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Curve crossing in linear potential grids: The quasidegeneracy approximation
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The quasidegeneracy approximation@V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne, and Y. B. Band, J.
Phys. B32, 1845~1999!# is used here to evaluate transition amplitudes for the problem of curve crossing in
linear potential grids involving two sets of parallel potentials. The approximation describes phenomena, such
as counterintuitive transitions and saturation~incomplete population transfer!, not predictable by the assump-
tion of independent crossings. Also, a new kind of oscillations due to quantum interference~different from the
well-known Stückelberg oscillations! is disclosed, and its nature discussed. The approximation can find appli-
cations in many fields of physics, where multistate curve crossing problems occur.
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I. INTRODUCTION

The concept of curve crossing has many applications
the study of atomic collisions@1–7#, excitations of atoms and
molecules by nonstationary fields@8–11#, Bose-Einstein con-
densates@12,13#, and solid-state physics@14,15#. Typical
curve crossing problems are generally divided into t
classes:R-dependent andt-dependent ones. The descriptio
of inelastic collisions, for example, involves crossings
coordinate-dependent potentials, and can therefore be tre
as anR-dependent problem, described by a set of coup
second-order stationary Schro¨dinger equations. By the use o
a common-trajectory approximation@1#, R-dependent prob-
lems can be reduced tot-dependent ones. The latter cla
also naturally appears in the description of transitions du
nonstationary fields. Typicalt-dependent problems involv
the crossing of time-varying potentials, and their descript
requires a set of coupled first-order nonstationary Sch¨-
dinger equations.

Curve crossing problems are usually solved by us
semiclassical approximations. Two-state crossing is
scribed by the Landau-Zener~LZ! formula@16,17# ~or one of
its various modifications@18#!, while multistate crossing is
treated as a sequence of independent two-state crossing
though semiclassical approaches are satisfactory for m
applications~see, e.g.@6#!, they fail to describe certain ef
fects found recently in experiments, numerical calculatio
and analytically soluble potential models@5,19–22#.

The LZ formula forms an exact solution of the proble
involving the crossing of two linear potentials infinitely d
verging on both asymptotes. It gives good results even w
local perturbations in the vicinity of the crossing are tak
into account@9#. However, if the potentials retain a finit
potential gap on an asymptote@20#, have singularities
@21,22#, or are truncated@23#, the transition probabilities de
viate essentially from the LZ formula. Some interesting
fects also appear in state crossing involving Bose-Eins
condensates, described by the nonlinear Gross-Pitae
equations~see@12#!, instead of the linear Schro¨dinger equa-
tions.

The treatment of multistate curve crossing as a seque
of independent two-state crossings, commonly used in se
classical approaches, fails to describe ‘‘counterintuitiv
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in

f
ted
d

to

n

g
e-

Al-
ny

,

n

-
in
kii

ce
i-

’

transitions~see @5,19#!, in which the second crossing pre
cedes the first one. A particular type of problem that has b
studied by quantum approaches is that of at-dependent linear
grid consisting of two sets of mutually parallel potentia
~see Fig. 1!. This problem has a known exact solution@24#
only in the case in which one of the two sets has only o
potential, and the time interval is extended to infinity (t8
→`,t9→2`). Otherwise~see @11,14,15,25,26#! we have
only numerical solutions, or a qualitative study of properti
We know, however, for certain~see@25#! that, for any pair of
sets, counterintuitive transitions are exactly forbidden on
infinite time interval. However, the potentials in the grid i
finitely diverge on both asymptotes, which is unphysical. W
consider here a truncated linear grid, defined on a finite t
interval @2t8,t9#. Such a truncation is relevant for applica
tion to transitions in time-dependent fields~e.g., single elec-
tronics @14,15#!, since the field variation is actually finite.

The problem is studied here with the help of th
‘‘quasidegeneracy’’ approximation, introduced in@19# for
the case when one of the sets consists of only one poten
This approximation treats a nondegenerate system with s
potential gaps as a perturbed degenerate system~see@27#!. A
special form of the quasidegeneracy approximation was u
also in Ref.@14#. This form is applicable to a linear grid
consisting of two potentials in each set, with equal couplin
between all states belonging to different sets, while only o

FIG. 1. Schematic illustration of a truncated linear grid, invol
ing n152 horizontal potentials andn253 slanted potentials. The
broken dotted arrow shows a counterintuitive transition. The nu
bers denote the states to which the potentials correspond.
©2001 The American Physical Society04-1
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of the sets is quasidegenerate. The method of Ref.@14# is
actually a simplified form of the method of Ref.@19#. A
linear grid in which one set of parallel potentials is exac
degenerate was also considered in Ref.@10#, by using a
method different from the quasidegeneracy approximatio

The quasidegeneracy approximation is generalized he
the case of a truncated linear grid with arbitrary number
potentials in both sets. In Sec. II we introduce a ‘‘deco
pling’’ transformation, which approximately transforms th
problem to a set of parallel two-state crossings. The tra
tion amplitudes are calculated in Sec. III, and applicabi
criteria are presented in Sec. IV. Results are shown and
cussed in Sec. V. A few preliminary results of this work ha
been presented in@28#.

II. DECOUPLING TRANSFORMATION

Let us consider two sets of mutually parallel linear pote
tials. This problem can be easily reduced by a gauge tra
formation to the case of a set of horizontal potentialsVj ( j
51, . . . ,n1) crossed by a set of slanted parallel linear pot
tials Vn11k1bt (k51, . . . ,n2) ~see Fig. 1!. The interactions
between the states within each set of parallel potentials
be eliminated by a unitary transformation. Therefore, with
loss of generality, we can describe the problem by the
lowing system of coupled equations for the expansion co
ficientsw j (t):

i
]w j

]t
5Vjw j1 (

k51

n2

gjkwn11k , 1< j <n1 ,

~1!

i
]wn11k

]t
5~Vn11k1bt !wn11k1(

j 51

n1

gjk* w j , 1<k<n2

~using a system of units in which\51). The only nonvan-
ishing coupling coefficientsgjk involve pairs of crossed po
tentials. The problem is defined here on the finite time int
val 2t8<t<t9.

The special case ofn251 has been considered in@19#, by
using a quasidegeneracy approximation. In order to gene
ize this approximation, let us perform a singular value d
composition~SVD! for the coupling matrixgjk , of the form

gjk5(
l 51

n

Xl j* glYlk , n<min~n1 ,n2!. ~2!

This decomposition is well known in the theory of splin
approximations~see, e.g.,@29#!. The two matrices with ele-
mentsXl j andYlk are unitary, and their rows are the eige
vectors of the quadratic matrices formed by products of
gjk and their hermitian conjugates:

(
k, j

gj 8k
* gjkXl j 5ugl u2Xl j 8 ,

(
k, j

gjk8gjk* Ylk5ugl u2Ylk8 .
04340
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A transformation of the expansion coefficientsw j (t) using
the matricesXl j andYlk ,

al~ t !5(
j 51

n1

Xl j w j~ t !, bl~ t !5 (
k51

n2

Ylkwn11k~ t !, ~3!

leads to a new system of coupled equations

i
]al

]t
5Vll

(a)al1glbl1 (
l 8Þ l

Vll 8
(a)al 8 , 1< l<n,

i
]bl

]t
5~Vll

(b)1bt !bl1glal1 (
l 8Þ l

Vll 8
(b)bl 8 , 1< l<n,

~4!

i
]al

]t
5Vll

(a)al1 (
l 8Þ l

Vll 8
(a)al 8 , n11< l<n1 ,

i
]bl

]t
5~Vll

(b)1bt !bl1 (
l 8Þ l

Vll 8
(b)bl 8 , n11< l<n2 ,

in which

Vll 8
(a)

5(
j 51

n1

Xl j VjXl 8 j
* , Vll 8

(b)
5 (

k51

n2

YlkVn11kYl 8k
* . ~5!

Given a matrixgjk , its SVD is not unique, and may b
chosen in such a way that its singular valuesgl are real and
non-negative, and the nondiagonal potential elementsVll 8

(a)

andVll 8
(b) vanish whenl .n and l 8.n.

When both parallel sets of potentials are degenerate,
matricesVll 8

(a) and Vll 8
(b)are diagonal, and the system Eq.~4!

describes a set ofn independent pairs of crossing potentia
n12n separate horizontal potentials~not coupled to other
channels!, and n22n separate slanted potentials. Since t
transformation Eq.~3! partially eliminates the coupling be
tween the states, hereafter it is called the ‘‘decoupling tra
formation.’’ The channels described by coefficientsa andb
will be called the ‘‘decoupled channels.’’

In the nondegenerate case the nondiagonal elemen
Vll 8

(a) andVll 8
(b) lead to transitions between the decoupled ch

nels. However, the magnitudes of these nondiagonal
ments are bounded by the inequalities

(
lÞ l 8

uVll 8
(a)u25(

j 51

n1

Vj
22(

l 51

n1

~Vll
(a)!2<

1

4
n1DV1

2 ,

~6!

(
lÞ l 8

uVll 8
(b)u25 (

k51

n2

Vn11k
2 2(

l 51

n2

~Vll
(b)!2<

1

4
n2DV2

2 ,

where the bandwidths of the potential sets are defined a

DV15Vn1
2V1 , DV25Vn11n2

2Vn111 . ~7!

Therefore, these transitions are negligible if the bandwid
of the two potential sets are small enough.~Appropriate ap-
plicability criteria are presented in Sec. IV below.! Neglect-
4-2
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ing the nondiagonal elements ofVll 8
(a)and Vll 8

(b) , we obtain a
zero-order approximation system of equations foral(t) and
bl(t),

i
]al

(0)

]t
5Vll

(a)al
(0)1glbl

(0) , 1< l<n, ~8a!

i
]bl

(0)

]t
5~Vll

(b)1bt !bl
(0)1glal

(0) , 1< l<n, ~8b!

i
]al

(0)

]t
5Vll

(a)al
(0) , n11< l<n1 , ~8c!

i
]bl

(0)

]t
5~Vll

(b)1bt !bl
(0), n11< l<n2 , ~8d!

which describes the same set of decoupled channels a
one that prevails in the case of degenerate potentials.

Given an arbitrary matrixgjk , the transformation matri-
cesXl j andYlk cannot be generally expressed in an anal
cal form. Nevertheless, analytical expressions can be
tained in the specific case of a separable matrixgjk

5j j* hk . In this case, one of the rows~the first, for definite-
ness! has the form

X1 j5S (
j 851

n1

uj j 8u
2D 21/2

j j , Y1k5S (
k851

n2

uhk8u
2D 21/2

hk ,

~9!

and the other rows are orthogonal to the first one. The
gular values can then be written as

gl5S (
j 851

n1

uj j 8u
2 (

k851

n2

uhk8u
2D 1/2

d l1 . ~10!

In this case,n51 and the transformed system consists of o
pair of coupled potentials, together withn121 horizontal,
andn221 slanted, separate potentials.

In the case of equal couplingsgjk5g ~independent ofj
andk !, X1 j5n1

21/2, Y1 j5n2
21/2, andgl5(n1n2)1/2gd l1. The

opposite situation~in which gl is independent ofl ) takes
place in the case in which the coupling matrixgjk is propor-
tional to a unitary matrix.

III. TRANSITION AMPLITUDES

The zero-order equations~8c! and~8d! representing sepa
rate channels have the simple analytical solutions

al
(0)~ t9!5al

(0)~2t8!exp@2 iVll
(a)~ t81t9!#,

bl
(0)~ t9!5bl

(0)~2t8!exp@2 iVll
(b)~ t81t9! ~11!

2 ib~ t922t82!/2].

The remaining equations~8a! and ~8b! represent a set ofn
two-state linear curve-crossing problems. In the lim
t8→`, t9→` the transition amplitude in each of thes
04340
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systems is given by the LZ formula. However, the soluti
of this problem converges to the asymptotic limit ve
slowly. We shall therefore use the exact solution of the lin
two-state curve crossing problem, known since the pione
ing work of Zener @17#. The two independent solution
Aml(t), Bml(t), with m51,2, can be expressed in terms
the confluent hypergeometric function1F1 ~see@30#! as

A1l~ t !51F1S 2
i

2
l l ,

1

2
,2

i

2
b~ t2t l !

2Dexp~2 iVll
(a)t !,

~12!

A2l~ t !5~ t2t l !1F1S 1

2
2

i

2
l l ,

3

2
,2

i

2
b~ t2t l !

2D
3exp~2 iVll

(a)t !,

Bml~ t !5
i

gl

]Aml~ t !

]t
2

Vll
(a)

gl
Aml~ t !,

where

l l5gl
2/b, t l5~Vll

(a)2Vll
(b)!/b ~13!

are, respectively, the LZ exponent for the two-state cross
and the position of the crossing point on the time scale.

The transition matrixS( l ), connecting the coefficients
al

(0) , bl
(0) at the boundariest9 and2t8 as

al
(0)~ t9!5Saa

( l )al
(0)~2t8!1Sab

( l )bl
(0)~2t8!,

~14!

bl
(0)~ t9!5Sba

( l )al
(0)~2t8!1Sbb

( l )bl
(0)~2t8!,

can be expressed in terms of the fundamental solutions
~12! in the form

Saa
( l t )5~A1l~ t9!B2l~2t8!2A2l~ t9!B1l~2t8!!/Dl ,

Sab
( l )5~2A1l~ t9!A2l~2t8!1A2l~ t9!A1l~2t8!!/Dl ,

~15!

Sba
( l )5~B1l~ t9!B2l~2t8!2B2l~ t9!B1l~2t8!!/Dl ,

Sbb
( l )5~2B1l~ t9!A2l~2t8!1B2l~ t9!A1l~2t8!!/Dl ,

where

Dl5A1l~2t8!B2l~2t8!2A2l~2t8!B1l~2t8!. ~16!

In our numerical calculations we expressed the confluent
pergeometric functions in terms of columbic wave function
using the algorithm of@31# for their evaluation.

The elements of the transition matrixS( l ) can be given a
much simpler approximate form, expressing them in terms
LZ transition amplitudes
4-3
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Saa
( l )'exp~2pl l2 iVll

(a)~ t81t9!!S t92t l

t81t l
D il l

,

Sab
( l )'2A12exp~22pl l !

3expS i

2
bt822 ix l2 iVll

(a)t92 iVll
(b)t8D ,

~17!
Sba

( l )'A12exp~22pl l !

3expS 2
i

2
bt921 ix l2 iVll

(a)t82 iVll
(b)t9D ,

Sbb
( l )'exp~2pl l12 iVll

(b)~ t81t9!2 ib~ t922t82!/2!

3S t92t l

t81t l
D 2 il l

,

where

x l5
p

4
1argG~ il l !2l l ln@b~ t81t l !~ t92t l !#2 1

2 bt l
2 .

~18!

When the original representation Eq.~1! is recovered by ap-
plication of the transformation Eq.~3! one obtains the tran
sition matrixS, defined by

w j~ t9!5 (
j 851

n11n2

Sj j 8w j 8~2t8!, 1< j <n11n2 , ~19!

in the zero-order approximation as

Sj j 85(
l 51

n

Xl j* Saa
( l )Xl j 81 (

l 5n11

n1

Xl j* Xl j 8 exp~2 iVll
(a)~ t81t9!!,

~20a!

Sn11k,n11k85(
l 51

n

Ylk* Sbb
( l )Ylk81 (

l 5n11

n2

Ylk* Ylk8

3exp~2 iVll
(b)~ t81t9!2 ib~ t922t82!/2!,

~20b!

Sj ,n11k85(
l 51

n

Xl j* Sab
( l )Ylk8 , ~20c!

Sn11k, j 85(
l 51

n

Ylk* Sba
( l )Xl j 8 , ~20d!

where 1< j <n1 , 1< j 8<n1 , 1<k<n2, and 1<k8<n2.
This solution constitutes the quasidegeneracy approxima

WheneverSaa
( l ) or Sbb

( l ) are l independent, andn5n1 ~or n
5n2), transitions between states within the correspond
set ofn1 ~or n2) parallel potentials become forbidden due
the unitarity of matricesXl j and Yjk . Such an effect may
take place if the couplingsgl are close in magnitude or ver
small. If n,n1 ~or n,n2) such transitions vanish only a
04340
n.

g

low couplings, in which caseuSaa
( l )u ~or uSbb

( l )u) are close to
unity. When one of the sets contains only one potentialn1
51 or n251), Eqs.~20! are reduced to the transition ampl
tudes obtained in Ref.@19#.

IV. APPLICABILITY CRITERIA

The quasidegeneracy approximation described in Sec
is applicable when the terms neglected in Eqs.~8! yield suf-
ficiently small contributions to the transition amplitude
First-order perturbation theory estimates these contributi
as

DSll 8
(a)

5E
2t8

t9
al

(0)* ~ t !Vll 8
(a)al 8

(0)
~ t !dt, ~21!

and analogous expressions forDSll 8
(b) , obtained by replacing

a with b everywhere in Eq.~21!.
An overestimate for these amplitudes can be obtained

substitutingal
(0)(t)5bl

(0)(t)51, resulting in the criteria

~ t81t9!DV1,2!1, ~22!

where the bandwidths of the potential setsDV1 andDV2 are
defined by Eq.~7!. However, in certain situations less strin
gent criteria may exist, as can be shown by the use of
proximate expressions for the unperturbed wave functi
@solutions of Eqs.~8!#.

Such approximate expressions can be obtained in two
iting cases. The first one is the asymptotic case, in which
bounds2t8 and t9 lie far outside the two-state transitio
rangesgl /b, i.e.,

t81t l@gl /b, t92t l@gl /b ~ for all l !. ~23!

In this case, an asymptotic expansion of the confluent hyp
geometric function~see@30#! on the the left-hand asymptot
t81t l.2t1t l@gl /b yields

al
(0)~ t !'al

(0)~2t8!~ utu/t8! il l exp@2 iVll
(a)~ t81t !#,

~24!
bl

(0)~ t !'bl
(0)~2t8!~ utu/t8!2 il l

3exp~2 iVll
(b)~ t81t !2 ib~ t22t82!/2!,

and on the right-hand asymptotegl /b!t2t l,t92t l it
yields

al
(0)~ t !'al

(0)~ t9!~ t/t9! il l exp~2 iVll
(a)~ t2t9!!,

~25!
bl

(0)~ t !'bl
(0)~ t9!~ t/t9!2 il l

3exp~2 iVll
(b)~ t2t9!2 ib~ t22t92!/2!.

Wheneverl .n, Eqs.~24! and ~25! become exact@see Eqs.
~11!#. Hereafter one should setl l50 if l .n.

The first-order corrections to the amplitudes Eq.~21! can
therefore be estimated as
4-4
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DSll 8
(a)'

Vll 8
(a)

11 il l 82 il l

@ t8al
(0)* ~2t8!al 8

(0)
~2t8!

1t9al
(0)* ~ t9!al 8

(0)
~ t9!#, ~26!

for the horizontal set, and a similar expression, withb replac-
ing a, for the slanted set.

Finally, using Eq.~6! one can write the applicability cri
teria in the form

~ t81t9!DV1,2!u11 il l 82 il l u. ~27!

Let us consider now the second limiting case, in which b
boundaries2t8 andt9 lie way inside the two-state transitio
rangesgl /b, i.e.,

t81t l!gl /b, t92t l!gl /b ~ for all l !. ~28!

In addition, letl l@1, in order to obtain an adiabatic evolu
tion. Within the range defined by Eq.~28!, the adiabatic en-
ergies are approximatelyVll

(a)6gl , and

S al
(0)~ t !

bl
(0)~ t !

D'
al

(0)~2t8!1bl
(0)~2t8!

2

3exp~2 i ~Vll
(a)1gl !~ t81t !!

6
al

(0)~2t8!2bl
(0)~2t8!

2

3exp~2 i ~Vll
(a)2gl !~ t81t !!. ~29!

Substitution of Eqs.~29! in Eq. ~21!, taking into account Eq
~6!, gives the applicability criteria

~ t81t9!DV1,2!11ugl2gl 8u~ t81t9!. ~30!

Criteria combining the cases Eqs.~22!, ~27!, and~30! can be
written with the help of Eq.~13! as the single expression

~ t81t9!DV1,2!11ugl2gl 8umin„t81t9,~gl1gl 8!/b….
~31!

These criteria allow for an interpretation that stems from
viewpoint of the uncertainty principle. Equation~31! means
that the potentials become indistinguishable within a limi
time interval. The second term on the right-hand side of
~31! describes a broadening of the allowed uncertainty as
coupling increases.

V. RESULTS AND DISCUSSION

In the limiting case of a linear grid defined on the infini
time interval2`,t,`, some transitions become forbidde
~see@25#!. An example of such transitions is shown in Fig.
in which two time-independent potentials are shown cros
by three parallel time-slanted potentials. The forbidden tr
sitions, such as 2→1, 3→4, 3→5, and 4→5, are called
counterintuitive, since in order to treat them as a sequenc
independent two-state crossings, one has to assume a m
backwards in time.
04340
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Counterintuitive transitions can nonetheless occur, as
been proven in numerical calculations involving crossings
nonlinear potentials@5#, and in uses of the quasidegenera
approximation for truncated and piecewise linear problem
involving a set of horizontal potentials, crossed by o
slanted potential@19#. Such transitions are present in tru
cated linear grids as well, since the transformations Eq.~3!
connect the initial and final states to all the decoupled ch
nels.

Hereafter we shall demonstrate the application of
quasidegeneracy approximation to a particular exam
Consider the model of a linear grid withn15n252, V1
5V352DV/2, and V25V45DV/2 ~recalling thatV3 and
V4 are the time-independent parts of the slanted potentia!.
Let the coupling matrix have one of the two special form
either

gjk5g0S 1/1.2 1

1 1.2 exp~ imp/4!
D , ~32!

with integer values ofm, or the equal-coupling form, with

g115g125g215g225g0 . ~33!

FIG. 2. Counterintuitive transition probabilities vs the couplin
strengthg0 @see Eq.~32!# for a truncated linear grid with the bound
t85t95100 ~on a scale in which the potential slopesb51) and the
potential gaps:~a! DV50, and~b! DV52.531023. The numbers
denote the values of the phase parameterm in Eq. ~32!. The results
of numerical integration of the coupled equations~1! are presented
by solid lines. The dashed-line plots in~b! are calculated with the
quasidegeneracy approximation using Eqs.~20!.
4-5
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V. A. YUROVSKY AND A. BEN-REUVEN PHYSICAL REVIEW A 63 043404
All the following calculations are performed for the slop
b51. The results can be readily expanded to otherb values
by the substitutionsg/Ab→g, DV/Ab→DV, andtAb→t.

Figure 2 presents the dependence of counterintuitive t
sition probabilities on the coupling strengthg0 for two cases:
an exactly degenerate one (DV50), and a one in which
DV(t81t9)50.5, on the verge of the validity criteria Eq
~31!. At low values ofg0 the amplitudesSaa

( l ) andSbb
( l )in the

decoupled representation Eq.~15! are close to unity and
practically independent ofl, and therefore all transitions~in-
cluding counterintuitive ones! within each of the two sets o
parallel potentials in the original representation have sm
probabilities@see discussion following Eqs.~20!#. In cases in
which the singular values are quite similar, the probabilit
of such transitions become small at high coupling streng
sinceSaa

( l ) and Sbb
( l )are small for alll ~see, for example, the

plots for m53 in Fig. 2, where g151.73g0 and g2
51.07g0).

However, if the singular values of the coupling matrix a
significantly different, the counterintuitive transitions rema
significant over a wide range of coupling strengths as so
of the amplitudesSaa

( l ) ~or Sbb
( l )) are large, and some are sma

~see the plots form51 in Fig. 2, whereg152g0 and g2
50.38g0). In the case of a separable matrix~see the plot for
m50 in Fig. 2, whereg152.03g0 andg250), such transi-
tions persist even in the limit of high coupling strength. It
worth noting that even a change of the phase of one elem

FIG. 3. Counterintuitive transition probabilities vs the potent
gap DV, calculated for~a! t85t95100, g050.5, or ~b! t85t9
520, g055. Other notations as in Fig. 2.
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s
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nt

of the coupling matrix transforms a separable matrix to
nonseparable one, and therefore changes the behavior o
transition probability at high values of the couplin
strengths.

Counterintuitive transitions persist at finite values of t
potential gapDV as well @see Figs. 2~b! and 3#. As one can
see, the higher is the coupling strength, the better the res
of the quasidegeneracy approximation@in agreement with the
criteria Eq.~31!#. At low coupling strengths the prediction
of the quasidegeneracy approximation are correct as lon

l

FIG. 4. Probabilities of specified state-to-state transitions vs
potential gapDV for a truncated linear grid witht85t9550 and
g055. Parts~a! and~b! correspond to the coupling matrix Eq.~32!
with m54 andm50, respectively, while part~c! corresponds to
the case of equal couplings@see Eq.~33!#. Other notations as in
Fig. 2.
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(t81t9)DV<0.2 @see Fig. 3~a!#, while at high coupling
strengths they are correct as long as (t81t9)DV<0.2l @see
Fig. 3~b!#.

Probabilities of counterintuitive transitions@see Fig. 3~b!#
and other transitions~see Fig. 4! demonstrate an oscillatin
pattern in their dependence on the potential gap. The na
of these oscillations is different from the well-known Stu¨ck-
elberg oscillations~see Ref.@4#!, which may be present only
in transitions including two or more interfering ‘‘intuitive’
paths.~Such paths exist in the transitions from 1 or 4 to 2
3 in the case presented in Figs. 3 and 4.! The period of the
Stückelberg oscillations isDV/b; i.e., it is dependent on the
potential gapDV but independent of the time intervalt8
1t9. These properties, as well as the magnitude of the Stu¨ck-
elberg oscillation period, are not in agreement with the
havior of the oscillations presented in Figs. 3~b! and 4.

The quasidegeneracy approximation relates the osc
tions reported here to the interference of the terms in E
~20!, corresponding to different decoupled channels. The
pendence onDV is due to exponents in Eqs.~12! and in the
second sum of each of the two equations~20a! and ~20b!.
The oscillation period inDV is 2pr/(t81t9), where r
5DV/(V22

(a)2V11
(a))5DV/(V22

(b)2V11
(b)) is the ratio of the po-

tential gaps in the original and decoupled representatio
For the coupling matrix Eq.~32! we haver55.6, 5.3, 4.0,
and 2.5 form50, 1, 2, and 3, respectively, which explain
the variation of the oscillation period withm in Fig. 3. It is
worth noting that in Fig. 4~b! these oscillations are abse
just for the transitions for which one would expect Stu¨ckel-
berg oscillations (4→2 and 1→3). The reason for not see
ing Stückelberg oscillations in our figures is simple. Th
scale of the plot is too small to show even a single Stu¨ckel-
berg period. In the case of equal coupling@see Eq.~33!#
Vll

(a)5Vll
(b)50 for all l. This property results in the absenc

of oscillations in Fig. 4~c!.
There is still another kind of oscillation possible. It h

been demonstrated in the case of a truncated two-state l
curve crossing, in which oscillations may show up as a fu
tion of each of the two truncation times~see@23#!. In prin-
ciple, such oscillations should also appear in our mode
the DV dependence, since the crossing points move as
potential gap is varied. However, the period of these osc
tions, too, is too large to show up in Figs. 3 and 4.

In the limit of high coupling strengths or slow potenti
variation (l@1) the semiclassical approach of independ
li-
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crossings predicts nonvanishing transitions only for one fi
state per a given initial state. Ifn15n2 all the nonvanishing
transitions lead from one set of the parallel potentials to
other set, leading to a complete population transfer betw
the sets. This property was used in a recent proposa
single-electronics devices, based on transitions betw
quantum dots~Refs. @14,15#!. In contrast, the quasidegen
eracy approximation predicts more nonvanishing transiti
~see Figs. 3 and 4!. In the case ofn,n15n2, a finite prob-
ability may remain for transitions within the same set
parallel potentials@see Figs. 3, 4~b!, and 4~c!#, leading to an
incomplete population transfer. This effect is similar to t
effect of incomplete optical shielding in ultracold atom co
lisions @5,6#. The effect of incomplete population transfe
may interfere with the operation of the single-electronics
vices mentioned above.

VI. CONCLUSIONS

Equations~20! represent the transition amplitudes in
truncated linear potential grid as a coherent sum of am
tudes for parallel two-state crossings. These amplitudes
come exact in the case of strict degeneracy, and are app
mately applicable to nondegenerate systems whenever
criteria Eq.~31! are observed. The results also can be app
to a more general case, in which the grid may be broken
well-separated groups of quasidegenerate crossings. In
case the transition amplitudes can be represented as pro
of the transition amplitudes given by Eqs.~20! for the
quasidegenerate groups. Thus the approximation can be
in a wide variety of physical problems in which multista
curve crossing occurs.

Although the derived analytical expressions are n
simple looking, they allow us to predict certain features
multistate curve crossing, such as properties of counterin
tive transitions, the existence of a new kind of quantum
cillations, and conditions for incomplete population trans
at high coupling strengths. For a qualitative analysis one
use the simplified form based on Landau-Zener amplitu
@see Eqs.~17!#. The more accurate amplitudes@see Eqs.~15!
and~12!# are expressed in terms of confluent hypergeome
functions and require numerical evaluation. However, the
quired computer resources are proportional to the numbe
channelsN, whereas close-coupling calculations require
memory proportional toN2 and a computation time propor
tional to N3.
n
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