then withV4(t)]. In
this case the vectorsFn n51,2,3,4 have the components

F1~2`!5F 1

0

0

0

G , F2~2`!5F 0

0

0

1

G ,

~23!

F3~2`!5F 0

1

0

0

G , F4~2`!5F 0

0

1

0

G .

For applications to quantum gates it is necessary to cons
all possible transitions. When the system is in the adiab
statesF3 or F4, the spin system is prepared initially in th
stateu2&5u↑&Su↓& I or u3&5u↓&Su↑& I . The radiative interac-
tion induces the following transformations at the end of t
interaction:

u2&→u2&e2 id and u3&→2u3&eid, ~24!

where

d5E
2`

1`

V0~ t !dt

is a dynamical phase. The same transformation applies
the intuitively ordered sequence of pulses@q(2`)
5p/2,w(2`)5p/2#.

The assumption thatW(t) varies adiabatically implies
that if the system is initially in one of the statesF1 or F2 it
will not acquire any componentF3 or F4. However, due to
the degeneracy ofF1(t) andF2(t), the transitions between
these two states cannot be neglected. For the second
when the system is in the stateu1&5u↓& I u↓&S or u4&
5u↑& I u↑&S before the interaction, the situation is more com
plicated. The initial state coincides with the adiabatic st
F1(2`) or F2(2`) @see Eq.~23!# depending on the order
ing of pulses. Using the transformation~18! and the method
that has been used in Refs.@16# and @17#, we can solve the
Schrödinger equation~7! in the adiabatic limit~22!. For the
initial conditions ~9!, the solution to these equations at th
end of the interactions reads

C1~1`!5cosQ, C4~1`!5sinQ, ~25!

where
5-6
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Q5E
2`

`

dt
dq

dt
sinw~t! ~26!

for the counterintuitive sequence of pulses. Thus the ev
tion is described by the transformation

u1&5u↓&Su↓& I→cosQu↓&Su↓& I1sinQu↑&Su↑& I . ~27!

If the system is initially in the stateu4&5u↑&Su↑& I , it transits
to an entangled state

u4&5u↑&Su↑& I→cosQu↓&Su↓& I2sinQu↑&Su↑& I . ~28!

The intermediate statesu↑&Su↓& I and u↓&Su↑& I are crucial
as intermediate states during the adiabatic process but re
unpopulated fort51`.

It has been proved@26# that any transformation involving
a number of qubits can be constructed using only sing
qubit operations and a two-qubit operation. Thus with
operations described by Eqs.~24!, ~27!, and~28! plus single-
qubit operations, it is possible to construct any unitary tra
formation.

It is instructive to compare the formulas, Eqs.~27! and
~28!, with the usual formula expanding two-state excitati
probabilities as a function of pulse area@5#. As was already
noted above, the present atomic system is always in a su
position of statesF1 or F2, so in the adiabatic limit, the
dynamical phase is absent.

V. GEOMETRIC INTERPRETATION

As shown in Ref.@17# the phaseQ has a geometrica
interpretation. We consider a three-dimensional space
which the coordinates are the values of Rabi frequen
V1(t) andV4(t) and detuning. At any time instant of tim
the Hamiltonian is represented by a vector in this spa
RÄ(V1 ,V4 ,D). As time increases, the vectorR traces out a
trajectory. The integral~26! can be evaluated using Stoke
theorem. After simple calculations the integral can be p
sented in the form

Q5E
S
VdS, ~29!

where

VÄ
R

R3
~30!

andS is an oriented surface that is bounded by a closed cu
in the parameter space. Thus Eq.~29! expresses the phaseQ
.
s.
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as the flux throughS of the field of a monopole with unit
strength located at the point of degeneracy (V150,V4

50,D50) in the parameter space. It is easy to show thaQ
depends only on ratiosD/V1,4 andt/T, wheret is an effec-
tive delay between pulses andT is the duration of the inter-
action. The phaseQ is independent of how the process
carried out as long as it is slow enough to satisfy to
adiabatic conditions~22!. The formulas~29! and ~30! are
analogous to those of Berry for the spin system in the ex
nal magnetic field@12#.

VI. CONCLUSION

In this paper we have shown that, in the adiabatic lim
and with two-photon resonant excitation, it is possible
prepare an entangled state of two two-level systems i
robust and controlled way. When the pulses are appropria
delayed in time, efficient population transfer from the initi
state u1&5u↓↓&, to the stateu4&5u↑↑&, is achieved if the
detuning of the relevant transition frequencies~see Fig. 4!
has the same sign. When that detuning is of opposite sig
two-particle entangled state is formed.

There are many ways to realize a loop~see Fig. 1! linkage
pattern within quantum systems examined in studies
NMR, such as in experiment@14#, where 500-MHz radiation
with the maximum radio frequency field strength~in Hz! up
to 774 Hz was used. The entangled state does not depen
the exact values of the Rabi frequencies as long as the
ditions for adiabatic following are satisfied.

We have shown that the superposition angle has a g
metrical interpretation. Thus, our method may open new p
sibilities for robust geometric quantum information proce
ing without dynamical phases. It is important to note that
proposed method is quite general and it can be applied on
two-level atomic system for generation of entangled state
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