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Entangled-state preparation using adiabatic population transfer
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We describe an efficient and robust method for producing an entangled state of a two-spin system, using a
sequence of two pulse pairs. We show that the mixing angle of the entangled state has a purely geometrical
origin, so it is insensitive to small variations of the time-integrated pulse amplitude.
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[. INTRODUCTION controlling the time integral of the pulsed Rabi frequency

(the pulse area one controls the number of Rabi cycles and

The recent developments in the theory of quantum inforthereby controls the mixing angle of the states. The mixing
mation have stimulated interest in processes that could bengle® is half the pulse area. When the pulse arear/2,

used to entangle at least two quantum systghhsThis pa-  the mixing angle® is #/4, and the entanglement will be
per presents a method for constructing a quantum superpostaximal.

tion of two individual spin states, Methods that rely on carefully controlled Rabi oscillations
) require careful control of pulse shape, as parametrized by the
[ W) =cos®||)4]])2+siNO|1)1]1)2, (1) pulse area; in this sense they are not robust. Successful ex-

perimental realization of the basic components of quantum
where||); is the “spin-down” state and1); is the “spin-  information processing devices will require fault-tolerant
up” state of thejth spin subsystem. If the mixing angleis  quantum logic gate$10,11]. Intensity-sensitive excitation
0 or 7/2 then the stat¢¥) is the product of two factors, can be avoided when one employs techniques that rely on
each describing a definite state of one of the two spins. Imnother unusual property of quantum time evolution, the so-
general, the superposition stgté) of Eq. (1) cannot be called Berry(or geometrig phase[12].
expressed as a single direct product of substates for the two Berry [12] showed that when the Hamiltonian of a quan-
spins, and so it is called an entangled state. Whenw/4  tum system depends on a set of parametsugh as Rabi
the statd¥) is called the maximally entangled state of two frequencieswhich evolve along a closed curve in the param-
guantum subsystems. eter space, then a state vector corresponding to a simple non-
Contemporary work on quantum information processingdegenerate eigenvalue develops a phé@se Berry phase
[1] exploits the properties of coherent superpositions to fornwhich depends only on the geometry of the curve in param-
“qubits,” elements that offer information manipulation that eter space. The Berry phase was generalized to the case of
is not possible with the conventional binary “bits” used in degenerate levels by Wilczek and Zde].
classical operations. When the superposed states are them-Unlike the integral of the Rabi frequengthe dynamical
selves composites of distinctly recognizable subsystemshasg, the geometrical phase does not depend on the dura-
such as is the case with the two spins discussed here, then thien of the interaction. It is therefore, for instance, indepen-
resulting entanglement of the probabilities of the two spinsdent of the speed with which an atom moves through an
offers opportunities for applications that exploit the most re-interaction region. If a quantum system undergoes random
markable features of quantum mecharjithk motion, due to some irregular interaction with the environ-
There are a few physical systems in which entanglementent, the geometrical phase remains unchanged.
between quantum states of particles can be created and stud-Recently Jonest al. [14] demonstrated experimentally a
ied. Examples include entanglement of trapped idhs6],  new approach to quantum computation with nuclear mag-
the atoms in a higl® cavity [7] as well as nuclei entangled netic resonance. They implement a conditional Berry phase
within molecules, as produced by nuclear-magnetic{12,15 and thus a controlled phase-shift gate. They used
resonancéNMR) methodd 8]. spin-half nuclei as an example to demonstrate this new geo-
These methods rely on one of the elementary properties ahetrical approach, but the idea is more general.
coherent excitation: the Rabi cycling of population between In order to achieve excitation that does not depend on
two states, as a result of a pulsed interac{idh The key pulse area(i.e., a dynamical phagewe need to devise a
parameter of such excitation is the Rabi frequency, esserprocedure in which only the geometric phase occurs. To
tially the interaction energy expressed in frequency units. Byavoid any dynamical phase, we make the state vector a null-
eigenvalue adiabatic state. Evolution of such a state has no
dynamical phase. This idea was earlier used for the creation
*Permanent address: Institute for Physical Research of Armeniaaf an arbitrary superposition of two atomic states in a robust
National Academy of Sciences, Ashtarak-2 378410, Armenia. ~ way using a sequence of three laser pulses in a four-state
"Permanent address: Lawrence Livermore National Laboratorysystem[16—18. That technique was based on the existence
Livermore, California 94550. of two degenerate dark statébe null-eigenvalue adiabatic
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state$ and their interaction. The mixing of the dark states (@) ®)
[19] can be controlled by changing the relative delay of the > Ea > Es
pulses, and thus an arbitrary superposition state, can be ge s Qs
erated. As suggested in Ref&0], [21], and[22] one can Bs v |tl> B3 Y 1>
modify the ordinary stimulated Raman adiabatic passage O A2_ﬂv__ $ha b vy
(STIRAP) [23] to create a superposition from a single quan- o) r 1
tum state by maintaining a fixed ratio of laser interactions. ——][—-*A
This method requires the existence of three quantum stateg!i> 4 ' E2 |i> - "A

The STIRAP method has been proposed for the creatior s === B Qs
of an entangled state for cavity QED two-atom systég#g N
and for aA atomic system$25]. E ;

In this paper we propose a simple method for entangling > i X E > E,
two subsystems. For definiteness we take these to be tw«l, |

spi_ns. The metho_d uses two-p_hotorj resona_nt exc_itati_on_, and FIG. 1. Energy levels and linkage@ Opposite-sign detuning
relies on the applicability of a(_:ilabatlc evolutlon: Itis s_|m|Iar A;=—A,;: (b) same-sign detuning;=A.,.
to the tripod STIRAP method in the sense that it requires the

existence of two degenerate dark states. However, the physé'ecause bothi, and S, commute with the Hamiltonian of

cal system differs from the tripod system. Here we COﬂSIdEEq. (3), their eigenvalues are constants of motion, given by
a two-particle problem with strong interaction between them.

We show that for a two-spin system the situation is more
complicated than for a tripod systefh6]. In the four-level
tripod atomic system we have used sequences of absorption , .
and emission processes in order to transfer part of the popfith the corresponding eigenvectors

lation from an initial state to a target state through an inter-

mediate state. For a two-spin system two absorption pro- |q’ms,m.>:|m5>|ml>' (5
cesses are needed to create the entangled state defined by Eq.

(1). As a consequence the final populations of the systeriVe use uncoupled states as a basis with the following nota-
will depend on a relative phase accumulated along excitatiotion (see Fig. 1

Emg.m = vshtBoms+ ¥4 Bom, + A msm, (4

paths.
hBo(ysty) A
IIl. TWO-SPIN SYSTEM [Dsllh=[1), Ei=——ZF——+7, (6

Although the suggested method is applicable to any two-
state system, we consider a simple model of two spins, de- ) 1h=12), Ey=— ABo(ys—7) A
notedl andS, both of spin-1/2. We assume that the gyro- St/ b2 2 4’
magnetic ratiosyg and y, are not the same.

As an example we can take a sindld nucleus as spih, AiBo(y—7ys) A
and a®*C nucleus as spi These individual nuclear spins g In=13), Ezg=——F———

serve as the qubits. The spins are at rest in a static magnetic 2 4

field of magnitudeB, and interact weakly with each other

via a scalar couplind\l-S. This system has been used in an 1 1h=|4), E :ﬁBO( Ystn) I ﬁ
experiment[14]. The constant of the spin-spin interaction St b 2 4
wasA=209.2 Hz. Spin-spin relaxation times were 3.9 s for

'H and 0.3 s for'*C. The spin-lattice relaxation times were We denote byE; the static energy eigenvalue of stéje.
7.6 s for 'H and 25.3 s for'®C. These relaxation times

provide upper bounds for the time scale during which all lll. THE ROTATING WAVE APPROXIMATION

processes must be completed. - _ SCHRODINGER EQUATION
We take the direction of the static magnetic field to define

thez axis, which serves as the axis of quantization. The static In the absence of the spin-spin interaction, when 0,
Hamiltonian for this system, in the absence of pulsed excithe eigenvalue difference§;—E; yield two resonant fre-
tation, is guencies,

Hspin: ’YSﬁBOSZ—’_ ’}/|Bolz+A|'S. (2) wg= ’)/SBO, w|=7|Bo.
We assume that the static magnetic fiBlgis strong enough
so that we need to keep onlyS,I, from the spin-spin cou-
pling. In this approximation the Hamiltonia) can be rep-
resented as

Hspin= vt BoS,+ ¥ Bl ,+ Al S, . )

With spin-spin coupling present each resonant frequency
splits into two frequencies. The four frequencies are

A A
wSiE, w *=.

2

043405-2



ENTANGLED-STATE PREPARATION USING ADIABATC . .. PHYSICAL REVIEW A 63 043405

We assume that for each transition it is possible to apply a The amplitudes of the quantum states at the end of the
resonantly tuned radio frequency pulse, so that the Hamilinteraction are obtained by numerically solving Ed). with
tonian will include couplings between pairs of states as indithe initial conditions
cated in the loop configuration of Fig. 1.

Expanding the total wave functid®’) in the basis of the C;(—%)=1, Cy(—%)=0, Cs(—%)=0, Cyu(—*)=0
eigenstates given by Eq&), 9

|W(t))y=Ci(t)exd —iEt/filexd —iwqt]|1) for a model case assuming Gaussian pulses,
+ Cy(t)exd —iE,t/A]exd —iw,t]]|2)
+ Cs(t)exd —iEst/flexd —iwst]|3)
+C(t)exd —iE4t/4]]4),

Qo) = agpexd — (t—7)%/T?],

Q5(t) = agzexd — (t—7)%/T?],
(10
and substituting it into the Schidinger equation we obtain Qoi(t) = Bosexd — (t+7)%/T?],
the set of differential equations for the amplitudes,
Q34(t) = Basexd — (t+7)%/T?].

d
IdtC(t)_W(t)C(t)’ ™ We consider two general pulse sequences: “intuitively” or-
dered, in which initially populated states are accessed by the
where, with the rotating wave approximation applied, initial radiation, and “conterintuitively” ordered, in which
_ only unoccupied states are initially linked. Figure 2 shows
0 Q(t)er Qyt) 0 these sequences. We also consider two classes of detunings:
Qp(t)e X A, 0 Qoyt) opposite signedA;=—A, [see Fig. 1a)] and same signed,
W= . (80 A;=A, [see Fig. 1b)]. We will show below that in order
0 LY Az Q1) that there be two dark states we requyre 0 [see Eq.(8)].
0 Qo)1) Quat) 0 Therefore we have assumgd=0 in the modeling. Without
loss of generality we considett= aq,= a3 and B= B,
Here A]_: Wo1— W1, and Azz w31~ W3, Wpk= (En_ Ek)/ﬁ = 1334'
We consider the case when the two-photon resonance condi- Figure 3 shows the probabilities obtained from numerical
tion holds between transitions 1 and 4, solution of Eqs(7) with the initial conditiong9) as function
of delay for the opposite-signed detunings\;
Eitwi+ws3=Es;=Ej+wy+w,. =—A,=5/T [see Fig. 18)]. The peak Rabi frequencies are
a=B=10/T, whereT characterizes the pulse duration, see
The Rabi frequencie€);; =y"°B;;, whereB;; are ampli-  Eq. (10). Negative delays- correspond to counterintuitive

tudes of radio frequency pulses, have the following interpreordering of pulses and positive corresponds to intuitive
tation: ), flips spinl when spinSis in the statd|), Q43  ordering of pulses. We see from this figure that the final
flips spinl when spinSis in the statg1), Q45 flips spinS  populations of the states 1 and 4 are the same for either
when spinl is in the statg| ), and{),, flips spinSwhen spin  ordering of the pulses.
| is in the statglT). Without loss of generality we assume  Furthermore we can control the final state of the quantum
that ();; are real and positive. Herev=x1,—x24% xa3  System by changing the parameté. For example, when
— X13, Wherex;; are phases of the matrix elements of the|7/T| ~0.25 or 1 we have a maximal entanglement between
transitionsi —j (i,j=1,2,3,4), and is the relative phase be-two spins. Of particular interest is the observation, for the
tween two paths of transitions from state 1 to the states 2 ansame-signed detuninfisee Fig. 1b)] A;=A,=5/T (see Fig.
3 (absorption and from state 4 to the same states 2 and 34), that the final populations of the states 1 and 4 are tolerant
(emission. Most modern NMR spectrometers allow the con-to (small change of the parametefT near|r/T|~0.6. Be-
trol of the relative phasg. cause the population is either in state 4 or in state 1, this
Using these equations we can restate the problem. Wehoice of the detunings does not lead to an entangled state.
assume that spins are initially in a nonentangled state, sp&his behavior of the population is similar to what occurs
cifically state|1)=|]|), i.e.,C;(—*)=1, and at the end of with STIRAP [23], but here we have a robust population
the interaction with the laser fields one wants to have state fransfer from the initial state to the target state for both the
entangled with statd4)=|11), i.e., Cy(+®)=Cg(+x) intuitive and counterintuitive pulse orderings. The insensitiv-
=0 and C4(+x)#0, Cy(+)#0. A similar task was ity to the pulse ordering is due to large intermediate detun-
solved for a one-particle system using the tripod STIRAPiIngs,AT>1.
method, Ref[16], in which we applied three pulses under a  This method differs from the well-known quantum Rabi
two-photon resonance condition between initial and finalhutation method9] as shown in Fig. 5, which displays how
states. We are here going to use this technique to createtle atomic populations at the end of the interaction depend
superposition state for the four-level loop systét) (see on the pulse area for the counterintuitive sequences of
Fig. D). pulses. It is well known that with the area method the
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counterintuitive 1 7T~
! \
(2) 4 FA Ay =4y
§ 0.8 ,--\\ "I \\/ //-\
1
?;o.a \f\," \ /
& X \ v X105
E 0.4 N / \ /
0.2 )
-
time
-1 -05 0 0.5 1 Ls
|4> ¥ ® T
-0 3> - FIG. 3. Probability for finding the population in state(dashed
v line) or state 4(solid line) after the interaction with the radiation
— -3 field as a function ofr/T. The parameters am;=—A,=5/T, «
2> =B=10/T. Negative 7 correspond to the intuitive sequences of
pulses, and for positive case counterintuitive order. Maximum en-
tanglement is reached for several valuesr6f indicated by the
—— > @ circles.
intuitive . . L .
®) populations oscillate with increasing area of the laser pulse.
However, we see from Fig. 5 that a changeadf causes a
monotonic variation of the populations. Thus for the
opposite-signed detunings, = — A, we can control the final
populations of the statgl) and |4) by changing external
parameters, for instancéT. In the next section we develop,
for this case, an analytical solution of the Salirmer equa-
tion (7) in the adiabatic limit.
—>
time
4> —— ——
| IV. ADIABATIC APPROXIMATION
3>
—_— | -1 A. Complete population transfer
p—— v In order to understand the physical mechanism of the ro-
> = bust population transfer from the initial state)=|||) to
the target staté4)=|171), or the creation of a controlled
superposition of these states, we consider in this section the
—— > —— same-signed ;= A,=A in the adiabatic approximation. We
FIG. 2. Pulse sequence and linkages(®@rcounterintuitive and C_OSSI?STES E:Sse whetl; (1) = 015(t) = Q4(t) and Q4(t)
b) intuiti I derings. TRIsAL R . I
(b) intuitive pulse orderings For this particular case the eigenvalues of the Hamiltonian
W(t) have the following form
|
)\Lz(t)=%(Ai \/A2+4Q§(t)+4Q§(t)+4mj(t)+9‘l‘(t)+2Q§(t)9§(t) cosX),
1
Nadt)= > ( A+ \/A2+4Q§(t) +4024(1) - 4040 + Q4 (1) +202(H)Q4(1) cosx) .
|
All eigenvalues of the matrixV(t) are different except for cosd(t)
the case wherny=m and Q,(t)=Q4(t). The formulas for
. . . . 0
eigenvectors of the Hamiltoniaw(t) in the general case of P4(t)= (12)
same-signed whe;=A,=A, are lengthy. We limit the 0
discussion to the case whgr=0. For this case the following —sind(t)

eigenvectors are
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FIG. 4. The same as for Fig. 3, bt =A,=5/T.

aT

FIG. 5. The final population of the states(dashed lingand 4
(solid ling) as a function of the area of laser pulg&. The param-

Where eters ar$l= —A2=5/T, T/T=05, a= 1= a13=324=334.
tand(t) = 8V (12)  Initial state 1 to the state 4. However, during the time of
Qy(t) evolution the final state 4 will accumulate an additional
phase
and
1+
i Q4(t) 7 ELO (A—JA%+807(t)+8Q5(1))dt.
1 | $(A—JA%+805()+8Q4(1)) _ o _
D,(t)= W L 5 . 5 This latter case is of interest when population transfer from
H(A—JAZ+80Q5(1) +80Q4(1)) the initial state 1 to the target state 4 is wanted, but is not
Q4(t) suitable for the creation of the coherent-superposition prob-
B (13) lem of Eq.(1).
B Q4(t) T B. Partial population transfer: Creation of an entangled state
1 LA+AZ+ SQf(t)vLSQf,(t)) Next, we consider the opposite-signed detuning case
D,(t)= Nl . . . 5 whenA;=—A,=A. For this case we find the following four
(O] Ha+AZ+80%(1)+8Q%(1)) different eigenvalues of the Hamiltoniaki(t):
B Q4(1) i
whereN(t) is a normalizing function. The fourth eigenstate _ i\/ 20 \/ Ao 2 200 i 2 X
remains fixed at all times, and _i\/g Xo(t) {o(1) ~ 1601 (D) Q5(1)sin 2’
0 (16)
N3 At)
D ! ! 15
0= E -1 (19 1 2 4 2 20y ain2 X
0 =t$ Qa(t)+ \/ Qy(t)—16Q7(1)Q5(t)sin >
The eigenvalues are 03(A—+AZ+8Q%(t)+80Q5(t)), where

F(A+JA%+80Q7(t) +80Q4(t)) and A, respectively. Next

we show that for both intuitive and counterintuitive pulse

ordering robust population transfer from the initial state 1 to

the target state 4, occurs in the adiabatic limif>1 and ~ For vanishing accumulated relative phase of the excita-

max{Q;(t), ()} T>1. tion, x=0, the Hamiltonian has two degenerate eigenvalues
The time evolution of the system for counterintuitive A1(t) =X2(t)=0. In this case it is easy to show that the

pulse ordering is the same as for STIRAP. The system rematrix W(t) is unitarily equivalent to the tripod Hamiltonian

mains, at all times, in the trapped state equatitth and the  W(t) of Refs.[16] and[17]

state vector of the system rotates from coincidence with state

1 to coincidence with state 4. For the intuitive sequences of

pulses the state vector of the system coincides with the vec-

tor of Eq.(13) and robust population transfer occurs from thewhere

Qo(t)=203(t) +2Q%(t) + A2 17)

W(t)=UW(t)U", (18
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According to Refs[16] and[17] the matrix

0 V2Q4(t) O 0
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The analytic solution of the Schdimger equation is found
for the limiting case of adiabatic evolution defined by the
conditions[16,17]

dd(t) de(t)
T<Qo(t)' T<90(t)' (22

The anglesd(t) and ¢(t), defined in Eqs(12) and(19),
reach the asymptotic value$(—=)=0, ¢(—x)=x/2 for
the counterintuitive sequence of pulgbe quantum system
interacts first with the puls&4(t) and then with(),(t)]. In
this case the vecto®, n=1,2,3,4 have the components

G| 20O 0 A 204 [ 1] [ 0]
0= 0 A 0 0 0 0
(Dl(_oo): O 1 (1)2(_00): 0 ]
0 V20, 0 0
) ) . 0 1
has two degenerated eigenvalues. Using the transformation - - 23)
of Eqg. (18) we find the eigenvectors of the mati¥(t) in F 0 m 0
terms of two time-dependent anglé$t) Eq. (12) and ¢(t): 1 0
ot . Oo(—2)=| |, Pal—)=|
an = .
T 2021 +202(1) 0] 0

The two degenerate null-eigenvalue eigenvectorg Hel 7|

cosd(t)
0
0
—sind(t)

D,y ()=

(20
V2 sind(t) sing(t)

1 —cosop(t)
ﬁ cose(t)
J2 cosd(t)sine(t)

while the remaining eigenvectors are

[ sin9(t)cose(t) ]
%(14’ sing(t))

V2| 1
E(l—Sinqo(t))

L cosf}(t)cos<p(t)_
i - (21
sinv(t)cose(t)
2 (sing(t)-1
\/E(Slmp() )

1
Dy(t)=—F%=
2
\/_ —i(1+sin<p(t))
V2
i cosd(t)cose(t) ]

For applications to quantum gates it is necessary to consider
all possible transitions. When the system is in the adiabatic
statesd; or ®,, the spin system is prepared initially in the
state|2)=|1)g1); or [3)=|])dT),. The radiative interac-
tion induces the following transformations at the end of the
interaction:

|2)—|2)e ' and |3)— —|3)e'?, (24)

where

+ oo
5=f Qq(t)dt

is a dynamical phase. The same transformation applies for
the intuitively ordered sequence of pulsgs)(—x)
=7/2,p(—»)=m/2].

The assumption thatV(t) varies adiabatically implies
that if the system is initially in one of the statés or &, it
will not acquire any componern; or ®,. However, due to
the degeneracy ab,(t) and®,(t), the transitions between
these two states cannot be neglected. For the second case,
when the system is in the statd)=||)|]|)s or |4)
=|1)]1)s before the interaction, the situation is more com-
plicated. The initial state coincides with the adiabatic state
@, (—x) or ®,(—») [see Eq(23)] depending on the order-
ing of pulses. Using the transformatiéb8) and the method
that has been used in Refd6] and[17], we can solve the
Schralinger equatior(7) in the adiabatic limit(22). For the
initial conditions (9), the solution to these equations at the
end of the interactions reads

Cy(+2)=c0sO, Cy(+%)=sinO, (25)

where
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o do9 as the flux througls of the field of a monopole with unit
@):f d7 - sine(7) (26)  strength located at the point of degenerad;€0,.Q,

o =0,A=0) in the parameter space. It is easy to show that
for the counterintuitive sequence of pulses. Thus the evoludepends only on ratio&/(); 4and /T, wherer is an effec-
tion is described by the transformation tive delay between pulses afds the duration of the inter-

action. The phas® is independent of how the process is
[1)=11)dl Lh—cos®[L)s|[)+sin®]T)d 7). (279 carried out as long as it is slow enough to satisfy to the
adiabatic conditiong22). The formulas(29) and (30) are
analogous to those of Berry for the spin system in the exter-
nal magnetic field12].

If the system is initially in the statgt)=|1)g1),, it transits
to an entangled state

[4)=]1)glT)1—c0osO[|)gl 1) —sin@®[1)g[1),. (28

The intermediate statd$)sll>| and |¢>_S|T), are crucial VI. CONCLUSION
as intermediate states during the adiabatic process but remain
unpopulated fot= + . In this paper we have shown that, in the adiabatic limit

It has been provefR6] that any transformation involving and with two-photon resonant excitation, it is possible to
a number of qubits can be constructed using only singleprepare an entangled state of two two-level systems in a
qubit operations and a two-qubit operation. Thus with therobust and controlled way. When the pulses are appropriately
operations described by Eq&4), (27), and(28) plus single-  delayed in time, efficient population transfer from the initial
qubit operations, it is possible to construct any unitary transstate|1)=|| | ), to the statel4)=|11), is achieved if the
formation. detuning of the relevant transition frequencisse Fig. 4

It is instructive to compare the formulas, Ed27) and  has the same sign. When that detuning is of opposite sign, a
(28), with the usual formula expanding two-state excitationtwo-particle entangled state is formed.
probabilities as a function of pulse argg. As was already There are many ways to realize a lo@ee Fig. 1linkage
noted above, the present atomic system is always in a supgpattern within quantum systems examined in studies of
position of statesb,; or ®,, so in the adiabatic limit, the NMR, such as in experimehi4], where 500-MHz radiation

dynamical phase is absent. with the maximum radio frequency field strendgth Hz) up
to 774 Hz was used. The entangled state does not depend on
V. GEOMETRIC INTERPRETATION the exact values of the Rabi frequencies as long as the con-
) ) ditions for adiabatic following are satisfied.
As shown in Ref[17] the phase® has a geometrical We have shown that the superposition angle has a geo-

interpretation. We consider a three-dimensional space ifetrical interpretation. Thus, our method may open new pos-
which the coordinates are the values of Rabi frequenciegjpjjities for robust geometric quantum information process-
4(t) and Q,(t) and detuning. At any time instant of time jng without dynamical phases. It is important to note that the
the Hamiltonian is represented by a vector in this spaceproposed method is quite general and it can be applied on the

R=(Q,,Q4,A). As time increases, the vectBrtraces outa two-level atomic system for generation of entangled states.
trajectory. The integra{26) can be evaluated using Stokes'’

theorem. After simple calculations the integral can be pre-
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