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Effect of rotation on internal dynamics and phase-space structure of rare-gas trimers
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The effect of total rotational angular momentum on the stochastic characteristics of the internal motion of
rare-gas trimers has been studied by the molecular-dynamics method. Results presented for the argon trimer
described in a two-parameter phase space characterized by fixed values of the total energy and angular
momentum provide insight into the separation of chaotic from regular motions of the system. An important
feature of the phase-space structure is that the volume filled by regular trajectories for fixed total energy of the
system is not a monotonic function of its total angular momentum. The chaotic motions are characterized by
a strong coupling between potential- and kinetic-energy contributions that is not observed for the regular
motions.
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[. INTRODUCTION partition of the chaotic component of motion. The “structure
of chaos” connected with the partition of the stochastic com-
Over the past two decades a main focus of the study oponent was also investigated for Arl0]. The partition of
van der Waals clusters has been the characterization of thotfee chaotic component leads to the existence of different
properties that are similar to, and those that are differentimes for energy redistribution between internal degrees of
from, the properties of bulk materials. Potential-energy surfreedom. This property nearly disappears with increasing en-
faces have been calculated, global and local minima as we#irgy for dynamical systems with anharmonic potentials, as
as saddle points located, and the relationship between struexpected from the Kolmogorov-Arnol'd-Mos&AM ) theo-
ture and internal dynamics studigt] within the framework  rem[11].
of the theory of quasiphase transitions for clusters. Short- Nearly all of the studies cited above were carried out as a
time averages of dynamic variables and such stochastic p#snction of energy only, not taking into account the influence
rameters as the maximum Lyapunov exporj@at5] or Kol-  of molecular rotation. One exception was a st(iti§] of the
mogorov entropy(the sum of positive Lyapunov numbgrs role of rotational motion in the chaotic region of the phase
have been widely usgdé—8] to characterize the internal dy- space for the tetramer ArSpecifically studied was the par-
namics and phase-space structures of clusters. Zero valuestdfon of internal energy between internal degrees of freedom
these parameters are a signature of regular motion or rigiditgs a function of rotational angular momentum. No differ-
of the systems. ences in stochastic parameters were found in comparison to
The simplest rare-gas cluster, namely the trimer, has beelhose of a rotationless cluster.
used to reveal the relationship between the time behavior of A detailed dynamical simulation of rotating Ar[12]
stochastic parameters and the structure of its potential-energhowed that its internal dynamics and rigidity is not uniquely
surface. For Ag with zero angular momentum and with a defined by its total energy but instead strongly depends on
fixed total energy slightly higher than that required to allowthe initial state of the cluster, and more specifically on the
passage across the linear saddle point the phase space is splitial distribution of momenta among the internal degrees of
into regions with differing degrees of chaotic motif#4], = freedom. The maximum Lyapunov exponent for the system
depending on the set of microcanonical initial conditions.was found to behave nonmonotonically with increasing total
The distributions of Lyapunov exponents also depend on thenergy.
initial conditions and do not converge for infinite tinfié]. It is reasonable that increasing rotational angular momen-
The Kolmogorov entropy does not increase monotonicallytum for fixed total energy will tend to regularize the motion,
with energy, but rather it reaches a plateau and then drogeading to the occurrence of nonchaotic trajectories, by low-
once the cluster has sufficient energy to explore the lineagring the vibrational kinetic energy and thus altering the
saddle region6]. Low chaotic trajectories are associated phase-space structure. This assumption is supported by re-
with the saddle regioflinear structure for the trimgrwhich  sults reported for rotating HP [13], for which the conse-
channels neighboring trajectories, thus reducing their diverguences of switching on rotation include centrifugal stretch-
gence and reducing the Kolmogorov entropy and the degreiag, which reduces chaos by stiffening of the bonds, Coriolis
of chaos. It was also noted that saddle regions can decoupterces, which increase nonlinearity, and tumbling, which is
vibrational modes and induce temporary and approximatelyhe motion of the angle between the angular momentum vec-
quasiperiodic behavid8]. Applying stochastic theory to the tor and the normal to the molecular plane and which leads to
dynamics of molecules such as sénd Q, [9], it was found  an increase in stochasticity but is limited by energy conser-
that their phase spaces consist of chaotic trajectories differation. Thus at high angular momentum but relatively low
ing markedly in the value of their maximum Lyapunov ex- energy, the degree of chaos is reduced and approaches a
ponent for energies above the critical energy, reflecting aninimum in the limit of a centrifugally distorted but nonvi-
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brating cluster. This minimum is zero for asymmetric tops 100+
. . - E=-2.5

and oblate symmetric tops but is nonzero for prolate sym- o E= 23
metric tops and spherical tops due to the chaos associate  8o- b E=-15
with tumbling in a laboratory frame. g E= 1.2

Our earlier work[14] on the phase space structure of ro- 60
tating Ar; at a total energy corresponding to one-half of the & E
well depth, an energy thus above that of lineag But below X, | {
that of Ar, and Ar fragments, showed the partition of the E i
phase space into regions of regular and chaotic motion a 20 / i
well as a partition of the chaotic component into portions ] E}. /
with differing maximum Lyapunov exponents and differing - g

. ; i 0 Ttz
shapes of the autocorrelation function of atomic momentum 00 01 02 03 04 05 06 07 osNos 10
on an axis normal to the angular momentiin The non- M/M W =15

monotonic character of the regular fraction was explained in max o

terms of the regularizing influence of the linear configuration Fig. 1. Dependence on the normalized angular momentum
and the freezing of energy in rotational degrees of freedony(g)/M,.(E) of the percentagg of phase space filled by regular
whenM =|M| approaches its maximum possible value for atrajectories for four different values of the total internal energy of
given total energy. Ar;. The dashed vertical line corresponds to the normalized maxi-

We also studied15] the phase-space structure of ,Ar mum value ofMy, for the linear trimer withE,,,= —1.5. The en-
with nonzero angular momentum at energies above that coergy unit is the natural unit corresponding to the diatomic well
responding to a planar configuration. We found that for adepth of 99.45 cm’.

given energy there is a criticall .=|M| for the structural minimum enerav of—3.0 and an equilateral trianaular
transformation in which one atom passes through the plang . gy ot~ 3. q guiar
Structure with an equilibrium edge length equal to the di-

of the three others, thus inverting the tetrahedron. For Valueesuomic equilibrium separation ofFe
of M greater tharM, the transformation is impossible and q P :

. - . . We have used molecular dynamics to study the phase-
the phase space is partitioned into two nonoverlapping '€ hace structure of rotatin ABs a function of two param-
gions. More recent studies by Yertsevet al. [16—1§ P 9 P

showed that for rotating Arinitially generated as an equi- eters, namely Fhe total e_ner@ot and the tot.al. ‘?‘”9“""“ mo-

. . mentum. A microcanonical ensemble of initial conditions
lateral triangle the maximum Lyapunov exponent has a NOM/as formed by straightforward sampling from points distrib-
monotonic behavior with increasing total energy but de- y gnt ) piing P

uted randomly and uniformly in coordinate space such that

creases with increasing angular momentum. the potential energy <E,,; and in momentum space such
In this paper we employ molecular dynamics to investi- P 9¥'=Eror P

gate the effect of rotation on the phase-space structure 6P:rtetzee|§é?§élcfr§&erg]fkg: Egr_ rl#]onﬁgs:ﬁ; ;Eillpgfmfti?wite
rare-gas trimers. In Sec. Il we describe the details of th 9

method including the numerical scheme for calculating sto—h'Ckr"ESSAl\{I 20'0.001' The quﬂton equat|ons'of moyon
chastic parameters and distributions of the dynamical varivere numencalluntegrated using a Verlet algorlthm with a
ables. In Sec. Ill we discuss the maximum Lyapunov expolMe Stepts=10"* on the time intervalr=2x 10’ time
nents, the autocorrelation function for the momentum of art'™MS- W'tbl values of m( Q’QA: 39.945 amu, U,
atom on an axis normal to the angular momentMmand :992'55 le/Tz] , and a=3.757/ , the “time unit
distribution functions for the interatomic distances and for(.ma /.UO) =1.94 ps, the time steps= 19'.4 fs, and the
potential and kinetic energy contributions for varidds In time interval 7=3.88 ns. The absolute drift in numerical

Sec. IV we discuss these results in the context of futurd/2Ues ngtot andM on the intervalr did not exceed 10°
research plans. and 10/, respectively.

For a given value of,,; andM =|M|, a set of 50 to 100
trajectories was used. For each trajectory the maximum
Lyapunov exponentr, the autocorrelation functio(7)

Consider the rotating Arcluster as a bound state of the =(pi(t+ 7)p;(t)) of the momentunp;(t) of theith atom on
classical Hamiltonian the axis normal taV, and the distribution functions of the

triangle area, the interatomic distances, and the kinetic and
( @ )12 ( @ )6 potential energies were calculated. The maximum Lyapunov
where the potential energy is taken in a pairwise additiv

, (1) exponent was calculated by the scheme of Benatial.

[20]. We note that there are two distinct axes normatp
Lennard-Jones formp; is the momentum of théth atom
(each of mass), rj; is the interparticle distande;—r;], r;

é)oth were used in preliminary calculations Bf,(7), but
since the results were identical, only one was used subse-
is the position of théth atom,U is the diatomic well depth,
and « is the diatomic collision diameter. The familigt9]

quently.
parametersy, Uy, and m are taken as dimensionless, with  Our results cover a wide range of total energies, namely
(ma?/Uy)Y2 as the unit of time. The nonrotating cluster has —2.5, —2.3, — 1.5, — 1.4, and— 1.2, that is, from just above

IIl. METHOD

IIl. RESULTS
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v FIG. 3. Histograms for the distribution @& the molecular tri-

FIG. 2. Typical autocorrelation functioB,(7) and its Fourier ~angle areab) interatomic distances(c) kinetic energy, andd)
transform FFTB,(7)] for regular trajectories with equal distribu- Potential energy for regular trajectories with,=—2.3 and
tions of interatomic distances Withg= —2.3, M/M ,=0.8. The ~ M/My,=0.8. The area unit ina) is the square of the diatomic

time unit 7 is 1.94 ps(see text, while the frequency univ is its  equilibrium separation of 3.757 A, the distance unit(i is the
reciprocal of 0.515 THz. diatomic equilibrium separation of 3.757 A, and the energy unit in

(c) and(d) is the diatomic well depth of 99.45 cr.
the ground vibrational level at approximately2.56 [21]

(the classical minimum potential energy-is3.0) to a value obtained even at very low energies, confirming previously
close to the dissociation threshold ef1.0 to form A,  reported[21] results. At yet higher energies no regular tra-
+Ar. These selected energies fall into two ranges, ongectories are found for the nonrotating cluster, reflecting the
(—2.5=E;= —2.3) representing dynamics in the potential- anharmonic nature of the potential energy.
energy well corresponding to predominantly triangular struc- Inclusion of rotation leads to the redistribution of internal
tures and the other{1.5<E= —1.2) representing dynam- energy between internal degrees of freedom. As seen in Fig.
ics above the linear saddle-point energy. The present resulfs the introduction of a small angular momentum leads to the
complement our earlier resulfd4] for E,,,= —1.5. Three disappearance of the regular component since the rotation
types of trajectories may be identified. These are as followscan deflect the small amplitude atomic oscillations. How-
(a) Trajectories with the maximum Lyapunov exponentever, the regular component reemerges at higher angular mo-
0=<(1.0+0.3)x 10" 2 for the regular region. menta. When the angular momentum is near the maximum
(b) Trajectories with the maximum Lyapunov exponentvalue M ., possible for a given total energy the cluster be-
o=0.7=0.3 for the chaotic region. comes a quasirigid centrifugally distorted rotor, with a large
(c) Trajectories with the maximum Lyapunov exponentfraction of regular motion.
o~0.2+0.05 for the so-called weakly chaotic region. WhenE,,=Ej;,, a nonmonotonic behavior of the regular
A special feature of the phase-space structure is the norcomponent appears for larg¢=|M| (Fig. 1). It was previ-
monotonic dependence of the fraction of phase space filledusly suggestefil4] that such behavior reflects the regular-
by regular trajectories as a function of the angular momenizing influence of the linear configuration and the freezing of
tum for a given total energyFig. 1). The results may be internal energy into rotational degrees of freedomvasap-
described in terms of two energy regions, the first being fronproaches its maximum value for a given total energy. The
the bottom of the well up to the critical enerdy;,= dashed lines in Fig. 1 simply highlight the nonmonotonic
—2.03, which permits passage though the linear saddle poincharacter of the results. The error bars show uncertainties in
and the second fronk, up to the dissociation limit of the fraction of regular trajectories as estimated by
-1.0. =(100u/N)¥2, whereN is the number of trajectories consid-
The lowest energy considered-s2.5. At this energy for ered for a giverg,,; and M.
a nonrotating cluster only a small fraction of the trajectories The vertical line in Fig. 1 at a value dfl/M,,,=0.837
are found to be regular, indicating that chaotic behavior iscorresponds to the value of the normalized angular momen-
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FIG. 5. Histograms for the distribution ¢&) the molecular tri-
FIG. 4. Typical autocorrelation functioB,(7) and its Fourier ~ angle area(b) interatomic distancedc) kinetic energy, andd)
transform FFTB,(7)] for regular trajectories with equal distribu- potential energy for regular trajectories with,=—2.3 and
tions of interatomic distances with,,;= —1.5 andM/M ,,,,=0.8. M/M 1,x=0.8. The units of area, distance, and energy are as in
The time unitr and the frequency unit are as in Fig. 2. Fig. 3.

tum for a nonvibrating linear structure with a total internal of possible vibrational energies, corresponding to the differ-
energy of— 1.5, for which the angular momentum is a maxi- ence between the maximum and minimum values of the ro-
mum for a nonvibrating equilateral triangular structure withtational energy for a given total energy and magnitud®of

M aligned along its @axis. That is, the angular momentum This spread is a maximum whev is such that there is zero
for a nonvibrating linear structure with this energy is less byvibrational energy forM lying in the molecular planda

a factor of 0.837. This factor depends sensitively upon thejuasirigid rotoy, but nonzero foM out of the plane.

total energy, rising from zero at the threshold-e2.031 for We may now use the concepts outlined above to interpret
the linear structure to 0.957 at an energy-cf.2, the highest further the key results presented in Fig. 1. For each of the
energy value considered here, and exceeds unity for slightlfour values ofE,, considered the percentage of regular
higher energies. For a value &f/M,,, greater than the trajectories is nearly zero untiM/M .., reaches a value
value of this factor at a fixed total energy the structure cannoéround 2 ¥?=0.707 such thaM is excluded from the mo-
be linear. Indeed we see in Fig. 1 for an energy-df.5, for  lecular plane. If we viewM as fixed in the laboratory frame
which this factor is 0.837, that the fraction of regular trajec-this means that orientational disordénmbling) is reduced
tories begins to fall ad1/M . €xceeds a value of approxi- asM/M .. is increased further. FdE,, values of—2.5 and
mately 0.75. Similarly, a nonvibrating acute isosceles trian—2.3 linear configurations are not accessible. E=

gular structure with a total energy of 1.5 and withM —1.5 linear configurations are accessible but only up to
aligned along its € axis has a value oM/M,,,=0.723,  M/M ,5,,=0.837, around whichu falls. Similarly for E;y,=
only slightly larger than the ratio of 2/2=0.707 for arigid —1.2 linear configurations are accessible up M&M .y

rotor. This ratio is relatively insensitive to the energy, rising =0.957, around which falls (not shown. Linear configu-
from 0.711 to 0.730 as the total energy increases fré®5  rations have a minimum of 0.969 units of stored internal
to —1.2. For a value oM/M ., greater than this factor at a potential energy, so that their exclusion permits an increased
fixed total energy the angular momentum vedibiis forced fraction of chaotic trajectories associated with low potential
out of the molecular plane. For total energies betweerenergies and high kinetic energies.

—2.031 and—1.685, linear structures are excluded with in-  For the regular component with maximum Lyapunov ex-
creasingM before those withM aligned along a € axis, ponento=<(1.0+0.3)x 10 2 two kinds of trajectories have
while for energies above-1.685 the latter are excluded be- been found. These are distinguished by the shapes of their
fore the former. In either case the accessible configuratioautocorrelation functions, the number of harmonics in their
and orientation spaces shrink BdM ,,,, increases to unity. Fourier spectra, and their distributions of dynamical vari-
This shrinking is accompanied by a reduction in the spreadbles. The first regular kind is a quasirigid rotation of; Ar
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FIG. 7. Typical autocorrelation functioB,(7) and its Fourier
spectrum FFB,(7)] for the weak chaotic componeBt,=—1.4
andM/M ,,,=0.8. The time unitr and the frequency unit are as
in Fig. 2.

FIG. 6. Typical autocorrelation functioB,(7) and its Fourier
transform FFTB,(7)] for the strongly chaotic component Bty
=—1.4 andM/M ,,,,=0.8. The time unitr and the frequency unit
are as in Fig. 2.

with a unimodal autocorrelation functidirig. 2) and equal - a)
distributions of interatomic distancéBig. 3). Another regu- ax10' b
lar kind is characterized by a multimodal autocorrelation -
function with its multiharmonic Fourier spectruffrig. 4 2x10* [_] Area
and two equal distributions of interatomic distan¢esy. 5). [ ) . ) o,y
These distributions have two narrow maxima at=2¢ and 05 10 15 20 25 30
one atr;j=2Xx 216 connecting this type of regular motion
with quasinormal vibrations of a nearly linear cluster.

X0 [ 1) : —o—r,,
[ —0— I

The differences in the two kinds of regular motions are 2x10“_- g —A—

23

reflected in Fig. 3 folE;,;= —2.3 and Fig. 5 folE;,;= — 1.5.
The potential-energy distribution has a narrow peak centered
near the bottom of the well for the former but near the linear
saddle point for the latter. This result confirms our sugges-
tion that for E;;>—2.0 andM=<My,,, where M,,, is the
maximum possible value d¥l for a linear structure with a
given value ofE,y;, the motion of the trimer through its =
linear configuration regularizes the trajectories. The disap- 0 P R B
pearanceFig. 1) of regular trajectories foE,>—2.03 is . q 05 10 15 20 25 30
accounted for by the inaccessibility of the linear configura- 1x10
tion whenM is greater tha,(E,). The only mechanism [
that can regularize the motion under these conditions is qua- 5x10° e
sirigid rotation, which appears a8l —M ,,(Eop - Initial pet
conditions withM =M ,,.{Eixy) are a rare occurrence and 0 it bt )
thus do not contribute to the fraction of regular trajectories in 25 20 45 40 05 00
Fig. 1. FIG. 8. Histograms for the distribution ¢&) the molecular tri-

As we previously noted, the chaotic motion is split into angle area(b) interatomic distances(c) kinetic energy, andd)
two long-lived and, for some energies, nonoverlapping compotential energy for strongly chaotic trajectories with,=—1.4
ponents that differ in their maximum Lyapunov exponents.andM/M,,=0.8. The units of area, distance, and energy are as in
Typical autocorrelation functions and their Fourier spectraFig. 3.

number of times in a bin
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for the strongly and weakly chaotic components are shown ilbecome rare at high internal energies as the concomitant high
Figs. 6 and 7, respectively. The autocorrelation function devibrational kinetic energy is largely responsible for the cha-
cay times, which are related to the maximum Lyapunov ex-otic motion. Chaos is reduced when the angular momentum
ponents and which may be taken as a time scale for internddecomes sufficiently large for a given total energy that it is
energy randomizatiof2], differ for the two components. excluded from the molecular plane. Regular and weakly cha-
Because of the existence of trajectories with long-time corotic components of the motion arise when the energy permits
relations(weak chaotic components is natural to suppose passage through linear configurations. Chaotic motion,
that rotation plays an unimportant role if energies are abovevhich may be partitioned into strongly and weakly chaotic
the dissociation level. components, may play an important role at energies above
Typical distributions for the dynamical variables for the the threshold for dissociation and produce deviations from
strong chaotic component are shown in Fig. 8. At a giverRRKM behavior. The strongly chaotic component is charac-
total energy and angular momentum the interatomic disterized by strong coupling between potential and kinetic en-
tances have identical broad distributions covering all accesergies.
sible values, leading to a broad distribution in the area of the
cluster triangle. We also note from the distributions of po-

tential and kinetic energies that internal energy flows freely ACKNOWLEDGMENTS
between these contributions, reflecting a coupling not present ] ] )

ful discussions on the phase-space structure of rotating rare-
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[1] R.S. Berry, J. Chem. Soc., Faraday Tra8.2342(1990; J. [12] J. Jellinek and P.G. Jasien,Time Structure of Small Molecules

Phys. Chem98, 6910(1994); Int. J. Quantum Chenk8, 657 and lons edited by R. Naaman and Z. Vag@lenum, New
(1996. York, 1988, pp. 39-47.
[2] S.C. Farantos, Chem. Phys. Lé®, 379(1982. [13] N. Fahrer and C. Schlier, J. Chem. Ph9g, 7008(1992.
[3] C. Amitrano and R.S. Berry, Phys. Rev. Lei8, 729(1992.  [14] E.D. Belega, P.V. Elyutin, D.N. Trubnikov, and L.B. Sh-
[4] C. Amitrano and R.S. Berry, Phys. Rev.4F, 3158(1993. vilkina, (unpublishedt Phys. Dokl.355, 750 (1997).
[5] S.K. Nayak, R. Ramaswamy, and C. Chakravarty, Phys. ReVi15) p.v. Elyutin, V.I. Baranov, E.D. Belega, and D.N. Trubnikov,
E 51, 3376(1995. J. Chem. Phys100, 3843(1994.
[6] T.L. Beck, D.M. Leitner, and R.S. Berry, J. Chem. Ph§8, [16] E. Yurtsever, Europhys. Let87(2), 91 (1997.
1681(1988. [17] E. Yurtsever and N. Elmaci, Phys. Rev.5%, 538(1997.

[7] D.J. Wales and R.S. Berry, J. Phys2B, L351 (1991).

[8] R.J. Hinde, R.S. Berry, and D.J. Wales, J. Chem. PBgs.
1376(1992.

[9] S.C. Farantos and J.N. Murrell, Chem. Ph§s, 205 (1981).

[10] S.C. Farantos, J. Phys. Che@, 5061(1983.

[11] V.I. Arnol'd and A. Avez,Ergodic Problems in Classical Me-
chanics(Benjamin, New York, 1968

[18] E. Yurtsever, Phys. Rev. A8, 377(1998.

[19] W.D. Kristensen, E.J. Jensen, and R.M. Cotterill, J. Chem.
Phys.60, 4161(1974.

[20] G. Benettin, L. Galgani, and J. Strelcyn, Phys. Re\l4A2338
(1976.

[21] D.M. Leitner and R.S. Berry, J. Chem. Phgd, 3470(1989.

043203-6



