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Effect of rotation on internal dynamics and phase-space structure of rare-gas trimers
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The effect of total rotational angular momentum on the stochastic characteristics of the internal motion of
rare-gas trimers has been studied by the molecular-dynamics method. Results presented for the argon trimer
described in a two-parameter phase space characterized by fixed values of the total energy and angular
momentum provide insight into the separation of chaotic from regular motions of the system. An important
feature of the phase-space structure is that the volume filled by regular trajectories for fixed total energy of the
system is not a monotonic function of its total angular momentum. The chaotic motions are characterized by
a strong coupling between potential- and kinetic-energy contributions that is not observed for the regular
motions.

DOI: 10.1103/PhysRevA.63.043203 PACS number~s!: 36.40.2c, 05.45.2a
ho
e
u
w
tru

or
p

s
-
es
idi

e
r
er
a
w

s

s
th

ll
ro
e
ed

e
r
u
te

ffe
x-
g

re
m-

ent
of

en-
as

s a
ce

se
-
om
r-
n to

ly
on

he
of

em
tal

en-
n,
w-
he
y re-

ch-
lis
is
ec-

s to
er-
w
es a
i-
I. INTRODUCTION

Over the past two decades a main focus of the study
van der Waals clusters has been the characterization of t
properties that are similar to, and those that are differ
from, the properties of bulk materials. Potential-energy s
faces have been calculated, global and local minima as
as saddle points located, and the relationship between s
ture and internal dynamics studied@1# within the framework
of the theory of quasiphase transitions for clusters. Sh
time averages of dynamic variables and such stochastic
rameters as the maximum Lyapunov exponent@2–5# or Kol-
mogorov entropy~the sum of positive Lyapunov number!
have been widely used@6–8# to characterize the internal dy
namics and phase-space structures of clusters. Zero valu
these parameters are a signature of regular motion or rig
of the systems.

The simplest rare-gas cluster, namely the trimer, has b
used to reveal the relationship between the time behavio
stochastic parameters and the structure of its potential-en
surface. For Ar3 with zero angular momentum and with
fixed total energy slightly higher than that required to allo
passage across the linear saddle point the phase space i
into regions with differing degrees of chaotic motion@3,4#,
depending on the set of microcanonical initial condition
The distributions of Lyapunov exponents also depend on
initial conditions and do not converge for infinite time@4#.
The Kolmogorov entropy does not increase monotonica
with energy, but rather it reaches a plateau and then d
once the cluster has sufficient energy to explore the lin
saddle region@6#. Low chaotic trajectories are associat
with the saddle region~linear structure for the trimer!, which
channels neighboring trajectories, thus reducing their div
gence and reducing the Kolmogorov entropy and the deg
of chaos. It was also noted that saddle regions can deco
vibrational modes and induce temporary and approxima
quasiperiodic behavior@8#. Applying stochastic theory to the
dynamics of molecules such as SO2 and O3 @9#, it was found
that their phase spaces consist of chaotic trajectories di
ing markedly in the value of their maximum Lyapunov e
ponent for energies above the critical energy, reflectin
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partition of the chaotic component of motion. The ‘‘structu
of chaos’’ connected with the partition of the stochastic co
ponent was also investigated for Ar4 @10#. The partition of
the chaotic component leads to the existence of differ
times for energy redistribution between internal degrees
freedom. This property nearly disappears with increasing
ergy for dynamical systems with anharmonic potentials,
expected from the Kolmogorov-Arnol’d-Moser~KAM ! theo-
rem @11#.

Nearly all of the studies cited above were carried out a
function of energy only, not taking into account the influen
of molecular rotation. One exception was a study@10# of the
role of rotational motion in the chaotic region of the pha
space for the tetramer Ar4. Specifically studied was the par
tition of internal energy between internal degrees of freed
as a function of rotational angular momentum. No diffe
ences in stochastic parameters were found in compariso
those of a rotationless cluster.

A detailed dynamical simulation of rotating Ar13 @12#
showed that its internal dynamics and rigidity is not unique
defined by its total energy but instead strongly depends
the initial state of the cluster, and more specifically on t
initial distribution of momenta among the internal degrees
freedom. The maximum Lyapunov exponent for the syst
was found to behave nonmonotonically with increasing to
energy.

It is reasonable that increasing rotational angular mom
tum for fixed total energy will tend to regularize the motio
leading to the occurrence of nonchaotic trajectories, by lo
ering the vibrational kinetic energy and thus altering t
phase-space structure. This assumption is supported b
sults reported for rotating HD2

1 @13#, for which the conse-
quences of switching on rotation include centrifugal stret
ing, which reduces chaos by stiffening of the bonds, Corio
forces, which increase nonlinearity, and tumbling, which
the motion of the angle between the angular momentum v
tor and the normal to the molecular plane and which lead
an increase in stochasticity but is limited by energy cons
vation. Thus at high angular momentum but relatively lo
energy, the degree of chaos is reduced and approach
minimum in the limit of a centrifugally distorted but nonv
©2001 The American Physical Society03-1
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brating cluster. This minimum is zero for asymmetric to
and oblate symmetric tops but is nonzero for prolate sy
metric tops and spherical tops due to the chaos assoc
with tumbling in a laboratory frame.

Our earlier work@14# on the phase space structure of r
tating Ar3 at a total energy corresponding to one-half of t
well depth, an energy thus above that of linear Ar3 but below
that of Ar2 and Ar fragments, showed the partition of th
phase space into regions of regular and chaotic motion
well as a partition of the chaotic component into portio
with differing maximum Lyapunov exponents and differin
shapes of the autocorrelation function of atomic moment
on an axis normal to the angular momentumM . The non-
monotonic character of the regular fraction was explained
terms of the regularizing influence of the linear configurat
and the freezing of energy in rotational degrees of freed
whenM5uM u approaches its maximum possible value fo
given total energy.

We also studied@15# the phase-space structure of A4
with nonzero angular momentum at energies above that
responding to a planar configuration. We found that fo
given energy there is a criticalMc5uM cu for the structural
transformation in which one atom passes through the p
of the three others, thus inverting the tetrahedron. For va
of M greater thanMc the transformation is impossible an
the phase space is partitioned into two nonoverlapping
gions. More recent studies by Yertseveret al. @16–18#
showed that for rotating Ar3 initially generated as an equ
lateral triangle the maximum Lyapunov exponent has a n
monotonic behavior with increasing total energy but d
creases with increasing angular momentum.

In this paper we employ molecular dynamics to inves
gate the effect of rotation on the phase-space structur
rare-gas trimers. In Sec. II we describe the details of
method including the numerical scheme for calculating s
chastic parameters and distributions of the dynamical v
ables. In Sec. III we discuss the maximum Lyapunov ex
nents, the autocorrelation function for the momentum of
atom on an axis normal to the angular momentumM , and
distribution functions for the interatomic distances and
potential and kinetic energy contributions for variousM. In
Sec. IV we discuss these results in the context of fut
research plans.

II. METHOD

Consider the rotating Ar3 cluster as a bound state of th
classical Hamiltonian

H5(
i 51

3 pi
2

2m
14U0(

i . j
F S a

r i j
D 12

2S a

r i j
D 6G , ~1!

where the potential energy is taken in a pairwise addit
Lennard-Jones form,pi is the momentum of thei th atom
~each of massm), r i j is the interparticle distanceur i2r j u, r i
is the position of thei th atom,U0 is the diatomic well depth,
and a is the diatomic collision diameter. The familiar@19#
parametersa, U0, and m are taken as dimensionless, wi
(ma2/U0)1/2 as the unit of time. The nonrotating cluster h
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a minimum energy of23.0 and an equilateral triangula
structure with an equilibrium edge length equal to the
atomic equilibrium separation of 21/6a.

We have used molecular dynamics to study the pha
space structure of rotating Ar3 as a function of two param
eters, namely the total energyEtot and the total angular mo
mentum. A microcanonical ensemble of initial conditio
was formed by straightforward sampling from points distr
uted randomly and uniformly in coordinate space such t
the potential energyU<Etot and in momentum space suc
that the kinetic energyEkin5Etot2U. Further, the points
were selected from the angular momentum shell of fin
thicknessDM50.0001. The Hamilton equations of motio
were numerically integrated using a Verlet algorithm with
time step tS51022 on the time intervalt523103 time
units. With values of m(40Ar) 539.945 amu, U0
599.55 cm21, and a53.757/21/6Å, the time unit
(ma2/U0)1/251.94 ps, the time steptS519.4 fs, and the
time interval t53.88 ns. The absolute drift in numerica
values ofEtot andM on the intervalt did not exceed 1025

and 1027, respectively.
For a given value ofEtot andM5uM u, a set of 50 to 100

trajectories was used. For each trajectory the maxim
Lyapunov exponents, the autocorrelation functionBp(t)
5^pi(t1t)pi(t)& of the momentumpi(t) of the i th atom on
the axis normal toM , and the distribution functions of the
triangle area, the interatomic distances, and the kinetic
potential energies were calculated. The maximum Lyapu
exponent was calculated by the scheme of Benettinet al.
@20#. We note that there are two distinct axes normal toM ;
both were used in preliminary calculations ofBp(t), but
since the results were identical, only one was used su
quently.

III. RESULTS

Our results cover a wide range of total energies, nam
22.5, 22.3, 21.5, 21.4, and21.2, that is, from just above

FIG. 1. Dependence on the normalized angular momen
M (E)/Mmax(E) of the percentagem of phase space filled by regula
trajectories for four different values of the total internal energy
Ar3. The dashed vertical line corresponds to the normalized m
mum value ofM lin for the linear trimer withEtot521.5. The en-
ergy unit is the natural unit corresponding to the diatomic w
depth of 99.45 cm21.
3-2
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EFFECT OF ROTATION ON THE INTERNAL DYNAMICS AND . . . PHYSICAL REVIEW A 63 043203
the ground vibrational level at approximately22.56 @21#
~the classical minimum potential energy is23.0) to a value
close to the dissociation threshold of21.0 to form Ar2
1Ar. These selected energies fall into two ranges, o
(22.5<Etot<22.3) representing dynamics in the potentia
energy well corresponding to predominantly triangular str
tures and the other (21.5<Etot<21.2) representing dynam
ics above the linear saddle-point energy. The present re
complement our earlier results@14# for Etot521.5. Three
types of trajectories may be identified. These are as follo

~a! Trajectories with the maximum Lyapunov expone
s<(1.060.3)31023 for the regular region.

~b! Trajectories with the maximum Lyapunov expone
s50.760.3 for the chaotic region.

~c! Trajectories with the maximum Lyapunov expone
s'0.260.05 for the so-called weakly chaotic region.

A special feature of the phase-space structure is the n
monotonic dependence of the fraction of phase space fi
by regular trajectories as a function of the angular mom
tum for a given total energy~Fig. 1!. The results may be
described in terms of two energy regions, the first being fr
the bottom of the well up to the critical energyElin5
22.03, which permits passage though the linear saddle p
and the second fromElin up to the dissociation limit of
21.0.

The lowest energy considered is22.5. At this energy for
a nonrotating cluster only a small fraction of the trajector
are found to be regular, indicating that chaotic behavio

FIG. 2. Typical autocorrelation functionBp(t) and its Fourier
transform FFT@Bp(t)# for regular trajectories with equal distribu
tions of interatomic distances withEtot522.3, M /Mmax50.8. The
time unit t is 1.94 ps~see text!, while the frequency unitn is its
reciprocal of 0.515 THz.
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obtained even at very low energies, confirming previou
reported@21# results. At yet higher energies no regular tr
jectories are found for the nonrotating cluster, reflecting
anharmonic nature of the potential energy.

Inclusion of rotation leads to the redistribution of intern
energy between internal degrees of freedom. As seen in
1, the introduction of a small angular momentum leads to
disappearance of the regular component since the rota
can deflect the small amplitude atomic oscillations. Ho
ever, the regular component reemerges at higher angular
menta. When the angular momentum is near the maxim
value Mmax possible for a given total energy the cluster b
comes a quasirigid centrifugally distorted rotor, with a lar
fraction of regular motion.

WhenEtot>Elin , a nonmonotonic behavior of the regula
component appears for largeM5uM u ~Fig. 1!. It was previ-
ously suggested@14# that such behavior reflects the regula
izing influence of the linear configuration and the freezing
internal energy into rotational degrees of freedom asM ap-
proaches its maximum value for a given total energy. T
dashed lines in Fig. 1 simply highlight the nonmonoton
character of the results. The error bars show uncertaintie
the fraction of regular trajectories as estimated byDm
5(100m/N)1/2, whereN is the number of trajectories consid
ered for a givenEtot andM.

The vertical line in Fig. 1 at a value ofM /Mmax50.837
corresponds to the value of the normalized angular mom

FIG. 3. Histograms for the distribution of~a! the molecular tri-
angle area,~b! interatomic distances,~c! kinetic energy, and~d!
potential energy for regular trajectories withEtot522.3 and
M /Mmax50.8. The area unit in~a! is the square of the diatomic
equilibrium separation of 3.757 Å, the distance unit in~b! is the
diatomic equilibrium separation of 3.757 Å, and the energy uni
~c! and ~d! is the diatomic well depth of 99.45 cm21.
3-3
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tum for a nonvibrating linear structure with a total intern
energy of21.5, for which the angular momentum is a max
mum for a nonvibrating equilateral triangular structure w
M aligned along its C3 axis. That is, the angular momentu
for a nonvibrating linear structure with this energy is less
a factor of 0.837. This factor depends sensitively upon
total energy, rising from zero at the threshold of22.031 for
the linear structure to 0.957 at an energy of21.2, the highest
energy value considered here, and exceeds unity for slig
higher energies. For a value ofM /Mmax greater than the
value of this factor at a fixed total energy the structure can
be linear. Indeed we see in Fig. 1 for an energy of21.5, for
which this factor is 0.837, that the fraction of regular traje
tories begins to fall asM /Mmax exceeds a value of approx
mately 0.75. Similarly, a nonvibrating acute isosceles tri
gular structure with a total energy of21.5 and with M
aligned along its C2 axis has a value ofM /Mmax50.723,
only slightly larger than the ratio of 221/250.707 for a rigid
rotor. This ratio is relatively insensitive to the energy, risi
from 0.711 to 0.730 as the total energy increases from22.5
to 21.2. For a value ofM /Mmax greater than this factor at
fixed total energy the angular momentum vectorM is forced
out of the molecular plane. For total energies betwe
22.031 and21.685, linear structures are excluded with i
creasingM before those withM aligned along a C2 axis,
while for energies above21.685 the latter are excluded be
fore the former. In either case the accessible configura
and orientation spaces shrink asM /Mmax increases to unity.
This shrinking is accompanied by a reduction in the spr

FIG. 4. Typical autocorrelation functionBp(t) and its Fourier
transform FFT@Bp(t)# for regular trajectories with equal distribu
tions of interatomic distances withEtot521.5 andM /Mmax50.8.
The time unitt and the frequency unitn are as in Fig. 2.
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of possible vibrational energies, corresponding to the diff
ence between the maximum and minimum values of the
tational energy for a given total energy and magnitude ofM .
This spread is a maximum whenM is such that there is zero
vibrational energy forM lying in the molecular plane~a
quasirigid rotor!, but nonzero forM out of the plane.

We may now use the concepts outlined above to interp
further the key results presented in Fig. 1. For each of
four values ofEtot considered the percentagem of regular
trajectories is nearly zero untilM /Mmax reaches a value
around 221/250.707 such thatM is excluded from the mo-
lecular plane. If we viewM as fixed in the laboratory frame
this means that orientational disorder~tumbling! is reduced
asM /Mmax is increased further. ForEtot values of22.5 and
22.3 linear configurations are not accessible. ForEtot5
21.5 linear configurations are accessible but only up
M /Mmax50.837, around whichm falls. Similarly for Etot5
21.2 linear configurations are accessible up toM /Mmax
50.957, around whichm falls ~not shown!. Linear configu-
rations have a minimum of 0.969 units of stored intern
potential energy, so that their exclusion permits an increa
fraction of chaotic trajectories associated with low poten
energies and high kinetic energies.

For the regular component with maximum Lyapunov e
ponents<(1.060.3)31023 two kinds of trajectories have
been found. These are distinguished by the shapes of
autocorrelation functions, the number of harmonics in th
Fourier spectra, and their distributions of dynamical va
ables. The first regular kind is a quasirigid rotation of A3

FIG. 5. Histograms for the distribution of~a! the molecular tri-
angle area,~b! interatomic distances,~c! kinetic energy, and~d!
potential energy for regular trajectories withEtot522.3 and
M /Mmax50.8. The units of area, distance, and energy are as
Fig. 3.
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EFFECT OF ROTATION ON THE INTERNAL DYNAMICS AND . . . PHYSICAL REVIEW A 63 043203
with a unimodal autocorrelation function~Fig. 2! and equal
distributions of interatomic distances~Fig. 3!. Another regu-
lar kind is characterized by a multimodal autocorrelati
function with its multiharmonic Fourier spectrum~Fig. 4!
and two equal distributions of interatomic distances~Fig. 5!.
These distributions have two narrow maxima atr i j .21/6 and
one atr i j .2321/6, connecting this type of regular motio
with quasinormal vibrations of a nearly linear cluster.

The differences in the two kinds of regular motions a
reflected in Fig. 3 forEtot522.3 and Fig. 5 forEtot521.5.
The potential-energy distribution has a narrow peak cente
near the bottom of the well for the former but near the line
saddle point for the latter. This result confirms our sugg
tion that for Etot.22.0 andM<M lin , where M lin is the
maximum possible value ofM for a linear structure with a
given value ofEtot , the motion of the trimer through its
linear configuration regularizes the trajectories. The dis
pearance~Fig. 1! of regular trajectories forEtot.22.03 is
accounted for by the inaccessibility of the linear configu
tion whenM is greater thanM lin(Etot). The only mechanism
that can regularize the motion under these conditions is q
sirigid rotation, which appears asM→Mmax(Etot). Initial
conditions with M5Mmax(Etot) are a rare occurrence an
thus do not contribute to the fraction of regular trajectories
Fig. 1.

As we previously noted, the chaotic motion is split in
two long-lived and, for some energies, nonoverlapping co
ponents that differ in their maximum Lyapunov exponen
Typical autocorrelation functions and their Fourier spec

FIG. 6. Typical autocorrelation functionBp(t) and its Fourier
transform FFT@Bp(t)# for the strongly chaotic component atEtot

521.4 andM /Mmax50.8. The time unitt and the frequency unitn
are as in Fig. 2.
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FIG. 7. Typical autocorrelation functionBp(t) and its Fourier
spectrum FFT@Bp(t)# for the weak chaotic componentEtot521.4
andM /Mmax50.8. The time unitt and the frequency unitn are as
in Fig. 2.

FIG. 8. Histograms for the distribution of~a! the molecular tri-
angle area,~b! interatomic distances,~c! kinetic energy, and~d!
potential energy for strongly chaotic trajectories withEtot521.4
andM /Mmax50.8. The units of area, distance, and energy are a
Fig. 3.
3-5



n
de
ex
rn
.
o

ov

e
e
is
e
th
o
el
se

dy
n
en
n

high
a-

tum
is

ha-
its

on,
tic
ove
om
ac-
en-

-
are-
a-
by
n

E. D. BELEGA, D. N. TRUBNIKOV, AND LAWRENCE L. LOHR PHYSICAL REVIEW A63 043203
for the strongly and weakly chaotic components are show
Figs. 6 and 7, respectively. The autocorrelation function
cay times, which are related to the maximum Lyapunov
ponents and which may be taken as a time scale for inte
energy randomization@2#, differ for the two components
Because of the existence of trajectories with long-time c
relations~weak chaotic components! it is natural to suppose
that rotation plays an unimportant role if energies are ab
the dissociation level.

Typical distributions for the dynamical variables for th
strong chaotic component are shown in Fig. 8. At a giv
total energy and angular momentum the interatomic d
tances have identical broad distributions covering all acc
sible values, leading to a broad distribution in the area of
cluster triangle. We also note from the distributions of p
tential and kinetic energies that internal energy flows fre
between these contributions, reflecting a coupling not pre
in the regular components of the motion.

IV. SUMMARY

We have shown that the influence of rotation on the
namics of the Ar3 van der Waals cluster depends in a no
monotonic manner on the magnitude of its angular mom
tum. Regular trajectories exhibiting quasirigid rotatio
e

-
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become rare at high internal energies as the concomitant
vibrational kinetic energy is largely responsible for the ch
otic motion. Chaos is reduced when the angular momen
becomes sufficiently large for a given total energy that it
excluded from the molecular plane. Regular and weakly c
otic components of the motion arise when the energy perm
passage through linear configurations. Chaotic moti
which may be partitioned into strongly and weakly chao
components, may play an important role at energies ab
the threshold for dissociation and produce deviations fr
RRKM behavior. The strongly chaotic component is char
terized by strong coupling between potential and kinetic
ergies.
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