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Cumulative reaction probability and reaction eigenprobabilities from time-independent quantum
scattering theory
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The cumulative reaction probability~CRP! is a gross characteristic of rearrangement collision processes
defining the reaction rate constant. This paper presents a complete development of the approach to the theory
of CRP that we have recently proposed@Phys. Rev. Lett.80, 41 ~1998!#. In the core of this approach lies an
alternative expression for CRP in terms of the outgoing wave Green’s function which is formally equivalent to
the Miller’s definition of this quantity in terms of the scattering matrix@J. Chem. Phys.62, 1899~1975!# and
to the Miller-Schwartz-Tromp formula@J. Chem. Phys.79, 4889 ~1983!#, but is direct, in contrast to the
former, and more suitable for practical calculations than the latter. Furthermore, our approach rests on solid
grounds of time-independent quantum scattering theory and provides an appealing competitive alternative to
the absorbing potential formulation given by Seideman and Miller@J. Chem. Phys.96, 4412~1992!; 97, 2499
~1992!#. Ideologically, it is close to the approach considered earlier for a one-dimensional model by Manol-
opoulos and Light@Chem. Phys. Lett.216, 18 ~1993!#, but is formulated from scratch for realistic systems with
many degrees of freedom. The strongest point of our approach is that its final working formulas are expressed
in terms of the Wigner-EisenbudR matrix, so they can be easily implemented on the basis of many existing
quantum scattering codes. All these features are discussed and illustrated by calculations of the CRP and
reaction eigenprobabilities for two prototypical light atom transfer reactions in heavy-light-heavy triatomic
systems in three dimensions for zero total angular momentum.
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I. INTRODUCTION
In the time-independent quantum scattering theory,

results of collisions between atomic particles are descri
by the scattering matrixS(E) which is a function of the tota
energyE of the system. This matrix defines the probabiliti
of all possible state-to-state transitions, so the absolute
jority of theoretical methods naturally aims at calculati
S(E) or its particular elements. Meanwhile, such a detai
description is not always needed, and there are situat
where the knowledge of some gross characteristic of the
tem with respect to a given type of processes would be
ficient. The less such a characteristic depends on the par
lar conditions of the collision experiment in which it cou
be measured, the more intrinsic property of the system
represents and the more meaningful it is from the theoret
viewpoint. Experimental conditions enter the theory via t
asymptotic states of reactants and products with respec
which the scattering matrixS(E) is defined. So, the charac
teristic meant above should be expressible in terms of s
invariants of the matrixS(E). One of such characteristics
the eigenphase shift sum defined by@1#

exp@2id~E!#5det@S~E!#, ~1!
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which provides a rough description of the spectrum of re
nances. Note thatd(E) is completely independent of th
choice of a specific set of the asymptotic states, beca
det@S(E)# is invariant under any unitary transformation
this set. Another characteristic of this type, which is the
cus of the present work, is the cumulative reaction proba
ity ~CRP!. This quantity was introduced in scattering theo
by Miller @2# and characterizes the gross efficiency of re
rangement processes. Let us assume, for simplicity,
there are only two arrangements, which we denote bya and
b. In this case, the scattering matrix can be partitioned i
four blocks,

S~E!5S Saa~E! Sab~E!

Sba~E! Sbb~E!
D , ~2!

with Sba(E)5Sab
T (E), where T stands for transpose. The

the CRP for reactions betweena andb is defined by

Nab~E!5 (
na ,nb

open

uSnanb
~E!u25tr@Sab~E!Sab

† ~E!#, ~3!

whereSnanb
(E) are the elements ofSab(E), na andnb label

different asymptotic states in the arrangementsa and b, re-
spectively, and summation runs over all the open channel
©2001 The American Physical Society07-1
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can be easily seen thatNab(E) is invariant under any unitary
transformation mixing the asymptotic statesseparately in
each arrangement.

Formula~3! expressesNab(E) in terms of the elements o
the reaction blockSab(E) of scattering matrix~2!, thus pro-
viding a recipe to calculate the CRP by the methods of s
tering theory. However, it was early recognized that meth
that would enable one to evaluateNab(E) directly, i.e., with-
out relying on the calculation ofSab(E), are desirable and
worth developing. There are two basic reasons for that. F
the knowledge ofNab(E) permits one to calculate the rea
tion rate constant@2#, which in chemical applications is ofte
the only characteristic required. Second, one can expect
Nab(E) is determined by a much smaller region of config
ration space than that which is essential for calculat
Sab(E), this expectation being supported by successes of
transition state theory. Thus concentrating onNab(E) rather
than onSab(E) may enable one~i! to avoid calculations of
unnecessary information and~ii ! to reduce the computationa
labor. These two principal objectives have motivated the
velopment of the theory of CRP.

The first formula that has opened a way for direct cal
lations of the CRP was obtained by Miller, Schwartz, a
Tromp ~MST! @3#:

Nab~E!52p2 tr@Fd~H2E!Fd~H2E!#. ~4!

Here F is a properly defined flux operator andH is the
Hamiltonian of the system. Despite the fact that Eq.~4! does
not contain time explicitly, it was derived by starting from
time-dependent formulation and following a logical rou
similar ~though not identical! to that used earlier by Yama
moto @4#, based on the Kubo’s theory of linear response@5#.
More recently, Moiseyev@6# derived the MST formula~4!
from the time-independent scattering theory, thus establ
ing the relation of this important result to the disciplin
where it actually belongs. The approach initiated in Re
@3,4# turned out to be very fruitful and is currently widel
used for direct calculations of reaction rate constants
time-dependent methods@7–9#. However, because of the dif
ficulties in implementation, the MST formula~4! did not find
much application within the time-independent framewo
which prompted the search for a more suitable expressio

An alternative representation forNab(E) was proposed by
Seideman and Miller@10,11#:

Nab~E!54 tr@«aG«~E!«bG«* ~E!#, ~5!

where the operatorG«(E) is defined by

G«~E!5~H2E2 i«!21, «5«a1«b . ~6!

If « were made infinitesimally small, as prescribed by t
standard scattering theory, thenG«(E) would coincide with
the outgoing wave Green’s operatorG(E) @see Eq.~8!#, but
Eq. ~5! then would lead to the uncertainty 03`. The trick of
the approach proposed in@10,11# consists innot making «
infinitesimally small but assuming«a and «b to be finite
non-negative functions of coordinates of the system hav
the meaning ofabsorbing potentials. This approach was suc
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cessfully demonstrated by calculations for several thr
@11–16# and even four-atomic@17# reaction systems; see
also, review articles@18#. However, the ambiguity in choos
ing the arbitrary functions«a and«b leaves something to be
desired, as has been pointed out also by other authors@19#.
This has motivated the present work whose goal is to sh
that the objectives of the theory of CRP mentioned abo
can be fully achieved by well-developed means of the st
dard scattering theory.

This paper is an outgrowth of our earlier Letter@20#
whose principal results can be summarized as follows.
Ref. @20#, we have derived a new formula forNab(E) which
in operator notation similarly to Eqs.~4! and ~5! reads

Nab~E!5tr@FaG~E!FbG* ~E!#. ~7!

HereFa andFb are the flux operators in the arrangementsa
andb, respectively, andG(E) is the outgoing wave Green’
operator,

G~E!5~H2E2 i0!21, ~8!

related to the microcanonical density operatord(H2E) that
appears in Eq.~4! by

d~H2E!5
1

p
Im G~E!. ~9!

It should be noted that the possibility to express the C
without making an explicit reference to the asymptotic sta
and scattering matrix results from the following lucid phys
cal picture underlying the present approach: rearrangem
processes can be treated as a passage between two regi
configuration space. This also explains the appearanc
flux operators in Eqs.~4! and~7!. Such a viewpoint on rear
rangement dynamics was adopted in the theory of chem
reactions since the early days of quantum mechanics@21#. In
atomic physics, a formulation based on similar ideas w
given by Gerjuoy@22# and, within impact parameter ap
proach, by Demkov and Ostrovsky@23#, see also Refs
@24,25#. Formula~7! is as an exact consequence of the Sch¨-
dinger equation as formula~4!, both being equivalent to Eq
~3!, but is more suitable for practical calculations. In order
implement Eq.~7!, it is convenient to reduce the origina
multidimensional Schro¨dinger equation to a one-dimension
multichannel problem, which is a commonly used techniq
in quantum scattering calculations. Then, Eq.~7! takes a re-
markably simple form@20#,

Nab~E!5 (
na ,nb

open

kna
knb

uGnanb
~E!u2. ~10!

Here kna
and knb

are the channel momenta in the arrang

mentsa and b, respectively, andGnanb
(E) are elements of

the off-diagonal block of the matrix

G~E!52R~ I2 ikR!21, ~11!

whereI is the unit matrix,k is the diagonal matrix consisting
of kna

and knb
, and R is the Wigner–EisenbudR matrix
7-2
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CUMULATIVE REACTION PROBABILITY AND . . . PHYSICAL REVIEW A 63 042707
@26#. In Ref. @20#, this approach was demonstrated by calc
lating the CRP for muon transfer reactiondm1t↔d1tm. In
this paper, we give more details on the derivation of Eqs.~7!,
~10!, and~11!, which have been necessarily skipped in R
@20#. As the simplest model of reaction, first we conside
one-dimensional potential barrier problem~Sec. II!. Then,
we generalize this analysis to rearrangement collisions
three dimensions, adding a discussion of reaction eigenp
abilities introduced in Ref.@12# ~Sec. III!. In so doing, we
employ a hyperspherical approach: this makes the deriva
specific and related to the method used in the present ca
lations, however, it should be emphasized that this
not essential for the results represented by Eqs.~7!, ~10!, and
~11!. Finally, the whole scheme is more intensive
illustrated by calculations of two prototypical light ato
transfer reactions in heavy-light-heavy triatomic syste
O(3P)-H-Cl and Br-H-Cl in three dimensions for zero tot
angular momentum~Sec. IV!.

As it often happens, after publication of Ref.@20#, we
have learned that an approach close to ours, although
for the one-dimensional case, was considered earlier
Manolopoulos and Light@19#. In particular, equations simila
to our Eqs.~7! and~10! are contained in Ref.@19#. We fully
agree with the argumentation of these authors. The dif
ence between our approaches in the one-dimensional ca
minor; the only improvement we could add to their formu
tion is to useSiegert pseudostates@27,28# for expanding the
outgoing wave Green’s function, which has an advantag
reducing the computational labor needed to cover a w
energy range to a single matrix diagonalization~this devel-
opment is discussed in the Appendix!. At the same time, we
believe that our implementation of Eq.~7! in terms of theR
matrix for systems with many degrees of freedom is an
portant step forward. Indeed, the methods to calculate thR
matrix are very well developed@29#, so Eqs.~10! and ~11!
can be easily implemented on the basis of many exis
quantum scattering codes.

Let us comment on convention adopted throughout
paper. We use mass-scaled coordinates, so masses o
particles participating in reaction will never appear in equ
tions explicitly, but it is assumed that potential functio
depend on them. To avoid possible ambiguities, we of
show variables on which an operator acts explicitly as ar
ments of the operator in coordinate representation. If the
erator depends on a parameter, this parameter may be
included in the list of arguments separated by a semico
Finally, we use a system of units where\51.

II. ONE-DIMENSIONAL MODEL

The purpose of this section is to introduce basic ideas
our approach by considering the simplest model of react
which is the problem of passing of a particle through a o
dimensional potential barrier. First, we derive Eqs.~7! and
~10! for this case and then discuss their implementation.
make the parallelism explicit between the analysis of S
II A and its generalization to multidimensional case to
given in Sec. III B, we shall employ both coordinate rep
sentation and operator notation. The coordinate represe
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tion is the one which is actually used in the derivation, wh
in operator notation many of the equations take much s
pler forms and remain almost unchanged in multidime
sional case.

A. Derivation of the CRP in terms of the Green’s function

The Schro¨dinger equation in the one-dimensional ca
reads

@H~x!2E#c~x!50, ~12!

whereH(x) is the Hamiltonian

H~x!52
1

2

d2

dx2
1V~x!. ~13!

In order to define the scattering matrix, we assume that
potential functionV(x) sufficiently rapidly approaches som
constant values atx→6`,

V~x!5Va , x→2`, ~14a!

5Vb , x→1`. ~14b!

The asymptotic regions lying far on the left (x→2`) and
on the right (x→1`) of the potential barrier will be asso
ciated with the arrangementsa and b, respectively; we de-
note them by the same characters as the arrangements
barrier itself will be associated with the reaction zone a
denoted byI. Reaction amounts to passing of the partic
from a to b or vice versa throughI, which can occur at
energies

E.max~Va ,Vb!. ~15!

For each energy in this range the following two degener
solutions of Eq.~12! can be defined:

ca~x!5
e1 ikax

Aka

2Saa~E!
e2 ikax

Aka

, x→2`, ~16a!

5Sba~E!
e1 ikbx

Akb

, x→1`, ~16b!

and

cb~x!5Sab~E!
e2 ikax

Aka

, x→2`, ~17a!

5
e2 ikbx

Akb

2Sbb~E!
e1 ikbx

Akb

, x→1`.

~17b!

HereSaa(E), Sbb(E), andSab(E)5Sba(E) are elements of
the scattering matrix, and

ka,b5A2~E2Va,b! ~18!
7-3
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are the asymptotic values of the momentum. The CRP in
present case is defined by

Nab~E!5uSab~E!u2 ~19!

and coincides with the barrier transmission probability.
Let us introduce the outgoing wave Green’s operator~8!.

Its action on a state vectoruc& in coordinate representation
given by

G~E!uc&5E G~x,x8;E!c~x8! dx8. ~20!

Here the kernelG(x,x8;E), called the Green’s function, sa
isfies the equation

@H~x!2E#G~x,x8;E!5d~x2x8! ~21!

and the outgoing wave boundary conditions

G~x,x8;E!5ca~x8;E!e2 ikax, x→2`, ~22a!

5cb~x8;E!e1 ikbx, x→1`, ~22b!

whereca(x8;E) and cb(x8;E) are certain functions. In the
present case, the Green’s function can be expressed in t
of the solutionsca(x) andcb(x),

G~x,x8;E!5
i

Sab
ca~x.!cb~x,!, ~23!

wherex. (x,) is the larger~the smaller! of x andx8. How-
ever, there is not an analog of this equation in multidime
sional case, so we shall not use it in the derivation. T
microcanonical density operator~9! also can be expressed
terms of these solutions,

d~H2E!5
1

2p
~ uca&^cau1ucb&^cbu!, ~24!

which does have a generalization in multidimensional ca
We now introduce the operator of flux at the pointq,

F~x;q!5
1

2i Fd~x2q!
d

dx
1

d

dx
d~x2q!G , ~25!

Its matrix elements between any two state vectorsuc1& and
uc2& are given by

^c1uF~q!uc2&5E c1* ~x!F~x;q!c2~x!dx

5
1

2i S c1* ~q!
dc2~q!

dq
2

dc1* ~q!

dq
c2~q! D .

~26!

If uc1& and uc2& are solutions of Eq.~12!, then it can be
easily shown that

d

dq
^c1uF~q!uc2&50. ~27!
04270
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In particular, using the boundary conditions~16b! and~17a!,
we obtain

^cauF~q!uca&52^cbuF~q!ucb&5uSab~E!u2. ~28!

The combined action of firstF(q) and thenG(E) on a state
vector uc& in coordinate representation is given by

G~E!F~q!uc&5
1

2i S G~x,q;E!
dc~q!

dq
2

]G~x,q;E!

]q
c~q! D .

~29!

The key role in the derivation of Eq.~7! belongs to the
Green’s formula. This formula can be obtained by substit
ing in Eq. ~12! x8 instead ofx, multiplying from the left by
G(x,x8;E), integrating overx8P@xa ,xb#, and using Eq.
~21!. Taking into account Eq.~29!, the result can be pre
sented in the form

iG~E!@F~xb!2F~xa!#uc&5u~x2xa!u~xb2x!c~x!.
~30!

Substituting hereuca& @ucb&# instead ofuc&, putting xb→
1` @xa→2`#, and using the boundary conditions~16b!
and ~22b! @~17a! and ~22a!#, we obtain

2 iG~E!F~q!uca&5u~x2q!ca~x!, ~31a!

1 iG~E!F~q!ucb&5u~q2x!cb~x!. ~31b!

Vanishing of the right-hand side of Eq.~31a! @Eq. ~31b!# at
x,q @x.q# indicates the fact that both Green’s functio
G(x,x8;E) and solutionca(x) @cb(x)# have only outgoing
waves in the regionb @a#, thus they are linearly dependen
there. Quite similarly one can obtain

iG~E!F~q!G~E!5@u~q2x!2u~q2x8!#G~x,x8;E!,
~32!

where the right-hand side is the kernel of the operator sta
ing on the left-hand side.

Let us turn to the derivation of Eq.~7!. Using Eqs.~19!
and~28!, the CRP can be identified with the flux in the sta
uca&,

Nab~E!5^cauF~q!uca&, ~33!

whereq is arbitrary. Using Eq.~31a! we can rewrite this as
follows:

u~q2q8!Nab~E!52 i ^cauF~q!G~E!F~q8!uca&. ~34!

Acting similarly, but now identifying the CRP with the nega
tive of the flux in the stateucb& and using Eq.~31b!, we have

u~q82q!Nab~E!52 i ^cbuF~q!G~E!F~q8!ucb&. ~35!

Adding Eqs.~34! and~35! and taking into account Eq.~24!,
we obtain

Nab~E!522p i tr@F~q!G~E!F~q8!d~H2E!#. ~36!

As follows from Eq.~32!,
7-4
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tr@F~q!G~E!F~q8!G~E!#50, ~37!

thus Eq.~36! can be cast in the form

Nab~E!5tr@F~q!G~E!F~q8!G* ~E!#. ~38!

Taking separately real and imaginary parts of Eq.~37!, from
Eq. ~36! we obtain two more representations forNab(E):

Nab~E!52p2 tr@F~q!d~H2E!F~q8!d~H2E!# ~39!

and

Nab~E!52 tr@F~q!Re G~E!F~q8!Re G~E!#. ~40!

Equation~38! coincides with our main formula~7!; Eq. ~39!
coincides with the MST formula~4!; while Eqs. ~36! and
~40!, to our knowledge, have not yet appeared in literatu
We shall not discuss derivation of Eq.~5!, since this would
require introducing absorbing potentials, but this formula c
be easily obtained from the above equations.

We now show that among Eqs.~36! and ~38!–~40! the
second one is most convenient for implementation. To
end let us rewrite it in coordinate representation:

Nab~E!52
1

4 F ]G~q,q8;E!

]q

]G* ~q,q8;E!

]q8

1
]G~q,q8;E!

]q8

]G* ~q,q8;E!

]q

2
]2G~q,q8;E!

]q]q8
G* ~q,q8;E!

2G~q,q8;E!
]2G* ~q,q8;E!

]q]q8
G . ~41!

This equation specifies the meaning of formula~7! for the
one-dimensional case. Hereq and q8 are arbitrary, but the
caseq5q8, if desired, should be understood as one of
limits q→q860 ~both limits give identical results!, since the
derivatives of the Green’s functionG(q,q8;E) that appear in
Eq. ~41! are not defined atq5q8. This remark applies also to
Eqs.~36!, ~39!, and~40! and becomes important if in imple
menting these equations one takes both flux operators
single ‘‘dividing surface,’’ as is usually done in literatur
where the MST formula~4! is used. For example, taking th
limit q5q8 in Eq. ~39! improperly was the reason of som
artificial difficulties encountered in Ref.@30#. In our ap-
proach, we take the flux operators ontwo differentsurfaces,
namely, on the boundaries between the reaction zoneI and
the regions occupied by the arrangementsa andb. Using the
arbitrariness ofq andq8 in Eq. ~41!, we putq5xa→2` and
q85xb→1`. Then, taking into account the boundary co
ditions ~22! for the Green’s function, we obtain

Nab~E!5k~xa!k~xb!uG~xa ,xb ;E!u2uxa→2`
xb→1` , ~42!

where
04270
.
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k~x!5A2@E2V~x!#. ~43!

Equation~42! specifies the meaning of Eq.~10! for the one-
dimensional case. Assumingxa andxb to be large but finite
amounts to imposing the outgoing wave boundary conditi
~22! semiclassically. This accelerates convergence of the
sults as the size of the reaction zoneI 5@xa ,xb# grows and
makes our approach practical. Note that no such a sim
formula can be obtained on the basis of Eq.~36!, ~39!, or
~40!.

Before we further proceed, it is worthwhile to point o
one interesting aspect of the CRP revealed by the ab
equations. Let us calculate the total fluxJ at the pointq in a
mixed state defined by the microcanonical density opera
~24!. As follows from Eq.~28!, in the unperturbed system
J50. Consider a perturbation of the Hamiltonian~13!,

dH5FL~q8!, L~q8!5 iF ~q8!, ~44!

whereF is a small real constant andL(q8) coincides with
the Bloch operator at the pointq8 @31#. Note thatdH is a
skew Hermitian operator, i.e.,dH†52dH. Using the Ku-
bo’s linear response theory@5# and Eq. ~36!, for the per-
turbed system in the first order with respect toF we obtain

J5
Nab~E!

p
F. ~45!

The perturbation operator~44! acts as a pump introduced a
the pointq8. Indeed, it can be shown that it produces disco
tinuities in the values of flux in the perturbed statesca(x)
and cb(x) at x5q8. As follows from Eq.~45!, Nab(E)/p
can be interpreted as the corresponding response functio
the state of microcanonical equilibrium. This interpretati
explains why the CRP can be expressed in terms of
Green’s function alone.

B. Construction of the Green’s function

To implement Eq.~42!, one has to construct the Green
function G(x,x8;E) with its two arguments lying in the re
gions occupied by the arrangementsa andb. This is a sepa-
rate problem and it can be solved by various methods.
example, one could use absorbing potentials as a mean
implicitly impose the outgoing wave boundary condition
provided that they do not disturb the dynamics inside
reaction zone and do not cause reflection, in other wo
provided that a sufficient experience in working with such
device is developed. However we prefer to impose the o
going wave boundary conditions explicitly. Here we descr
a method for constructing the Green’s function which
straightforward and consistent with the spirit of the pres
approach and with scattering theory.

We assume that for a given energyE the reaction zoneI is
confined to the interval@xa ,xb#, i.e., that only this interval is
essential for calculatingNab(E). Then the boundary condi
tions ~22! can be approximated semiclassically,

F ]

]x
1 ik~xa!GG~x,x8;E!ux5xa

50, ~46a!
7-5
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F ]

]x
2 ik~xb!GG~x,x8;E!ux5xb

50. ~46b!

Let us introduce a complete and orthonormal basis in
interval I 5@xa ,xb#:

E
xa

xb
p i~x!p j~x!dx5d i j . ~47!

Then the Green’s functionG(x,x8;E) for both x andx8 in-
side I can be expanded as

G~x,x8;E!5(
i , j

Gi j p i~x!p j~x8!. ~48!

Substituting this into Eq.~21!, multiplying from the left by
p i(x)p j (x8), integrating overxPI and x8PI , and using
Eqs.~46!, for the matrixG of coefficientsGi j we obtain

S H̃2
i

2
@k~xa!L ~xa!1k~xb!L ~xb!#2EI DG5I . ~49!

Here H̃ represents the Hermitian part of the Hamiltoni
~13!,

H̃ i j 5
1

2 Exa

xb dp i~x!

dx

dp j~x!

dx
dx1E

xa

xb
p i~x!V~x!p j~x!dx,

~50!

andL (x) is defined by

Li j ~x!5p i~x!p j~x!, ~51!

so that the second term in Eq.~49! is a matrix representation
of the Bloch operator for the solutions satisfying outgoi
wave boundary conditions. Thus the problem of construct
the Green’s function is reduced to inversion of the mat
multiplying G in Eq. ~49!. This can be easily done for an
reasonable one-dimensional potential satisfying Eq.~14!.
However, in multidimensional case, the size of the basis m
become too large and this straightforward procedure m
become unfeasible. In Sec. III D, we describe a more po
erful approach to constructing the Green’s function wh
remains feasible in more general situations.

The outlined above procedure is similar to that used
Manolopoulos and Light@19#, so we shall not discuss here i
numerical illustrations. The only difference is that these
thors basing on semiclassical arguments have included
additional term proportional todV(x)/dx in the boundary
conditions~46!, which we found to be not essential. But w
would like to repeat here and to emphasize the princ
conclusion made in Ref.@19# and confirmed by our calcula
tions: Equation~42! enables one to calculateNab(E) with the
required accuracy by considering an interval ofx as much as
three times smaller than that which has to be conside
using the best of absorbing potentials@10#. A more elegant
and much more efficient implementation of our approach
terms of Siegert pseudostates is discussed for the cas
symmetric potentials in the Appendix.
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III. REARRANGEMENT PROCESSES: HYPERSPHERICAL
FORMULATION

A. Preliminary remarks on the hyperspherical treatment
of collisions in few-body systems

Consider a system ofN>3 structureless particles whos
potential energy is a given function of the particles’ relati
position. Letmi be the mass of thei th particle andr i be its
coordinate in the center-of-mass frame. With the center
mass motion separated out, configuration space of such
tem has the dimensiond53(N21). It can be parametrized
by a set ofN21 three-dimensional mass-scaled Jacobi v
tors xi defined as such linear combinations ofr i that the
kinetic energy of the system expressed in terms ofxi is given
by

T52
1

2 (
i 51

N21

D~xi !. ~52!

This equation does not define the Jacobi vectors uniquely
fact, there is an infinity of Jacobi sets satisfying Eq.~52! and
related to each other by kinematic rotations. A finite numb
of them enjoying an additional property that each vectorxi
joins centers of mass of two groups of particles are m
frequently used in applications; see, e.g., Ref.@32#. An alter-
native parametrization of configuration space and the
employed in hyperspherical approach is obtained by con
eringxi as orthogonal components of a singled-dimensional
vector R5(x1 , . . . ,xN21) and introducing hyperspherica
coordinatesR5(R,V), where the hyperradiusR is the length
of R,

R25 (
i 51

N21

xi
25(

i 51

N

mir i
2 , ~53!

andV is a collective notation for a set of 3N–4 hyperspheri-
cal angles parametrizing hypersphere which we denote bS.
This set can be further specified asV5(Vs ,Vo), whereVs
denotes a set of 3N27 ‘‘shape’’ angles defining the relative
position of particles for a givenR, andVo denotes a set o
three angles defining the overall orientation of the system
given R and Vs , e.g., three Euler angles. The Schro¨dinger
equation in hyperspherical coordinates reads

@H̃~R!2E#c̃~R!50, ~54!

where

H̃~R!52
1

2
D~R!1V~R,Vs!, ~55!

and it is explicitly shown that the potential energy does n
depend on orientational angles. By writing the Schro¨dinger
equation in this form, theN-body problem in three-
dimensional space is formally reduced to the problem
scattering of one ‘‘particle’’ representing the whole syste
by the potential fieldV(R,Vs) in d-dimensional space. Suc
a reduction has the advantage of laying grounds for n
powerful methods of constructing the wave function that
7-6



o
-
va

s
pl
re
e
tie
at
n

e
d

lts
l-
g
co
of

o
c

ul

ew

re
se
E

s

-

e-
is

ent
and

the
e

ol-
he

si-

ch
arate

the
r

CUMULATIVE REACTION PROBABILITY AND . . . PHYSICAL REVIEW A 63 042707
capable to provide a unified description of different types
collision processes@33#. Indeed, the high efficiency of hyper
spherical approach was demonstrated by applications to
ous nuclear, atomic, and molecular few-body problem
However, it should be noted that the majority of these ap
cations is restricted to the energy range below the th
fragment disintegration threshold. The extension of hyp
spherical approach to higher energies meets difficul
associated with the possibility for the system to disintegr
into three or more fragments which prevents obtaining a u
form asymptotic of the wave function atR→` valid over
entire hypersphereS, which is needed for formulating th
asymptotic boundary conditions. Even for the three-bo
systems, in which case some rigorous mathematical resu
this direction do exist@32#, their usefulness for practical ca
culations is still very limited. Consequently, in the followin
we restrict ourselves to considering only rearrangement
lisions with two fragments in both initial and final states
the system. If the particles involved are atoms andV(R,Vs)
is an electronically adiabatic potential energy surface~PES!
obtained by averaging out the electronic degrees of freed
then Eq.~54! provides a model to describe chemical rea
tions. The above restriction then means that only bimolec
reactions will be considered in this paper.

B. Derivation of the CRP in terms of the Green’s function

For our purposes, it is convenient to introduce a n
function,

c~R!5R(d21)/2c̃~R!, ~56!

and to rewrite Eq.~54! as

@H~R!2E#c~R!50, ~57!

where

H~R!52
1

2

]2

]R2
1

Had~V;R!1 1
8 ~d21!~d23!

R2
.

~58!

Here

Had~V;R!5
1

2
L2~V!1R2V~R,Vs! ~59!

is the hyperspherical adiabatic~HSA! Hamiltonian defining
the motion of the system on the hypersphere of radiusR, and
L2(V) is the grand angular momentum operator squa
whose particular expression is not needed for the pre
discussion. In hyperspherical approach the solutions to
~57! are sought in the form@34#

c~R!5(
n

Fn~R!Fn~V;R!. ~60!

Here the angular dependence ofc(R) is represented by the
solutions of the HSA eigenvalue problem,
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FHad~V;R!1
1

8
~d21!~d23!2R2Un~R!GFn~V;R!50,

~61!

whereUn(R) and Fn(V;R) are called the HSA potential
and channel functions, respectively. For anyR, functions
Fn(V;R), n51,2, . . . ,form a complete and orthogonal ba
sis onS which we assume to be normalized by

E
S
Fn~V;R!Fn8~V;R!dV5dnn8 . ~62!

The radial functionsFn(R) in Eq. ~60! satisfy a set of ordi-
nary differential equations,

F2
1

2

d2

dR2
1Un~R!2EGFn~R!5(

n
Wnn8~R!Fn8~R!,

~63!

whereWnn8(R) is the operator of nonadiabatic coupling b
tween different HSA channels whose particular form also
not needed for the present discussion~see, e.g., Ref.@34#!.

Suppose there are several~more than one! ways for the
system to disintegrate into two bound clusters. The differ
modes of such disintegration will be called arrangements
will be denoted by the lower case charactersa5A11A2 , b
5B11B2, etc., where the upper case characters denote
corresponding clusters. For simplicity of the derivation w
consider only one pair of arrangements,a andb, and discuss
the rearrangement process

A11A2↔B11B2 . ~64!

Any other pair can be treated in a similar way. For the f
lowing analysis it is important to realize the structure of t
region of configuration space where reaction~64! takes
place. This region approximately coincides with the clas
cally accessible region defined byE.V(R,Vs) and is sche-
matically shown in Fig. 1. In hyperspherical approach, ea
arrangement is represented by states localized in a sep
valley of the potential functionV(R,Vs). These valleys ex-

FIG. 1. Sketch of the region of configuration space where
reaction between arrangementsa and b takes place; see text fo
further explanations.
7-7
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tend along certain directions to the asymptotic regionR
→` and are indicated in the figure by the names of
corresponding arrangements. At largeR, the valleysa andb
are well separated by a potential ridge shown by the th
dashed line; here the arrangements are distinct. At smalleR,
the height and the width of the ridge gradually decrease,
it eventually disappears somewhere in the vicinity of t
transition state for reaction~64! indicated in the figure by the
cross. Here the valleysa and b merge with each other an
with valleys representing other arrangements, if any~not
shown in the figure!, forming a common potential wel
where partitioning of the system into separate fragme
loses its meaning. This region will be called the react
zone and denoted byI. Reaction~64! amounts to passing o
the system from the valleya to the valleyb or vice versa
through the reaction zoneI. At even smallerR, where all
particles are close together, there may be a hard core
duced by the repulsive part of the interparticle interactio
as in the case of interatomic potentials. Particles do not p
etrate here, so this region can be excluded from the con
eration. The possibility to trace transitions between the
ferent regions by variation of a single variableR is another
advantage of hyperspherical approach.

Let us define the regions discussed above more precis
We represent the hard core by the interior of the hypersph
of radiusR0 and assume that

c~R!50, 0<R<R0 . ~65!

In the following, only the regionR>R0 will be considered.
The reaction zoneI is identified with the hyperspherical she
lying in the intervalR0,R,Rm , whereRm will be called
the matching radius. The directions along which the valle
a and b extend are defined as follows. Consider, e.g.,
arrangementa. Let x1

a , . . . ,xN21
a be such a Jacobi set tha

each vectorxi
a is a linear combination of coordinates of pa

ticles belonging to the same cluster, eitherA1 or A2, except
the last vectorxN21

a which joins the centers of mass of th
clusters. Letaa be defined by

R cosaa5xN21
a , R sinaa5S (

i 51

N22

~xi
a!2D 1/2

, ~66!

0<aa<p/2.

Equationaa50 defines a point in the space of shape ang
Vs which, taking into account the rotational degrees of fre
dom, corresponds to a three-dimensional manifold belong
to hypersphereS. The orbit of this manifold asR varies is the
hyperaxisof the valleya. The hyperaxis of the valleyb can
be defined similarly by the equationab50. These hyperaxe
are shown by the thin dashed lines in Fig. 1. The valleya
and b are hypercylindrical regions around these hyperaxe
The boundaries betweena and b and the reaction zoneI,
indicated in the figure bySa and Sb , are nonoverlapping
segments of the hypersphere of radiusRm . They can be de-
fined in terms of the HSA channel functionsFn(V;R). Let
Ē be the three-fragment disintegration threshold energy.
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any E,Ē, there is only a finite number of open channels
each of the arrangementsa andb; let us enumerate them b
the indicesna and nb , respectively. AtR→` functions
Fna

(V;R) @Fnb
(V;R)# are localized on hypersphere ne

the directionaa50 @ab50#. Hence, for sufficiently large
R5Rm the region of integration in Eq.~62! for the case if
both channelsn and n8 belong to the same arrangementa
(b) can be reduced from entire hypersphereS to a segment
Sa (Sb) centered ataa50 @ab50#:

E
Sa

Fna
~Va ;Rm!Fn

a8
~Va ;Rm!dVa5dnan

a8
, ~67a!

E
Sb

Fnb
~Vb ;Rm!Fn

b8
~Vb ;Rm!dVb5dnbn

b8
. ~67b!

The requirement that these equations must hold with a sp
fied accuracy for all the open channels defines the segm
Sa andSb , while the condition thatSa andSb do not overlap
sets a lower boundary on the admissible values of the ma
ing radiusRm . In the following, we shall assume that th
parametersR0 andRm in the described construction are ch
sen to minimize the size of the reaction zoneI, provided that
Eqs.~65! and ~67! are satisfied and the segmentsSa andSb
do not overlap. It should be understood that these parame
depend on energy, and that when using a nonzeroR0 and a
finite Rm , one must demonstrate convergence of the res
asR0→0 andRm→`.

At R→` the HSA potentials corresponding to the op
channels in the arrangementsa and b approach some con
stant values,

Una,b
~R!5Ena,b

, R→`, ~68!

and the nonadiabatic coupling terms in Eq.~63! can be ne-
glected. LetEa5min$Ena

% andEb5min$Enb
%. The following

discussion of reaction~64! applies to the energy range

max~Ea ,Eb!,E,Ē. ~69!

For each energy in this interval, the following degener
solutions of Eq.~57! similar to that given by Eqs.~16! and
~17! for the one-dimensional case can be defined:

cna
~R!5

e2 ikna
R

Akna

Fna
~V;R!

2(
na8

open

Sn
a8na

~E!
e1 ikna8

R

Akn
a8

Fn
a8
~V;R!,

RPa andR→`, ~70a!

5(
nb

open

Snbna
~E!

e1 iknb
R

Aknb

Fnb
~V;R!,

RPbandR→`, ~70b!
7-8
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and

cnb
~R!5(

na

open

Snanb
~E!

e1 ikna
R

Akna

Fna
~V;R!,

RPa andR→`, ~71a!

5
e2 iknb

R

Aknb

Fnb
~V;R!2(

nb8

open

Sn
b8nb

~E!
e1 iknb8

R

Akn
b8

Fn
b8
~V;R!,

RPb andR→`. ~71b!

Here Snan
a8
(E), Snbn

b8
(E), and Snanb

(E)5Snbna
(E) are ele-

ments of the scattering matrix~2!, and

kna,b
5A2~E2Ena,b

! ~72!

are the asymptotic values of the open channel momenta.
CRP is defined in terms of the scattering matrix by Eq.~3!.

The following development parallels that of Sec. II A. W
introduce the outgoing wave Green’s operator~8!. Its action
on a state vectoruc& in coordinate representation is given b

G~E!uc&5E G~R,R8;E!c~R8!dR8dV8. ~73!

The Green’s functionG(R,R8;E) satisfies the equation

@H~R!2E#G~R,R8;E!5d~R2R8!d~V2V8! ~74!

and the outgoing wave boundary conditions

G~R,R8;E!5(
na

open

cna
~R8;E!

e1 ikna
R

Akna

Fna
~V;R!,

RPa andR→`, ~75a!

5(
nb

open

cnb
~R8;E!

e1 iknb
R

Aknb

Fnb
~V;R!,

RPbandR→`, ~75b!

wherecna
(R8;E) and cnb

(R8;E) are certain functions. The
microcanonical density operator~9! is expressed in terms o
the solutionscna

(R) andcnb
(R) by

d~H2E!5
1

2p S (
na

open

ucna
&^cna

u1(
nb

open

ucnb
&^cnb

u D .

~76!

Let us introduce the operator of flux through the hyp
sphere of radiusQ,

F~R;Q!5
1

2i Fd~R2Q!
]

]R
1

]

]R
d~R2Q!G , ~77!
04270
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Its matrix elements between any two state vectorsuc1& and
uc2& are given by

^c1uF~Q!uc2&5E c1* ~R!F~R;Q!c2~R!dRdV

5
1

2i ES
S c1* ~Q!

]c2~Q!

]Q

2
]c1* ~Q!

]Q
c2~Q! DdV, ~78!

whereQ5(Q,V). If uc1& anduc2& are solutions of Eq.~57!,
then it can be shown that

^c1uF~Q!uc2&50. ~79!

Substituting hereucna
& or ucnb

& instead ofuc1& and uc2&,
putting Q→` and using the boundary conditions~70! and
~71! and Eq.~62!, we obtain

(
na8

open

uSn
a8na

~E!u21(
nb

open

uSnbna
~E!u251, ~80a!

(
nb8

open

uSn
b8nb

~E!u21(
na

open

uSnanb
~E!u251. ~80b!

This establishes unitarity of the scattering matrix. In ad
tion, we introduce the flux operators separately for each
the arrangements. LetSa (Sb) be the segment of the hype
sphere of some large radiusRa (Rb) lying in the valleya
(b). ~Here, for the purpose of derivation, we temporar
deviate from the previous definition ofSa and Sb , but we
shall return to it shortly!. In the following, it will be assumed
that Ra>Rm and Rb>Rm . We define the operators of flu
through the segmentsSa andSb :

^c1uFa~Ra!uc2&5
1

2i ESa

S c1* ~Ra!
]c2~Ra!

]Ra

2
]c1* ~Ra!

]Ra
c2~Ra! DdVa , ~81a!

^c1uFb~Rb!uc2&5
1

2i ESb

S c1* ~Rb!
]c2~Rb!

]Rb

2
]c1* ~Rb!

]Rb
c2~Rb! DdVb . ~81b!

If uc1& and uc2& are solutions of Eq.~57!, then it can be
shown that the left hand sides of these equations do
depend onRa andRb . In particular, using the boundary con
ditions ~70! and ~71! and Eqs.~67!, we obtain

^cna
uFb~Rb!ucna

&5(
nb

open

uSnbna
~E!u2, ~82a!
7-9
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^cnb
uFa~Ra!ucnb

&5(
na

open

uSnanb
~E!u2. ~82b!

The combined action of firstF(Q) and thenG(E) on a state
vector uc& in coordinate representation is given by

G~E!F~Q!uc&5
1

2i ES
S G~R,Q;E!

]c~Q!

]Q

2
]G~R,Q;E!

]Q
c~Q! DdV, ~83!

and similarly forFa(Ra) andFb(Rb) with S replaced bySa
andSb , respectively.

Again our derivation of Eq.~7! is based on the Green’
formula. This can be obtained by substituting in Eq.~57! R8
instead ofR, multiplying from the left byG(R,R8;E), inte-
grating overR8P@R0 ,Q# and V8PS, and using Eq.~74!.
Taking into account Eq.~83!, the result can be presented
the form

iG~E!@F~Q!2F~R0!#uc&5u~Q2R!c~R!. ~84!

Because of the boundary condition~65!, the term withF(R0)
vanishes. Substituting hereucna

& @ucnb
&# instead ofuc& and

putting Q5Ra (Q5Rb) we obtain

iG~E!Fa~Ra!ucna
&5u~Ra2R!cna

~R!, ~85a!

iG~E!Fb~Rb!ucnb
&5u~Rb2R!cnb

~R!. ~85b!

Vanishing of the right hand side of Eq.~85a! @Eq. ~85b!# at
R.Ra @R.Rb# indicates the fact that both Green’s functio
G(R,R8;E) and solutionscna

(R) @cnb
(R)# have only out-

going waves in the valleyb (a), thus they are linearly de
pendent there. Quite similarly we obtain

iG~E!F~Q!G~E!5@u~Q2R!2u~Q2R8!#G~R,R8;E!,
~86!

where the right-hand side is the kernel of the operator sta
ing on the left-hand side.

We now turn to the derivation of Eq.~7!. Using Eqs.~3!
and~82a!, the CRP can be identified with the total flux in a
open channels of the arrangementa in the valleyb,

Nab~E!5(
na

open

^cna
uFb~Rb!ucna

&. ~87!

Using Eq.~85a! we can rewrite this as

u~Ra2Rb!Nab~E!5 i (
na

open

^cna
uFb~Rb!G~E!Fa~Ra!ucna

&.

~88!

Acting similarly, but now identifying the CRP with the tota
flux in all open channels of the arrangementb in the valleya
and using Eq.~85b!, we have
04270
d-

u~Rb2Ra!Nab~E!5 i (
nb

open

^cnb
uFb~Rb!G~E!Fa~Ra!ucnb

&.

~89!

Adding Eqs.~88! and~89! and taking into account Eq.~76!,
we obtain

Nab~E!52p i tr@Fb~Rb!G~E!Fa~Ra!d~H2E!#. ~90!

As follows from Eq.~86!,

tr@Fb~Rb!G~E!Fa~Ra!G~E!#50, ~91!

thus Eq.~90! can be cast in the form

Nab~E!52tr@Fb~Rb!G~E!Fa~Ra!G* ~E!#. ~92!

This coincides with formula~7! except for the sign. This
apparent difference is explained by the fact that both fl
operators in Eq.~7! were assumed to be defined democra
cally with respect to the direction of the reaction path, as w
the case for the one-dimensional model discussed in Sec
For the present case the reaction path goes froma throughI
to b or vice versa, and the operatorsFa(Ra) and Fb(Rb)
represent fluxes going in the different directions. Formu
~90! and~92! generalize Eqs.~36! and~38!. The counterparts
of Eqs. ~39! and ~40! can also be obtained for the prese
case; however, we shall not discuss them here.

In coordinate representation Eq.~92! reads

Nab~E!5
1

4ESa

dVaESb

dVb

3F]G~Ra ,Rb ;E!

]Ra

]G* ~Ra ,Rb ;E!

]Rb

1
]G* ~Ra ,Rb ;E!

]Ra

]G~Ra,Rb ;E!

]Rb

2G~Ra ,Rb ;E!
]2G* ~Ra ,Rb ;E!

]Ra]Rb

2G* ~Ra ,Rb ;E!
]2G~Ra ,Rb ;E!

]Ra]Rb
G . ~93!

This equation specifies the meaning of formula~7! within the
hyperspherical formulation. HereRa andRb are arbitrary but
not smaller thanRm . Letting bothRa and Rb go to ` and
using the boundary conditions~75!, from Eq.~93! we obtain

Nab~E!5 (
na ,nb

open

kna
~Ra!knb

~Rb!

3uGnanb
~Ra ,Rb ;E!u2uRa ,Rb→` , ~94!

where

kn~R!5A2@E2Un~R!# ~95!

and
7-10
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Gnn8~R,R8;E!5E
S
dVE

S
dV8G~R,R8;E!

3Fn~V;R!Fn8~V8;R8!. ~96!

Equations~94!–~96! specify the meaning of Eq.~10!. In or-
der to minimize the region where the Green’s function is
be constructed, in the following we put in Eq.~94! Ra5Rb
5Rm ~which restores the original definition ofSa and Sb).
AssumingRm to be large but finite amounts to using sem
classical approximation to the outgoing wave boundary c
ditions ~75!, which makes our approach practical. It is wor
noting that the possibility to use different radiiRa andRb in
Eq. ~93! is a manifestation of a larger flexibility of this for
mula. Indeed, basing on the flux conservation the hyp
spherical segmentsSa andSb in Eq. ~93! can be replaced by
more general boundary surfaces between the reaction zoI
and the arrangementsa andb; however, we do not detail this
issue here.

Let us introduce a diagonal matrixk(R) with elements
~95! and a symmetric matrixG(R,R8;E) with elements~96!.
If both R andR8 are larger thanRm , then these matrices ca
be partitioned into blocks similarly to Eq.~2!:

k~R!5S ka~R! 0

0 kb~R!
D ~97!

and

G~R,R8;E!5S Gaa~R,R8;E! Gab~R,R8;E!

Gba~R,R8;E! Gbb~R,R8;E!
D . ~98!

Let us introduce a matrix

Pab~Rm ;E!5Aka~Rm!Gab~Rm ,Rm ;E!Akb~Rm!. ~99!

Then Eq.~94! can be presented in the form

Nab~E!5tr@Pab~Rm ;E!Pab
† ~Rm ;E!#uRm→` . ~100!

Comparing this with Eq.~3! and noting that both equation
should give identical results for a continuous interval ofE,
we obtain

uSnanb
~E!u25uPnanb

~Rm ;E!u2uRm→` . ~101!

We remark that this formula can be derived more rigorous
Thus, in principle, knowing the matrix~99! one can calculate
all the state-to-state reaction probabilities. However the c
vergence asRm grows in this case is not as fast as for t
CRP, and we shall not discuss such calculations in this
per.

C. Reaction eigenprobabilities

Let us return to Eq. ~3! and consider the matrix
Sab(E)Sab

† (E). This matrix has the dimensionn̄a equal to the
number of open channels in the arrangementa. It is Hermit-
ian, so it can be diagonalized by a unitary transformation
the asymptotic states in the arrangementa and its eigenval-
04270
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ues pn
a(E) are real. Moreover, they lie in the interval

<pn
a(E)<1, where the first inequality follows from the non

negativeness of all diagonal elements of the considered
trix, and the second one results from the unitarity of t
scattering matrix~2!. We can invert the order of the two
matrices under the symbol of trace in Eq.~3! without chang-
ing the value of the expression and consider the ma
Sab

† (E)Sab(E)5„Sba(E)Sba
† (E)…* . Its dimensionn̄b is equal

to the number of open channels in the arrangementb and, for
the same reasons, its eigenvaluespn

b(E) are real and satisfy
0<pn

b(E)<1. In fact, it can be shown that the two se

pn
a(E), n51, . . . ,n̄a , and pn

b(E), n51, . . . ,n̄b , actually

coincide, except that the longer one contains additionalun̄a

2n̄bu zero eigenvalues@35#. Thus we can omit the super
scriptsa andb and rewrite Eq.~3! as follows

Nab~E!5(
n

n̄

pn~E!, ~102!

where n̄5min(n̄a ,n̄b). The eigenvaluespn(E), called reac-
tion eigenprobabilities, were first considered in Ref.@12#.
They can be compared with the eigenphase shifts@1# whose
sum is defined by Eq.~1!. The above discussion define
pn(E) in terms of the scattering matrix. Comparing Eq
~100! and ~102!, the reaction eigenprobabilities can be e
pressed in terms of the Green’s function as eigenvalue
the matrixPab(Rm ;E)Pab

† (Rm ;E) for sufficiently largeRm .
This explains howpn(E) can be calculated in the prese
approach.

D. Construction of the Green’s function

To implement the above equations one has to const
the Green’s functionG(R,R8;E) with its two arguments ly-
ing in the valleysa andb. This could be done by expandin
it in terms of some global basis spanning the whole reac
zoneI which would lead to an algebraic equation similar
Eq. ~49!. However, in multidimensional case the size of t
basis required may be too large. For example, for triatom
systems it should be similar to that used in absorbing po
tial calculations@11–16#, although in our approach we coul
expect a reduction by about a factor of three due to the
duction of the size of the reaction zone to be considered
was demonstrated for the one-dimensional case in Ref.@19#
and Sec. II B. Tackling large matrices is a difficult proble
in the spirit of quantum chemistry calculations, and we sh
not discuss such a global approach here. Instead, we des
a method which is practical and falls most naturally in t
framework of hyperspherical approach as well as many o
quantum scattering technologies. The idea is to divide
reaction zoneI into a number of smaller regions, so that ea
of them can be spanned by a basis of moderate size, and
to match different pieces with each other thus obtaining
global solution. This idea can be easily implemented in h
perspherical geometry by using theR-matrix method.

Let us introduce anR-operator,
7-11
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c~R,V!5E
S
R~V,V8;R!

]c~R,V8!

]R
dV8, ~103!

wherec(R) is an arbitrary solution of Eq.~57! satisfying the
boundary condition~65!. For anyR, the kernelR(V,V8;R)
here can be expanded in terms of the HSA channel functi
The coefficients in this expansion are defined by

Rnn8~R!5E
S
dVE

S
dV8R~V,V8;R!Fn~V;R!Fn8~V8;R!,

~104!

and constitute theR matrix. Methods of calculating this ma
trix are very well developed@29#. Let Rnn8(Rm) be theR
matrix atR5Rm , i.e., on the outer boundary of the reactio
zoneI. Let us write down the Green’s formula~84! in coor-
dinate representation:

c~R!5
1

2ESS G~R,R8;E!
]c~R8!

]R8

2
]G~R,R8;E!

]R8
c~R8!D dV8, R,R8.

~105!

Putting hereR5R85Rm , comparing with Eq.~103!, and
using the boundary conditions~75! and definitions~96! and
~104!, we obtain

G~Rm ,Rm ;E!52R~Rm!@ I2 ik~Rm!R~Rm!#21.
~106!

This equation specifies the meaning of Eq.~11! within the
hyperspherical formulation and provides a practical recipe
implement our approach.

IV. ILLUSTRATIVE CALCULATIONS

As has been mentioned above, our method was illustra
in Ref. @20# by application to muon transfer reaction indtm.
In this section, we discuss two computationally more ch
lenging applications of the method to atom-diatom chem
reactions. Recently, two of us have developed a new v
efficient and accurate quantum scattering code for calcu
ing collisions in heavy-light-heavy~HLH! triatomic systems
@36#. This code was used for clarifying mechanisms of lig
atom transfer reactions in several HLH systems@37,38#.
Here, we show that Eqs.~94! and~106! can be easily imple-
mented on the basis of this code and that using these e
tions one can essentially reduce the size of the region to
considered for calculating the CRP as compared to
which is essential for calculating the scattering matrix.

A. Computational procedure

Let us outline briefly a general scheme of the pres
computational procedure; for more details we refer to@36#.
Consider a system of three atomsA, B, and C, and let a
5A1CB andb5B1CA, so the results of the previous se
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tion will be applied to transfer of the atomC between atoms
A andB. To comply with convention adopted in hypersphe
cal calculations of chemical reactions and with notation u
in Ref. @36# we introduce a new hyperradial variable,

R5rS mAmBmC

mtot
D 1/4

, ~107!

whereR is defined by Eq.~53!, mA , mB , and mC are the
masses of the atoms, andmtot5mA1mB1mC is the total
mass of the system. Configuration space of the system
parametrized by the hyperradiusr and two hyperangular
variablesj and h called hyperspherical elliptic coordinate
@39# which are used as coordinates on hypersphereS. For
HLH systems (C is assumed to be the light atom!, the vari-
ablesj and h approximately correspond to the vibration
and rotational degrees of freedom, respectively. Taking
vantage of this circumstance greatly facilitates numerical
lution of the HSA eigenvalue problem~61!. Solving Eq.~61!
yields a set of HSA channel functionsFn(j,h;r), n
51, . . . ,Nch, which for anyr satisfy

E
2g

2p22g

djE
22g

2g

dh~cosh2cosj!Fn~j,h;r!Fm~j,h;r!

5dnm , ~108!

where

tang5AmCmtot

mAmB
, 0<g<

p

2
. ~109!

The Schro¨dinger equation~57! is considered in a finite inter
val rP@r0 ,rm#. Herer0 is the radius of the hard core regio
where wave function is assumed to vanish, see Eq.~65!, and
rm is the matching radius. This interval is divided into
number of sectors. In each sector, a Hermitized version
Eq. ~57! corresponding to imposing theR-matrix boundary
conditions is solved. This is done using the slow/smo
variable discretization method@40#: the dependence of th
solutions on hyperradiusr is expanded in terms of a set o
DVR basis functions defined within the sector, and their d
pendence on hyperangular variables (j,h) is represented by
the HSA channel functions taken at the corresponding se
hyperradial quadrature points. This yields theR-matrix basis
for the sector. Constructing such basis for each sector c
pletes the energy independent part of the calculations. T
obtained information permits one to consider scattering i
wide energy range whose upper boundary is the higher
larger is the numberNch of HSA channels included in the
calculation. For any energyE in this range, theR matrix can
be propagated between boundaries of sectors using the
nique of Ref.@41#. Starting fromr5r0 with the initial con-
dition R(r0)50 we obtain theR matrix at the matching
surface,R(rm). Then we can extract the scattering matr
S(E) by applying a two-dimensional matching procedure d
scribed in Ref.@36# and calculate the CRPNab(E) from Eq.
~3!. This procedure was used for calculating the CRP
Refs. @36–38# and we shall refer to it as the scatterin
7-12



q
t

low

tc
of
t

rin
tt
is

tio

ion

.
t

t
-

SA

o

.
f

a
-

d

V
hold
at
we

g
SA

nts

ion

n
ase

of
the

CUMULATIVE REACTION PROBABILITY AND . . . PHYSICAL REVIEW A 63 042707
method. Alternatively, the CRP can be calculated using E
~94! and ~106!, which will be referred to as the direc
method.

In both direct and scattering calculations reported be
we shall use the same numbers of HSA channelsNch and the
same values of the hard core radiusr0, the only difference in
the calculational parameters being in the value of the ma
ing radiusrm . The convergence of individual elements
scattering matrix with respect torm is much slower than tha
of the CRP as was demonstrated in@20# ~see Fig. 3 therein!.
Here we shall not discuss this issue again; all the scatte
results presented below are obtained from converged sca
ing matrix. An important issue in the following discussion
to demonstrate convergence of the direct results forNab(E)
as the matching radiusrm grows. In Ref.@20#, this conver-
gence was characterized by the potential ridge func
Ur(r). The concept of potential ridge is well familiar from
hyperspherical analysis of collinear reactions@42# and re-
cently it has been generalized to light atom transfer react
in HLH systems in three dimensions@37,38# on the basis of
the approach developed in Ref.@36#. The results of Refs
@37,38# suggest that for a given energyE reaction does no
occur atr.r r , wherer r is defined byE5Ur(r r). So for
calculating the CRP at this energy it should be sufficient
consider the regionr,r r . In this paper instead of the po
tential ridge we consider the function

wNch
~h;r!5 (

n51

Nch E
2g

2p22g

Fn
2~j,h;r!~cosh2cosj!dj

~110!

which has a meaning of the cumulative density of the H
channels included in the calculation projected on theh co-
ordinate. As follows from Eq.~108!, this function satisfies

E
22g

2g

wNch
~h;r!dh5Nch. ~111!

As r grows, the regions occupied by the arrangementsa and
b localize on hypersphere near the points (j,h)5(2g,
22g) and (2g,2g), respectively, hence at larger function
~110! splits into two disconnected parts located nearh5
62g. These parts are separated by a potential barrier wh
top considered as a function ofr approximately coincides
with Ur(r). The larger is the number of channelsNch in-
cluded in Eq.~110!, the farther inr the separation occurs
Thus the projected density~110! illustrates another facet o
the potential ridge as a barrier separating arrangements.

B. Examples

As the first example we consider the reaction

O~3P!1HCl↔OH1Cl ~112!

for two different PESs: one is the LEPS PES with the p
rameters defined in Ref.@43#, and the other is a more elabo
rate fit toab initio calculations proposed in Ref.@44#, which
we shall refer to as KSG. For this systemA5O, B5Cl, C
5H, R'77.57r, and g'0.30. We use atomic units forr
04270
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and the energyE will be measured in eV from the groun
state of HCl. Reaction~112! is almost isoergic: the ground
state of OH lies higher than that of HCl by only 0.040 e
which defines the energetic threshold. The classical thres
is defined by the position of the transition state which lies
0.168 eV for the LEPS PES. In the present calculations
use the same number of HSA channelsNch5100 and the
same values of the hard core radiusr056.5 for the LEPS
andr054.9 for the KSG PES as were used in Ref.@36#.

Figures 2 show projected density~110! for the two PESs
calculated for several representative values ofr. Note that
apart from a slight shift inr between the correspondin
curves these figures look quite similar, although the H
potentials defined by Eq.~61! considerably differ for these
two PESs, as can be seen from Fig. 9 in Ref.@36#. The
central minimum of the function~110! in Fig. 2 indicates the
position of the potential barrier separating the arrangeme
O(3P)1HCl on the left and OH1Cl on the right, while the
two adjoined maxima indicate the regions where reflect
from this barrier in the motion along theh coordinate takes
place. As was mentioned above, at larger the function~110!
splits into two disconnected parts localized nearh562g.
The value ofr5rs where this splitting occurs depends o
Nch. As can be seen from the figures, for the present c
rs'11 for the LEPS andrs'10.3 for the KSG PES. Atr

FIG. 2. Projected density function~110! for O–Cl–H calculated
for the LEPS~a! and KSG~b! PESs withNch5100 HSA channels
for several representative values ofr. The arrangements O(3P)
1HCl and OH1Cl are located in the left and in the right parts
the figures, respectively. These figures illustrate separation of
arrangements along theh coordinate asr grows.
7-13
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.rs reaction can proceed only via tunneling, so it is su
pressed. Hence one could expect that Eqs.~94! and ~106!
yield converged results for the CRP ifrm.rs . The values of
r shown in the figures are equidistant and lie in the vicin
of r5rs , except the largestr which coincides with the
value of the matching radiusrm used in the scattering calcu
lations @36#. At this r there is a wide gap along theh coor-
dinate between the two parts of the function~110!, so the
arrangements are completely separated.

Figure 3 show present direct results for reaction~112!
calculated with the same values of the matching radiusrm as
shown in Fig. 2. The solid curves in these figures pres
results obtained by the scattering method@36#. These figures
confirm the above expectation that the direct results for
CRP rapidly converge asrm becomes larger thanrs . In fact,
they converge even earlier: for the LEPS PES@Fig. 3~a!# the
direct results become almost indistinguishable by the
from the scattering results already forrm'10.6, and for the
KSG PES@Fig. 3~b!# this happens forrm'10. Thus using
Eqs. ~94! and ~106! the CRP for reaction~112! can be cal-
culated by considering an interval ofr about three times
smaller than that which has been considered in@36# for ob-
taining accurate results for the scattering matrix.

FIG. 3. Convergence of the direct results for the CRP of re
tion ~112! calculated by Eqs.~94! and~106! using the LEPS~a! and
KSG ~b! PESs. The values ofrm used in the calculations coincid
with that shown in Figs. 2. The solid curves are the scattering
sults taken from@36# calculated by Eq.~3!. Those of the broken
curves which are not seen cannot be distinguished by the eye
the solid curves in the scale of the figures.
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Figure 4 show present converged results for the eig
probabilities of reaction~112!. For both LEPS and KSG
PESs only 18 lowest functionspn(E) are shown; the highe
reaction eigenprobabilities have negligible values in the c
sidered interval ofE. Careful analysis of the figures show
that peaks of the CRP seen in Fig. 3 are caused by ra
variation of individual terms in the sum~102!. Moreover, at
the energies where such peaks occur there are avoided c
ings between functionspn(E) with different n, as can be
seen from Fig. 4. These features suggest that peaks o
CRP can be associated with some kind of ‘‘transition st
resonances,’’ probably of the type considered in Ref.@45#,
although to confirm this interpretation an analysis of the c
responding wave function is needed. From Fig. 4 it is cl
that functionspn(E) provide a very valuable information
about reaction dynamics and worth to be studied in m
detail. In particular, these figures reveal a huge differe
between the two considered PESs describing reaction~112!.

As the second example we consider the exo/endo-e
reaction

Br1HCl↔BrH1Cl ~113!

for the LEPS PES with the parameters defined in Ref.@46#.
For this system we have:A5Br, B5Cl, C5H, R'95.03r,
andg'0.20. The energyE will be measured again from th

-

-

m

FIG. 4. Present converged results for the eigenprobabilities
reaction~112! calculated for the LEPS~a! and KSG~b! PESs. In
both cases 18 functionspn(E) are shown. To reveal avoided cros
ings between different curves, the functionspn(E) with odd ~even!
numbers are plotted by solid~dashed! lines.
7-14
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CUMULATIVE REACTION PROBABILITY AND . . . PHYSICAL REVIEW A 63 042707
ground state of HCl. Then the ground state of BrH lies
0.68 eV which defines the energetic threshold. Scatte
calculations for this reaction by the method developed
Ref. @36# were reported in Ref.@38#. In the present calcula
tions we use the same number of HSA channelsNch5100
and the same value of the hard core radiusr058 as were
used in Ref.@38#. Figures 5–7 present results similar to th
shown in Figs. 2–4 for the previous system. The arran
ments Br1HCl and BrH1Cl are located in the left and in
the right parts of Fig. 5, respectively. Of the 100 HSA cha
nels included in Eq.~110! in the present case 74 belong
the former and only 26 to the latter arrangement atr→`, so
the left wings of the projected densities shown in Fig. 5
about three times higher than the right ones. For this sys
separation of the arrangements along theh coordinate occurs
at rs'15.3. The largest value ofr shown in Fig. 5 coincides
with the matching radiusrm used in the scattering calcula
tions @38#. Figure 6 demonstrates convergence of the dir
results for the CRP calculated for the same values ofrm as
shown in Fig. 5. As can be seen from this figure, the dir

FIG. 6. Same as in Fig. 3, but for reaction~113!. The values of
rm used in the calculations coincide with that shown in Fig. 5. T
solid curves are the scattering results taken from@38#.

FIG. 5. Same as in Fig. 2, but for Br–Cl–H. The arrangeme
Br1HCl and BrH1Cl are located in the left and in the right par
of the figure, respectively.
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results obtained withrm'15 practically coincide with the
accurate scattering results of Ref.@38#. This means that in
calculating the CRP of reaction~113! Eqs. ~94! and ~106!
permit one to reduce the interval ofr by a factor of two as
compared to that considered in Ref.@38#. Finally, Fig. 7
shows present converged results for the eigenprobabilitie
reaction~113!. Only 10 functionspn(E) are shown in the
figure. Similarly to Fig. 4, one can see that there is a lot
avoided crossings and peaks corresponding to reson
peaks of the CRP seen in Fig. 6. To clarify the nature
these features, however, goes beyond the scope of this p

V. SUMMARY

In this paper we have presented a complete developm
of the recently proposed@20# new approach to the theory o
CRP and provided additional demonstrations of its numer
efficiency. Our main formula~7! and its implementation in
terms of the Wigner-EisenbudR matrix given by Eqs.~10!
and ~11! rest on solid grounds of standard scattering the
and are free from the difficulties and ambiguities of previo
formulations. These formulas enable one to calculate
CRP and reaction eigenprobabilities directly and with a c
siderable reduction of the computational labor as compa
to that required for calculating the scattering matrix, at le
using the techniques employed by our group. Here we h
demonstrated the implementation of our approach in
framework of hyperspherical method on the basis of the p
gram for calculating light atom transfer reactions in heav
light-heavy systems developed in Ref.@36#. However, Eqs.
~10! and~11! can be easily implemented on the basis of a
other quantum scattering code which uses theR-matrix
method; see Ref.@29#. Upgrading such code in this wa
would make it capable of calculating the CRP even in si
ations where the calculation of scattering matrix is not fe
sible.
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APPENDIX: TRANSMISSION PROBABILITY
OF ONE-DIMENSIONAL SYMMETRIC POTENTIAL

BARRIERS FROM SIEGERT PSEUDOSTATE
EIGENVALUES

As was first realized in Ref.@3# and discussed in detail in
this paper, the CRP can be expressed in terms of the ou
ing wave Green’s function. On the other hand, it is w
known @1,47# that under rather general conditions t
Green’s function can be expanded in terms of Siegert st
which are solutions to the Schro¨dinger equation satisfying
outgoing wave boundary conditions@48#. So, there must be a
way to express the CRP in terms of the Siegert states.
idea is not new and it has been already discussed in litera
@30,49#. Its implementation apart from bringing conceptu
consistency and beauty to the formulation promises also
tain computational advantages. The point is that Sieg
states do not depend on energy, so having constructed
of Siegert states, which might be a difficult task but whi
must be done only once, one should be able to calculate
CRP in a wide energy range. The center of gravity of cal
lations in this approach is thus shifted to constructing
Siegert states.

Recently, we have proposed an efficient method for c
culating Siegertpseudostates~SPS! defined as solutions to
the Schro¨dinger equation satisfying outgoing wave bounda
conditions imposed at afinite point @27#. In Ref. @28#, we
have shown that for the one-channel scattering prob
bound, antibound, and resonance states are represente
individual SPS and derived SPS expansions for continu
energy wave function, Green’s function, and scattering m
trix, i.e., for all the important objects of the theory. So f
this formulation is developed only for scattering describ
by a single radial equation, but it can be easily extended
scattering by one-dimensional potentials considered on
whole axis if the potential function is symmetric. Here w
show how in this case one can calculate the CRP know
only the SPS eigenvalues.

For the one-dimensional scattering problem discusse
Sec. II A, the SPSs are defined by:

@H~x!2E#f~x!50, ~A1a!

S d

dx
1k~x! Df~x!U

x52xm

50, ~A1b!

S d

dx
2k~x! Df~x!U

x5xm

50, ~A1c!

whereH(x) andk(x) are given by Eqs.~13! and~43!, xm is
the cutoff radius, and we again use semiclassical versio
the outgoing wave boundary conditions. Equations~A1! can
04270
e
n.

o-
l

es

is
re

l
r-
rt
set

he
-
e

l-

m
by
s
-

d
to
e

g

in

of

be satisfied only for a discrete set of generally complex
ergiesE5En , so we are dealing with an eigenvalue pro
lem. For symmetric potentials,V(x)5V(2x), the eigen-
functions of Eqs.~A1! are either even or odd. The even an
odd SPSs will be considered separately and all the co
sponding quantities will be indicated by1 and 2 super-
script, respectively. The following discussion is equally a
plicable to both cases, so we shall omit this superscript fo
while until the final result will be presented. Similarly to Se
II B, we introduce a basisp i(x), i 51, . . . ,N, which is or-
thonormal in the interval@2xm ,xm# and becomes complet
in the limit N→`. The SPS eigenfunctionsf(x) can be
expanded in terms of this basis:

f~x!5(
j 51

N

cip i~x!, 2xm<x<xm . ~A2!

Substituting this expansion into Eq.~A1a! and using the
boundary conditions~A1b! and ~A1c!, for the vectorc of
coefficientci one obtains

~A1lB1l2I !c50, ~A3!

where

l5 iA2@E2V~xm!#, ~A4!

A52@H̃2V~xm!I #, ~A5!

B522L ~xm!, ~A6!

and the matricesH̃ and L (x) are defined by Eqs.~50! and
~51!. The methods of solving quadratic algebraic eigenva
problem~A3! and the properties of its solutions are discuss
in Ref. @28#. This equation can be reduced to a linear eige
value problem of doubled dimension 2N which yields 2N
eigenpairsln andc(n) defining 2N SPSs. Having the SPSs
one can construct the Green’s function and then calculate
CRP by Eq.~42!. We skip the derivation which is quite
similar to that of Ref.@28# and is based on Eq.~44! therein.
The final result for the CRP reads:

Nab~E!5
1

4U)n51

2N1

ln
11l

ln
12l

2 )
n51

2N2

ln
21l

ln
22l

U2

, ~A7!

wherel is related toE by Eq. ~A4!, andln
6 are eigenvalues

of Eq. ~A3! related to the corresponding SPS energy eig
values En

6 by the same equation. This formula express
Nab(E) in terms of the SPS eigenvalues defined for the giv
cutoff radiusxm and the numbers of basis functionsN6. A
converged result will be obtained as these parameters
crease.

We illustrate this method by the same two examples
were considered in Ref.@19#. In the calculations reported
below, we use even and odd Legendre polynomials as b
for even and odd SPSs, respectively. Then matrixL (xm) and
the kinetic part ofH̃ can be calculated analytically, whil
matrix elements of the potentialV(x) were calculated using
7-16
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Gauss-Legendre quadrature with the number of points e
to the number of polynomials, i.e., in the spirit of a DVR.

The first example is the Eckart potential,

V~x!5V0 sech2~x/d!, d5aAm, ~A8!

with the parametersV050.0156 a.u.,a50.734 a.u., andm
51061 a.u.@30# ~we recall that ourx is a mass-scaled coor
dinate!. Figure 8~a! shows a part of the distribution of th
SPS energy eigenvalues obtained by solving Eq.~A3! for
some particular values ofxm and N6. The eigenvalues are
distributed symmetrically with respect to the real axis~com-
plex eigenvalues occur in complex conjugate pairs!, so only
the lower half of the complex energy plane is shown. All t

FIG. 8. Triangles~inverted triangles!—even ~odd! SPS energy
eigenvaluesEn

1 (En
2) ~a! for the Eckart potential~A8! and ~b! for

the double maximum potential~A9!. The eigenvalues were obtaine
by solving Eq.~A3! and then converting froml to E using Eq.
~A4!. The results were obtained withxm53d andN6550. All the
eigenvalues shown are converged with respect toN6. The arrow
indicates the only SPS eigenvalue that converges asxm grows,
which represents the resonance state supported by the pot
~A9!.
s

.

04270
al

eigenvalues shown in the figure are converged with resp
to N6, but none of them converges asxm grows ~for more
details on this behavior see Ref.@28#!. Most of the SPS ei-
genvalues are the cutoff poles corresponding to a kind
‘‘particle-in-a-box’’ states@28# and fall along a parabola-like
branch whose asymptotic behavior at largen is discussed in
Ref. @28#. These eigenvalues have nothing to do with the t
Siegert energy eigenvalues for the Eckart potential discus
in Ref. @49#. Only the one that lies out of line and whos
dependence onxm is different from that for other eigenvalue
is a remnant of a true Siegert pole. However, in spite of
fact that the SPS eigenvalues depend onxm , the CRP given
by Eq. ~A7! rapidly converges asxm grows. We have ana
lyzed this convergence for the same energyE50.0118 a.u.
as was considered in Ref.@19#. Our results are virtually iden-
tical to that shown in Fig. 2 of Ref.@19#: a relative error
decreases oscillatorily asxm grows, and forxm.2d it is less
than60.5 %. More generally, formula~A7! yields a relative
error less than60.5 % for all energiesE>0.1V0 using the
SPS eigenvalues calculated withxm54d andN6515.

The second example is a symmetric double maxim
barrier,

V~x!5V0@1/21~x/d!2#sech2~x/d!, ~A9!

with the same values of the parameters as above. Figure~b!
shows a distribution of the SPS energy eigenvalues for
potential. In this case the situation is slightly different: the
is one eigenvalue that rapidly converges asxm grows. This
eigenvalue is indicated by the arrow in Fig. 8~b! and corre-
sponds to a true resonance state supported by the pote
The converged value of the resonance energy isE/V0
50.604 841 55520.020 516 3790i with an error of 61 in
the last digit quoted~this was obtained forV0 cited above
and 1/d50.041826 a.u. exactly!. The ratio ImE/Re E for
our result is about three times larger than that for the re
nance energy reported in Ref.@19#. However, the SPS
method was shown to yield a very high precision in calc
lating resonances@27,28,50#, so we believe that our result i
more accurate. This resonance causes a sharp peak i
function Nab(E) ~see Fig. 5 in Ref.@19#!. The ability to
unambiguously associate such peaks in the energy de
dence of CRP with individual resonance states of the sys
is another advantage of the present approach. Finally,
rate of convergence of our results forNab(E) obtained from
Eq. ~A7! asxm grows fully agrees with that demonstrated
Ref. @19#.

Thus in the considered one-dimensional case the SPS
proach to the theory of CRP resulting in formula~A7! is very
efficient and accurate. Whether this approach can be
tended to a multi-dimensional case remains an open prob
which is doubtlessly worth pursuing.
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