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The cumulative reaction probabilitfCRP is a gross characteristic of rearrangement collision processes
defining the reaction rate constant. This paper presents a complete development of the approach to the theory
of CRP that we have recently propogdthys. Rev. Lett80, 41 (1998]. In the core of this approach lies an
alternative expression for CRP in terms of the outgoing wave Green'’s function which is formally equivalent to
the Miller’s definition of this quantity in terms of the scattering mafdx Chem. Phys52, 1899(1975] and
to the Miller-Schwartz-Tromp formul@J. Chem. Phys79, 4889 (1983], but is direct, in contrast to the
former, and more suitable for practical calculations than the latter. Furthermore, our approach rests on solid
grounds of time-independent quantum scattering theory and provides an appealing competitive alternative to
the absorbing potential formulation given by Seideman and MilleChem. Phys96, 4412(1992; 97, 2499
(1992]. Ideologically, it is close to the approach considered earlier for a one-dimensional model by Manol-
opoulos and LighfChem. Phys. Let216, 18(1993], but is formulated from scratch for realistic systems with
many degrees of freedom. The strongest point of our approach is that its final working formulas are expressed
in terms of the Wigner-EisenbuR matrix, so they can be easily implemented on the basis of many existing
guantum scattering codes. All these features are discussed and illustrated by calculations of the CRP and
reaction eigenprobabilities for two prototypical light atom transfer reactions in heavy-light-heavy triatomic
systems in three dimensions for zero total angular momentum.
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I. INTRODUCTION which provides a rough description of the spectrum of reso-
In the time-independent quantum scattering theory, th@ances. Note tha(E) is completely independent of the

results of collisions between atomic particles are describedhoice of a specific set of the asymptotic states, because
by the scattering matri$(E) which is a function of the total def{S(E)] is invariant under any unitary transformation of
energyE of the system. This matrix defines the probabilitiesthis set. Another characteristic of this type, which is the fo-
of all possible state-to-state transitions, so the absolute maus of the present work, is the cumulative reaction probabil-
jority of theoretical methods naturally aims at calculatingity (CRP. This quantity was introduced in scattering theory
S(E) or its particular elements. Meanwhile, such a detailedoy Miller [2] and characterizes the gross efficiency of rear-
description is not always needed, and there are situatiommngement processes. Let us assume, for simplicity, that
where the knowledge of some gross characteristic of the syshere are only two arrangements, which we denotea layd
tem with respect to a given type of processes would be sufb. In this case, the scattering matrix can be partitioned into
ficient. The less such a characteristic depends on the particteur blocks,
lar conditions of the collision experiment in which it could
be measured, the more intrinsic property of the system it
represents and the more meaningful it is from the theoretical S(E)=(
viewpoint. Experimental conditions enter the theory via the
asymptotic states of reactants and products with respect to
which the scattering matri$(E) is defined. So, the charac- With Spa(E) =S.,(E), whereT stands for transpose. Then
teristic meant above should be expressible in terms of somé&e CRP for reactions betweanandb is defined by
invariants of the matriXS(E). One of such characteristics is

Saa(E) - San(E)
: @)

Soa(E)  Son(E)

the eigenphase shift sum defined [dy open
Nao(E)= 2 [Sn o, (E)?=t[S(E)SIL(E)],  (3)
Ng Ny
exf 2i S(E)]=def S(E)], 1)

whereSnanb(E) are the elements &,,(E), n, andn,, label

different asymptotic states in the arrangememendb, re-
*Email address: oleg@muon.imp.kiae.ru spectively, and summation runs over all the open channels. It
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can be easily seen thhl,,(E) is invariant under any unitary cessfully demonstrated by calculations for several three-
transformation mixing the asymptotic statesparatelyin ~ [11-16 and even four-atomi¢17] reaction systems; see,
each arrangement. also, review article$18]. However, the ambiguity in choos-
Formula(3) expressedl,,(E) in terms of the elements of ing the arbitrary functions, ande,, leaves something to be
the reaction blocks,,(E) of scattering matrix2), thus pro- desired, as has been pointed out also by other aufti6is
viding a recipe to calculate the CRP by the methods of scatfhis has motivated the present work whose goal is to show
tering theory. However, it was early recognized that methodshat the objectives of the theory of CRP mentioned above
that would enable one to evaluadtg,(E) directly, i.e., with-  can be fully achieved by well-developed means of the stan-
out relying on the calculation o8,,(E), are desirable and dard scattering theory.
worth developing. There are two basic reasons for that. First, This paper is an outgrowth of our earlier Lettg20]
the knowledge oN,,(E) permits one to calculate the reac- whose principal results can be summarized as follows. In
tion rate constar{i2], which in chemical applications is often Ref.[20], we have derived a new formula fot,,(E) which
the only characteristic required. Second, one can expect thét operator notation similarly to Eq$4) and (5) reads
N.p(E) is determined by a much smaller region of configu- .
ration space than that which is essential for calculating Nap(E)=tr[F,G(E)FpG* (E)]. 0
S.p(E), this expectation being supported by successes of th
transition state theory. Thus concentratinghy,(E) rather
than onS,,(E) may enable onéi) to avoid calculations of
unnecessary information ariil) to reduce the computational
labor. These two principal objectives have motivated the de- G(E)=(H—-E—i0)"1, (8)
velopment of the theory of CRP.
The first formula that has opened a way for direct calcu+elated to the microcanonical density operadoH — E) that
lations of the CRP was obtained by Miller, Schwartz, andappears in Eq(4) by
Tromp (MST) [3]:

Bere F, andF are the flux operators in the arrangemeants
andb, respectively, and@s(E) is the outgoing wave Green’s
operator,

1
Nap(E)=272 tfFS(H—E)FS(H—E)]. (4) S(H-E)=—ImG(E). 9)
Here F is a properly defined flux operator ard is the |t should be noted that the possibility to express the CRP
Hamiltonian of the system. Despite the fact that B).does ithout making an explicit reference to the asymptotic states
not contain time explicitly, it was derived by starting from a 5 scattering matrix results from the following lucid physi-
time-dependent formulation and following a logical route . picture underlying the present approach: rearrangement

similar (though not identicalt'o that used earlier by Yama- qcesses can be treated as a passage between two regions in
moto[4], based on the Kubo’s theory of linear respoftsg configuration space. This also explains the appearance of

More recently, Moiseyey6] derived the MST formuld4) i,y operators in Eqs4) and (7). Such a viewpoint on rear-
from the time-independent scattering theory, thus eStab“ShFangement dynamics was adopted in the theory of chemical
ing the relation of this important result to the discipline octions since the early days of quantum mechdgitk In
where it actually belongs. The approach initiated in RefSgiqmic physics, a formulation based on similar ideas was
[3,4] turned out to be very fruitful and is currently widely given by Gerjuoy[22] and, within impact parameter ap-
used for direct calculations of reaction rate constants b¥)roach, by Demkov and Ostrovski23], see also Refs.
time-dependent metho@g—9]. However, because of the dif- 154 55 Formula(7) is as an exact consequence of the $ehro

ficulties in implgmen_tat_ion, the.MS'_r formu(@) did not find dinger equation as formul@), both being equivalent to Eq.
much application within the time-independent framework, 3) "t is more suitable for practical calculations. In order to

which promptgd the search f_or a more suitable EXpreSSiO”-implement Eq.(7), it is convenient to reduce the original

An alternative representation b, ,(E) was proposed by  mtidimensional Schidinger equation to a one-dimensional
Seideman and Millef10,11]: multichannel problem, which is a commonly used technique
in quantum scattering calculations. Then, Ef.takes a re-

Nan(E)=4 tle,G.(E)eyGy (E)], 5) markably simple forni20],
where the operatoB,(E) is defined by open
N,(E)= k, k E)|2. 1
GE(E):(H—E_iS)_l, 8:8a+8b- (6) ab( ) n;]b Ny nb|Gnanb( )| ( O)

If ¢ were made infinitesimally small, as prescribed by theHere kna and knb are the channel momenta in the arrange-

sr'iandard _scatteringéheory, th@l(g(‘l’z‘/)m[l'd C?Ei”fzigﬁ Vt\)/ith mentsa and b, respectively, an, , (E) are elements of
the outgoing wave Green'’s opera see Eq(8)], but 5 2

Eq. (5) then would lead to the uncertainty<de. The trick of the off-diagonal block of the matrix
the approach proposed [10,1]] consists innot making e G(E)=2R(I—ikR) "%, 11
infinitesimally small but assuming, and ¢, to be finite

non-negative functions of coordinates of the system havingvherel is the unit matrixk is the diagonal matrix consisting
the meaning obsorbing potentialsThis approach was suc- of k, andk,, andR is the Wigner—Eisenbu&k matrix
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[26]. In Ref.[20], this approach was demonstrated by calcu-tion is the one which is actually used in the derivation, while
lating the CRP for muon transfer reactidp +t«<>d+tu. In in operator notation many of the equations take much sim-
this paper, we give more details on the derivation of Eds.  pler forms and remain almost unchanged in multidimen-
(10), and(11), which have been necessarily skipped in Ref.sional case.

[20]. As the simplest model of reaction, first we consider a

one-dimensional potential barrier problef@ec. 1). Then, A. Derivation of the CRP in terms of the Green'’s function

we generalize this analysis to rearrangement collisions in . o . :
three dimensions, adding a discussion of reaction eigenprob- The Schrainger equation in the one-dimensional case
abilities introduced in Ref{12] (Sec. Il)). In so doing, we reads

employ a hyperspherical approach: this makes the derivation _ _

specific and related to the method used in the present calcu- [HX)—Ely0)=0. (12
lations, however, it should be emphasized that this isyhereH(x) is the Hamiltonian

not essential for the results represented by Egs(10), and

(11). Finally, the whole scheme is more intensively 1 d?2

illustrated by calculations of two prototypical light atom H(x)=—§—2+V(x). (13
transfer reactions in heavy-light-heavy triatomic systems dx

O(®P)-H-Cl and Br-H-Cl in three dimensions for zero total
angular momentuniSec. V).

As it often happens, after publication of R¢R0], we
have learned that an approach close to ours, although on
for the one-dimensional case, was considered earlier by _ _

Manolopoulos and Lighitl9]. In particular, equations similar VOO=Va, x—=2, (143
to our Egs.(7) and(10) are contained in Ref19]. We fully
agree with the argumentation of these authors. The differ-
ence between our approaches in the one-dimensional caseqife asymptotic regions lying far on the left{ —x) and
minor; the only improvement we could add to their formula- 4, ne right k— +) of the potential barrier will be asso-
tion is to useSiegert pseudostat¢g7,28 for expanding the  cjateq with the arrangemengsand b, respectively: we de-
outgoing wave Green's function, which has an advantage ofste them by the same characters as the arrangements. The
reducing the computational labor needed to cover a widggprier jtself will be associated with the reaction zone and

energy range to a single matrix diagonalizatioiis devel-  genoted byl. Reaction amounts to passing of the particle
opment is discussed in the Appendiat the same time, We  fom 4 to b or vice versa through, which can occur at
believe that our implementation of E€y) in terms of theR energies

matrix for systems with many degrees of freedom is an im-

portant step forward. Indeed, the methods to calculatéthe E>maxV,,Vy). (15)
matrix are very well developef9], so Eqs.(10) and (11)

can be easily implemented on the basis of many existingror each energy in this range the following two degenerate

In order to define the scattering matrix, we assume that the
potential functionV(x) sufficiently rapidly approaches some
anstant values at— * o,

:Vb’ X— + o0, (14b)

guantum scattering codes. solutions of Eq(12) can be defined:
Let us comment on convention adopted throughout this
paper. We use mass-scaled coordinates, so masses of the etikax e Tkax
particles participating in reaction will never appear in equa- pa(X)= T—Saa(E)T, X——», (163
a a

tions explicitly, but it is assumed that potential functions
depend on them. To avoid possible ambiguities, we often

. . .. +ikpx
show variables on which an operator acts explicitly as argu- e

ments of the operator in coordinate representation. If the op- =Sha(E) \/k_b X, (169
erator depends on a parameter, this parameter may be also
included in the list of arguments separated by a semicolorand
Finally, we use a system of units whefie=1.
—ikgx
Pp(X) = Sap(E) —=, x——00, (178
Il. ONE-DIMENSIONAL MODEL Vka
The purpose of this section is to introduce basic ideas of Clkyx Tikpx
our approach by considering the simplest model of reaction, :e——Sbb(E)e— X + 00,
which is the problem of passing of a particle through a one- \/k—b \/k_b ’
dimensional potential barrier. First, we derive E¢8. and (17b)

(10) for this case and then discuss their implementation. To

make the parallelism explicit between the analysis of Sectere S,a(E), Spp(E), and Syp(E) = Spo(E) are elements of
Il A and its generalization to multidimensional case to bethe scattering matrix, and

given in Sec. Il B, we shall employ both coordinate repre-

sentation and operator notation. The coordinate representa- Kap=V2(E—Vap) (18)

042707-3



TOLSTIKHIN, OSTROVSKY, AND NAKAMURA PHYSICAL REVIEW A 63 042707

are the asymptotic values of the momentum. The CRP in thén particular, using the boundary conditio(i6h) and (173,

present case is defined by we obtain
Nap(E) =[San(E)|? 19 (Yal F(@)|¢ra) = — (Pl F (@) |9y = [San(E)I?. (28
and coincides with the barrier transmission probability. The combined action of firdk(q) and thenG(E) on a state

Let us introduce the outgoing wave Green’s oper&Br  vector|) in coordinate representation is given by
Its action on a state vectp#) in coordinate representation is
dy(q) 9G(x.q;E) "

i 1
given by G(E)F(q)| ) =55 | GOXGiE) ~ga -~ (0 |.
G- [ Gox DU A (@0 9

The key role in the derivation of Eq7) belongs to the
Here the kerneGG(x,x’;E), called the Green’s function, sat- Green’s formula. This formula can be obtained by substitut-

isfies the equation ing in Eq.(12) x' instead ofx, multiplying from the left by
) ) G(x,x";E), integrating overx’ e[x,,Xp], and using Eg.
[H(x)—E]G(x,x";E)=&(x—x") (21)  (21). Taking into account Eq(29), the result can be pre-

sented in the form

G(X’X/;E):Ca(X!;E)e*ikaX' X—s — 00, (zza IG(E)[F(Xb)_F(Xa)]|¢>:0(X_Xa)0(xb_x)¢(x)(30)

and the outgoing wave boundary conditions

=cp(x";E)e k0, x— oo, (22 substituting herd ) [|4p)] instead of| ), putting x,—

_ . +o [x,— —o], and using the boundary conditioi&6b)
wherec,(x’;E) andcy(x';E) are certain functions. In the 5.4 (22b) [(17a and (223], we obtain
present case, the Green’s function can be expressed in terms '

of the solutionsy,(x) and y(x), —IG(E)F(q)|#ha) = 0(x—0q) tha(x), (313

G(x,X’;E)=SI—bt/fa(x>)wb(x<), (23 HIG(E)F(a)|¢p) = 0(a—X) p(X). (31b

Vanishing of the right-hand side of E(B1a [Eq. (31b)] at
wherex.. (x.) is the largerthe smalley of x andx’. How-  x<q [x>q] indicates the fact that both Green’s function
ever, there is not an analog of this equation in multidimen-G(x,x’;E) and solutioni,(x) [¢(X)] have only outgoing
sional case, so we shall not use it in the derivation. Thevaves in the regiotb [a], thus they are linearly dependent
microcanonical density operat(®) also can be expressed in there. Quite similarly one can obtain
terms of these solutions,

. IG(E)F(a)G(E)=[6(q—X)— 0(q—X')]G(X.X’;E),(32)
S(H=E)=o—([da)(Wal +00) (), (29

where the right-hand side is the kernel of the operator stand-
which does have a generalization in multidimensional caseNd on the left-hand side. .

Let us turn to the derivation of Eq7). Using Eqs.(19)

We now introduce the operator of flux at the point g " ! -
P pom and(28), the CRP can be identified with the flux in the state

fooa= e Lo Lsxg) @9 "
X4)= 57| 9(X=0) g T g dx=a) |,
2i dx " dx Nan(E) = (alF ()| a), (33
Its matrix elements between any two state vectgry and whereq is arbitrary. Using Eq(31a we can rewrite this as
|4,) are given by follows:
<w1|F(q)|w2>=f ¥ OF (X: ) ¢ro(x)dx 0(a— 09" )Nap(E)=—i(¢a| F(QG(E)F(q")|¢a). (34

N Acting similarly, but now identifying the CRP with the nega-
— i( P (q) dy»(q) _dwl (@) ) tive of the flux in the statgy,) and using Eq(31b), we have
2i '

i dg V@
00"~ Q)Nab(E) = ~i (4| F(Q)G(E)F(a")| ). (35)

Adding Egs.(34) and(35) and taking into account E¢24),
we obtain

(26)
If |4,) and |y,) are solutions of Eq(12), then it can be
easily shown that
d Nap(E)=—27i tr[F(q)G(E)F(q")s(H-E)]. (36)
d_q<¢l|F(q)|¢2>:O' @n As follows from Eq.(32),
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tr[F(q)G(E)F(q")G(E)]=0, (37 k(x)=V2[E—V(x)]. (43)
thus EQ.(36) can be cast in the form Equation(42) specifies the meaning of E¢LO) for the one-
- dimensional case. Assuming andx, to be large but finite
Nan(E)=t[F(q)G(E)F(q")G*(E)]. (38 amounts to imposing the outgoing wave boundary conditions

(22) semiclassically. This accelerates convergence of the re-
sults as the size of the reaction zane[x,,X,] grows and
makes our approach practical. Note that no such a simple
Nap(E) =272 tr[F(q)8(H—E)F(q’)S(H—E)] (39) Izg)nula can be obtained on the basis of E86), (39), or
and Before we further proceed, it is worthwhile to point out
one interesting aspect of the CRP revealed by the above
N.o(E)=2 t{F(q)Re G(E)F(q")Re G(E)]. (40 equations. Let us calculate the total flgxat the pointg in a
) o ) . mixed state defined by the microcanonical density operator
Equation(38) coincides with our main formulé&’); Eq.(39)  (24). As follows from Eg.(28), in the unperturbed system

coincides with the MST formuld4); while Egs. (36) and J=0. Consider a perturbation of the Hamiltoniéi®),
(40), to our knowledge, have not yet appeared in literature.

Taking separately real and imaginary parts of &), from
Eq. (36) we obtain two more representations oy, (E):

We shall not discuss derivation of E€p), since this would SH=FL(q'), L(q")=iF(q’), (44
require introducing absorbing potentials, but this formula can
be easily obtained from the above equations. where F is a small real constant arld(q’) coincides with

We now show that among Eq&36) and (38)—(40) the  the Bloch operator at the _poiru;’ [31]. Note t_hat5H is a
second one is most convenient for implementation. To thiskew Hermitian operator, i.edH™=—6H. Using the Ku-
end let us rewrite it in coordinate representation: bo’s linear response theofp] and Eq.(36), for the per-

turbed system in the first order with respect&ave obtain
1| 4G(q,q";E) 9G*(q.9";E)
Nan(E)=—7 Nap(E)

4 dq aq’ J=———F. (45)

!. * !
+aG(q,q ) 967(q.9"E) The perturbation operat@#4) acts as a pump introduced at
aq’ aq the pointq’. Indeed, it can be shown that it produces discon-
tinuities in the values of flux in the perturbed staiggx)

_ #°G(a.9";E) G*(q.q":E) and ¢,(x) at x=q’. As follows from Eq.(45), Nap(E)/
99499’ e can be interpreted as the corresponding response function in
the state of microcanonical equilibrium. This interpretation
#*G*(q,9";E) explains why the CRP can be expressed in terms of the
-G(q,9"E)——7— | (41)  Green’s function alone.
dqdq
This equation specifies the meaning of formqfa for the B. Construction of the Green’s function

one-dimensional case. Heteandq' are arbitrary, but the  To implement Eq(42), one has to construct the Green’s
caseq=q’, if desired, should be understood as one of thefunction G(x,x’;E) with its two arguments lying in the re-
limits g—q" =0 (both limits give identical resulissince the  gions occupied by the arrangemeatandb. This is a sepa-
derivatives of the Green’s functid®(q,q’;E) that appearin rate problem and it can be solved by various methods. For
Eq.(41) are not defined aj=q’. This remark applies also to example, one could use absorbing potentials as a means to
Egs.(36), (39), and(40) and becomes important if in imple- implicitly impose the outgoing wave boundary conditions,
menting these equations one takes both flux operators ongovided that they do not disturb the dynamics inside the
single “dividing surface,” as is usually done in literature reaction zone and do not cause reflection, in other words,
where the MST formula4) is used. For example, taking the provided that a sufficient experience in working with such a
limit g=q’ in Eq. (39) improperly was the reason of some device is developed. However we prefer to impose the out-
artificial difficulties encountered in Ref30]. In our ap-  going wave boundary conditions explicitly. Here we describe
proach, we take the flux operators two differentsurfaces, a method for constructing the Green’s function which is
namely, on the boundaries between the reaction caed  straightforward and consistent with the spirit of the present
the regions occupied by the arrangemengdb. Using the  approach and with scattering theory.

arbitrariness off andq’ in Eq. (41), we putq=x,— —= and We assume that for a given enerf§yhe reaction zonkis
q'=x,— +o0. Then, taking into account the boundary con- confined to the intervdlx,,x,], i.e., that only this interval is
ditions (22) for the Green’s function, we obtain essential for calculatingl,,(E). Then the boundary condi-

N tions (22) can be approximated semiclassically,
Nap(E) =K(Xa)K(Xp)|G(Xq ,Xp  E)[?3° (42)

xaﬂ—oc’

J +ik
& | (Xa)

where G(X,X";E)|x=x,=0, (463
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IIl. REARRANGEMENT PROCESSES: HYPERSPHERICAL

v G(x,x’;E)|x=Xb:o. (46b) FORMULATION

1%
[__ik(xb)

_ o A. Preliminary remarks on the hyperspherical treatment
Let us introduce a complete and orthonormal basis in the of collisions in few-body systems

interval | =[ X, ,Xp]: . .
[Xa o] Consider a system dfi=3 structureless particles whose

Xp potential energy is a given function of the particles’ relative
J' mi(X) m(X)dX= &j; . (47)  position. Letm; be the mass of thigh particle and; be its

*a coordinate in the center-of-mass frame. With the center-of-
mass motion separated out, configuration space of such sys-
tem has the dimensiod=3(N—1). It can be parametrized
by a set ofN—1 three-dimensional mass-scaled Jacobi vec-
tors x; defined as such linear combinations mfthat the

Then the Green’s functioG(x,x’;E) for bothx andx’ in-
sidel can be expanded as

G(x,X";E)=2, Gym(x)m;(X'). (48)  kinetic energy of the system expressed in terms; @& given
1,) by
Substituting this into Eq(21), multiplying from the left by g Nt
mi(X)m;(x’), integrating overxel and x’ el, and using T=—2 > A(X). (52)
Egs.(46), for the matrixG of coefficientsG;; we obtain 2=

i This equation does not define the Jacobi vectors uniquely. In
(H —E[k(xa)L(Xa)+ K(xp)L(Xp)]—El ) G=I1. (49 fact, there is an infinity of Jacobi sets satisfying Esp) and
related to each other by kinematic rotations. A finite number
of them enjoying an additional property that each veator

Here H represents the Hermitian part of the Hamiltonian. . :
joins centers of mass of two groups of particles are most

(13), frequently used in applications; see, e.g., R82]. An alter-
~ 1 (% dm(x) dmj(x) Xp native parametrization qf configuration space and the one
Hi; =§f d g dx+f mi(X)V(x) j(x)dXx, employed in hyperspherical approach is obtained by consid-
Xa X X Xa eringx; as orthogonal components of a singkelimensional
B0 yector R=(Xq, ... Xny—1) and introducing hyperspherical
andL(x) is defined by g???rdmateﬂ=(R,Q), where the hyperradilRis the length
Lij(X)=7Ti(X)7TJ-(X), (51 N—1 N
2_ 2_ 2
so that the second term in E@9) is a matrix representation R°= Zl Xi _21 T (53

of the Bloch operator for the solutions satisfying outgoing

wave boundary conditions. Thus the problem of constructingind() is a collective notation for a set oN\8-4 hyperspheri-
the Green’s function is reduced to inversion of the matrixca] angles parametrizing hypersphere which we denots. by
multiplying G in Eq. (49). This can be easily done for any This set can be further specified @s=(Q,€,), whereQ
reasonable one-dimensional potential satisfying Egl).  denotes a set ofl8— 7 “shape” angles defining the relative
However, in multidimensional case, the size of the basis magosition of particles for a give®R, and(), denotes a set of
become too large and this straightforward procedure mayhree angles defining the overall orientation of the system for
become unfeasible. In Sec. Il D, we describe a more powgiven R and ¢, e.g., three Euler angles. The Satlirmer
erful approach to Constructing the Green'’s function WhiChequation in hyperspherica] coordinates reads

remains feasible in more general situations.

The outlined above procedure is similar to that used by [H(R)—E]#R)=0, (54)
Manolopoulos and Light19], so we shall not discuss here its
numerical illustrations. The only difference is that these auwhere
thors basing on semiclassical arguments have included an
additional term proportional talV(x)/dx in the boundary
conditions(46), which we found to be not essential. But we
would like to repeat here and to emphasize the principal
conclusion made in Ref19] and confirmed by our calcula- and it is explicitly shown that the potential energy does not
tions: Equatior(42) enables one to calculai,,(E) withthe  depend on orientational angles. By writing the Sclimger
required accuracy by considering an intervaka@s much as equation in this form, theN-body problem in three-
three times smaller than that which has to be consideredimensional space is formally reduced to the problem of
using the best of absorbing potenti@ld]. A more elegant scattering of one “particle” representing the whole system
and much more efficient implementation of our approach, irby the potential field/(R,();) in d-dimensional space. Such
terms of Siegert pseudostates is discussed for the case afreduction has the advantage of laying grounds for new
symmetric potentials in the Appendix. powerful methods of constructing the wave function that are

H(R):—%A(RHV(R,QS), (55)
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capable to provide a unified description of different types of
collision processel33]. Indeed, the high efficiency of hyper-
spherical approach was demonstrated by applications to vari-
ous nuclear, atomic, and molecular few-body problems.
However, it should be noted that the majority of these appli-
cations is restricted to the energy range below the three-
fragment disintegration threshold. The extension of hyper-
spherical approach to higher energies meets difficulties
associated with the possibility for the system to disintegrate
into three or more fragments which prevents obtaining a uni-
form asymptotic of the wave function &— valid over
entire hypersphere, which is needed for formulating the
asymptotic boundary conditions. Even for the three-body
systems, in which case some rigorous mathematical results in
this direction do exisf32], their usefulness for practical cal-  F|G. 1. Sketch of the region of configuration space where the
culations is still very limited. Consequently, in the following reaction between arrangemertsand b takes place; see text for
we restrict ourselves to considering only rearrangement cokurther explanations.

lisions with two fragments in both initial and final states of

the system. If the particles involved are atoms &i&,()) 1
is an electronically adiabatic potential energy surféRES Had Q:R)+ g(d— 1)(d—3)-R*U n(R)}q)n(Q;R):O,
obtained by averaging out the electronic degrees of freedom, 61)

then Eq.(54) provides a model to describe chemical reac-
tions. The above restriction then means that only bimoleculajhere U ,(R) and ®,(Q;R) are called the HSA potentials

reactions will be considered in this paper. and channel functions, respectively. For aRy functions
d.,(Q;R), n=1,2, ... ,form a complete and orthogonal ba-
B. Derivation of the CRP in terms of the Green’s function sis onS which we assume to be normalized by
For our purposes, it is convenient to introduce a new
function, f O (QR)P (Q;RAA= 6,y - (62)
S
Y(R)=RODZ(R), (56) . . . . .
The radial function$-,,(R) in Eq. (60) satisfy a set of ordi-
[H(R)~E]¢(R)=0, (57) 1d
“5 g TUnRI-E Fa(R)=2 Wy (RIFy(R),
where (63
1 6> H{QR+3(d—1)(d—3) whereW,,(R) is the operator of nonadiabatic coupling be-
HR)=-3 R + =2 : tween different HSA channels whose particular form also is
(58) not needed for the present discussiege, e.g., Ref.34]).
Suppose there are sevefatore than oneways for the
Here system to disintegrate into two bound clusters. The different

modes of such disintegration will be called arrangements and
1 will be denoted by the lower case charactarsA;+A,, b
H.(Q;R)= EAZ(QH R2V(R,Qy) (59 =B;+B,, etc., where the upper case characters denote the
corresponding clusters. For simplicity of the derivation we
consider only one pair of arrangemerasgandb, and discuss

is the hyperspherical adiabatielSA) Hamiltonian defining the rearrangement process

the motion of the system on the hypersphere of raBjusnd
2 .

A“(Q) is the grand angglar _momentum operator squared A+ A,—B,+B,. (64)

whose particular expression is not needed for the present

discussion. In hyperspherical approach the solutions to Eqany other pair can be treated in a similar way. For the fol-

(57) are sought in the form34] lowing analysis it is important to realize the structure of the
region of configuration space where reacti(®d) takes
_ . lace. This region approximately coincides with the classi-
R)=>, Fy(R)®,(Q;R). P
Y(R) zn: n(RIPH(LR) (60 cally accessible region defined B> V(R,()s) and is sche-

matically shown in Fig. 1. In hyperspherical approach, each
Here the angular dependence #(R) is represented by the arrangement is represented by states localized in a separate
solutions of the HSA eigenvalue problem, valley of the potential functioV(R,()). These valleys ex-
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tend along certain directions to the asymptotic regRn anyE<E, there is only a finite number of open channels in
—o and are indicated in the figure by the names of theeach of the arrangemerasandb; let us enumerate them by
corresponding arrangements. At lafgethe valleysa andb  the indicesn, and n,, respectively. AtR—o functions
are well separated by a potential ridge shown by the thickp (Q;R) [@, (Q;R)] are localized on hypersphere near
dashed line; here the arrangements are distinct. At smaller e dlrectlona —0 [ay=0]. Hence, for sufficiently large
the height and the width of the ridge gradually decrease, an —R,, the reg?on of |rt;tegrat|on in Eq62) for the case if
it eventually disappears somewhere in the vicinity of theboth channels) andn’ belong to the same arrangement

transition state for reactiof®4) indicated in the figure by the (b) :
) can be reduced from entire hypersphé&réo a segment
cross. Here the valleya and b merge with each other and S, (Sy) centered atr,=0 [ay=0]:

with valleys representing other arrangements, if dngt
shown in the figurg forming a common potential well

where partitioning of the system into separate fragments f d)na(Qa;Rm)d>n/(Qa;Rm)an= Onn’s (679
loses its meaning. This region will be called the reaction Sa ? ?

zone and denoted by Reaction(64) amounts to passing of

the system from the valleg to the valleyb or vice versa j O (Or RIP- (O dQ. = 67b
through the reaction zonke At even smallerR, where all S (@i Rin) Py (Lo iRi) A= 0y (67D

particles are close together, there may be a hard core pro-

duced by the repulsive part of the interparticle interactionsThe requirement that these equations must hold with a speci-

as in the case of interatomic potentials. Particles do not perfied accuracy for all the open channels defines the segments

etrate here, so this region can be excluded from the consids, andS, , while the condition thas, andS;, do not overlap

eration. The possibility to trace transitions between the dif-sets a lower boundary on the admissible values of the match-

ferent regions by variation of a single variali¥eis another ing radiusRp,. In the following, we shall assume that the

advantage of hyperspherical approach. parameterfl, andR,, in the described construction are cho-
Let us define the regions discussed above more preciselgen to minimize the size of the reaction zdperovided that

We represent the hard core by the interior of the hyperspheregs. (65) and (67) are satisfied and the segmetsand S,

of radiusRy and assume that do not overlap. It should be understood that these parameters
depend on energy, and that when using a nonggrand a
#(R)=0, O=R=R;. (65 finite R,,, one must demonstrate convergence of the results
asRy—0 andR,,— .
In the following, only the regiorR=R, will be considered. At R—o the HSA potentials corresponding to the open

The reaction zoneis identified with the hyperspherical shell channels in the arrangemerdsand b approach some con-
lying in the intervalRy<R<R,,, whereR,, will be called stant values,

the matching radius. The directions along which the valleys

a and b extend are defined as follows. Consider, e.g., the Un, (R)=En ,, R—, (68)
arrangemenst. Let x5, ... x{_; be such a Jacobi set that

each vectox® is a linear combination of coordinates of par- and the nonadiabatic coupling terms in Ef3) can be ne-
ticles belonglng to the same cluster, eittigror A,, except  9lected. LetE,=min{E, } andE,=min{E, }. The following
the last vectoxy,_; which joins the centers of mass of the discussion of react|o(64) applies to the energy range

clusters. Letw, be defined by —
max E,,E,)<E<E. (69

1/2
Rcosa,=x3_1, Rsinaa=( Z (Xia)z) , (66 For each energy in this interval, the following degenerate
i=1 solutions of Eq.(57) similar to that given by Eqs16) and
(17) for the one-dimensional case can be defined:
O=a,=7/2.

—ikp R
Equationa,=0 defines a point in the space of shape angles o (R)= T @, (2;R)

Q¢ which, taking into account the rotational degrees of free- Ma

dom, corresponds to a three-dimensional manifold belonging open Fiky R

to hyperspheré. The orbit of this manifold aR varies is the -> S (E)—=n/(Q;R),
hyperaxisof the valleya. The hyperaxis of the vallelg can n \/—n

be defined similarly by the equatiar,=0. These hyperaxes :

are shown by the thin dashed lines in Fig. 1. The vallays Rea andR—x, (709
and b are hypercylindricalregions around these hyperaxes.

The boundaries betweesm and b and the reaction zong open +iky R

indicated in the figure by, and S,, are nonoverlapping = E)——d, (Q:R),
segments of the hypersphere of radR}s. They can be de- nzb Snbna( : \/k—nb nb( )

fined in terms of the HSA channel functiods,(Q;R). Let

E be the three-fragment disintegration threshold energy. For RebandR—«, (70b
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and

open +ikp, R

Yn,(R)= 2 Sh,n,(E)——= N, @, (AR),

Na

Rea andR—», (713
eJ:—Rcbnb(n R)- %sn nb<E>eHk "0 (QiR)
Mo \/—“b
Reb andR—». (71b

Here Sqan;(E), Snbné(E), and Sﬁanb(E):Sﬂbna(E) are ele-

ments of the scattering matri2), and

V2(E-E, )

kna,b: (72

PHYSICAL REVIEW A 63 042707

Its matrix elements between any two state vecigry and
|i,) are given by

(1|F(Q)| )= fwl F(R;Q)¢(R)dRdQ

1[(¢1(Q)

WL
Q-

whereQ=(Q,Q). If |,) and|,) are solutions of Eq(57),
then it can be shown that

(Y1lF(Q)lih2)=0.

Substituting hergy, ) or |4, ) instead of|;) and[#y),
putting Q— and using the boundary conditiofg0) and

IP2(Q)
dQ

l//z(Q)> dQ, (78)

(79

are the asymptotic values of the open channel momenta. TH&1) and Eq.(62), we obtain

CRP is defined in terms of the scattering matrix by E3).
The following development parallels that of Sec. Il A. We

introduce the outgoing wave Green’s operg®)r Its action

on a state vectdr)) in coordinate representation is given by

G(E)|¢>=JG(R,R’:E)w(R’)dR’dQ’- (73

The Green'’s functiolG(R,R’;E) satisfies the equation

[H(R)—E]G(R,R";E)=6(R—R")8(Q2—Q") (74
and the outgoing wave boundary conditions
open +ikn R
G(RR'E)=2 e (RGE)—7— Jo PnlR),
na
Rea andR—«, (753
<§“ +ikq R
=2 €y (RE)——=—, (QR),
“b b /knb Np
RebandR—w«, (75b

Wherecna(R’;E) and cnb(R’;E) are certain functions. The
microcanonical density operat@®) is expressed in terms of
the solutions«,/fna(R) and ¢nb(R) by

open

open
S(H-E)=5_ (2 | hn ><¢fn|+2 Iwnb><¢nbl)

(76)

Let us introduce the operator of flux through the hyper-

sphere of radiu€),

o(R— Q)—+—5(R Q)} (77

FIRIQ)= { =t

open open

2 [Sun (BIP+ 2 [Soyn (B)P=1, (808

open open

2 Sy (B)P+ 2 [Sopn (E)P=1. (80D)
ny Na

This establishes unitarity of the scattering matrix. In addi-
tion, we introduce the flux operators separately for each of
the arrangements. L&, (Sp) be the segment of the hyper-
sphere of some large radil®, (Rp) lying in the valleya
(b). (Here, for the purpose of derivation, we temporarily
deviate from the previous definition &, and S,, but we
shall return to it shortly, In the following, it will be assumed
that R,=R,, and R,=R,,. We define the operators of flux
through the segments, andSb

IY2(Ra)

1
<¢1|Fa<Ra>|¢z>:5L(¢l< R

901 ( a)

= z/fzma))dﬂa. (819

a

IPr(Ry)

1
(| Fo(Rp)|4p)= EL (%(Rb)

Y7 (Rp)
a—l/fZ(Rb) dQy,. (81b
If |¢4) and|y,) are solutions of Eq(57), then it can be
shown that the left hand sides of these equations do not
depend orR, andR;,. In particular, using the boundary con-
ditions (70) and(71) and Eqgs.(67), we obtain

open

(| Fo(Ro) [ ¢ )= 2 |Spyn (B)[2, (823
Np

042707-9



TOLSTIKHIN, OSTROVSKY, AND NAKAMURA PHYSICAL REVIEW A 63 042707

open open
(| Fa(R| ) =2 [San (B2 (82D B(Ry—R)Nap(E)=i 2 (n,|Fu(Ro)G(E)Fa(Ra)| )
Na Np
(89
The combined action of firgt(Q) and thenG(E) on a state _ o
vector|) in coordinate representation is given by Adding Egs.(88) and(89) and taking into account Eq76),
we obtain
1 = Q) :
G(E)F(Q)|¥)= EJS CR.QE) =55~ Nap(E)=2i t{Fy(Ry)G(E)Fa(Ry) S(H—E)]. (90)
JG(R,Q:E) As follows from Eq.(86),
-— dQ, (83
Q ‘D(Q)) 9 tr[ Fo(Ry) G(E)Fa(Ra) G(E) ] =0, (91)

and similarly forF,(R,) andFy(R,) with S replaced byS,  thus Eq.(90) can be cast in the form
and S, respectively.
Again our derivation of Eq(7) is based on the Green’s Nap(E)= =t F(R,)G(E)F4(Ry)G*(E)]. (92
formula. This can be obtained by substituting in Esj)) R’
instead ofR, multiplying from the left byG(R,R’;E), inte-  This coincides with formula7) except for the sign. This
grating overR’ e[Ry,Q] and Q' €S, and using Eq(74). apparent difference is explained by the fact that both flux
Taking into account Eq83), the result can be presented in operators in Eq(7) were assumed to be defined democrati-
the form cally with respect to the direction of the reaction path, as was
the case for the one-dimensional model discussed in Sec. Il.
iIG(E)[F(Q)—F(Rp)1|#)=0(Q—R)¥(R). (84 For the present case the reaction path goes fidhroughl
to b or vice versa, and the operatofg(R,) and Fy(Rp)
Because of the boundary conditit#b), the term withF(R,)  represent fluxes going in the different directions. Formulas
vanishes. Substituting hete,, ) [|4n, )] instead of|¢) and  (90) and(92) generalize Eqs(36) and(38). The counterparts

putting Q=R, (Q=R,) we obtain of Egs. (39 and (40) can also be obtained for the present
case; however, we shall not discuss them here.

iIG(E)F( Ra)|¢//na)= 0(R,—R) ‘/’na(R)’ (859 In coordinate representation E®2) reads

. 1

IG(E)F5(Ro)|¥iny) = 6(Ry—R) Y (R).  (85b) Nao(E)= 5 L dq, L do,

a b

Vanishing of the right hand side of E(85a [Eq. (85b)] at i * i
R>R, [R>R,] indicates the fact that both Green’s function x[ﬁG(Ra’Rb’E) 9G"(Ra,Ry ;E)
G(R,R’;E) and solutionsyr, (R) [¢n (R)] have only out- IR, IRy,

going waves in the vallep (a), thus they are linearly de- 9G*(Ry,Ry:E) G(R4Ry;E)
pendent there. Quite similarly we obtain

IR, IRy
IG(E)F(Q)G(E)=[6(Q—R)-0(Q—-R")JG(R,R";E), 9*G*(R,,Rp;E)
(86) _G(RaaRb;E)&R—aRb
a
where the right-hand side is the kernel of the operator stand- #G(R, Ry :E)
ing on the left-hand side. —G*(Ra,Rb;E)aRa—(;Rb’ (93)
a?Mp

We now turn to the derivation of Eq7). Using Eqs.(3)
and(82a), the CRP can be identified with the total flux in all

open channels of the arrangemerin the valleyb, This equation specifies the meaning of form(#awithin the

hyperspherical formulation. Hefe, andR,, are arbitrary but

open not smaller tharR,,. Letting bothR, andR, go to« and
Nap(E)= 2 (¢ |Fu(Ry)| e ). (87)  using the boundary conditiong5), from Eqg.(93) we obtain
a open
Using Eq.(858 we can rewrite this as Nan(E)= 2 Kn_(Ra)Kn (Ry)
Ny .Np
ey X |Gy, (Ra Ry E)|? (94)
6(Ra~Ry)Na(E) =i 2 (¥, |Fu(Ro) G(E)Fa(Ra)| U, eyt b I Ra Ry
’ (88)  where
Acting similarly, but now identifying the CRP with the total kn(R)=+v2[E—U,(R)] (95)
flux in all open channels of the arrangemérnh the valleya
and using Eq(85h), we have and
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ues p3(E) are real. Moreover, they lie in the interval O
<pi(E)<1, where the first inequality follows from the non-
negativeness of all diagonal elements of the considered ma-
XD, (Q;R)D,(Q";R). (96) trix, and the second one results from the unitarity of the
scattering matrix(2). We can invert the order of the two

Equations(94)—(96) specify the meaning of Eq10). In or-  matrices under the symbol of trace in E8) without chang-
der to minimize the region where the Green's function is tojng the value of the expression and consider the matrix

be constructed, in the following we put in EQ4) R,=R, st (E E)=(S,.(E)S' (E))*. Its dimensiomny, is equal
=R,, (Which restores the original definition ¢f, and S,). _ t(??ﬁe)r%lr)r(lb;r O%E(en)i?winrzels. in the arranger‘lr))emd(,qfor

AssumingRy, to _be Igirge but finite amounts o using semi- the same reasons, its eigenvalp8$E) are real and satisfy
classical approximation to the outgoing wave boundary con-

b .
ditions (75), which makes our approach practical. It is worth Oj Pa(E)<1. In f_act, I cart: be shown thaithe two sets
noting that the possibility to use different raéj, andR, in ~ Pn(E), n=1,....n,, and py(E), n=1,....ny, actually
Eqg. (93) is a manifestation of a larger flexibility of this for- coincide, except that the longer one contains additional
mula. Indeed, basing on the flux conservation the hyper-_p | zero eigenvalue$3s]. Thus we can omit the super-

Spherica| Segmenﬁa andSb in Eq (93) can be replaced by Scriptsa andb and rewrite Eq(3) as follows
more general boundary surfaces between the reactionlzone

and the arrangemengsandb; however, we do not detail this n

issue here. Nan(E)= 2, pn(E), (102
Let us introduce a diagonal matri(R) with elements n

(95) and a symmetric matris(R,R’;E) with elementg96).

If both RandR’ are larger thafR,,,, then these matrices can

Gnn,(R,R';E)=JdQJdQ’G(R,R';E)
S S

be partitioned into blocks similarly to EqR): where n=min(n, ,n,). The eigenvaluep,(E), called reac-
tion eigenprobabilities, were first considered in REf2].
ka(R) 0 They can be compared with the eigenphase sfilfisvhose

k(R):< 0 kb(R)) (97)  sum is defined by Eq(l). The above discussion defines

p.(E) in terms of the scattering matrix. Comparing Egs.
and (100 and (102, the reaction eigenprobabilities can be ex-
pressed in terms of the Green’s function as eigenvalues of
Gaa(R.RE)  Ggp(R,R";E) the matrixPyy(Rm;E) P!, (Rm;E) for sufficiently largeRy,.
G(R,R";E)= . (98 i ; i
Gpa(R,R";E)  Gpyu(R,R’;E) This explains howp,(E) can be calculated in the present
approach.

Let us introduce a matrix

P.b(RmiE) = VKa(Rm) Gap(Rm:Rm i E) VKp(Rm) . (99) D. Construction of the Green'’s function

To implement the above equations one has to construct
the Green’s functios(R,R’; E) with its two arguments ly-
Nab(E):tr[Pab(Rm;E)P;b( Rn:E)llg . (100 ?ng in the valleysa andb. This _could be_ done by expanding

m it in terms of some global basis spanning the whole reaction
zonel which would lead to an algebraic equation similar to
Eqg. (49). However, in multidimensional case the size of the
basis required may be too large. For example, for triatomic
systems it should be similar to that used in absorbing poten-

|Snanb(E)|2:|Pnanb(Rm;E)|2|Rm—>w- (102) tial calculations[_ll—lq, although in our approach we could
expect a reduction by about a factor of three due to the re-
We remark that this formula can be derived more rigorouslyduction of the size of the reaction zone to be considered, as
Thus, in principle, knowing the matrig@9) one can calculate Was demonstrated for the one-dimensional case in [R6f.
all the state-to-state reaction probabilities. However the conand Sec. Il B. Tackling large matrices is a difficult problem
vergence aRm grows in this case is not as fast as for thein the Splrlt of quantum Chemistry CalCUlationS, and we shall

CRP, and we shall not discuss such calculations in this paRot discuss such a global approach here. Instead, we describe
per. a method which is practical and falls most naturally in the

framework of hyperspherical approach as well as many other
quantum scattering technologies. The idea is to divide the
reaction zone into a number of smaller regions, so that each
Let us return to Eq.(3) and consider the matrix of them can be spanned by a basis of moderate size, and then
Sab(E)S;b(E). This matrix has the dimension, equal to the to match different pieces with each other thus obtaining a
number of open channels in the arrangenwerit is Hermit-  global solution. This idea can be easily implemented in hy-
ian, so it can be diagonalized by a unitary transformation oferspherical geometry by using tfi&matrix method.
the asymptotic states in the arrangemarmnd its eigenval- Let us introduce arR-operator,

Then Eq.(94) can be presented in the form

Comparing this with Eq(3) and noting that both equations
should give identical results for a continuous intervalEf
we obtain

C. Reaction eigenprobabilities
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AP(R,Q") tion will be applied to transfer of the ato@ between atoms
H(R,Q)= j R(Q.Q’:R)Tdﬂ', (103 AandB. To comply with convention adopted in hyperspheri-
s cal calculations of chemical reactions and with notation used
wherey(R) is an arbitrary solution of Eq57) satisfying the in Ref.[36] we introduce a new hyperradial variable,
boundary condition65). For anyR, the kernelR(2,Q";R)
here can be expanded in terms of the HSA channel functions. R= p(
The coefficients in this expansion are defined by

: (107)

whereR is defined by Eq(53), m,, mg, andm¢ are the
Rnn,(R)zf dﬂf dQ'R(Q, QR P(Q;R)P(L;R),  masses of the atoms, amd,=ma+mg+me is the total

S S 104 mass of the system. Configuration space of the system is

(104 parametrized by the hyperradiys and two hyperangular

and constitute th® matrix. Methods of calculating this ma- Variables¢ and 7 called hyperspherical elliptic coordinates
trix are very well developed29]. Let R, (R,) be theR [39] which are u_sed as coordinates on hypersplzﬁaréo_r
matrix atR=R.,, i.e., on the outer boundary of the reaction HLH systems C is assumed to be the light atonthe vari-
zonel. Let us write down the Green’s formu(&4) in coor- ables¢ and » approximately correspond to the vibrational

dinate representation: and rotational degrees of freedom, respectively. Taking ad-
vantage of this circumstance greatly facilitates numerical so-
1 IPY(R") lution of the HSA eigenvalue proble(61). Solving Eq.(61)
$(R)= EJ G(R,R";E) - yields a set of HSA channel function®,(¢,7;p), n
S =1,... Ng, Which for anyp satisfy
JG(R,R";E) ) ) ) 272y 2y
—Tlﬂ(R )|dQ’, R<R’. Jz dgf ; d7(cosn—cosé) P (&, 7;p) P (& 7:p)
Y —ey
(109 = S, (108

Putting hereR=R’=R,,, comparing with Eq.(103), and

using the boundary condition§5) and definitiong(96) and where
(104), we obtain
tany= McMiot 0< y< T (109
G(Rpn RmiE) = 2R(Rp)[1 — ik(Rp) R(Ry) ] ™. "N mamg T2

(106)

) ) - ) o The Schrdinger equatior{57) is considered in a finite inter-
This equation specifies the meaning of Efl) within the  yal <[ po,pm]. Herepy is the radius of the hard core region
hypersphencal formulation and provides a practical recipe tQynhere wave function is assumed to vanish, see(&8), and
implement our approach. pm is the matching radius. This interval is divided into a

number of sectors. In each sector, a Hermitized version of
IV. ILLUSTRATIVE CALCULATIONS Eq. (57) corresponding to imposing tHE-matrix boundary

As has been mentioned above, our method was iIIustrate((?ion.d'tIons Is solved. This is done using the slow/smooth

in Ref. [20] by application to muon transfer reactiondiys. variable discretization methodiQ0]: the dependence of the

In this section, we discuss two computationally more chaI-SOIU'[Ions on hyperradiug is expanded in terms of a set of

. S : .—_PVR basis functions defined within the sector, and their de-
lenging applications of the method to atom-diatom Chemlcagpendence on hyperangular variabléss is represented by

reactions. Recently, two of us have developed a new ver he HSA channel functions taken at the corresponding set of
efficient and accurate quantum scattering code for calcula . ) N ponding :
yperradial quadrature points. This yields Rematrix basis

in llisions in heavy-light-heavf§HLH) triatomi m ) ;
g corisions eavy-light-heaviHLH) triatomic systems for the sector. Constructing such basis for each sector com-

. Thi for clarifyi hani f light . ;
gg]m tr:ng?;e rvevzstiléiidinorszsgg:ngﬂecsyasr:f%; ??a '9 pletes the energy independent part of the calculations. Thus
'~ ° obtained information permits one to consider scattering in a

Here, we show that Eqg94) and(106) can be easily imple- ide energy range whose upper boundary is the higher the
mented on the basis of this code and that using these equé\/_rger is the numbeN,, of HSA channels included in the

tions one can essentially reduce the size of the region to b X T .
y 9 alculation. For any enerdy in this range, thék matrix can

considered for calculating the CRP as compared to tha% i .
which is essential for calculating the scattering matrix. € propagated betweef‘ baundaries of §ector§ using the tech-
nique of Ref[41]. Starting fromp = p, with the initial con-
dition R(pg)=0 we obtain theR matrix at the matching
surface,R(p,,). Then we can extract the scattering matrix
Let us outline briefly a general scheme of the presentS(E) by applying a two-dimensional matching procedure de-
computational procedure; for more details we refef36].  scribed in Ref[36] and calculate the CRN_,(E) from Eq.
Consider a system of three atorAs B, and C, and leta (3). This procedure was used for calculating the CRP in
=A+CB andb=B+ CA, so the results of the previous sec- Refs. [36—38 and we shall refer to it as the scattering

A. Computational procedure
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method. Alternatively, the CRP can be calculated using Egs.
(94) and (106), which will be referred to as the direct
method.

In both direct and scattering calculations reported below
we shall use the same numbers of HSA chanNejsand the
same values of the hard core radjys the only difference in
the calculational parameters being in the value of the match-
ing radiusp,,. The convergence of individual elements of
scattering matrix with respect g, is much slower than that
of the CRP as was demonstrated 20] (see Fig. 3 therein
Here we shall not discuss this issue again; all the scattering
results presented below are obtained from converged scatter-
ing matrix. An important issue in the following discussion is
to demonstrate convergence of the direct resultdNigy(E)
as the matching radius,, grows. In Ref[20], this conver-
gence was characterized by the potential ridge function
U,(p). The concept of potential ridge is well familiar from
hyperspherical analysis of collinear reactidd®] and re-
cently it has been generalized to light atom transfer reactions
in HLH systems in three dimensiofi37,38 on the basis of
the approach developed in R¢B6]. The results of Refs.
[37,3§ suggest that for a given enerdgyreaction does not
occur atp>p,, wherep, is defined byE=U,(p,). So for
calculating the CRP at this energy it should be sufficient to
consider the regiop<p,. In this paper instead of the po-
tential ridge we consider the function

Nen 2m—2y : ; i
Wy h( np)= E q;r21(§, 7,p)(cosy—cosé)dé FIG. 2. Projected density functlc(r:l_10) for O—CI-H calculated
c n=1 J2y for the LEPS(a) and KSG(b) PESs withN.,= 100 HSA channels

(110 for several representative values pf The arrangements &R)
+HCI and OH+Cl are located in the left and in the right parts of

which has a meaning of the cumulative density of the HSApe figures, respectively. These figures illustrate separation of the
Channels |ncluded N the Ca|Cu|atI0n prOjeCted on ﬂ’]eO' arrangements a|ong tm coordinate ag grows.

ordinate. As follows from Eq(108), this function satisfies
2 and the energy wil! be measured in _eV frqm the ground
f WNch(%P)dﬂ: N (111) state of HCI. .Rea(_:t|om112) is almost isoergic: the ground
-2y state of OH lies higher than that of HCI by only 0.040 eV
which defines the energetic threshold. The classical threshold
As p grows, the regions occupied by the arrangemargad  is defined by the position of the transition state which lies at
b localize on hypersphere near the point§ #)=(2y,  0.168 eV for the LEPS PES. In the present calculations we
—2v) and (2y,2y), respectively, hence at largefunction  yse the same number of HSA channblg,=100 and the
(110 splits into two disconnected parts located negr  same values of the hard core radjug=6.5 for the LEPS
*=2v. These parts are separated by a potential barrier whosgnd p,=4.9 for the KSG PES as were used in R&6].
top considered as a function pf approximately coincides Figures 2 show projected density10) for the two PESs
with U,(p). The larger is the number of channélg;, in-  calculated for several representative valuegoNote that
cluded in Eq.(110), the farther inp the separation occurs. apart from a slight shift inp between the corresponding
Thus the projected densiti110) illustrates another facet of curves these figures look quite similar, although the HSA
the potential ridge as a barrier separating arrangements. potentials defined by Eq61) considerably differ for these
two PESs, as can be seen from Fig. 9 in &6]. The
B. Examples central minimum of the functiofl10) in Fig. 2 indicates the
position of the potential barrier separating the arrangements
O(®P) +HCI on the left and OH Cl on the right, while the
O(®P)+HCl—OH+Cl (112  two adjoined maxima indicate the regions where reflection
from this barrier in the motion along the coordinate takes
for two different PESs: one is the LEPS PES with the pa-place. As was mentioned above, at lapghe function(110
rameters defined in Reff43], and the other is a more elabo- splits into two disconnected parts localized negr =21.
rate fit toab initio calculations proposed in Rg#4], which ~ The value ofp=pg where this splitting occurs depends on
we shall refer to as KSG. For this systeh¥ O, B=CI, C N¢,. As can be seen from the figures, for the present case
=H, R=77.5%, and y=0.30. We use atomic units fgs  ps~11 for the LEPS an¢g,~10.3 for the KSG PES. Ap

As the first example we consider the reaction
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FIG. 4. Present converged results for the eigenprobabilities of
FIG. 3. Convergence of the direct results for the CRP of reacreaction(112 calculated for the LEP$a) and KSG(b) PESs. In
tion (112 calculated by Eqg(94) and(106) using the LEPSa) and  both cases 18 functions,(E) are shown. To reveal avoided cross-
KSG (b) PESs. The values gf;, used in the calculations coincide ings between different curves, the functigngE) with odd (even
with that shown in Figs. 2. The solid curves are the scattering renumbers are plotted by solidlashed lines.
sults taken fron{36] calculated by Eq(3). Those of the broken
curves which are not seen cannot be distinguished by the eye from Figure 4 show present converged results for the eigen-
the solid curves in the scale of the figures. probabilities of reaction(112). For both LEPS and KSG
i ) i o PESs only 18 lowest functions,(E) are shown; the higher
>ps reaction can proceed only via tunneling, so it is sup-reaction eigenprobabilities have negligible values in the con-
pressed. Hence one could expect that E@4) and (106  sidered interval of. Careful analysis of the figures shows
yield converged results for the CRPpif,>ps. The values of 4t peaks of the CRP seen in Fig. 3 are caused by rapid
p shown in the figures are equidistant and lie in the vicinityyariation of individual terms in the surfi02). Moreover, at
of p=ps, except the largesp which coincides with the the energies where such peaks occur there are avoided cross-
value of the matching radiys, used in the scattering calcu- jngs between functionp,(E) with different n, as can be
lations[36]. At this p there is a wide gap along the coor-  seen from Fig. 4. These features suggest that peaks of the
dinate between the two parts of the functitil0), so the CRP can be associated with some kind of “transition state
arrangements are completely separated. ) resonances,” probably of the type considered in Ré48,
Figure 3 show present direct results for reactidd?)  ajthough to confirm this interpretation an analysis of the cor-
calculated with the same values of the matching radiyas  responding wave function is needed. From Fig. 4 it is clear
shown in Fig. 2. The solid curves in these figures presenfhat functionsp,(E) provide a very valuable information
results obtained by the scattering metfi86]. These figures  apout reaction dynamics and worth to be studied in more
CRP rapidly converge gsy, becomes larger tham,. Infact,  petween the two considered PESs describing rea¢ting).

they converge even earlier: for the LEPS HE®). 3(a)] the As the second example we consider the exo/endo-ergic
direct results become almost indistinguishable by the eygeaction

from the scattering results already fof~10.6, and for the

KSG PES[Fig. 3(b)] this happens fop,,~10. Thus using Br+HCl— BrH+Cl (113
Egs. (94) and (106) the CRP for reactioril12) can be cal-

culated by considering an interval of about three times for the LEPS PES with the parameters defined in [R&8).
smaller than that which has been considerefi3®l for ob-  For this system we havé&i=Br, B=CI, C=H, R=~95.0%,
taining accurate results for the scattering matrix. and y~0.20. The energ¥ will be measured again from the
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FIG. 5. Same as in Fig. 2, but for Br—Cl-H. The arrangements FIG. 7. Same as in Fig. 4, but for reactitii 3. Here 11 eigen-
Br+HCI and BrH+Cl are located in the left and in the right parts probabilitiesp,(E) are shown.

of the figure, respectively.
results obtained withp,,~15 practically coincide with the

ground state of HCI. Then the ground state of BrH lies ataccurate scattering results of R€88]. This means that in
0.68 eV which defines the energetic threshold. Scatteringalculating the CRP of reactiofl13) Egs. (94) and (106)
calculations for this reaction by the method developed inPermit one to reduce the interval pfby a factor of two as
Ref.[36] were reported in Ref.38]. In the present calcula- compared to that considered in R¢88]. Finally, Fig. 7

tions we use the same number of HSA chani¢lg=100  shows present converged results for the eigenprobabilities of
and the same value of the hard core radiys-8 as were reaction(113. Only 10 functionsp,(E) are shown in the
used in Ref[38]. Figures 5—7 present results similar to thatfigure. Similarly to Fig. 4, one can see that there is a lot of
shown in Figs. 2—4 for the previous system. The arrange@voided crossings and peaks corresponding to resonance

ments Br-HCI and BrH+Cl are located in the left and in Peaks of the CRP seen in Fig. 6. To clarify the nature of
the right parts of Fig. 5, respectively. Of the 100 HSA chan-these features, however, goes beyond the scope of this paper.

nels included in Eq(110 in the present case 74 belong to
the former and only 26 to the latter arrangemeni-ate, so

the left wings of the projected densities shown in Fig. 5 are .
about three times higher than the right ones. For this system [N this paper we have presented a complete development

separation of the arrangements along theoordinate occurs  Of the recently propose{®0] new approach to the theory of
atps~15.3. The largest value f shown in Fig. 5 coincides CRP and provided additional demonstrations of its numerical

with the matching radiup,, used in the scattering calcula- efficiency. Our main formuld7) and its implementation in

tions [38]. Figure 6 demonstrates convergence of the directerms of the Wigner-Eisenbul matrix given by Eqgs(10)
results for the CRP calculated for the same valuep,os  @nd(11) rest on solid grounds of standard scattering theory

formulations. These formulas enable one to calculate the

CRP and reaction eigenprobabilities directly and with a con-
siderable reduction of the computational labor as compared
to that required for calculating the scattering matrix, at least
using the techniques employed by our group. Here we have
demonstrated the implementation of our approach in the
framework of hyperspherical method on the basis of the pro-
gram for calculating light atom transfer reactions in heavy-
light-heavy systems developed in REB6]. However, Egs.
(10) and(11) can be easily implemented on the basis of any
other quantum scattering code which uses fRematrix
method; see Ref[29]. Upgrading such code in this way
would make it capable of calculating the CRP even in situ-
ations where the calculation of scattering matrix is not fea-

sible.

V. SUMMARY

0 “ 1 ! <) 1 L 1 1
070 075 080 085 090 085 1.00
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sponding quantities will be indicated by and — super-
APPENDIX: TRANSMISSION PROBABILITY script, respectively. The following discussion is equally ap-
OF ONE-DIMENSIONAL SYMMETRIC POTENTIAL plicable to both cases, so we shall omit this superscript for a
BARRIERS FROM SIEGERT PSEUDOSTATE while until the final result will be presented. Similarly to Sec.
EIGENVALUES Il B, we introduce a basisr;(x), i=1, ... N, which is or-

thonormal in the interval — x,,,X,] and becomes complete

As was first realized in Ref3] and discussed in detail in iy the limit N—c. The SPS eigenfunctions(x) can be
this paper, the CRP can be expressed in terms of the outg@xpanded in terms of this basis:
ing wave Green’s function. On the other hand, it is well
known [1,47] that under rather general conditions the N
Green’s function can be expanded in terms of Siegert states ¢(X)=2 Cimi(X), —XpSX<Xp. (A2)
which are solutions to the Schiimger equation satisfying =1
outgoing wave boundary conditiof48]. So, there must be a Substituting this expansion into E¢Ala) and using the

way to express the CRP in terms of the Siegert states. Th oundary conditiongAlb) and (Alc), for the vectorc of
idea is not new and it has been already discussed in literature '

[30,49. Its implementation apart from bringing conceptual Coefficientc; one obtains

consistency and beauty to the formulation promises also cer- (A+AB+\21)c=0, (A3)
tain computational advantages. The point is that Siegert

states do not depend on energy, so having constructed a Sghere

of Siegert states, which might be a difficult task but which

must be done only once, one should be able to calculate the N=iV2[E=V(Xy)], (A4)
CRP in a wide energy range. The center of gravity of calcu-
lations in this approach is thus shifted to constructing the A=2[A-V(x)I], (A5)
Siegert states.

Recently, we have proposed an efficient method for cal- B=—2L(x,), (AB)

culating__Siegeripseudetates(SPS defined as solutions to
the Schrdinger equation satisfying outgoing wave boundaryand the matrices! and L(x) are defined by Eqg50) and

conditions imposed at &nite point [27]. In Ref. [28], we (51). The methods of solving quadratic algebraic eigenvalue

have shown that for the one-channel scattering problemy,,hjem(a3) and the properties of its solutions are discussed
bound, antibound, and resonance states are represented ;

oo . i i iMRef. [28]. This equation can be reduced to a linear eigen-
individual SPS and derived SPS expansions for continuoug

energy wave function, Green'’s function, and scattering maéigenpairskn andc(™ defining 2N SPSs. Having the SPSs,

tqui?(’ ]i.e., f?r f"‘” the (;mpolrtané ObjFthS of the theorﬁ. So_lf)ardone can construct the Green’s function and then calculate the
this formulation Is developed only for scattering describedopp by Eq.(42). We skip the derivation which is quite

by a single radial equation, but it can be easily extended tQimilar to that of Ref[28] and is based on Ed44) therein.
scattering by one-dimensional potentials considered on th?he final result for the CRP reads:

whole axis if the potential function is symmetric. Here we

show how in this case one can calculate the CRP knowing 1 oNF N 2

only the SPS eigenvalues. N, (E)=~ H n _ H n (A7)
For the one-dimensional scattering problem discussed in ab SRS W WS 1 W '

Sec. Il A, the SPSs are defined by:

alue problem of doubled dimensiorN2which yields 2N

where\ is related toE by Eq.(A4), and\, are eigenvalues
[H(x)—E]J¢(x)=0, (Ala)  of Eq. (A3) related to the corresponding SPS energy eigen-
valuesE, by the same equation. This formula expresses
N.p(E) in terms of the SPS eigenvalues defined for the given
cutoff radiusx,, and the numbers of basis functioNs . A
converged result will be obtained as these parameters in-
crease.
=0, (Alc) We illustrate this method by the same two examples as
X=X were considered in Refl9]. In the calculations reported
" below, we use even and odd Legendre polynomials as bases
whereH(x) andk(x) are given by Eqs(13) and(43), x,,is  for even and odd SPSs, respectively. Then mat(x,,) and
the cutoff radius, and we again use semiclassical version dhe kinetic part ofH can be calculated analytically, while
the outgoing wave boundary conditions. Equatioh$) can  matrix elements of the potenti®(x) were calculated using

=0, (Alb)

X:—Xn.l

d
(&ﬁLk(X))sﬁ(X)

d
(d—x—l«x)) $(X)
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eigenvalues shown in the figure are converged with respect
to N*, but none of them converges &g grows (for more
details on this behavior see R¢R8]). Most of the SPS ei-
genvalues are the cutoff poles corresponding to a kind of
“particle-in-a-box” stateq§ 28] and fall along a parabola-like
branch whose asymptotic behavior at largs discussed in
Ref.[28]. These eigenvalues have nothing to do with the true
Siegert energy eigenvalues for the Eckart potential discussed
in Ref. [49]. Only the one that lies out of line and whose
dependence ox, is different from that for other eigenvalues
is a remnant of a true Siegert pole. However, in spite of the
fact that the SPS eigenvalues dependkgn the CRP given
by Eq. (A7) rapidly converges as,, grows. We have ana-
lyzed this convergence for the same enekgy0.0118 a.u.
as was considered in R¢1L9]. Our results are virtually iden-
tical to that shown in Fig. 2 of Ref.19]: a relative error
decreases oscillatorily ag, grows, and foix,,>2d it is less
than=0.5 %. More generally, formul@A7) yields a relative
error less thant 0.5 % for all energie€=0.1V, using the
SPS eigenvalues calculated with=4d andN*=15.

The second example is a symmetric double maximum
barrier,

V(x)=V,[1/2+ (x/d)?]sech(x/d), (A9)

with the same values of the parameters as above. Figbje 8
shows a distribution of the SPS energy eigenvalues for this
potential. In this case the situation is slightly different: there
is one eigenvalue that rapidly convergesxasgrows. This

eigenvalue is indicated by the arrow in FighBand corre-

the double maximum potentiéA9). The eigenvalues were obtained The converged value of the resonance energyEi¥,

by solving Eq.(A3) and then converting from to E using Eq.
(A4). The results were obtained witty,=3d andN==50. All the
eigenvalues shown are converged with respediifo The arrow
indicates the only SPS eigenvalue that convergexagrows,

=0.604 841555 0.020516 3790 with an error of £1 in
the last digit quotedthis was obtained fok, cited above
and 14=0.041826 a.u. exactly The ratio ImE/ReE for

nance energy reported in Refl9]. However, the SPS

sponds to a true resonance state supported by the potential.

Qur result is about three times larger than that for the reso-

method was shown to yield a very high precision in calcu-

Gauss-Legendre quadrature with the number of points equiiting resonancef27,28,50, so we believe that our result is

to the number of polynomials, i.e., in the spirit of a DVR.
The first example is the Eckart potential,

d=aym,

with the parameter¥;=0.0156 a.u.a=0.734 a.u., andn
=1061 a.u[30] (we recall that oux is a mass-scaled coor-

V(x)=V, sech(x/d),

more accurate. This resonance causes a sharp peak in the
function N,,(E) (see Fig. 5 in Ref[19]). The ability to
unambiguously associate such peaks in the energy depen-
dence of CRP with individual resonance states of the system
is another advantage of the present approach. Finally, the

rate of convergence of our results fdg,(E) obtained from
Eq. (A7) asx,, grows fully agrees with that demonstrated in

dinatg. Figure 8a) shows a part of the distribution of the Ref.[19].

SPS energy eigenvalues obtained by solving &®g) for
some particular values of,, and N*. The eigenvalues are
distributed symmetrically with respect to the real afdem-
plex eigenvalues occur in complex conjugate pass only

proach to the theory of CRP resulting in formsr) is very

the lower half of the complex energy plane is shown. All thewhich is doubtlessly worth pursuing.
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