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Electron self-energy for theK and L shells at low nuclear charge
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A nonperturbative numerical evaluation of the one-photon electron self-energy for theK- andL-shell states
of hydrogenlike ions with nuclear charge numbersZ51 to 5 is described. Our calculation for the 1S1/2 state
has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for theL-shell states (2S1/2, 2P1/2, and 2P3/2)
the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is
described in detail. The numerical results are compared to results based on known terms in the expansion of the
self-energy in powers ofZa.
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I. INTRODUCTION

The nonperturbative numerical evaluation of radiat
corrections to bound-state energy levels is interesting for
reasons. First, the recent dramatic increase in the accura
experiments that measure the transition frequencies in hy
gen and deuterium@1–3# necessitates a numerical evaluati
~nonperturbative in the binding Coulomb field! of the radia-
tive corrections to the spectrum of atomic systems with l
nuclear chargeZ. Second, the numerical calculation serves
an independent test of analytic evaluations which are ba
on an expansion in the binding field with an expansion
rameterZa.

In order to address both issues, a high-precision nume
evaluation of the self energy of an electron in the grou
state in hydrogenlike ions has been performed@4,5#. The
approach outlined in@4# is generalized here to theL shell,
and numerical results are obtained for the (n52) states
2S1/2, 2P1/2, and 2P3/2. Results are provided for atomi
hydrogen, He1, Li21, Be31, and B41.

It has been pointed out in@4,5# that the nonperturbative
effects~in Za) can be large even for low nuclear charge a
exceed the current experimental accuracy for atomic tra
tions. For example, the difference between the sum of
analytically evaluated terms up to the order ofa (Za)6 and
the final numerical result for the ground state is roughly
kHz for atomic hydrogen and about 3200 kHz for He1. For
the 2S state the difference is 3.5 kHz for atomic hydrog
and 412 kHz for He1. The large difference between the r
sult obtained by an expansion inZa persists even after th
inclusion of a result recently obtained in@6# for the logarith-
mic term of ordera (Za)7ln(Za)22. For the ground state, th
difference between the all-order numerical result and the s
of the perturbative terms is still 13 kHz for atomic hydrog
and 1600 kHz for He1. For the 2S state, the difference
amounts to 1.6 kHz for atomic hydrogen and to 213 kHz
He1.
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These figures should be compared to the current exp
mental precision. The most accurately measured transitio
date is the 1S-2S frequency in hydrogen; it has been me
sured with a relative uncertainty of 1.8 parts in 1014 or 46 Hz
@3#. This experimental progress is due in part to the use
frequency chains that bridge the range between optical
quencies and the microwave cesium time standard. The
certainty of the measurement is likely to be reduced by
order of magnitude in the near future@3,7#. With trapped
hydrogen atoms, it should be feasible to observe the 1S-2S
frequency with an experimental linewidth that approach
the 1.3 Hz natural width of the 2S level @8,9#.

The perturbation series inZa is slowly convergent. The
all-order numerical calculation presented in this paper ess
tially eliminates the uncertainty from unevaluated high
order analytic terms, and we obtain results for the self-ene
remainder functionGSE with a precision of roughly 0.8
3Z4 Hz for the ground state of atomic hydrogen and 1
3Z4 Hz for the 2S state.

In the evaluation, we take advantage of resummation
convergence acceleration techniques. The resummation t
niques provide an efficient method of evaluation of t
Dirac-Coulomb Green function to a relative uncertainty
10224 over a wide parameter range@5#. The convergence
acceleration techniques remove the principal numerical
ficulties associated with the singularity of the relativis
propagators for nearly equal radial arguments@10#.

The one-photon self-energy treated in the current inve
gation is about two orders of magnitude larger than the ot
contributions to the Lamb shift in atomic hydrogen. A com
prehensive review of the various contributions to the La
shift in hydrogenlike atoms in the full range of nucle
charge numbersZ51 –110 has been given in@11–14#.

This paper is organized as follows. The method of eva
ation is discussed in Sec. II. The calculation is divided int
low-energy part and a high-energy contribution. The lo
energy part is treated in Sec. III, and the high-energy par
discussed in Sec. IV. Numerical results are compiled in S
V. Also in Sec. V, we compare numerical and analytic r
sults for the Lamb shift in the region of low nuclear char
numbers. Of special importance is the consistency ch
with available analytic results@15,16# for higher-order bind-
©2001 The American Physical Society12-1
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ing corrections to the Lamb shift. We make concluding
marks in Sec. VI.

II. METHOD OF EVALUATION

A. Status of analytic calculations

The ~real part of the! energy shiftDESE due to the elec-
tron self-energy radiative correction is usually written as

DESE5
a

p

~Za!4

n3
F~nl j ,Za! mec2, ~2.1!

where F is a dimensionless quantity. In the following, th
natural unit system with\5c5me51 ande254pa is em-
ployed. Note thatF(nl j ,Za) is a dimensionless function
which depends for a given atomic state with quantum nu
bersn, l, andj on only one argument~the couplingZa). For
excited states, the~nonvanishing! imaginary part of the self-
energy is proportional to the~spontaneous! decay width of
the state. We will denote here thereal part of the self-energy
by DESE, exclusively. The semianalytic expansion
F(nl j ,Za) about Za50 for a general atomic state wit
quantum numbersn, l, and j gives rise to the semianalyti
expansion,

F~nl j ,Za!5A41~nl j ! ln~Za!221A40~nl j !1~Za! A50~nl j !

1~Za!2 @A62~nl j ! ln2~Za!221A61~nl j !

3 ln~Za!221GSE~nl j ,Za!#. ~2.2!

For particular states, some of the coefficients may van
Notably, this is the case forP states, which are less singula
thanSstates at the origin@see Eq.~2.4! below#. For thenS1/2
state (l 50,j 51/2), none of the terms in Eq.~2.2! vanishes,
and we have

F~nS1/2,Za!5A41~nS1/2! ln~Za!221A40~nS1/2!

1~Za! A50~nS1/2!1~Za!2

3@A62~nS1/2! ln2~Za!221A61~nS1/2!

3 ln~Za!221GSE~nS1/2,Za!#. ~2.3!

The A coefficients have two indices, the first of which d
notes the power ofZa @including those powers explicitly
shown in Eq.~2.1!#, while the second index denotes th
power of the logarithm ln(Za)22. For P states, the coeffi-
cientsA41, A50, andA62 vanish, and we have

F~nPj ,Za!5A40~nPj !1~Za!2 @A61~nPj !

3 ln~Za!221GSE~nPj ,Za!#. ~2.4!

For S states, the self-energy remainder functionGSE can be
expanded semianalytically as

GSE~nS1/2,Za!5A60~nS1/2!1~Za! @A71~nS1/2! ln~Za!22

1A70~nS1/2!1o~Za!# ~2.5!
04251
-

-

h.

~for the ‘‘order’’ symbolso andO we follow the usual con-
vention, see, e.g.,@17,18#!. For P states, the semianalyti
expansion ofGSE reads

GSE~nPj ,Za!5A60~nPj !1~Za! @A70~nPj !1o~Za!#.
~2.6!

The fact thatA71(nPj ) vanishes has been pointed out in@6#.
We list below the analytic coefficients and the Bethe log
rithms relevant to the atomic states under investigation.
the ground state, the coefficientsA41 andA40 were obtained
in @19–25#, the correction termA50 was found in@26–28#,
and the higher-order binding correctionsA62 and A61 were
evaluated in@29–37,15#. The results are

A41~1S1/2!5 4
3 ,

A40~1S1/2!5 10
9 2 4

3 lnk0~1S!,

A50~1S1/2!54p @ 139
1282 1

2 ln 2#,

A62~1S1/2!521,

A61~1S1/2!5 28
3 ln22 21

20 . ~2.7!

The Bethe logarithm lnk0(1S) has been evaluated in@38# and
@39–43# as

ln k0~1S!52.984 128 555 8~3!. ~2.8!

For the 2S state, we have

A41~2S1/2!5 4
3 ,

A40~2S1/2!5 10
9 2 4

3 ln k0~2S!,

A50~2S1/2!54p @ 139
1282 1

2 ln 2#,

A62~2S1/2!521,

A61~2S1/2!5 16
3 ln 21 67

30 . ~2.9!

The Bethe logarithm lnk0(2S) has been evaluated~see@38–
43#, the results exhibit varying accuracy! as

ln k0~2S!52.811 769 893~3!. ~2.10!

It might be worth noting that the value for lnk0(2S) given in
@44# evidently contains a typographical error. Our indepe
dent reevaluation confirms the result given in Eq.~2.10!,
which was originally obtained in@38# to the required preci-
sion. For the 2P1/2 state we have

A40~2P1/2!52 1
6 2 4

3 ln k0~2P!,

A61~2P1/2!5 103
180. ~2.11!

Note that a general analytic result for the logarithmic corr
tion A61 as a function of the bound-state quantum numbern,
l, and j can be inferred from Eq.~4.4a! of @34,35# upon
subtraction of the vacuum polarization contribution impli
2-2
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itly contained in the quoted equation. The Bethe logarit
for the 2P states reads@38,45#

ln k0~2P!520.030 016 708 9~3!. ~2.12!

Because the Bethe logarithm is an inherently nonrelativi
quantity, it is spin-independent and therefore independen
the total angular momentumj for a given orbital angular
momentuml. For the 2P3/2 state the analytic coefficients ar

A40~2P3/2!5 1
12 2 4

3 ln k0~2P!,

A61~2P3/2!5 29
90 . ~2.13!

We now consider the limit of the functionGSE(Za) as
Za→0. The higher-order terms in the potential expans
~see Fig. 3 below! and relativistic corrections to the wav
function both generate terms of higher order inZa which are
manifest in Eq.~2.2! in the form of the nonvanishing func
tion GSE(Za), which summarizes the effects of the relati
istic corrections to the bound electron wave function and
higher-order terms in the potential expansion. For very s
virtual photons, the potential expansion fails and genera
an infrared divergence which is cut off by the atomic m
mentum scaleZa. This cutoff for theinfrared divergence is
one of the mechanisms that leads to the logarithmic term
Eq. ~2.2!. Some of the nonlogarithmic terms of relative ord
(Za)2 in Eq. ~2.2! are generated by the relativistic corre
tions to the wave function. The functionGSE does not van-
ish, but approaches a constant in the limitZa→0. This con-
stant can be determined by analytic or semianaly
calculations; it is referred to as theA60 coefficient, i.e.,

A60~nl j !5GSE~nl j ,0!. ~2.14!

The evaluation of the coefficientA60(1S1/2) has been histori-
cally problematic@15,34–37#. For the 2S state, there is cur-
rently only one precise analytic result available~Ref. @15#!,

A60~2S1/2!5231.840 47~1!. ~2.15!

For the 2P1/2 state, the analytically obtained result is~Ref.
@16#!

A60~2P1/2!520.998 91~1!, ~2.16!

and for the 2P3/2 state, we have~Ref. @16#!

A60~2P3/2!520.503 37~1!. ~2.17!

The analytic evaluations essentially rely on an expansion
the relativistic Dirac-Coulomb propagator in powers of t
binding field, i.e., in powers of Coulomb interactions of t
electron with the nucleus. In numerical evaluations, the bi
ing field is treated nonperturbatively, and no expansion
performed.

B. Formulation of the numerical problem

Numerical cancellations are severe for small nucl
charges. In order to understand the origin of the numer
cancellations it is necessary to consider the renormaliza
04251
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of the self-energy. The renormalization procedure postula
that the self-energy is essentially the effect on the bou
electron due to the self-interaction with its own radiati
field, minus the same effect on a free electron which is
sorbed in the mass of the electron and therefore not obs
able. The self-energy of the bound electron is the resid
effect obtained after the subtraction of two large quantiti
Terms associated with renormalization counterterms are
order 1 in theZa expansion, whereas the residual effect is
order (Za)4 @see Eq.~2.1!#. This corresponds to a loss o
roughly nine significant digits atZ51. Consequently, even
the precise evaluation of the one-photon self-energy i
Coulomb field presented in@46# extends only down toZ
55. Among the self-energy corrections in one-loop a
higher-loop order, numerical cancellations in absolute ter
are most severe for theone-loop problem because of th
large size of the effect of the one-loop self-energy correct
on the spectrum.

For our high-precision numerical evaluation, we st
from the regularized and renormalized expression for
one-loop self-energy of a bound electron,

DESE5 lim
L→`

H i e2 ReE
CF

dv

2pE dk

~2p!3
Dmn~k2,L!

3K c̄Ugm
1

p”2k”212g0V
gn UcL 2DmJ

5 lim
L→`

H 2 i e2 ReE
C

dv

2pE dk

~2p!3
Dmn~k2,L!

3^cu am eik•x G~En2v! an e2 ik•x uc&2DmJ ,

~2.18!

whereG denotes the Dirac-Coulomb propagator,

G~z!5
1

a•p1b1V2z
, ~2.19!

and Dm is the L-dependent~cutoff-dependent! one-loop
mass counter term,

Dm5
a

p
~ 3

4 ln L21 3
8 ! ^b&. ~2.20!

The photon propagatorDmn(k2,L) in Eq. ~2.18! in Feynman
gauge reads

Dmn~k2,L!52S gmn

k21 i e
2

gmn

k22L21 i e
D . ~2.21!

The contour CF in Eq. ~2.18! is the Feynman contour
whereas the contourC is depicted in Fig. 1. The contourC is
employed for thev integration in the current evaluation@see
the last line of Eq.~2.18!#. The energy variablez in Eq.
~2.19! therefore assumes the value
2-3
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z5En2v, ~2.22!

where En is the Dirac energy of the atomic state, andv
denotes the complex-valued energy of the virtual photon
is understood that the limitL→` is takenafter all integrals
in Eq. ~2.18! are evaluated.

The integration contour for the complex-valued energy
the virtual photonv in this calculation is the contourC em-
ployed in @46–49# and depicted in Fig. 1. The integration
along the low-energy contourCL and the high-energy con
tour CH in Fig. 1 give rise to the low- and the high-energ
contributionsDEL andDEH to the self-energy, respectively
Here, we employ a further separation of the low-energy
tegration contourCL into an infrared contourCIR and a
middle-energy contourCM shown in Fig. 2. This separatio
gives rise to a separation of the low-energy partDEL into the
infrared partDEIR and the middle-energy partDEM ,

DEL5DEIR1DEM . ~2.23!

FIG. 1. Integration contourC for the integration over the energ
v5En2z of the virtual photon. The contourC consists of the low-
energy contourCL and the high-energy contourCH . Lines shown
displaced directly below and above the real axis denote branch
from the photon and electron propagator. Crosses denote p
originating from the discrete spectrum of the electron propaga
The contour used in this work corresponds to the one used in@47#.

FIG. 2. Separation of the low-energy contourCL into the infra-
red partCIR and the middle-energy partCM . As in Fig. 1, the lines
directly above and below the real axis denote branch cuts from
photon and electron propagator. Strictly speaking, the figure is v
only for the ground state. For excited states, some of the cros
which denote poles originating from the discrete spectrum of
electron propagator, are positioned to the right of the line Rv
50. These poles are subtracted in the numerical evaluation.
04251
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For the low-Z systems discussed here, all complications t
arise for excited states due to the decay into the ground s
are relevant only for the infrared part. Except for the furth
separation into the infrared and the middle-energy part,
same basic formulation of the self-energy problem as in@47#
is used. This leads to the following separation: for the inf
red partDEIR ,

vP~0, 1
10 En!6 id,

for the middle-energy partDEM ,

vP~ 1
10 En ,En!6 id,

and for the high-energy partDEH ,

vPEn1 i ~2`,1`!.

Integration along these contours gives rise to the infrared,
middle-energy, and the high-energy contributions to the
ergy shift. For all of these contributions, lower-order term
are subtracted in order to obtain the contribution to the s
energy of order (Za)4. We obtain for the infrared part,

DEIR5
a

p F 21

200
^b&1

43

600
^V&1

~Za!4

n3
F IR~nl j ,Za!G ,

~2.24!

whereF IR(nl j ,Za) is a dimensionless function of order on
The middle-energy part is recovered as

DEM5
a

p F279

200
^b&1

219

200
^V&1

~Za!4

n3
FM~nl j ,Za!G ,

~2.25!

and the high-energy part reads@47,48#

DEH5Dm1
a

p F2
3

2
^b&2

7

6
^V&1

~Za!4

n3
FH~nl j ,Za!G .

~2.26!

The infrared part is discussed in Sec. III A. The midd
energy part is divided into a middle-energy subtraction te
FMA and a middle-energy remainderFMB . The subtraction
termFMA is discussed in Sec. III B, the remainder termFMB
is treated in Sec. III C. We recover the middle-energy te
as the sum

FM~nl j ,Za!5FMA~nl j ,Za!1FMB~nl j ,Za!. ~2.27!

A similar separation is employed for the high-energy pa
The high-energy part is divided into a subtraction termFHA ,
which is evaluated in Sec. IV A, and the high-energy rema
der FHB , which is discussed in Sec. IV B. The sum of th
subtraction term and the remainder is

FH~nl j ,Za!5FHA~nl j ,Za!1FHB~nl j ,Za!. ~2.28!

The total energy shift is given as

ts
les
r.

e
id
es,
e
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DESE5DEIR1DEM1EH2Dm

5
a

p

~Za!4

n3
@F IR~nl j ,Za!

1FM~nl j ,Za!1FH~nl j ,Za!#. ~2.29!

The scaled self-energy functionF defined in Eq.~2.1! is
therefore obtained as

F~nl j ,Za!5F IR~nl j ,Za!1FM~nl j ,Za!1FH~nl j ,Za!.
~2.30!

In analogy to the approach described in@46,47,49#, we define
the low-energy part as the sum of the infrared part and
middle-energy part,

DEL5DEIR1DEM

5
a

p F3

2
^b&1

7

6
^V&1

~Za!4

n3
FL~nl j ,Za!G ,

~2.31!

where

FL~nl j ,Za!5F IR~nl j ,Za!1FM~nl j ,Za!. ~2.32!

The limits for the functionsFL(nl j ,Za) andFH(nl j ,Za) as
Za→0 were obtained in@5,48–50#.

C. Treatment of the divergent terms

The free-electron propagator

F5
1

a•p1b2z
~2.33!

and the full electron propagatorG defined in Eq.~2.19! fulfill
the following identity, which is of particular importance fo
the validity of the method used in the numerical evaluat
of the all-order binding correction to the Lamb shift,

G5F2F V F1F V G V F. ~2.34!

This identity leads naturally to a separation of the on
photon self-energy into a zero-vertex, a single-vertex, an
many-vertex term. This is represented diagrammatically
Fig. 3.

All ultraviolet divergences which occur in the one-phot
problem~mass counter term and vertex divergence! are gen-
erated by the zero-vertex and the single-vertex terms.
many-vertex term is ultraviolet safe. Of crucial importance
the observation that one may additionally simplify the pro
lem by replacing the one-potential term with an approxim
expression in which the potential is ‘‘commuted to the o
side.’’ The approximate expression generates all divergen
and all terms of lower order thana (Za)4 present in the
one-vertex term. Unlike the raw one-potential term, it
amenable to significant further simplification and can be
duced toone-dimensional numerical integrals that can
evaluated easily~a straightforward formulation of the self
04251
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energy problem requires athree-dimensional numerical inte
gration!. Without this significant improvement, an all-orde
calculation would be much more difficult at low nucle
charge, because the lower-order terms would introduce
nificant further numerical cancellations.

In addition, the special approximate resolvent can be u
effectively for an efficient subtraction scheme in the midd
energy part of the calculation. In the infrared part, such
subtraction is not used because it would introduce infra
divergences.

We now turn to the construction of the special appro
mate resolvent, which will be referred to asGA and will be
used in this calculation to isolate the ultraviolet divergenc
in the high-energy part~and to provide subtraction terms i
the middle-energy part!. It is based on an approximation t
the first two terms on the right-hand side of Eq.~2.34!. The
so-called one-potential termFVF in Eq. ~2.34! is approxi-
mated by an expression in which the potential termsV are
commuted to the outside:

2FVF'2 1
2 $V,F2%. ~2.35!

Furthermore, the following identity is used:

F25S 1

a•p1b2zD
2

5
1

p2112z2
1

2 z ~b1z!

~p2112z2!2
1

2 z ~a•p!

~p2112z2!2
.

~2.36!

In 232 spinor space, this expression may be divided int
diagonal and a nondiagonal part. The diagonal part is

diag~F2!5
1

p2112z2
1

2 z ~b1z!

~p2112z2!2
. ~2.37!

The off-diagonal part is given by

FIG. 3. The exact expansion of the bound electron propagato
powers of the binding field leads to a zero-potential, a one-poten
and a many-potential term. The dashed lines denote Coulomb
tons; the crosses denote the interaction with the~external! binding
field.
2-5
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F22diag~F2!5
2 z ~a•p!

~p2112z2!2
.

We define the resolventGA as

GA5F2 1
2 $V,diag~F2!%. ~2.38!

All divergences that occur in the self-energy are genera
by the simplified propagatorGA . We define the propagato
GB as the difference ofG andGA ,

GB5G2GA5 1
2 $V,diag~F2!%2F V F1F V G V F.

~2.39!

GB does not generate any divergences and leads to
middle-energy remainder discussed in Sec. III C and
high-energy remainder~Sec. IV B!.

III. THE LOW-ENERGY PART

A. The infrared part

The infrared part is given by

DEIR52 i e2 ReE
CIR

dv

2pE dk

~2p!3
Dmn~k2!

3^cu am ei k•x G~En2v! an e2 i k•x uc&, ~3.1!

where relevant definitions of the symbols can be found
Eqs.~2.18!–~2.21!, the contourCIR is as shown in Fig. 2, and
the unregularized version of the photon propagator

Dmn~k2!52
gmn

k21 i e
~3.2!

may be used. The infrared part consists of the follow
integration region for the virtual photon:

vP~0, 1
10 En!6 i d

zP~ 9
10 En ,En!6 i d. ~3.3!

Following Secs. 2 and 3 of@47#, we write DEIR as a three-
dimensional integral@see, e.g., Eqs.~3.4!, ~3.11!, and~3.14!
of @47##

DEIR5
a

p

En

10
2

a

p
PE

(9/10) En

En
dzE

0

`

dx1 x1
2

3E
0

`

dx2 x2
2MIR~x2 ,x1 ,z!, ~3.4!

where P is the principal value and where

MIR~x2 ,x1 ,z!5(
k

(
i , j 51

2

f ı̄~x2! Gk
i j ~x2 ,x1 ,z!

3 f ̄~x1! Ak
i j ~x2 ,x1!. ~3.5!
04251
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Here, the quantum numberk is the Dirac angular quantum
number of the intermediate state,

k52 ~ l 2 j ! ~ j 1 1
2 !, ~3.6!

where l is the orbital angular momentum quantum numb
and j is the total angular momentum of the bound electro
The functionsf i(x2) ( i 51,2) are the radial wave function
defined in Eq.~A.4! in @47# for an arbitrary bound state@and
in Eq. ~A.8! in @47# for the 1S state#. We defineı̄ 532 i . The
functionsGk

i j (x2 ,x1 ,z) ( i , j 51,2) are the radial Green func
tions, which result from a decomposition of the electr
Green function defined in Eq.~2.19! into partial waves. The
explicit formulas are given in Eq.~A.16! in @47#.

The photon angular functionsAk
i j ( i , j 51,2) are defined in

Eq. ~3.15! of Ref. @47# for an arbitrary bound state. In Eq
~3.17! in @47#, specific formulas are given for the 1S state. In
Eqs.~2.2!, ~2.3!, and~2.4! of @49#, the special cases ofS1/2,
P1/2, andP3/2 states are considered. Further relevant form
las for excited states can be found in@51#. The photon angu-
lar functions depend on the energy argumentz, but this de-
pendence is usually suppressed. The summation overk in
Eq. ~3.5! extends over all negative and all positive intege
excluding zero. We observe that the integral is symme
under the interchange of the radial coordinatesx2 andx1, so
that

DEIR5
a

p

En

10
2

2 a

p
PE

(9/10) En

En
dzE

0

`

dx1 x1
2

3E
0

x1
dx2 x2

2MIR~x2 ,x1 ,z!. ~3.7!

The following variable substitution:

r 5x2 /x1 , y5a x1 ~3.8!

is made, so thatr P(0,1) andyP(0,̀ ). The scaling variable
a is defined as

a52 A12En
2. ~3.9!

The Jacobian is

U]~x2 ,x1!

]~r ,y!
U5U ]x2

]r

]x1

]r

]x2

]y

]x1

]y

U5
y

a2
. ~3.10!

The functionSIR is given by

SIR~r ,y,z!52
2 r 2 y5

a6
MIRS r y

a
,
y

a
,zD

52
2 r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

f ı̄ S r y

a D
3Gk

i j S r y

a
,
y

a
,zD f ̄S y

aD Ak
i j S r y

a
,
y

aD
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52
2 r 2 y5

a6 (
uku51

`

TIR,uku~r ,y,z!, ~3.11!

where in the last line we define implicitly the termsTIR,uku
for uku51, . . . ,̀ as

TIR,uku~r ,y,z!5 (
k56uku

(
i , j 51

2

f ı̄ S r y

a D Gk
i j S r y

a
,
y

a
,zD

3 f ̄S y

aD Ak
i j S r y

a
,
y

aD . ~3.12!

Using the definition~3.11!, we obtain forDEIR ,

DEIR5
a

p

En

10
1

a

p
PE

(9/10) En

En
dzE

0

1

dr E
0

`

dy SIR~r ,y,z!.

~3.13!

The specification of the principal value~P! is necessary for
the excited states of theL shell because of the poles along t
integration contour which correspond to the spontaneous
cay into the ground state. Here we are exclusively concer
with the real part of the energy shift, as specified in Eq.~3.1!,
which is equivalent to the specification of the principal val
in Eq. ~3.13!. Evaluation of the integral overz is facilitated
by the subtraction of those terms that generate the singu
ties along the integration contour~for higher excited states
there can be numerous bound-state poles, as pointed o
@51,52#!. For the 2S and 2P1/2 states, only the pole contri
bution from the ground state must be subtracted. For
2P3/2 state, pole contributions originating from the 1S, the
2S, and the 2P1/2 states must be taken into account. T
numerical evaluation of the subtracted integrand proce
along ideas outlined in@49,51# and is not discussed here
any further detail.

The scaling parametera for the integration overy is cho-
sen to simplify the exponential dependence of the functioS
defined in Eq.~3.11!. The main exponential dependence
given by the relativistic radial wave functions~upper and
lower components!. Both components@ f 1(x) and f 2(x)]
vary approximately as~neglecting relatively slowly varying
factors!

exp~2a x/2! ~for largex!.

The scaling variablea, expanded in powers ofZa, is

a52 A12En
2

52A12S 12
~Za!2

2 n2
1O@~Za!4# D 2

52
Za

n
1O@~Za!3#. ~3.14!

Therefore,a is just twice theinverse of the Bohr radius
n/(Za) in the nonrelativistic limit. The product
04251
e-
ed

ri-

in

e

ds

f ı̄ S ry

a D3 f ̄S y

aD for arbitrary ı̄ ,̄P$1,2%

@which occurs in Eq.~3.11!# depends on the radial argumen
approximately as

e2y3exp@ 1
2 ~12r ! y# ~for largey!.

Note that the main dependence as given by the te
exp(2y) is exactly the weight factor of the Gauss-Lague
integration quadrature formula. The deviation from the ex
exp(2y)-type behavior becomes smaller asr→1. This is fa-
vorable because the region nearr 51 gives a large contribu-
tion to the integral in Eq.~3.13!.

The sum overuku in Eq. ~3.11! is carried out locally, i.e.,
for each set of argumentsr ,y,z. The sum overuku is abso-
lutely convergent. Foruku→`, the convergence of the sum
governed by the asymptotic behavior of the Bessel functi
that occur in the photon functionsAk

i j ( i , j 51,2) @see Eqs.
~3.15! and ~3.16! in @47##. The photon functions contain
products of two Bessel functions of the formJl(r2/1), where
Jl stands for eitherj l or j l8 , and the indexl is in the range
l P$uku21,uku,uku11%. The argument is eitherr25(En
2z) x2 or r15(En2z) x1. The asymptotic behavior of the
two relevant Bessel functions for largel ~and therefore large
uku) is

j l8~x!5
l

x

xl

~2l 11!!! F11OS 1

l D G ~3.15!

and

j l~x!5
xl

~2l 11!!! F11OS 1

l D G . ~3.16!

This implies that when min$r2,r1%5r2,l, the function
Jl(r2) vanishes with increasingl approximately as
(e r2/2l ) l . This rapidly converging asymptotic behavior se
in as soon asl'uku.r25r v y/a @see Eqs.~2.22! and
~3.12!#. Due to the rapid convergence foruku.r2, the maxi-
mum angular-momentum quantum numberuku in the nu-
merical calculation of the infrared part is less than 300

Note that becausezP( 9
10 En ,En) in the infrared part,v

, 1
10 En .
The integration scheme is based on a crude estimate o

dependence of the integrandSIR(r ,y,z) defined in Eq.~3.11!
on the integration variablesr, y, andz. The main contribution
to the integral is given by the region where the arguments
the Whittaker functions as they occur in the Green funct
@see Eq.~A.16! in @47## are much larger than the Dirac an
gular momentum,

2 c
y

a
@uku

~see also p. 56 of@48#!. We assume the asymptotic form o
the Green function given in Eq.~A.3! in @48# applies, and we
attribute a factor
2-7
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TABLE I. Infrared part for theK- and L-shell states,F IR(1S1/2,Za), F IR(2S1/2,Za), F IR(2P1/2,Za),
andF IR(2P3/2,Za), evaluated for low-Z hydrogenlike ions. The calculations were performed with the
merical value ofa215137.036 for the fine-structure constant.

Z FIR(1S1/2,Za) F IR(2S1/2,Za) F IR(2P1/2,Za) F IR(2P3/2,Za)

1 7.236 623 736 8~1! 7.479 764 180~1! 0.085 327 852~1! 0.082 736 497~1!

2. 5.539 002 119 1~1! 5.782 025 637~1! 0.086 073 669~1! 0.083 279 461~1!

3 4.598 155 821 8~1! 4.840 923 962~1! 0.087 162 510~1! 0.084 091 830~1!

4 3.963 124 140 6~1! 4.205 501 798~1! 0.088 543 188~1! 0.085 140 788~1!

5 3.493 253 319 4~1! 3.735 114 958~1! 0.090 180 835~1! 0.086 403 178~1!
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exp@2~12r ! c y/a#

to the radial Green functionsGk
i j as they occur in Eq.~3.11!.

Note that relatively slowly varying factors are replaced
unity. The products of the radial wave functionsf ı̄ and f ̄ ,
according to the discussion following Eq.~3.14!, behave as

e2y exp@ 1
2 ~12r ! y#

for largey. The photon functionsAk
i j in Eq. ~3.11! give rise

to an approximate factor

sin@~12r ! ~En2z! y/a#

~12r !
. ~3.17!

Therefore@see also Eq.~2.12! in @48##, we base our choice o
the integration routine on the approximation

e2y expF2S c

a
2

1

2D ~12r ! yG3
sin@~12r ! ~En2z! y/a#

~12r !
~3.18!

for SIR . The three-dimensional integral in Eq.~3.13! is
evaluated by successive Gaussian quadrature. Details o
integration procedure can be found in@5#.

In order to check the numerical stability of the results, t
calculations are repeated with three different values of
fine-structure constanta,

a,51/137.036 000 5,

a051/137.036 000 0, ~3.19!

and

a.51/137.035 999 5.

These values are close to the 1998 CODATA recommen
value ofa215137.035 999 76(50)@53#. The calculation was
parallelized using the message passing interface~MPI! and
carried out on a cluster of Silicon Graphics workstations a
on an IBM 9276 SP/2 multiprocessor system@54#. The re-
sults for the infrared partF IR , defined in Eq.~2.24!, are
given in Table I for a value ofa215a0

215137.036. This
value ofa will be used exclusively in the numerical evalu
ations presented here. For numerical results obtained by
ploying the values ofa, anda. @see Eq.~3.19!# we refer to
@5#.
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B. The middle-energy subtraction term

The middle-energy part is given by

DEM52 i e2 E
CM

dv

2p E d3k

~2p!3
Dmn~k2!

3^cu am ei k•xG~En2v! an e2 i k•x uc&,

~3.20!

where relevant definitions of the symbols can be found
Eqs. ~2.18!–~2.21! and Eq.~3.2!, and the contourCM is as
shown in Fig. 2. The middle-energy part consists of the f
lowing integration region for the virtual photon:

vP~ 1
10 En ,En!6 i d

zP~0, 9
10 En!6 i d. ~3.21!

The numerical evaluation of the middle-energy part is si
plified considerably by the decomposition of the relativis
Dirac-Coulomb Green functionG as

G5GA1GB , ~3.22!

whereGA is defined in Eq.~2.38! and represents the sum o
an approximation to the so-called zero- and one-poten
terms generated by the expansion of the Dirac-Coulo
Green functionG in powers of the binding fieldV. We define
the middle-energy subtraction termFMA as the expression
obtained upon substitution of the propagatorGA for G in Eq.
~3.20!. The propagatorGB is simply calculated as the differ
ence ofG and GA @see Eq.~2.39!#. A substitution of the
propagatorGB for G in Eq. ~3.20! leads to the middle-energ
remainderFMB which is discussed in Sec. III C. We provid
here the explicit expressions

DEMA52 i e2 E
CM

dv

2p E dk

~2p!3
Dmn~k2!

3^cu am ei k•x GA~En2v! an e2 i k•x uc&

~3.23!

and
2-8
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DEMB52 i e2 E
CM

dv

2p E d3k

~2p!3
Dmn~k2!

3^cu am ei k•x GB~En2v! an e2 i k•x uc&.

~3.24!

Note that the decomposition of the Dirac-Coulomb Gre
function as in Eq.~3.22! is not applicable in the infrared pa
because of numerical problems for ultrasoft photons~infra-
red divergences!. Rewriting Eq.~3.23! appropriately into a
three-dimensional integral@5,47,48#, we have

DEMA5
a

p

9

10
En2

2 a

p E
0

(9/10) En
dzE

0

`

dx1 x1
2

3E
0

x1
dx2 x2

2 MMA~x2 ,x1 ,z!. ~3.25!

The functionMMA(x2 ,x1 ,z) is defined in analogy to the
function MIR(x2 ,x1 ,z) defined in Eq.~3.5! for the infrared
part. Also, we define a functionSMA(x2 ,x1 ,z) in analogy to
the functionSIR(x2 ,x1 ,z) given in Eq.~3.11! for the infrared
part, which will be used in Eq.~3.28! below. We have

SMA~r ,y,z!52
2 r 2 y5

a6
MMAS r y

a
,
y

a
,zD

52
2 r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

f ı̄ S r y

a D
3GA,k

i j S r y

a
,
y

a
,zD f ̄S y

aD Ak
i j S r y

a
,
y

aD
52

2 r 2 y5

a6 (
uku51

`

TMA, uku~r ,y,z!. ~3.26!

The expansion of the propagatorGA into partial waves is
given in Eqs.~5.4! and~A.20! in @47# and in Eqs.~D.37! and
~D.42! in @5#. This expansion leads to the component fun
tions GA,k

i j . The termsTMA, uku in the last line of Eq.~3.26!
read

TMA, uku~r ,y,z!5 (
k56uku

(
i , j 51

2

f ı̄ S r y

a D GA,k
i j S r y

a
,
y

a
,zD

3 f ̄S y

aD Ak
i j S r y

a
,
y

aD . ~3.27!

With these definitions, the middle-energy subtraction te
DEMA can be written as

DEMA5
a

p

9

10
En1

a

p E
0

(9/10) En
dzE

0

`

dy E
0

1

dr SMA~r ,y,z!.

~3.28!

The subtracted lower-order terms yield
04251
n

-

DEMA5
a

p F279

200
^b&1

219

200
^V&1

~Za!4

n3
FMA~nl j ,Za!G .

~3.29!

The three-dimensional integral in Eq.~3.28! is evaluated by
successive Gaussian quadrature. Details of the integra
procedure can be found in@5#. The numerical results are
summarized in Table II.

C. The middle-energy remainder

The remainder term in the middle-energy part involv
the propagatorGB defined in Eq. ~2.39!, GB5G2GA ,
where G is defined in Eq.~2.19! and GA is given in Eq.
~2.38!. In analogy to the middle-energy subtraction term, t
middle-energy remainder can be rewritten as a thr
dimensional integral,

DEMB5
a

p E
0

(9/10) En
dzE

0

1

dr E
0

`

dy SMB~r ,y,z!,

~3.30!

where

SMB~r ,y,z!52
2 r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

f ı̄ S r y

a D
3GB,k

i j S r y

a
,
y

a
,zD f ̄S y

aD Ak
i j S r y

a
,
y

aD .

~3.31!

The functionsGB,k
i j are obtained as the difference of the e

pansion of the full propagatorG and the simplified propaga
tor GA into angular momenta,

GB,k
i j 5Gk

i j 2GA,k
i j , ~3.32!

where theGk
i j are listed in Eq.~A.16! in @47# and in Eq.

~D.43! in @5#, and theGA,k
i j have already been defined in Eq

~5.4! and~A.20! in @47# and in Eqs.~D.37! and~D.42! in @5#.
There are no lower-order terms to subtract, and therefor

DEMB5
a

p

~Za!4

n3
FMB~nl j ,Za!. ~3.33!

The three-dimensional integral~3.30! is evaluated by succes
sive Gaussian quadrature. Details of the integration pro
dure are provided in@5#. Numerical results for the middle
energy remainderFMB are summarized in Table II for theK-
andL-shell states.

For the middle-energy part, the separation into a subtr
tion and a remainder term has considerable computatio
advantages that become obvious upon inspection of E
~3.29! and ~3.33!. The subtraction involves a propagat
whose angular components can be evaluated by recur
@5,48#, which is not computationally time consuming. B
cause the subtraction term involves lower-order compone
@see Eq.~2.25!#, it has to be evaluated to high precisio
2-9
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TABLE II. Numerical results for the middle-energy subtraction termFMA , the middle-energy remainde
term FMB , and the middle-energy termFM . The middle-energy termFM is given as the sumFM(nl j ,Za)
5FMA(nl j ,Za)1FMB(nl j ,Za) @see also Eqs.~2.25!, ~3.29!, and~3.33!#.

Z FMA(1S1/2,Za) FMA(2S1/2,Za) FMA(2P1/2,Za) FMA(2P3/2,Za)

1 2.699 379 904 5~1! 2.720 878 318~1! 0.083 207 314~1! 0.701 705 240~1!

2 2.659 561 381 1~1! 2.681 820 660~1! 0.084 208 832~1! 0.701 850 024~1!

3 2.623 779 453 0~1! 2.647 262 568~1! 0.085 831 658~1! 0.702 091 147~1!

4 2.591 151 010 1~1! 2.616 290 432~1! 0.088 040 763~1! 0.702 426 850~1!

5 2.561 096 522 1~1! 2.588 297 638~1! 0.090 803 408~1! 0.702 854 461~1!

Z FMB(1S1/2,Za) FMB(2S1/2,Za) FMB(2P1/2,Za) FMB(2P3/2,Za)

1 1.685 993 923 2~1! 1.784 756 705~2! 0.771 787 771~2! 20.094 272 681(2)
2 1.626 842 294 5~1! 1.725 583 798~2! 0.770 778 394~2! 20.094 612 071(2)
3 1.571 406 090 7~1! 1.670 086 996~2! 0.769 153 314~2! 20.095 165 248(2)
4 1.519 082 768 6~1! 1.617 650 004~2! 0.766 954 435~2! 20.095 922 506(2)
5 1.469 482 409 0~1! 1.567 873 140~2! 0.764 220 149~2! 20.096 874 556(2)

Z FM(1S1/2,Za) FM(2S1/2,Za) FM(2P1/2,Za) FM(2P3/2,Za)

1 4.385 373 827 7~1! 4.505 635 023~2! 0.854 995 085~2! 0.607 432 559~2!

2 4.286 403 675 7~1! 4.407 404 458~2! 0.854 987 226~2! 0.607 237 953~2!

3 4.195 185 543 6~1! 4.317 349 564~2! 0.854 984 972~2! 0.606 925 899~2!

4 4.110 233 778 8~1! 4.233 940 436~2! 0.854 995 198~2! 0.606 504 344~2!

5 4.030 578 931 1~1! 4.156 170 778~2! 0.855 023 557~2! 0.605 979 905~2!
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numerically~in a typical case, a relative uncertainty of 10219

is required!. This high precision requires in turn a large num
ber of integration points for the Gaussian quadratures, wh
is possible only if the numerical evaluation of the integra
is not computationally time consuming. For the remaind
term, no lower-order terms have to be subtracted, and
relative precision required of the integrals is in the range
10211•••1029. A numerical evaluation to this lower level o
precision is feasible, although the calculation of the Gre
function GB is computationally more time consuming tha
that of GA @5,47,48#. The separation of the high-energy pa
into a subtraction term and a remainder term, which is d
cussed in Sec. IV, is motivated by analogous considerat
as for the middle-energy part. In the high-energy part, t
separation is even more important than in the middle-ene
part because of the occurrence of infinite terms that nee
be subtracted analytically before a numerical evaluation
proceed@see Eq.~4.8! below#.

We now summarize the results for the middle-energy p
The middle-energy part is the sum of the middle-energy s
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traction termFMA and the middle-energy remainderFMB
@see also Eq.~2.27!#. Numerical results are summarized
Table II for theK- andL-shell states. The low-energy partFL
is defined as the sum of the infrared contributionF IR and the
middle-energy contributionFM @see Eq.~2.32!#. The results
for FL are provided in Table III for theK- andL-shell states.
The limits for the low-energy part as a function of the boun
state quantum numbers can be found in Eq.~7.80! of @5#:

FL~nl j ,Za!5
4

3
d l ,0 ln~Za!222

4

3
ln k0~n,l !1S ln22

11

10D 1

n

1S 2 ln 22
16

15D 1

2 l 11
1S 3

2
ln 22

7

4D
3

1

k ~2 l 11!
1S 2

3

2
ln 21

9

4D 1

uku

1S 4

3
ln 22

1

3D d l ,01S ln 22
5

6D n22 l 21

n ~2 l 11!
TABLE III. Low-energy part FL for the K- and L-shell statesFL(1S1/2,Za), FL(2S1/2,Za),
FL(2P1/2,Za), andFL(2P3/2,Za), evaluated for low-Z hydrogenlike ions.

Z FL(1S1/2,Za) FL(2S1/2,Za) FL(2P1/2,Za) FL(2P3/2,Za)

1 11.621 997 564 5~1! 11.985 399 203~2! 0.940 322 937~2! 0.690 169 056~2!

2 9.825 405 794 7~1! 10.189 430 095~2! 0.941 060 895~2! 0.690 517 414~2!

3 8.793 341 365 4~1! 9.158 273 526~2! 0.942 147 482~2! 0.691 017 729~2!

4 8.073 357 919 4~1! 8.439 442 234~2! 0.943 538 386~2! 0.691 645 132~2!

5 7.523 832 250 6~1! 7.891 285 736~2! 0.945 204 392~2! 0.692 383 083~2!
2-10
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1O~Za!. ~3.34!

The limits for the states under investigation in this paper

FL~1S1/2,Za!5~4/3! ln~Za!2221.554 6421O~Za!,

FL~2S1/2,Za!5~4/3! ln~Za!2221.191 4971O~Za!,

FL~2P1/2,Za!50.940 0221O~Za!,

FL~2P3/2,Za!50.690 0221O~Za!. ~3.35!

These limits are consistent with the numerical data in Ta
III. For S states, the low-energy contributionFL diverges
logarithmically asZa→0, whereas forP states,FL ap-
proaches a constant asZa→0. The leading logarithm is a
consequence of an infrared divergence cut off by the ato
momentum scale. It is a nonrelativistic effect which is ge
erated by the nonvanishing probability density ofSwaves at
the origin in the nonrelativistic limit. The presence of th
logarithmic behavior forS states@nonvanishingA41 coeffi-
cient, see Eqs.~2.2! and~2.3!# and its absence forP states is
reproduced consistently by the data in Table III.

IV. THE HIGH-ENERGY PART

A. The high-energy subtraction term

The high-energy part is given by

DEH52 lim
L→`

i e2 E
CH

dv

2pE dk

~2p!3
Dmn~k2,L!

3^cu am ei k•x G~En2v! an e2 i k•x uc&, ~4.1!

where relevant definitions of the symbols can be found
Eqs.~2.18!–~2.21!, and the contourCH is as shown in Fig. 1.
The high-energy part consists of the following integrati
region for the virtual photon:

vP~En2 i `,En1 i `!

zP~2 i `,i `!. ~4.2!

The separation of the high-energy part into a subtrac
term and a remainder is accomplished as in the mid
energy part @see Eq. ~3.22!# by writing the full Dirac-
Coulomb Green functionG @Eq. ~2.19!# asG5GA1GB . We
define the high-energy subtraction termFHA as the expres-
sion obtained upon substitution of the propagatorGA for G
in Eq. ~4.1!, and a substitution of the propagatorGB for G in
Eq. ~4.1! leads to the high-energy remainderFHB which is
discussed in Sec. IV B. The subtraction term~including all
divergent contributions! is generated byGA , the high-energy
remainder term corresponds toGB . We have

DEHA52 lim
L→`

i e2 E
CH

dv

2pE d3k

~2p!3
Dmn~k2,L!

3^cu am ei k•x GA~En2v! an e2 i k•x uc&

~4.3!
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and

DEHB52 i e2 E
CH

dv

2pE dk

~2p!3
Dmn~k2!

3^cu am ei k•x GB~En2v! an e2 i k•x uc&.

~4.4!

The contributionDEHA corresponding toGA can be sepa-
rated further into a termDEHA

(1) , which contains all divergen
contributions, and a termDEHA

(2) , which contains contribu-
tions of lower order than (Za)4, but is convergent asL
→`. This separation is described in detail in@47,50#. We
have

DEHA5DEHA
(1)1DEHA

(2) . ~4.5!

We obtain forDEHA
(1) , which contains a logarithmic diver

gence asL→`,

DEHA
(1)5

a

p F S 3

4
ln L22

9

8D ^b&1S 1

2
ln 22

17

12D ^V&

1
~Za!4

n3
FHA

(1)~nl j ,Za!G . ~4.6!

For the contributionFHA
(1) , an explicit analytic result is given

in Eq. ~4.15! in @47#. This contribution is therefore not dis
cussed in any further detail here. The contributionDEHA

(2)

contains lower-order terms,

DEHA
(2)5

a

p F S 2
1

2
ln21

1

4D ^V&1
~Za!4

n3
FHA

(2)~nl j ,Za!G .

~4.7!

Altogether we have

DEHA5DEHA
(1)1DEHA

(2)

5
a

p F S 3

4
ln L22

9

8D ^b&2
7

6
^V&

1
~Za!4

n3
FHA~nl j ,Za!G . ~4.8!

The scaled functionFHA(nl j ,Za) is given by

FHA~nl j ,Za!5FHA
(1)~nl j ,Za!1FHA

(2)~nl j ,Za!. ~4.9!

The termDEHA
(2) falls naturally into a sum of four contribu

tions @47#,

DEHA
(2)5T11T21T31T4 , ~4.10!

where

T152
1

10
^V&1

~Za!4

n3
h1~nl j ,Za!,
2-11
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TABLE IV. Numerical results for the high-energy subtraction termFHA and the high-energy remainde
term FHB . The high-energy termFH is the sumFH(nl j ,Za)5FHA(nl j ,Za)1FHB(nl j ,Za).

Z FHA(1S1/2,Za) FHA(2S1/2,Za) FHA(2P1/2,Za) FHA(2P3/2,Za)

1 21.216 846 6606(1) 21.420 293 291(1) 21.081 265 954(1) 20.524 359 802(1)
2 21.214 322 5369(1) 21.417 829 864(1) 21.081 451 269(1) 20.524 385 053(1)
3 21.212 026 7141(1) 21.415 635 310(1) 21.081 760 224(1) 20.524 427 051(1)
4 21.209 942 8474(1) 21.413 693 422(1) 21.082 192 995(1) 20.524 485 727(1)
5 21.208 059 0336(1) 21.411 992 480(1) 21.082 749 845(1) 20.524 561 017(1)

Z FHB(1S1/2,Za) FHB(2S1/2,Za) FHB(2P1/2,Za) FHB(2P3/2,Za)

1 20.088 357 254(1) 20.018 280 727(5)a 0.014 546 64~1! 20.042 310 69(1)
2 20.082 758 206(1) 20.012 729 99(1) 0.014 574 21~1! 20.042 296 81(1)
3 20.076 811 229(1) 20.006 861 02(1) 0.014 620 51~1! 20.042 273 58(1)
4 20.070 590 991(1) 20.000 746 40(1) 0.014 685 82~1! 20.042 240 92(1)
5 20.064 146 139(1) 0.005 567 16~1! 0.014 770 52~1! 20.042 198 76(1)

Z FH(1S1/2,Za) FH(2S1/2,Za) FH(2P1/2,Za) FH(2P3/2,Za)

1 21.305 203 915(1) 21.438 574 018(5) 21.066 719 31(1) 20.566 670 50(1)
2 21.297 080 743(1) 21.430 559 85(1) 21.066 877 06(1) 20.566 681 86(1)
3 21.288 837 943(1) 21.422 496 33(1) 21.067 139 72(1) 20.566 700 63(1)
4 21.280 533 839(1) 21.414 439 82(1) 21.067 507 18(1) 20.566 726 65(1)
5 21.272 205 173(1) 21.406 425 32(1) 21.067 979 33(1) 20.566 759 78(1)

aResult obtained with a greater number of integration nodes than are used for the higher-Z results.
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n
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T25S 7

20
2

1

2
ln 2D ^V&1

~Za!4

n3
h2~nl j ,Za!,

T35
~Za!4

n3
h3~nl j ,Za!,

T45
~Za!4

n3
h4~nl j ,Za!. ~4.11!

The functionshi ( i 51,2,3,4) are defined in Eqs.~4.18!,
~4.19!, and ~4.21! in @47# ~see also Eq.~3.6! in @49#!. The
evaluation of the high-energy subtraction term proceeds
outlined in @47–49#, albeit with an increased accuracy an
improved calculational methods in intermediate steps of
calculation in order to overcome the severe numerical c
cellations in the low-Z region. We recoverFHA

(2) as the sum

FHA
(2)~nl j ,Za!5h1~nl j ,Za!1h2~nl j ,Za!1h3~nl j ,Za!

1h4~nl j ,Za!. ~4.12!

The scaled functionFHA(nl j ,Za) @see also Eqs.~2.26! and
~2.28!# is given by

FHA~nl j ,Za!5FHA
(1)~nl j ,Za!1FHA

(2)~nl j ,Za!.
~4.13!

The limits of the contributions FHA
(1)(nl j ,Za) and

FHA
(2)(nl j ,Za) as (Za)→0 have been investigated i

@47,49,50#. For the contributionFHA
(1)(nl j ,0), the result can be

found in Eq. ~3.5! in @49#. The limits of the functions
04251
as

e
n-

hi(nl j ,Za) ( i 51,2,3,4) asZa→0 are given as a function o
the atomic state quantum numbers in Eq.~3.8! in @49#. For
the scaled high-energy subtraction termFHA , the limits read
@see Eq.~3.9! in @49##

FHA~nl j ,Za!5S 11

10
2 ln 2D 1

n
1S 16

15
22 ln 2D 1

2 l 11

1S 1

2
ln 22

1

4D 1

k ~2 l 11!
1S 3

2
ln 22

9

4D 1

uku

1O~Za!. ~4.14!

Therefore, the explicit forms of the limits for the states und
investigation in this paper are

FHA~1S1/2,Za!521.219 6281O~Za!,

FHA~2S1/2,Za!521.423 0541O~Za!,
~4.15!

FHA~2P1/2,Za!521.081 2041O~Za!,

FHA~2P3/2,Za!520.524 3511O~Za!.

Numerical results forFHA , which are presented in Table IV
exhibit consistency with the limits in Eq.~4.15!.

B. The high-energy remainder

The remainder term in the high-energy part involves
propagatorGB defined in Eq.~2.39!, GB5G2GA , whereG
is defined in Eq.~2.19! and GA is given in Eq.~2.38!. The
energy shift is
2-12
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DEHB52
i a

p E
0

i `

dzE
0

`

dx1 x1
2E

0

x1
dx2 x2

2

3$MHB~x2 ,x1 ,z!1c.c.%, ~4.16!

where c.c. denotes the complex conjugate. The photon
ergy integration is evaluated with the aid of the substitut

z→ i u where u5
1

2 S 1

t
2t D . ~4.17!

In analogy with the middle-energy subtraction and remain
terms discussed in Secs. III B and III C@see especially Eqs
~3.26! and ~3.31!#, the functions MHB(x2 ,x1 ,z) and
SHB(r ,y,z) and the termsTHB,uku are defined implicitly in the
following:

SHB~r ,y,t !5S 11
1

t2D r 2 y5

a6
ReFMHBS r y

a
,
y

a
,i u D G

5S 11
1

t2D r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

ReF f i S r y

a D
3GB,k

i j S r y

a
,
y

a
,i u D f j S y

aD AkS r y

a
,
y

aD
2 f ı̄ S r y

a D GB,k
i j S r y

a
,
y

a
,i u D

3 f ̄S y

aDA k
i j S r y

a
,
y

aD G
5S 11

1

t2D r 2 y5

a6 (
uku51

`

THB,uku~r ,y,t !. ~4.18!

The only substantial difference from the treatment of
middle-energy remainder lies in the prefactor generated
the parametrization of the complex photon energy given
Eq. ~4.17!. The photon angular functionsAk and A k

i j ( i , j
51,2) for the high-energy partare defined in Eq.~5.8! of
Ref. @47# and in Eq.~4.3! in @49# for an arbitrary bound state
Special formulas for the ground state can be found in
~5.9! of Ref. @47#. The functionsAk andA k

i j arenot identical
to the photon angular functions for the infrared and midd
energy partsAk

i j ( i , j 51,2) which are used for the low
energy part of the calculation in Sec. III. It might be wor
mentioning that in@46–49# both the functionsAk

i j and A k
i j

are denoted by the symbolAk
i j . It is clear from the context

which of the functions is employed in each case.
In the last line of Eq.~4.18!, we implicitly define the

termsTHB,uku as
04251
n-

r

e
y

n

.

-

THB,uku~r ,y,t !5 (
k56uku

(
i , j 51

2

ReF f i S r y

a D GB,k
i j S r y

a
,
y

a
,i u D

3 f j S y

aDAkS r y

a
,
y

aD2 f ı̄ S r y

a D
3GB,k

i j S r y

a
,
y

a
,i u D f ̄S y

aDA k
i j S r y

a
,
y

aD G .
~4.19!

With these definitions, the high-energy remainder can be
written as

DEHB5
a

p E
0

1

dt E
0

1

dr E
0

`

dy SHB~r ,y,t !. ~4.20!

There are no lower-order terms to subtract, and therefor

DEHB5
a

p

~Za!4

n3
FHB~nl j ,Za!. ~4.21!

For the high-energy remainderFHB , the limits asZa→0
read@see Eq.~4.15! in @49##

FHB~nl j ,Za!5
1

2 l 11 F S 17

18
2

4

3
ln 2D d l ,01S 3

2
22 ln 2D 1

k

1S 5

6
2 ln 2D n22 l 21

n G1O~Za!. ~4.22!

For the atomic states under investigation, this leads to

FHB~1S1/2,Za!520.093 4571O~Za!,

FHB~2S1/2,Za!520.023 3641O~Za!,

FHB~2P1/2,Za!50.014 5381O~Za!,

FHB~2P3/2,Za!520.042 3151O~Za!. ~4.23!

The integration procedure for the high-energy part is adap
to the problem at hand. To this end, a crude estimate is fo
for the dependence of the functionSHB defined in Eq.~4.18!
on its arguments. The considerations leading to this estim
are analogous to those outlined in Sec. III A for the infrar
part. The result is the approximate expression

e2y expF2S 1

a t
2

1

2D ~12r ! yG ~4.24!

for SHB . This leads naturally to the definition

qHB511S 1

a t
2

1

2D ~12r !, ~4.25!

so that the~approximate! dependence ofSHB on the radial
variable at largey is exp(2qHB y). Note thatqHB may as-
sume large values (@1) ast→0; this is unlike the analogou
quantity
2-13
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11S c

a
2

1

2D ~12r !

in the infrared and the middle-energy part, whereucu
5uA12z2u,1 becausezP(0,En). Having identified the
leading exponential asymptotic behavior of the integra
SHB , it is rather straightforward to evaluate the thre
dimensional integral in Eq.~4.20! by Gauss-Laguerre an
Gauss-Legendre quadrature@5# @the scaling parametera is
defined in Eqs.~3.9! and ~3.14!#. The numerical results fo
the high-energy remainder functionFHB are found in Table
IV. These results are consistent with the limits in Eq.~4.23!.

We now turn to a brief discussion of the convergen
acceleration techniques used in the evaluation of the func
SHB defined in Eq.~4.18!. The angular momentum decomp
sition of SHB gives rise to a sum over the termsTHB,uku @see
the last line of Eq.~4.18!#, whereuku represents the modulu
of the Dirac angular momentum quantum number of the
tual intermediate state. In shorthand notation, and suppr
ing the arguments, we have

SHB} (
uku51

`

THB,uku . ~4.26!

The radial Green functionGB5GB(ry /a,y/a,z) in coordi-
nate space needs to be evaluated at the radial argum
r y /a andy/a ~where 0,r ,1), and at the energy argume
z5En2v5 i /2 (t212t) @see Eq.~4.18!#. A crucial role is
played by the ratior of the two radial arguments. Indeed, fo
uku→`, we have@see Eq.~4.7! in @48##

THB,uku5
r 2 uku

uku Fconst1OS 1

uku D G , ~4.27!

where ‘‘const’’ is independent ofuku and depends only onr,
y, and t. The series in Eq.~4.26! is slowly convergent forr
close to one, and the region nearr 51 is known to be prob-
lematic in numerical evaluations. Additionally, note that t
region atr 51 is more important at lowZ than at highZ.
This is because the functionSHB , for constanty, depends on
r roughly as exp@2y (12r)/(a t)# @see Eq.~4.24!#, wherea
52 (Za)/n1O@(Za)3#. For small Z, the Bohr radius
1/(Za) of the hydrogenlike system is large compared
high-Z systems, which emphasizes the region nearr 51. In
this region the series in Eq.~4.26! is very slowly convergent.
We have found that the convergence of this series ner
51 can be accelerated very efficiently using the combin
nonlinear-condensation transformation@10# applied to the se-
ries (k50

` tk wheretk5THB,k11 @see Eqs.~4.26! and ~4.27!#.
We first transform this series into an alternating series

a condensation transformation due to Van Wijngaard
@55,56#,

(
k50

`

tk5(
j 50

`

~21! j A j , ~4.28!

where
04251
d
-

e
n

-
s-

nts

d

y
n

A j5 (
k50

`

2k t2k ( j 11)21 . ~4.29!

We then accelerate the convergence of the alternating s
( j 50

` (21) j A j by applying the nonlinear delta transform

dn
(0)(1,S0), which is discussed extensively in@57#. The ex-

plicit formula for this transformation is given by defining

Sn5(
j 50

n

~21! j A j ~4.30!

as thenth partial sum of the Van Wijngaarden transform
input series. Thed transform reads@see Eq.~8.4-4! of @57##,

dn
(0)~1,S0!5

(
j 50

n

~21! j S n
j D ~11 j !n21

~11n!n21

Sj

Bj 11

(
j 50

n

~21! j S n
j D ~11 j !n21

~11n!n21

1

Bj 11

, ~4.31!

where

Bj5~21! j A j . ~4.32!

The convergence acceleration proceeds by calculating a
quence of transformsdn

(0) in increasing transformation orde
n. It is observed that the transforms converge much fa
than the partial sumsSn defined in Eq.~4.30!. The upper
index zero in Eq.~4.31! indicates that the transformation
started with the first termA0.

The combined transformation~combination of the con-
densation transformation and the Weniger transformati!
was found to be applicable to a wide range of slowly co
vergent monotone series~series whose terms have the sam
sign!, and many examples for its application were given
Ref. @10#. For the numerical treatment of radiative corre
tions in low-Z systems, the transformation has the advant
of removing the principal numerical difficulties associat
with the slow convergence of angular momentum decom
sitions of the propagators near their singularity for equal
dial arguments.

In a typical case, sufficient precision (10211) in the con-
vergence of the sum in Eq.~4.26! is reached in a transfor
mation order n,100 for the nonlinear transformatio
dn

(0)(1,S0), a region in which the nonlinear sequence tran
formation d is numerically stable. Although thed transfor-
mation exhibits considerable numerical stability in high
transformation orders@10,57#, inevitable round-off errors
start to accumulate significantly in an excessively high tra
formation order ofn'500 in a typical case@5#, and this
situation is avoided in the current evaluation because
transforms exhibit apparent convergence to the required
curacy before numerical round-off errors accumulate. N
that evaluation of the condensed seriesA j in Eq. ~4.29! en-
tails sampling of termsTHB,uku for rather largeuku, while
eliminating the necessity of evaluatingall termsTHB,uku up to
the maximum index. The highest angular momentumuku en-
countered in the present calculation is in excess of 4 000 0
2-14
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TABLE V. Numerical results for the scaled self-energy functionF and the self-energy remainder functio
GSE.

Z F(1S1/2,Za) F(2S1/2,Za) F(2P1/2,Za) F(2P3/2,Za)

1 10.316 793 650~1! 10.546 825 185~5! 20.126 396 37~1! 0.123 498 56~1!

2 8.528 325 052~1! 8.758 870 25~1! 20.125 816 16(1) 0.123 835 55~1!

3 7.504 503 422~1! 7.735 777 20~1! 20.124 992 24(1) 0.124 317 10~1!

4 6.792 824 081~1! 7.025 002 41~1! 20.123 968 79(1) 0.124 918 48~1!

5 6.251 627 078~1! 6.484 860 42~1! 20.122 774 94(1) 0.125 623 30~1!

Z GSE(1S1/2,Za) GSE(2S1/2,Za) GSE(2P1/2,Za) GSE(2P3/2,Za)

1 230.290 24(2) 231.185 15(9) 20.9735(2) 20.4865(2)
2 229.770 967(5) 230.644 66(5) 20.949 40(5) 20.470 94(5)
3 229.299 170(2) 230.151 93(2) 20.926 37(2) 20.456 65(2)
4 228.859 222(1) 229.691 27(1) 20.904 12(1) 20.443 13(1)
5 228.443 3723(8)a 229.255 033(8) 20.882 478(8) 20.430 244(8)

aThe result for this entry given in@4# contains a typographical error.
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However, even in extreme cases less than 3000 evalua
of particular terms of the original series are required. T
computer time for the evaluation of the slowly converge
angular-momentum expansion near the singularity is redu
by roughly three orders of magnitude by the use of the c
vergence acceleration methods.

In certain parameter regions~e.g., for large energy of the
virtual photon!, a number of terms of the input seriestk have
to be skipped before the convergence acceleration algor
defined in Eqs.~4.28!–~4.32! can be applied~in order to
avoid transient behavior of the first few terms in the su
over k). In this case, the input data for the combin
nonlinear-condensation transformation are the termstk
5THB,k111ks

, whereks denotes the number of terms that a
directly summed before the transformation is applied. Th
issues and further details regarding the application of
convergence acceleration method to QED calculations ca
found in Appendix H.2 of@5#.

C. Results for the high-energy part

The limit of the functionFH as Za→0 can be derived
easily from Eqs.~4.14! and~4.22! as a function of the bound
state quantum numbers. ForFH the limit is

FH~nl j ,Za!5S 11

10
2 ln 2D 1

n
1S 16

15
22 ln2D 1

2 l 11

1S 2
3

2
ln21

5

4D 1

k ~2 l 11!
1S 3

2
ln 22

9

4D 1

uku

1S 17

18
2

4

3
ln 2D d l ,01S 5

6
2 ln 2D n22 l 21

n ~2 l 11!

1O~Za!. ~4.33!

For the atomic states investigated here, this expression y
the numerical values

FH~1S1/2,Za!521.313 0851O~Za!,
04251
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FH~2S1/2,Za!521.446 4181O~Za!,

FH~2P1/2,Za!521.066 6671O~Za!,

FH~2P3/2,Za!520.566 6671O~Za!. ~4.34!

Numerical results for the high-energy part

FH~nl j ,Za!5FHA~nl j ,Za!1FHB~nl j ,Za! ~4.35!

are also summarized in Table IV. Note the apparent con
tency of the numerical results in Table IV with their analy
cally obtained low-Z limits in Eq. ~4.34!.

V. COMPARISON TO ANALYTIC CALCULATIONS

The numerical results for the scaled self-energy funct
F(nl j ,Za) defined in Eq.~2.1! are given in Table V, to-
gether with the results for the nonperturbative self-ene
remainder functionGSE(nl j ,Za), which is implicitly defined
in Eq. ~2.2!. Results are provided forK- and L-shell states.
The results here atZ55 are consistent with and much mo
precise than the best previous calculation@46#. The numeri-
cal results for the self-energy remainderGSE are obtained by
subtracting the analytic lower-order terms listed in Eq.~2.2!
from the complete numerical result for the scaled self-ene
function F(nl j ,Za). No additional fitting is performed.

Analytic and numerical results at lowZ can be compared
by considering the self-energy remainder functionGSE. Note
that an inconsistency in any of the analytically obtain
lower-order terms would be likely to manifest itself in
grossly inconsistent dependence ofGSE(nl j ,Za) on its ar-
gumentZa; this is not observed. ForS states, the following
analytic model forGSE is commonly assumed, which is mo
tivated in part by a renormalization-group analysis@58# and
is constructed in analogy with the pattern of the analy
coefficientsAi j in Eqs.~2.2! and ~2.3!,
2-15
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GSE~nS1/2,Za!5A60~nS1/2!1~Za! @A71~nS1/2! ln~Za!22

1A70~nS1/2!#1~Za!2 @A83~nS1/2!

3 ln3~Za!221A82~nS1/2! ln2~Za!22

1A81~nS1/2! ln~Za!221A80~nS1/2!#.

~5.1!

The ~probably nonvanishing! A83 coefficient, which intro-
duces a triple logarithmic singularity atZa50, hinders an
accurate comparison of numerical and analytic data forGSE.
A somewhat less singular behavior is expected of the dif
ence

DGSE~Za!5GSE~2S1/2,Za!2GSE~1S1/2,Za!, ~5.2!

because the leading logarithmic coefficients in any given
der of Za are generally assumed to be equal for allS states,
which would mean in particular

A71~1S1/2!5A71~2S1/2!

and

A83~1S1/2!5A83~2S1/2!. ~5.3!

Now we defineDAkl as the difference of the values of th
analytic coefficients for the two lowestS states

DAkl5Akl~2S1/2!2Akl~1S1/2!. ~5.4!

The functionDGSE defined in Eq.~5.2! can be assumed t
have the following semi-analytic expansion aboutZa50:

DGSE~Za!5DA601~Za! DA701~Za!2 @DA82 ln2~Za!22

1DA81 ln~Za!221DA801o~Za!#. ~5.5!

In order to detect possible inconsistencies in the numer
and analytic data forGSE, we difference the data forDGSE,
i.e., we consider the following finite difference approxim
tion to the derivative of the functionDGSE:

g~Z!5DGSE„~Z11! a…2DGSE~Za!. ~5.6!

We denote the analytic and numerical limits ofDGSE(Za) as
Za→0 asDA60

(an) and DA60
(nu) , respectively, and leave ope

the possibility of an inconsistency between numerical a
analytic data by keepingDA60

(nu) andDA60
(an) as distinct vari-

ables. In order to illustrate how a discrepancy could be
tected by investigating the functiong(Z), we consider spe-
cial cases of the functionDGSE(Za) andg(Z). We have for
Z50, which is determined exclusively by analytic results

DGSE~0!5DA60
(an) , ~5.7!

whereas forZ51, which is determined by numerical data

DGSE~a!5DA60
(nu)1a @DA701o~a!#, ~5.8!

and forZ52,
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DGSE~2a!5DA60
(nu)1a @2 DA701o~a!#, ~5.9!

etc. Hence forZ50, we have

g~0!5DGSE~a!2DGSE~0!

5DA60
(nu)2DA60

(an)1a @DA701o~Za!#. ~5.10!

For Z51, the value ofg is determined solely by numerica
data,

g~1!5DGSE~2a!2DGSE~a!5a @DA701o~Za!#,
~5.11!

and forZ52, we have

g~2!5DGSE~3a!2DGSE~2a!5a @DA701o~Za!#.
~5.12!

Analogous equations hold forZ.2. The analytic data and
the numerical data from Table V lead to the five valu
g(0), g(1), g(2), g(3), andg(4). A plot of the function
g(Z) serves two purposes: First, the valuesg(1), . . . ,g(4)
should exhibit apparent convergence to some limiting va
a DA70 asZ→0, and this can be verified by inspection of th
plot. Second, a discrepancy between the analytic and num
cal approaches would result in a nonvanishing value
DA60

(nu)2DA60
(an) which would appear as an inconsistency b

tween the trend in the values ofg(1), . . . , andg(4) and the
value ofg(0) @see Eq.~5.10!#.

Among the separate evaluations ofA60 for the ground
state, the result in@15# has the smallest quoted uncertaint
In Fig. 4 we display a plot ofg(Z) for low nuclear chargeZ.
A value of A60(1S1/2)5A60

(an)(1S1/2)5230.924 15(1)
@4,15,59# is used in Fig. 4. The results indicate very go
agreement between the numerical and analytic approach
the Lamb shift in the low-Z region up to the level of a few
Hz in frequency units for the low-lying atomic states~where

FIG. 4. Plot of the functiong(Z) defined in Eq.~5.6! in the
region of low nuclear charge. For the evaluation of the data poin
Z50, a value of A60(1S1/2)5230.924 15(1) is employed
@4,15,59#.
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n is the principal quantum number!. The error bars represen
the numerical uncertainty of the values in Table V, whi
correspond to an uncertainty on the level of 1.03Z4 Hz in
frequency units.

Analytic work on the correctionA60 has extended ove
three decades@15,34–37#. The complication arises that a
though the calculations are in general analytic, some rem
ing one-dimensional integrations could not be evaluated a
lytically because of the nature of the integrands@see, e.g.,
Eq. ~6.96! in @15##. Therefore a step-by-step comparison
the analytic calculations is difficult. An additional difficult
is the isolation of those analytic terms which contribute in
given order inZa, i.e., the isolation of only those term
which contribute toA60. The apparent consistency of th
numerical and analytic data in Fig. 4 represents an indep
dent consistency check on the rather involved analytic ca
lations.

Our numerical results are not inconsistent with the a
lytic result @6# for a higher-order logarithm,

A715p ~ 139
64 2 ln 2!54.65, ~5.13!

although they do not necessarily confirm it. As in@4#, we
obtain as an estimateA7155.5(1.0) ~from the fit to the nu-
merical data for bothS states!. Logarithmic terms corre-
sponding to the~probably! nonvanishingA83 coefficient
should be taken into account for a consistent fit of the c
rections toGSE. These highly singular terms are difficult t
handle with a numerical fitting procedure. The termsA83,
A82, andA81 furnish three more free parameters for the n
merical fit, where only five data points are available~in ad-
dition to the quantitiesA60, A71, andA70, which may also
be regarded as free parameters for the fitting procedure!. The
determination ofA60 by a fit from the numerical data is muc
more stable than the determination of the logarithmic corr
tion A71. We briefly note that our all-order evaluation esse
tially eliminates the uncertainty due to the unknown high
order analytic terms. Also, it is interesting to note that t
same numerical methods are employed for both theS andP
states in our all-order~in Za) calculation, whereas the ana
lytic treatment ofS andP states differs@15,16#.

The comparison of numerical and analytic results is mu
less problematic forP states, because the functionGSE is less
singular @see Eqs.~2.4! and ~2.6!#. For the 2P states, we
observe that the functionGSE(2Pj ,Za) has the same sem
analytic expansion aboutZa50 as the functionDGSE(Za)
defined forS states in Eq.~5.2!. We have

GSE~2Pj ,Za!5A60~2Pj !1~Za! A70~2Pj !1~Za!2

3@A82~2Pj ! ln2~Za!221A81~2Pj !

3 ln~Za!221A80~2Pj !1o~Za!#.

~5.14!

Hence, we plot the function

gj~Z!5GSE„2Pj ,~Z11! a…2GSE~2Pj ,Za! ~5.15!
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for j 5 1
2 and j 5 3

2 in the region of lowZ, with the notion that
an inconsistent analytic result forA60(2Pj ) would lead to
irregularity atZ50, in analogy with theS states. The nu-
merical data shown in Figs. 5 and 6 appear to be consis
with the analytic results of

A60~2P1/2!520.998 91~1!

and

A60~2P3/2!520.503 37~1! ~5.16!

obtained in@16#. In this context it may be interesting to not
that analytic results obtained in@16,52# for the higher-order
binding corrections to 2P, 3P, and 4P states have recently

FIG. 5. Comparison of numerical data and analytically eva
ated higher-order binding corrections for the 2P1/2 state. We plot
the functiong1/2(Z) defined in Eq.~5.15! in the region of lowZ.
The numerical data obtained in the current investigation appea
be consistent with the analytic result ofA60(2P1/2)
520.998 91(1) obtained in@16#.

FIG. 6. For the 2P3/2 state, we plot the functiong3/2(Z) defined
in Eq. ~5.15! in the region of lowZ. The numerical data obtained i
the current investigation appear to be consistent with the ana
result ofA60(2P3/2)520.503 37(1) from@16#.
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been confirmed indirectly@60#. Finally, although it may be
possible to obtain more accurate estimates of some hig
order analytic corrections, notably theA70 coefficient forP
states andDA70 for the two lowest-lyingS states, we have
not made such an analysis in the current work; we h
restricted the discussion to a check of the consistency w
the available results forA60.

VI. CONCLUSION

There has recently been a rather broad interest in the
merical calculation of relativistic, QED self-energy, and tw
body corrections at lowZ and the comparison of analytic an
numerical results@58,61–72#. Traditionally, the self-energy
correction for hydrogenlike systems has posed a comp
tional challenge. Here we have described a nonperturba
evaluation of the one-photon self-energy correction in hyd
genlike ions with low nuclear charge numbersZ51 to 5.
The general outline of our approach is discussed in Sec. I
Sec. III the numerical evaluation of the low-energy part~gen-
erated by virtual photons of low energy! is described. In Sec
IV we discuss the numerical evaluation of the high-ene
part, which is generated by high-energy virtual photons a
contains the formally infinite contributions, which are r
moved by the renormalization. Section IV also contains
brief discussion of the convergence acceleration method
employed in the current evaluation. We discuss in Sec. V
comparison of analytic and numerical data forK- andL-shell
D
s.
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.
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states in the region of lowZ. The main results of this pape
are contained in Table V: numerical data, nonperturbative
Za, for the scaled self-energy functionF and the self-energy
remainder functionGSE for K- and L-shell states at low
nuclear charge. The numerical accuracy of our data is 1
or better in frequency units for 1S, 2S, and both 2P states in
atomic hydrogen.

The comparison of analytic and numerical results to
level of accuracy of the numerical data, which is discusse
Sec. V, indicates that there is very good agreement for theK-
and L-shell states. The analytic and numerical data
shown in Figs. 4, 5, and 6. Our all-order evaluation elim
nates any uncertainty due to the unknown higher-order a
lytic terms; the current numerical uncertainty in the se
energy is at the level of 1 Hz for atomic hydrogen.
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