PHYSICAL REVIEW A, VOLUME 63, 043404
Curve crossing in linear potential grids: The quasidegeneracy approximation
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The quasidegeneracy approximation A. Yurovsky, A. Ben-Reuven, P. S. Julienne, and Y. B. Band, J.
Phys. B32, 1845(1999] is used here to evaluate transition amplitudes for the problem of curve crossing in
linear potential grids involving two sets of parallel potentials. The approximation describes phenomena, such
as counterintuitive transitions and saturatiolcomplete population transfgmot predictable by the assump-
tion of independent crossings. Also, a new kind of oscillations due to quantum interfédéffieeent from the
well-known Stickelberg oscillationsis disclosed, and its nature discussed. The approximation can find appli-
cations in many fields of physics, where multistate curve crossing problems occur.
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I. INTRODUCTION transitions(see[5,19]), in which the second crossing pre-
cedes the first one. A particular type of problem that has been

The concept of curve crossing has many applications irstudied by quantum approaches is that 6o@pendent linear
the study of atomic collisiongl—7], excitations of atoms and grid consisting of two sets of mutually parallel potentials
molecules by nonstationary fielf8—11], Bose-Einstein con- (see Fig. 1 This problem has a known exact solutifit¥]
densateq12,13, and solid-state physickl4,15. Typical only in the case in which one of the two sets has only one
curve crossing problems are generally divided into twoPotential, and the time interval is extended to infinity (
classesR-dependent anttdependent ones. The description —®,t"— —=). Otherwise(see[11,14,15,25,2f we have
of inelastic collisions, for example, involves crossings ofonly numerical solutions, or a qualitative study of properties.
coordinate-dependent potentials, and can therefore be treat¥ée know, however, for certaifsee{25]) that, for any pair of
as anR-dependent problem, described by a set of couplede€ts, counterintuitive transitions are exactly forbidden on the
second-order Stationary Scu[oger equations_ By the use of infinite time interval. However, the pOtentialS in the grld in-

a common-trajectory approximatidi], R-dependent prob- finitely diverge on both asymptotes, which is unphysical. We
lems can be reduced tedependent ones. The latter classconsider here a truncated linear grid, defined on a finite time
also naturally appears in the description of transitions due téterval[—t’,t"]. Such a truncation is relevant for applica-
nonstationary fields. Typicatdependent problems involve tion to transitions in time-dependent fieltisg., single elec-
the crossing of time-varying potentials, and their descriptiorironics[14,18)), since the field variation is actually finite.
requires a set of coupled first-order nonstationary Schro The problem is studied here with the help of the
dinger equations. “quasidegeneracy” approximation, introduced [t9] for

Curve crossing problems are usually solved by usinghe case when one of the sets consists of only one potential.
semiclassical approximations. Two-state crossing is delhis approximation treats a nondegenerate system with small
scribed by the Landau-ZenérZ) formula[16,17) (or one of ~ potential gaps as a perturbed degenerate sy&eej27]). A
its various modification$18]), while multistate crossing is special form of the quasidegeneracy approximation was used
treated as a sequence of independent two-state crossings. &S0 in Ref.[14]. This form is applicable to a linear grid
though semiclassical approaches are satisfactory for marfensisting of two potentials in each set, with equal couplings
app"cations(see, e_g[G])' they fail to describe certain ef- between all states belonging to different sets, while only one
fects found recently in experiments, numerical calculations,
and analytically soluble potential mod¢s,19—-23.

The LZ formula forms an exact solution of the problem
involving the crossing of two linear potentials infinitely di-
verging on both asymptotes. It gives good results even when
local perturbations in the vicinity of the crossing are taken
into account[9]. However, if the potentials retain a finite
potential gap on an asymptotg20], have singularities
[21,22, or are truncatefl23], the transition probabilities de-
viate essentially from the LZ formula. Some interesting ef-
fects also appear in state crossing involving Bose-Einstein
condensates, described by the nonlinear Gross-Pitaevskii
equationssee[12)), instead of the linear Schidinger equa-
tions. FIG. 1. Schematic illustration of a truncated linear grid, involv-

The treatment of multistate curve crossing as a sequendgg n,=2 horizontal potentials and,=3 slanted potentials. The
of independent two-state crossings, commonly used in sembroken dotted arrow shows a counterintuitive transition. The num-
classical approaches, fails to describe ‘“counterintuitive” bers denote the states to which the potentials correspond.
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of the sets is quasidegenerate. The method of Refl is A transformation of the expansion coefficiengg(t) using

actually a simplified form of the method of Refl9]. A the matricesX;; andYy,

linear grid in which one set of parallel potentials is exactly

degenerate was also considered in Haf], by using a

method different from the quasidegeneracy approximation. a(t)= Zl Xijei(0), b,(t)=k21 Yiken,+k(), 3
The quasidegeneracy approximation is generalized here to :

the case of a truncated linear grid with arbitrary number ofieads to a new system of coupled equations

potentials in both sets. In Sec. Il we introduce a ‘“decou-

n2

pling” transformation, which approximately transforms the oy @ @
problem to a set of parallel two-state crossings. The transi- 'W:V” a+gb+ E Virar, 1slsn,
tion amplitudes are calculated in Sec. Ill, and applicability I

criteria are presented in Sec. IV. Results are shown and dis- b
cussed in Sec. V. A few preliminary results of this work have  j " =V +pt)b +gia+ > Vl(lb)bl, . 1<I=n,
been presented if28]. ot 1%l
a (4)
Il. DECOUPLING TRANSFORMATION —V{da,+ 2 V”,aw, n+i<i<n,,

Let us consider two sets of mutually parallel linear poten-
tials. This problem can be easily reduced by a gauge trans- b
formation to the case of a set of horizontal potentM)s(j i— =(V{P+pHb+ > Vb, n+i<i<n,,
=1,... n,;) crossed by a set of slanted parallel linear poten- Jt 1" %1
tials Vi, +kT Bt (k=1,...n,) (see Fig. L The interactions

between the states Wlthln each set of parallel potentials can

be eliminated by a unitary transformation. Therefore, without ny ny

loss of generality, we can describe the problem by the fol- Vl(la, > X|jVjX|*rj , V|(|b' > YV, WY ()
lowing system of coupled equations for the expansion coef- =1 k=1 !

ficients ¢;(t):

n which

Given a matrixg;,, its SVD is not unique, and may be

9o; Ny chosen in such a way that its singular valggsre real and
'a_tJ:Vi*"i+k21 Ojk@n,+ks»  1<j=nyg, non—n(c;:;;gative, and the nondiagonal potential eIemM{\%
andV,;’ vanish wherl>n andl’>n.
1 I .
PP ny @ When both paraIIeI sets of potentials are degenerate, the
i Mt :(Vn1+k+,3t)¢n1+k+2 9}1@1, 1<k=n, matrlcesvl(la,) and V”,are diagonal, and the system H¢)
at =1 describes a set of independent pairs of crossing potentials,

) o ) n,—n separate horizontal potentia{sot coupled to other
(using a system of units in which=1). The only nonvan-  channel andn,—n separate slanted potentials. Since the
ishing coupling coefficientgy involve pairs of crossed po- transformation Eq(3) partially eliminates the coupling be-
tentials. The problem is defined here on the finite time interyyeen the states, hereafter it is called the “decoupling trans-
val —t'sts<t". formation.” The channels described by coefficieatand b

The special case of,=1 has been considered[ib9], by  will be called the “decoupled channels.”
using a quasidegeneracy approximation. In order to general- |n the nondegenerate case the nondiagonal elements of

ize this approximation, let us perform a singular value deV(a) andV,(,b,) lead to transitions between the decoupled chan-
composition(SVD) for the coupling matrixg;, , of the form 1/ However, the magnitudes of these nondiagonal ele-

n ments are bounded by the inequalities
9= 2, X9 Yi, n=min(ng,n). 2 n
2 Vi E Vi-2 (ViP)i=g nlsz,
This decomposition is well known in the theory of spline 1#1 6)
approximationgsee, e.g.[29]). The two matrices with ele- n,
mentsX;; andY), are unitary, and their rows are the eigen- > |V|(|b,)|2— 2 V21+k 2 (ViPh2<= nzAVZ,

vectors of the quadratic matrices formed by products of the [#1’

gjk and their hermitian conjugates: ) . _
where the bandwidths of the potential sets are defined as

ij 95X =lail*X;; AV1=V, =V, AVo=Vy 4, Vi 1. )
Therefore, these transitions are negligible if the bandwidths

2 9 Y =912V - of the two potential sets are small enou¢ghppropriate ap-

] SISk plicability criteria are presented in Sec. IV belgweglect-
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ing the nondiagonal elements vfla,)and Vl(lb’)’ we obtain a  systems is given by the LZ formula. However, the solution

zero-order approximation system of equationsdgt) and  Of this problem converges to the asymptotic limit very
by(t), slowly. We shall therefore use the exact solution of the linear

two-state curve crossing problem, known since the pioneer-
_aafo) (@)(0) ) ing work of Zener[17]. The two independent solutions
i——=ViraHgib,  1sl<n, (8a A (1), Bpy(t), with m=1,2, can be expressed in terms of
the confluent hypergeometric functiafr, (see[30]) as

-&bl(o) b 0 0
i——=(VP+ptb@+gal®, 1<i=n, (8 i1 '
All(t):ﬂ:l( BT Eﬁ(t—h)z) exp(—iV{P1),
daf® (12)
i —y(@5(0) <|<
i— ViYa”, n+1<I=sng, (80 1 i 3 ,
Ag(t)=(t—1t)1F; 7 M5 E,B(t—ﬁ)
(0)
.00
i— =(V{P+p0b®, n+i<i=n,, (80 X exp(—iV®t),
which describes the same set of decoupled channels as the i A1) V(@
one that prevails in the case of degenerate potentials. By ()=— —2 LA (1),
Given an arbitrary matrixg;,, the transformation matri- 9 dt g

cesX;; andYy, cannot be generally expressed in an analyti-

cal form. Nevertheless, analytical expressions can be obwhere

tained in the specific case of a separable maix

=& 7. In this case, one of the rowghe first, for definite- n=0iB8, t=(VP-vPp (13)
nes$ has the form

n —12 Ny —12 are, respectively, the LZ exponent for the two-state crossing
Xy > Gk &, Yu~= > el? T and the position of the_crczls;smg point on the time scale.
=1 K =1 The transition matrixS'”, connecting the coefficients

9 al?, b(® at the boundaries’ and —t’ as

and the other rows are orthogonal to the first one. The sin- 041\ — (1) 2 (0) 47 () (0), 47
gular values can then be written as A (1) = Saad " (— 1)+ Sepbi (1),
(14

n2

ng 12
9|:(_E |§j’|22 |77k’|2) i1 - (10

j'=1 k'=1

b(O(t")=s0)al®(—t")+ SO (—t"),

can be expressed in terms of the fundamental solutions Eq.
In this casen=1 and the transformed system consists of ong12) in the form
pair of coupled potentials, together with —1 horizontal,
andn,—1 slanted, separate potentials. SS;)=(A1|(t”)Bz.(—t’)—A2|(t”)Bl|(—t’))/D| ,
In the case of equal couplingg=g (independent of
andk ), X;;=n; "2, Y3;=n; 2, andg, = (nyn,)*?g,,. The

(1) _ " 4 % )
opposite situatior(in which g, is independent of) takes Sab= (= Ay (") Ay (=t ) +Ay(t")Ay(—t"))/Dy,

place in the case in which the coupling matgix is propor- (15
tional to a unitary matrix. ()= (B (t")By(—t")—By(t")By(—t"))/D,
IIl. TRANSITION AMPLITUDES Sl(glt)): ( _ B:|_|(t”)A2|( _t!)+ B2|(t”)A1|( _t/))/DI ’
The zero-order equatiori8c) and(8d) representing sepa-
rate channels have the simple analytical solutions where

(0) 4y — 5(0) _ ¢/ _av@) 4 ”
ar(t)=a(=texd ~IViT(t + )], D= Au(—t)Bar(—t')~ An(—t)By(—t)). (16

b{(t") =b{O(—t")exd —iV{P(t' +1") (11)
In our numerical calculations we expressed the confluent hy-
—iB(t"?—t"?)/2]. pergeometric functions in terms of columbic wave functions,
using the algorithm of31] for their evaluation.
The remaining equationéa) and (8b) represent a set af The elements of the transition mat$() can be given a

two-state linear curve-crossing problems. In the limitmuch simpler approximate form, expressing them in terms of
t’—o, t"—ow the transition amplitude in each of these LZ transition amplitudes
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t//_tl i\

Si~exp(—mh —iVIP(t +t7)| ——
t'+t,

S~—\1—exp(—2m\))
i
Xexp(z/st'z—ix,— iV|(|a)t”—iV|(,b)t’>,
0 17
Sy~ Vl—exp—2m\))

i
X exp( - Eﬂt”2+ ix— iVt — iV,(,b)t”) ,

Shp~exp — ah + =iVt +t) =i B(1"2—1'?)/2)

t"_t| —iN
X - )
t'+1

where

X|:%+argl“(i)\|)—)\| IN[B(t" +1))(t"—t)]— 3 Bt}
(18)

When the original representation E4) is recovered by ap-
plication of the transformation E¢3) one obtains the tran-
sition matrix S, defined by

ny+n;
¢(t")= E Sy e (—t), 1<j<=n;+n,, (19
in the zero-order approximation as
n Ny
s“,=|21 x,*;sg;x,,-,JrI:}n)H XX exp =iVt +1")),
(209
n n2
Snl+k,n1+k’:|21 YFLSS%Ymrﬂ:%l YicYi
xexp(—iVP(t +t") =i B(t"?—t'?)/2),
(200
n
Sy ek = 24 X5 GV (200
n
S, ki = 24 YRSy (200

where I=j<n;, 1<j'sn;, 1s<k=n, and I=k'=n,.
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low couplings, in which cas¢s{)| (or |S{}|) are close to
unity. When one of the sets contains only one potential (
=1 orn,=1), Egs.(20) are reduced to the transition ampli-
tudes obtained in Ref19].

IV. APPLICABILITY CRITERIA

The quasidegeneracy approximation described in Sec. Il
is applicable when the terms neglected in E&$.yield suf-
ficiently small contributions to the transition amplitudes.
First-order perturbation theory estimates these contributions
as

t"
Asﬂ(ﬁ): f_t,al(O)* (t)Vfﬁ)aff’)(t)dt, (21

and analogous expressions th,(l, , Obtained by replacing
a with b everywhere in Eq(21).

An overestimate for these amplitudes can be obtained by

substitutinga{®)(t) =b{®)(t) =1, resulting in the criteria

(t"+1")AV <1, (22
where the bandwidths of the potential sat¢, andAV, are
defined by Eq(7). However, in certain situations less strin-
gent criteria may exist, as can be shown by the use of ap-
proximate expressions for the unperturbed wave functions
[solutions of Egs(8)].

Such approximate expressions can be obtained in two lim-
iting cases. The first one is the asymptotic case, in which the
bounds—t’ andt” lie far outside the two-state transition
rangesg, /B, i.e.,

t'+t>9,/8, t'—t>q//B (foralll). (23
In this case, an asymptotic expansion of the confluent hyper-
geometric functior(see[30]) on the the left-hand asymptote
t'+t,>—t+t,>q,/8 yields

al(t)~al(—t")(Jt|itHMexd —ivVR(t +1)],
(24)
b{®(t)~b{P(—t")(|t|/t") "™

xexp —iVP(t' +1)—iB(t?—t'?)/2),

and on the right-hand asymptotg, /B<<t—t,<t”"—t, it
yields

al”(t)~al?(t")(t/t") M exp—IV[P (t—t")),
(25

bfo)(t)% bI(O)(tH)(t/tH)fiM

This solution constitutes the quasidegeneracy approximation.

Whenevers!) or S{) arel independent, and=n; (or n

xexp(—iVP(t—t") —iB(t2—t"?)/2).

=n,), transitions between states within the corresponding
set ofn; (or n,) parallel potentials become forbidden due to Whenever >n, Eqgs.(24) and (25 become exacfsee Egs.

the unitarity of matrices;; and Yj,. Such an effect may

take place if the couplingg, are close in magnitude or very

(11)]. Hereafter one should s&{=0 if I>n.
The first-order corrections to the amplitudes E2fl) can

small. If n<n; (or n<n,) such transitions vanish only at therefore be estimated as
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(a)
Vi

T+iN —i)

AS~ [t'a®* (—t)a(—t")

+tr/al(0)~k(t//)al(9)(t//)]’ (26)

for the horizontal set, and a similar expression, waitieplac-
ing a, for the slanted set.

Finally, using Eq.(6) one can write the applicability cri-
teria in the form

(t"+t") AV o<|1+iNp =i (27

Let us consider now the second limiting case, in which both 00 0 19'(? 12 2.0

boundaries-t’ andt” lie way inside the two-state transition
rangesg, /B, i.e.,

t'+t<g, /B, t"—t,<g,/B (foralll). (28

In addition, let\;>1, in order to obtain an adiabatic evolu-
tion. Within the range defined by E(8), the adiabatic en-
ergies are approximatel{® +g,, and

(afo)(t)) A=) +p(A(-t)
bOt)) 2

Xexp(—i(ViP+g)(t' +1))

0.0 0.5 1g.0 1.5 2.0
A=) -b{(-t) °
- 2 FIG. 2. Counterintuitive transition probabilities vs the coupling
. strengthg, [see Eq(32)] for a truncated linear grid with the bounds
xexp(—i(Vi{P—g)(t' +1)). (29 t'=t"=100(on a scale in which the potential slopés-1) and the

potential gaps(a) AV=0, and(b) AV=2.5x10"3. The numbers
Substitution of Egs(29) in Eq. (21), taking into account EQ.  denote the values of the phase parametén Eq. (32). The results
(6), gives the applicability criteria of numerical integration of the coupled equatigfs are presented
by solid lines. The dashed-line plots (h) are calculated with the

(U +t") AV ;<1+[g—gy/|(t" +1"). (300 quasidegeneracy approximation using EGS).

Criteria combining the cases Eq22), (27), and(30) can be

. ) ; h Counterintuitive transitions can nonetheless occur, as has
written with the help of Eq(13) as the single expression

been proven in numerical calculations involving crossings of
- _ _ S e nonlinear potential$5], and in uses of the quasidegenerac
(U 1)AVy z<1+ g — gy [min(t’ +1 ,(g|+g|/)/,8).(31) approximaliion for truncated and piecewisg linear %roblem};,
involving a set of horizontal potentials, crossed by one
These criteria allow for an interpretation that stems from theslanted potential19]. Such transitions are present in trun-
viewpoint of the uncertainty principle. Equati¢81) means cated linear grids as well, since the transformations (Bj.
that the potentials become indistinguishable within a limitegconnect the initial and final states to all the decoupled chan-
time interval. The second term on the right-hand side of Egnels.
(31) describes a broadening of the allowed uncertainty as the Hereafter we shall demonstrate the application of the

coupling increases. quasidegeneracy approximation to a particular example.
Consider the model of a linear grid withy=n,=2, V;
V. RESULTS AND DISCUSSION =V3=—AV/2, andV,=V,=AV/2 (recalling thatV; and

V, are the time-independent parts of the slanted potejtials
In the limiting case of a linear grid defined on the infinite et the coupling matrix have one of the two special forms,
time interval— o <t<o, some transitions become forbidden ejther

(se€g[25]). An example of such transitions is shown in Fig. 1,

in which two time-independent potentials are shown crossed 1/1.2 1

by three parallel time-slanted potentials. The forbidden tran- 9ik=9o 1 1.2 expimai/4) |’ (32
sitions, such as 21, 3—4, 3—5, and 4-5, are called

counterintuitive, since in order to treat them as a sequence @fith integer values ofn, or the equal-coupling form, with
independent two-state crossings, one has to assume a motion

backwards in time. 011=0912=0921=02>=Jp- (33
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0.3 1.0 —— =
(a) (a) /// RS v
\\ // // \\
0.8 \ // //
' 31 \\ \\\ // ///
0.6 \ NS //X ~ // 2-4
o = :::<
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/ 7N N
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(t+t")AV
0.6 (b) 11

0.0 50 100 150 200

(t+7)AV o 10 20 30 40
(P+t)AV

FIG. 3. Counterintuitive transition probabilities vs the potential
gap AV, calculated for(a) t'=t"=100, go=0.5, or (b) t'=t"
=20, go=5. Other notations as in Fig. 2.

All the following calculations are performed for the slope
B=1. The results can be readily expanded to ojpealues
by the substitutions)/3—g, AV/{B—AV, andt\/B—t. ;

Figure 2 presents the dependence of counterintuitive tran- 1-3
sition probabilities on the coupling strengih for two cases: 0.2 T S ==
an exactly degenerate ond¥{=0), and a one in which
AV(t'+t")=0.5, on the verge of the validity criteria Eq.
(31). At low values ofg, the amplitudess{) and S{}in the |
decoupled representation E@L5) are close to unity and 0 5 10 15 20
practically independent df and therefore all transition(@- (t+t")AV
cluding counterintuitive oneswithin each of the two sets of
parallel potentials in the original representation have small FIQ. 4. Probabilities of specifigd state-Fo-stgte transitions vs the
probabilities[see discussion following Eq&0)]. In cases in  Potential gapAV for a truncated linear grid with’=t"=50 and
which the singular values are quite similar, the probabilitiesdo=3- Parts(@ and(b) correspond to the coupling matrix EG2)
of such transitions become small at high coupling strengthg¥ith m=4 andm=0, respectively, while partc) corresponds to
since s and Sg)are small for alll (see, for example, the the case of equal couplingsee Eq.(33)]. Other notations as in

aa o) : Fig. 2.

plots for m=3 in Fig. 2, whereg,=1.73, and g,

=1.07o). of the coupling matrix transforms a separable matrix to a
However, if the singular values of the coupling matrix are nonseparable one, and therefore changes the behavior of the
significantly different, the counterintuitive transitions remaintransition probability at high values of the coupling
significant over a wide range of coupling strengths as sometrengths.
of the amplitudesS{) (or S{}}) are large, and some are small  Counterintuitive transitions persist at finite values of the
(see the plots fom=1 in Fig. 2, whereg,=2g, and g, potential gapAV as well[see Figs. &) and 3. As one can
=0.38yp). In the case of a separable matfsee the plot for see, the higher is the coupling strength, the better the results
m=0 in Fig. 2, whereg; =2.035 andg,=0), such transi- of the quasidegeneracy approximat[@magreement with the
tions persist even in the limit of high coupling strength. It is criteria Eq.(31)]. At low coupling strengths the predictions
worth noting that even a change of the phase of one elemenf the quasidegeneracy approximation are correct as long as
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(t'+t")AV=<0.2 [see Fig. 8], while at high coupling crossings predicts nonvanishing transitions only for one final
strengths they are correct as long &sH{t")AV<0.2\ [see state per a given initial state. if,=n, all the nonvanishing
Fig. 3(b)]. transitions lead from one set of the parallel potentials to an-
Probabilities of counterintuitive transitiofisee Fig. 80)]  other set, leading to a complete population transfer between
and other transitionésee Fig. 4 demonstrate an oscillating the sets. This property was used in a recent proposal of
pattern in their dependence on the potential gap. The natugingle-electronics devices, based on transitions between
of these oscillations is different from the well-known & quantum dots(Refs. [14,15). In contrast, the quasidegen-
elberg oscillationgsee Ref[4]), which may be present only eracy approximation predicts more nonvanishing transitions
in transitions including two or more interfering “intuitive”  (see Figs. 3 and)4In the case oh<n;=n,, a finite prob-
paths.(Such paths exist in the transitions from 1 or 4 to 2 orability may remain for transitions within the same set of
3 in the case presented in Figs. 3 anyi he period of the parallel potential§see Figs. 3, &), and 4c)], leading to an
Stickelberg oscillations i4V/g; i.e., it is dependent on the incomplete population transfer. This effect is similar to the
potential gapAV but independent of the time interval effect of incomplete optical shielding in ultracold atom col-
+1". These properties, as well as the magnitude of thekstu lisions [5,6]. The effect of incomplete population transfer
e|berg oscillation period' are not in agreement with the bemay interfere with the operation of the Single-electronics de-
havior of the oscillations presented in FiggbBand 4. vices mentioned above.
The quasidegeneracy approximation relates the oscilla-
tions reported here to the interference of the terms in Egs. V1. CONCLUSIONS
(20), corresponding to different decoupled channels. The de- Equations(20) represent the transition amplitudes in a
pendence or\V is due to exponents in Eqel2) and in the  truncated linear potential grid as a coherent sum of ampli-
second sum of each of the two equatid@8a and (20b.  tydes for parallel two-state crossings. These amplitudes be-
The oscillation period inAV is 2mp/(t'+t"), where p  come exact in the case of strict degeneracy, and are approxi-
=AVI(VE - VD) =AV/(VY) — VD) is the ratio of the po- mately applicable to nondegenerate systems whenever the
tential gaps in the original and decoupled representationgriteria Eq.(31) are observed. The results also can be applied
For the coupling matrix Eq(32) we havep=5.6, 5.3, 4.0, to a more general case, in which the grid may be broken into
and 2.5 form=0, 1, 2, and 3, respectively, which explains well-separated groups of quasidegenerate crossings. In this
the variation of the oscillation period witim in Fig. 3. Itis  case the transition amplitudes can be represented as products
worth noting that in Fig. &) these oscillations are absent of the transition amplitudes given by Eq€0) for the
just for the transitions for which one would expect &el-  quasidegenerate groups. Thus the approximation can be used
berg oscillations (42 and 1-3). The reason for not see- in a wide variety of physical problems in which multistate
ing Stwckelberg oscillations in our figures is simple. The curve crossing occurs.
scale of the plot is too small to show even a singlec&él Although the derived analytical expressions are not
berg period. In the case of equal couplifgee Eq.(33)]  simple looking, they allow us to predict certain features of
V(@ =V{P’=0 for all I. This property results in the absence multistate curve crossing, such as properties of counterintui-
of oscillations in Fig. 4c). tive transitions, the existence of a new kind of quantum os-
There is still another kind of oscillation possible. It has cillations, and conditions for incomplete population transfer
been demonstrated in the case of a truncated two-state lineat high coupling strengths. For a qualitative analysis one can
curve crossing, in which oscillations may show up as a funcuse the simplified form based on Landau-Zener amplitudes
tion of each of the two truncation timésee[23]). In prin-  [see Eqs(17)]. The more accurate amplitudesee Eqs(15)
ciple, such oscillations should also appear in our model irand(12)] are expressed in terms of confluent hypergeometric
the AV dependence, since the crossing points move as thieinctions and require numerical evaluation. However, the re-
potential gap is varied. However, the period of these oscillaguired computer resources are proportional to the number of
tions, too, is too large to show up in Figs. 3 and 4. channelsN, whereas close-coupling calculations require a
In the limit of high coupling strengths or slow potential memory proportional tdN?> and a computation time propor-
variation \>1) the semiclassical approach of independentional to N3.
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