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Infinite-order non-Born-Oppenheimer perturbation theory for systems with intersecting potentials
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We analyze models for two intersecting electronic states coupled by one nuclear coordinate. The correspond-
ing model-Hamiltonians depend on a perturbation parametelts variation allows us to switch on the
nonadiabatic coupling continuously. We derive analytical expressions for the eigenstates and energies as
function of « in the diabatic representation. We rederive the expression for the energy eigenvalues by complete
resummation of the Brillouin-Wigner perturbation series in the Born-Oppenheimer basis. We find that the
divergences of the nonadiabatic coupling cancel strictly order by order. The admixture of high energy com-
ponents is shown explicitly.
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I. INTRODUCTION nor the second expression can be taken as a legitimate zero-
order Hamiltonian to establish a perturbation expansion.
The intersection of potential energy surfaces and, linkedimilar objections are widespread in the literat[i8].
with it, the breakdown of the Born-OppenheiméBO) On the other hand8rko et al, start from Eq.(1.4) and
approximatioth has attracted considerable interest as, after @alculate numerically the Rayleigh-Scdinger series for
prediction by Telle7,8], so-called “conical intersections” near-avoided intersections. Although sometimes divergent,
have turned out to play a key role in the path of photochemithis series can be Padgemmed to give the correct result. As
cal reactiong9]. These conical intersections have been syshas been noted already by Tel[&:8], the Born-Huang term,
tematically classified[10] as codimension two-crossings. which is most divergent at an intersection, gives a contribu-
Also the conceptually simpler codimension one-crossingsion of the same order of magnitude as the square of the
appear in molecular physics, e.g., in tBe< 8 Jahn-Teller nondiagonal terms. It therefore appears natural to use an
effect[11]. This effectively one-dimensional crossing is rep- a-dependent Hamiltonian of the form
resentable as a limit of avoided intersections. In this limit,
the nonadiabati¢NA) coupling matrix elements diverge se- H,=HB%+ a?HP + aHNP, (1.5
riously, so that they are not even representable in a distribu-
tional sense. If we write the Hamiltonian as For the case of a two-state system as studied %13 we
BO. LINA then show that for an intersection, the most serious diver-
H=H""+H"™, 1y gences in the energy series cancel within each order. Further,
for each value ofy, we are then able to construct an equiva-
fent diabatic Hamiltonian whose eigenenergies are easily
found. Under the further restriction that the Hamiltonian pos-
HNAZ D 4 yND. (1.2 sesses a Fulton-Gouterm_an mirr_or symr_n@ﬂj], we con-
struct the whole perturbation series explicitly and show that

Wagner[12] and v$)irko et al.[13,14 independently studied resu_mmation give§ the energies known already from the di-
this problem treating the NA-coupling perturbationally. If we abatic representation.
call the perturbation parameter Wagner studied two cases:

one can distinguish the nondiagonal nonadiabatic elemen
HNP from the diagonalBorn-Huang oneHP so that

Il. THE TWO-STATE MODEL FOR AN INTERSECTION
H,=H®%+aHP+aHP (1.3
We want to start with a Hamiltonian, consisting of two
and electronic states and one vibrational degree of freecpm
with quite general diagonaj(x) and nondiagonaf(x) in-
H,=HBO+HP+ aHNP, (1.4 teraction potentials,

order Eq.(1.3) corresponds to the BO approximation, while HDIAZE - d_+2U(X)
Eq. (1.4) corresponds to the Born-Huang adiabatic approxi- 2 dx?
mation. Wagner came to the conclusion that neither the first (2.1

which both reduce to Eq1.1) in the limit a=1. In zeroth 2
{( (To+f(X)O'l_g(X)U3 .

o IS the 2xX2 unit matrix and ther; with i=1,2,3 are the
IThe term BO-approximatiofl—5| is used, often without distinc- usual Pauli matrices. We define further the projectors on the

. _ 1 .
tion, to designate a couple of different although related methodseigenstatesT/|) of o3, o =3(1*03). The variablel
We will use the term BO-approximation and other nomenclature agnay take the two value$ and |. If {=1/], then{=|/T,
defined in[4] (for a critical review of terminology, se]). i.e., the slash symbolizes interchange of the values.
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This Hamiltonian has been used byif%ko and Cizk Dirac’s delta-function. The intricacies of this limiting pro-
[13]. It is given in a diabatic representation. In the following cess will be discussed in Appendix D. The Born-Huang term
we specify the terminus “intersection.” will then be seriously divergent as it is proportional to

If for some valuex,, the functionyf2(x) +g?(x) has a [P’(x)]? and so diverges like the square of a delta function.
minimum, we speak of an avoided intersection. Further ifThese divergencies represent the interesting feature appear-
‘/fz(xo) + gz(xo) =0, which clearly includes botffi(xy) =0 ing at intersections that we want to study. On the other hand,
andg(x,) =0, we speak of a true intersection. these divergencies depend only on the vanishing(61), we

The meaning of this definition will become clearer if we therefore will restrict our calculations to the case th@t) is
switch to the Born-Oppenheimer adiabatic representation by constanty(x)="y.
means of the unitary operator As we pursue a perturbational treatment, we have to in-
troduce a perturbation parameterinto the Hamiltonian. In

S=exdiP(x)os], (2.2 this case we are no longer considering a single Hamiltonian,
; but a whole class of them. For perturbation thedR),
with T :
these Hamiltonians have to be well defined for a whole range
f(x) of values ofa. Due to the strong divergence of the Born-
P(x)= 5 arcta 90x)° (23 Huang term in the limity— 0, the proper introduction of

will be of crucial importance. Tellef8] noted already that
The transformed HamiltoniaH, now in the adiabatic repre- the nondiagonal terms first contribute to the energy in second
sentation is order, but then their contribution is about that of the Born-
Huang term. So it seems advantageous to repR(cg by
H=S"HDPAg=HBOL HNA (2.4  aP(x). Indeed with this choice we will be able to show that
the worst divergent terms cancel exactly order by order. We
It splits into two parts, namely, the Born-Oppenheimer partnow write the nonadiabatic part as

1 d?
HBO=Z1 | — — +2U(x) | oo— VF2(x) +g%(x) o3 a1, d?
211 7 g HVA—— st — s,
27 dx?
— ! ’ 2
and the nonadiabatic part, _E[{p’ap (oo H{aP ()} 0ol (27
N dzs—l P’ +[P"(x)]? ith
=735 | 52’ =5 ({p.P () a2 + [P (X) ] 00). wit
(2.6
S,:=exfgiaP(x)o,]. (2.8

In the adiabatic representation the potential is now diagonal,

while nondiagonal contributions are found in the kinetic en-

ergy. Now we see that the distance of the potential energ§Or =1 this clearly reduces to Eq2.6), while for a=0

curves of the adiabatic states will be minimalxatif we  the nonadiabatic coupling vanishes at all, so that the BO

have an avoided intersection, or it will be zero for a truetreatment becomes exact.

intersection. Before proceeding, we note that far=1, g(x) vanishes
We fix the origin of our coordinate system so that it co-identically and Eq(2.1) is diagonalizedand still diabatig

incides with the locus of the intersectiory=0. Applying a  with S=exp(o,7/4) because this transformation changes

global gauge transformation, expg»), with an appropri- into o3 ando; into —o5.

ately chosen constant, we may always achievé(0)=0. As an example considet(x)=x%/2+1, f(x)=22x,

On the other hand, from the definition of an avoided inter-andg(x)=0. Again fora= 1, the above mentioned diagonal

section it then follows that f(0)f’(0)+g(0)g’(0) diabatic potentials have the shape of parabola with the ver-

=g(0)g’(0)=0, so thatg’(0)=0, too. tices shifted tax= = /2. The adiabatic potentials, which by
In the following we analyze the various contributions to definition do not depend oa, are similar, but with a differ-

the nonadiabatic coupling Hamiltonig@.6): The anticom-  ent connection of the branchesxat 0, so that in effect we

mutator on the right-hand-sidehs) of Eqg. (2.6) represents a get one W-shaped and one V-shaped potentigl;

momentum-dependent coupling of the electronic states=x2/2+15|\2x| (Fig. ).

while the second term is known as Born-Huang perturbation

term. If we reduce the valug:=g(0), thenonadiabatic term
P’(X) will be more and more Sp|ked at:o, the Shape of I1l. EXACT SOLUTION IN THE DIABATIC BASIS

the spike will be locally Lorentzian with a width proportional Applying the inverse of transformatia@.4) and using the

to y [Eq. (4.10]. Depending on which functions this opera- generalized operator@.7),(2.8), we can introduce a gener-
tor acts, we can sometimes interpret it in the limit-0 as  alized diabatic representation
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10 — T T T case where the Hamiltonian possesses so-called Fulton-
Gouterman symmetry16], which means here thdt(—x)
=—f(x) andU(—x)=U(x).

We note that

T T+, x<0
- S,:=ex |azsgr(x)crz 1T x>0 3.3
2 with
>
T L T
T=co ay optisin ag|oa, (3.9

which does not depend oa Forx# 0 the Hamiltonian2.4)
will reduce to the BO Hamiltoniar{2.5). On the positive
half-line we introduce eigenstates of the latter as

x Hos=Eys, (3.5

FIG. 1. The adiabatic potentialsy o, (x). which should fulfill the boundary conditions

~ £0)=1 and i(+=)=0. (3.6
HZ"=S.H,S;
Due to symmetry, we have the solutionjé(—x) on the

2 negative half-line. For the diabatic wave function, we get

- %+2U(x)> ao— VFA(X)+g%(x)
X

T h(—x),v b (—x))T, x<0

p0= T(w; L0, W gh(x)T, x>0,

3.7
X[ —sif2aP(x)}oq+cod2aP(x)}os]

where we still have to determine the constamisanduv, .
(3.1 Symmetry requiressw,;=v; and+w, =v . The continuity
condition atx=0 reads
For g(x)=0, as we will assume in the rest of this chapter,

we get TH(=w, Fw)T=T(w; ,w))" (3.9
1 d2 or
HB'Azz(——ZJrZU(x))o-O . .
N 1 sinl a X £(X) 01— €O m (0| So, up to an overall normalization constant, we either have
21> %2 71 3 73| W, =cos(m/4) andw, =sin(am/4), orw,= —sin(am/4) and
(3.2 w, = cos(am/4). Defining
{
If =0, we get back the BO Hamiltoniaf2.5) while for Azg==d¢2(o)/ J4(0) (3.10
a=1, we get the original diabatic Hamiltoniai2.1). We dx

note that our problem is periodic ia with period 4. The L o ¢
spectrum has a period 2 and depends onlyen as the logarithmic derivative af;(x) at x=0, we get the

In the following we evaluate the eigenstates(x) logarithmic derivative ofiy5(—x) as —\, . Since the loga-
= (:(x), (X)) and eigenenergieﬁ of Eq. (3.2 for any rithmic derivative must be continuous too, it follows that
—PilX), @) (3.

value ofa. As the diabatic and adiabatic representations are a5 T(Whar W Ap)T=FT(Whar W Ap) T (3.0
related via an unitary transformation, we solve in the same
breath also the adiabatic problei4). holds, and from this, we infer the result
Unlike the nonadiabatic Hamiltonia(2.4), the diabatic
Hamiltonian contains only potential terms that are finite, es- Nap ?
pecially atx=0. Therefore, the wave functions and their —)\—m—ta *q (3.12

logarithmic derivatives must be continuous there. Though,

the strategy we will apply is to solve the equation on the left-for the plus sign in Eq(3.9), or

and right-half-axis separately and finally patch the two solu-

tions atx=0. Although it is straightforward to do so for Naj cotz(az) 3.13
generalU(x) and f(x), we will only derive results for the Np, '
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We factorize each of the two nuclear Hamiltoniatg,

5 T T T T T T T andel in Eq (25),
u,aT
>< HBO:HaTUﬂLHbiﬂ'lz(aJra‘f‘ka)UT+(bb++kb)0'¢-
4 E = 4.9
44 ubl . .
3 M The SUSY partners dfl 5, andH,,, again are defined as
©
= - . _ +
§,3 -g,aT | Ha =(aa" +ky),
0 g.bl Hp=(b"b+ky). 4.2
>~2 - m
g ual Instead ofz, we introduced two operatos and b. We still
S F ] usez if we want to leave open whether we spealaar b. If
g oAt - z=a(b), then agairz=b(a). To motivate the introduction
u,al . of the superpartners further, we note that it is possible for
. T ] special choices of, g, andU to achieve thaH, =H, and
o L2 . . - ' . t - Hp=Ha;, so that the two BO potentials are superpartners
0 0.5 1 1.5 2 of each other.
Perturbation Parameter o In Appendix A we will show that the nonadiabatic cou-

pling can be brought in the following form:
FIG. 2. The spectrum for different values of

_ _ o - HNA=A+A+D+B, +B+C, (4.3
for the minus sign. Indeed, as the logarithmic derivative is a
function of the energy, these last two expressions are implicitvhere the single terms are defined as
equations for the possible energy eigenvalitein depen- 1
dence of the parameter. ~ + ,
. . . i=—(o_Db+

We note that the Hamiltoniar{8.1) for different values of A \/5(0 b+oa”)aP'(x),
a are identical forx# 0. They are therefore merely different
self-adjoint extensions whose domains contain functions ful-

.1
filling different boundary conditions ak=0. It may be A:=—aP’'(x)(oc_a+o,b"), (4.9
viewed as another type of point interactidt¥], which are of V2
interest also in other branches of physics, e.g., relativistic 1
quantum mechanics. Di=— (o W.+ 0. W.)aP' (X 4.
ForU(x) andf(x) from the end of the second section, we 2((L b o+ Wa)aP (), @9

can express the function&é as parabolic cylinder functions

Pi()=Dg_1(V2x=2) and yy(x)=Dg_ 1(\2x+2) :zlaP’(X) Esoo— ka0, — Ky aP'(X), (4.6
[18,19. For a=1, the spectrum is that of two degenerate 2 Esoo—Ha 0| —Hpo, b
harmonic oscillators. For other values @f the Eqgs.(3.12
and(3.13 can easily be solved numericalifig. 2). For « B, :=—ARA, (4.7)
=0, the wave functions are either even or odd eigenfunctions
of the “double oscillators”[19], H,; or of Hy . We added and
the corresponding labels in Fig. 2.
B Al £ @9
IV. PERTURBATIONAL SOLUTION IN THE ™= E—Es '
ADIABATIC BASIS
. , ) , , _with
In this section, we will treat the nonadiabatic coupling
using perturbation theory. Assuming Fulton-Gouterman oo—|s)(s|
symmetry [f(—=x)=—f(x) and U(—x)=U(x)], we suc- R:=2 . (4.9
ceeded in summing analytically the whole series. We think Esoo—Hajo—Hp 0

that the main features and peculiarities will survive also inGiven two commuting operatoné andY~* (the inverse of
the PT series of the case without symmetry but this is diffi-Y) we WriteX/Y-—X\?fleflx for the sake of a compact
cult to prove analytically. n N P

To begin, we will cast the Hamiltonian as given by Eqs. notation. We will setEs equal to the exact energy of the
(2.5) and(2.8) in an alternative form. In view of Eq$3.12 per.turbed state. It is easy to show that from th_e terms into
and (3.13 it appears especially advantageous to introduc&vhich we split the Born-Huang term, onB, is divergent,
the notions of supersymmetgBUSY) [20] (see Appendix While B andC are well defined.
C), because in this theory the |Ogarithmic derivatives p|ay a~ In the rest of this Section, we will concentrate on the limit
special role. v—0. We then get
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= the perturbation series reads

Y
P'(x)== —f’ X
(0=3 fa0 52" ™ i
(s|F>, (RF)s). (4.13
1 vy =0
We still can further simplify this expression by introducing a
- state|one), which obeys the following two conditiong1)
:=§57(x), (410  |one is a valid test function for Dirac'ss function, this
implies that it is of bounded variatiorf2) (ong (x)|one
~ =1.
where we sety=y/f'(0). o Let |n) be a slowly varying function angh) be arbitrary.
In the perturbation theory the Brillouin-Wign€éBW) ex-  Then we can find a decomposition of matrix elements in-
pression for the energy may be written as volving the Lorentziany.(x)
_ ” lim{n[&.(x)|v)=(n|5(x)|on& lim (ong 5.(x)|v).
Ec—Eq= >, (S|HVARHYA)"s) yeo -0 7
n=0 (4.149
=(s|(A+A+ARA+ARA+ARA+ARA The functionsione and|n) both are slowly varying, so we
+B, +Bj+C+D+h.o)|s). (4.17  could introduce the5 function in the first factor. In the fol-

lowing, we will assume limy— 0 without making it explicit

To restrict the number of terms to be evaluated, we use th&'€"Y time.
following attributes of the appearing operators. As all o operators in Eq(4.13 appear only in even order,
(1) In the limit y—0, D vanishes, a®/(0)=0 andW(x) we can eliminate the shift operatoss’ ando ", so that we

get in effect two independent equations, containing either
or o, depending on the initial stats). This state is char-
acterized by the séz,{}, which is eithefa,1} or{b,|}. For
the C operator, we write

is slowly varying, so the product with a sufficiently localized
function, like 6,(x), vanishes.

(2) Als)=0, for the action of an oddz operator on
the—by assumption—even functiojs) leads again to a
slowly varying odd function, which is annihilated by appli- 1 2 B ko —k
cation of the Lorentzian. Clearl;=0 for this reason. c= _( af) 5~ s90~ Fag)~ P9y

(3) The operator#\,A are odd, so they only have matrix 217 2] TEgoo—Hg o —Hpoy
elements between an even and an odd function. Thus, in the ) E
perturbation expressio¥.11), only an even number of E }( Z) |n3 < s,
operators appear. The operat&s andC are even, so they m 2\ 2] VHE
have only matrix elements between two-odd or two-even
functions. So clearly, the perturbation series will only con- 1/ m\?
tain terms of even order. From the discussion in Appendix D, :E( “5) 5y|°”e>n2 (ongd[my)
it further follows that actually only the matrix elements@©f z
between even functions are not zero. E—k;

(4) For every term in the surfd.11) containingARA in X~E——E§<nj slong(ong s,
some position, we can find one term differing only insofar as s Tz
in this position appears the operatBr instead, and vice 2R

S
“« 2) 2

versa. Clearly, these terms cancel. This cancellation involves -

only terms of the same order. All terms containiﬁ@ﬂ and

B, will fall completely out of the sum. This is very satisfac- .

tory, as these terms are the only divergent expressions in th¥€ here introduce the two sums

sum. We just note that this cancellation will also occur for

more general Hamiltonians for whiaj(x) is not just a con- S E (7} 8|y

stant and which need not be symmetric. . EoEL |
The reader may check that, up to second order, of the z

explicitly given terms in the last line of Eq4.11), only the

,lone(onds, . (4.15

term (s|C|s) survives. Using all these properties, we can 2 <nz| d[n,) 4.16
express the perturbation series in a simpler form. With the o Eé ' )
operatorF

- We note that the resolveRt defined in Eq(4.9), appears in
2 ZmCE (RA)2 4.12 Eq. (4.13 sometimes “sandwiched” between the operators

m=0 A andA. We may rewrite this similarly as
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o (sldls)
E

>

ARA= Alone(ondA. (4.17

S S

Further, we write

18l:=

a%(ond 8,2, (RA)?"one

2 a
= tar( az) , (4.18

where the last equality will be proven in Appendix D.
Finally, we get for the perturbation series

- E— k7
Es_Es:|IB|2<S|5|S> S2 Z§

Es_k_ <S|5|S>
25 ¢ _
1BI°—> ‘§<S E—E.
(4.19

After summation of the geometric series, we infer an im-
plicit expression for the energy

q

x>
q=0

ol (4.20
B 2

We found a simple and intuitive interpretation of this for-
mula. From Eq(B13) it follows that the inverse of the sums
(4.16 S™* andS™?, are the logarithmic derivatives,, and
A7 of eigenstategjﬁ(x) and"fpf(x) of the HamiltoniandH
andH; atx=0 belonging to the enerdys. The values of

and ¢ are that of the initial stat¢s). From Appendix E, it
follows

s_k;

2(Es—ky)S=

2

=Nz
ST o (42D

from which, together with the definition df3|, and the en-
ergy expression4.20, we get

A
— X _tar?

Ay

which coincides with Eq(3.12 or (3.13.
We want to discuss the convergence properties of the pe
turbation series. Clearly E¢3.12 is an implicit equation for

the energyE; as a function ofx. We will assume thaEs is
an isolated and simple eigenvaluetdf; , corresponding to
a symmetric eigenfunction so that,;(Es)=0. FurtherEg
should not lie in the spectrum &fy, . Thenh,, | (Ey) is finite
and nonzero. The left-hand-side .12 is then also an

m
az), (422)

PHYSICAL REVIEW A63 042510

analytic function ofE at E with nonvanishing first deriva-

tive. The implicit function theorem thus states tiEatis an
analytic function of « at «=0. This implies that the
Rayleigh-Schrdinger(RS) perturbation series has a nonzero
radius of convergenc@nd obviously the BW series, tho

V. DISCUSSION

The main goal of this paper is to show that, even in situ-
ations where the electronic potential energy surfaces cross, it
is possible to base a full perturbation expansion on the BO
approximation. After suitable introduction of the perturba-
tion parameterw, we succeed in showing this for systems
involving only two electronic states and one nuclear coordi-
nate. For these, we can find an equivalent diabatic represen-
tation, which allows us to solve the problem exactly for any
value of @ [see Egs(3.12 and(3.13]. Generically, the im-
plicit function theorem then ensures the existence of a per-
turbation expansion with nonzero radius of convergence.

For the special case that the problem shows a Fulton-
Gouterman symmetry, we can construct the perturbation se-
ries explicitly without referring to the diabatic representa-
tion. This analysis reveals the role of the divergent terms of
the nonadiabatic coupling: The most serious divergencies
cancel within each order. The weakest divergencies can be
treated like Dirac’sé functions and lead to a change in the
boundary conditions at the locus of the intersection. Finally,
in Appendix D, we show that the remaining divergences mix
in states of infinitely high energy and therefore we cannot
treat them likes functions. Summation over the contribution
of these high energy states leads to a renormalization of the
perturbation parameter. We like to point to an analogy in a
Landau-Zener-type semiclassical treatment: There, the op-
eratorx is replaced by a classical variablét) =vt, with
constant velocity . In the adiabatic representation, we get a
time dependent wave functiaf,5(t) = (c1(t),c,(1))T. It is
found that the modulus of the two componenis(t) will
change rapidly on a scalg/v, like the high energy states in
the full quantum mechanical treatment. The NA coupling
will be proportional toé,(vt). Again, it is not allowed to
replace it by as function.

A numerical RS calculation for near-avoided intersections
would be hopeless if one had to perform summations over
states of arbitrarily high energy. It seems therefore manda-
tory to use alternative techniques like the one proposed by
Hutson and Howard21], as actually used by#ko et al.
[13,14). The perturbation scheme we used may not be the
only one which will lead to regular perturbation series. Nu-
merical evidencg¢13,14] indicates that the adiabatic scheme
(1.4) will also lead to a regular perturbation expansion.

As we noted already, it has been questioned by many
Buthors that a perturbation expansion based on the BO ap-
proximation can exist due to the divergence of the NA cou-
pling. In his analysis of the problem, Wagnér2] has cal-
culated expectation values f2°, HP, and HNP with the
exact eigenfunctions dfl , at «=1. He finds that all three
contain a divergent integral, which in his mind exclude a
perturbation expansion. However, in almost any perturbation
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expansion, we can find matrix elements with respect to some

functions that are divergent. The matrix elements of the pers[aP’ (x)1%00

turbation do not need to be small as such for the perturbanon

expansion to be analytic, but they have to be bounded with 1 Eso0—Kao| —Kpo 1
respect to those ofl, [22,23, that isH®® in our case. In =5aP'(x) = aP’(x)+ 5 aP’(x)
fact, the divergences in the expectation value$8f, HP, Esoo=Ha o = Hop o

andHNP are the same for all three of them. We therefore can —aa‘s,—b*bo,

find a common bound for the latter two with respect to the X = P’ (x)

+ +
first (To really prove the existence of a regular perturbation Esoo—(aa” +ky)o| = (b7 b+ky) oy

series we would have to show that the expectation values of

. . 1
the perturbation are bounded with respect to thoge® for =C—=(o_a+o.bM)aP'(x)= 70
all possible wave functions, not just with respect to the 2 s00—Hajo1—Hp o)
eigenfunctions oH , .) X(o_b+o,at)aP’(x)
N
APPENDIX A: DECOMPOSITION OF THE HAMILTONIAN =C—ARA-A-——A=C+B, +By. (A4)
S S

We express the momentum operator in terms of the ge

eralized creation and annihilation operators z,

p=—i(\2z-W,)=—i(—2z" +W,). (A1)

The nonadiabatic part of the Hamiltonié&8) then becomes

HNA=%[aP’(X)]20'0+ %[(U_b'f‘ orat)aP’(x)

+aP’'(X)(c_a+0o,.b")]

1
—E(U,Wb—k o W,)aP’'(x)

1 o
=§[aP'(X)]2a-0+A+A+ D. (A2)

"We made use of the intertwining relatio@4). This splitting

is allowed, because each term in the nominator of (B3)
commutes separately with the denominator.

APPENDIX B: BRILLOUIN-WIGNER PERTURBATION
THEORY FOR SYMMETRIC POTENTIALS
WITH A DELTA PERTURBATION

In Brillouin-Wigner perturbation theoryfBWPT), we start

with an exact HamiltoniarH, which we split in an unper-
turbed HamiltoniarH and a perturbatioi,

H=H+h. (B1)

The zeroth order HamiltoniaH has a complete set of eigen-
functions|n), with corresponding eigenenergiks,

H|n)=E,|n), (B2)
while we seek solutions of
H[s)=E[s). (B3)

As we have a perturbational treatment in mind, we extencrs) here being the exact eigenstate corresponding to the

the first term on the rhs of EGA2),

1
sLaP’(x)1%0y
2
P’( )ESO.O kao'l_kbU'T_aa+0'L_b+b0'T
=~ ~
2 Esoo—(aa +ky) o — (b b+ky) o,
X aP’(X) (A3)

We now split up the quotient in EGA3)

zeroth order statés). In BWPT we get an implicit equation
for the energy

=<s|h§o{2 [Ina 22 H 9

=(slh > (Rh)Is, (B4)
q=0
with the definition of the resolverR, as in Eq.(4.9),
1—|s)(s
RRCIC) o5
E.—H
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To show how BWPT works, we want to solve a simple ex-fulfilling «(+)=0 (albeit for \ # 0, this function will not
ample, the result of which will nevertheless be useful wherbe normalizable

discussing the more complex intersection problem.
We assume that the unperturbed Hamiltonkaris com-
posed of the kinetic energy operafbrand a potentiaV,

H=T+V. (B6)
FurtherV(x) shall be a symmetric function,
V(=X)=V(X). (B7)

The perturbation is simply a multipla (the perturbation
parameterof a Lorentz functions,(x) of width v,

h=\6,(x), (B8)
where
Y
8y (X)= o 7 (B9)

We are especially interested in ljm,. In Appendix D we

In the light of this result, we may interpret E@12) as a
relation of the energy of a solution of the unperturbed Schro
dinger equation(B2), with its logarithmic derivative ai
=0.

APPENDIX C: SUPERSYMMETRY

It is known that every Hamiltoniaki,, of just one coor-
dinate may be factorized into a product of an operatand
its Hermitian conjugate™ except for a constark,,

d2

Hy=—5—+Vu (x)=z2"z+k,.

2 dx? (€

We will write for its eigenstatesn,, 1), which belong to
E/ . Further we defind,:=E], and

z

Z:=

d
W,(X) — &) . (C2)

1
\2

show that we then may simply substitute the Lorentzian by

Dirac’s 6 function, i.e.,h=\8(x). We note that for slowly
varying, but elsewhere arbitrary functiofas) and |b), we
have the identity

(a] 5[b)(b| 5]a)=(a| 5|a){b] 5|b). (B10)

With these specifications, E¢A4) reads (s) is taken to be
an even function

e 2| < [(n]néin) _(s|)\5|5> q
ES_<S|)\5|S>CIZO |:Z ( Es_ En Es_ ES
(sinels) {2 <<nlwln> (sn3ls)
ES_ES n=0\ E,—E ES—ES '
(B11)

In the last step, we used that the sum ogeforms a geo-
metric series.

So, we get an implicit equation for the energy in depen

dence on the perturbation parameter

n|5|”>

AL (B12)

mz

n

On the other hand, it is known that the logarithmic deriva-

tive of the wave function changes a0 by 2\ due to the

S-function. Keeping in mind that the wave function is sym-

metric we can state alternatively that

' (0)

oM (B13)

The functionW,(x) is called superpotential. Given the po-
tential V,;(x), inserting Eqs(C2) into Eq.(C1) gives a non-
linear first order differential equation, known as Riccati's
equation, folW,(x). We will not have to solve this equation,
but we may chose one integration constant at will. Further
we can define the supersymmetric partner of the Hamiltonian
H, as

2

Hy =22 +k,=— 5

5 @WLVZl(x), (C3)

with the samez andk, as in Eq.(C1). The potentiaV,, is
not completely defined throught,; but will depend on the
choice of the integration constant fa¥,, too. Generally
there is no distinct choice for this constant, if howeVey is
symmetric then we may choo¥¥,(0)=0, which forces the
potentiaIVZi to be symmetric, too. Furthermok¥,(x) will

hen be an antisymmetric function. From the definitioG4)
“and (C3) we get the intertwining relation

Further we will make use of
En 1= El (C5)

APPENDIX D: MATRIX ELEMENTS OF OPERATORS
CONTAINING A NARROW LORENTZIAN

In our perturbational expressions we have to evaluate
sums over matrix elements of operators containing a Lorent-
zian §,(x) in the limit y—0, between eigenstates of some

Here ¢ is an eigenfunction of the unperturbed Hamiltonian zeroth-order Hamiltoniant . For fixed but smally these

to the energyEs,

(B14)

states fall into two classesl) states of low energy, which
vary on a length scale which is much bigger than(2)
states of high energy, which vary on a scale comparabie to
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or smaller. We can represent them over the width of the Nextwe will prove the identity4.18. This can be written
Lorentzian by a WKB-type expansion, as

1 «\® [(v,alls,Ra"8,Rbs,|w,al)
2%2) “|(u.bl|5,Rb5,Ra" 5, /w,bl).
(D5)

2
Yn,g(x~0)~ \/;pn”zcos{ P(0)X] =g (X), /3=(

2
Yn,u(x~0)~ \/;Pn Y2sinp(0)x]=4ms2(x). (D1)  We note that the operatoes’ andb always occur in pairs,
for each of them is odd. The stategw,z{) are quite arbi-
Herep(x) = V2[E,—V(x)]. Forx=0 andE,>V(0) we get trary and serve simply as abbreviation for the rest lof the
0)~ V2E.—p, and p.—dn/d expression, but are assumed to be even. In the following, we
p(0) n=*Po Pn Po- will only consider the first alternative in EqD5), for the

If we would have'to deal exgluswely with matrix 'eIe— calculation for the other choice is analogous and leads to the
ments between functions of the first class, we could dwectl;game result

replace the Lorentzian by Dirac& function. But even with Let us insert an eigensystem ki,
the sum running over all intermediate states, the high-energy ¢

states may nevertheless not contribute to the sum because 1 )2
they may be damped sufficiently due to the energy denomi- ,32(—&§> <v,aT,g|5yz In.T,9)
nators of a resolverR like in Eq. (4.9. We will show that \/5 n

this holds true if the perturbation is simply proportional to
6,(x) like, e.g., in the simple example of Appendix B and
also in many sums, which we discussed in the main part, but
not if the Lorentzian is further multiplied with a momentum

operator like in our NA coupling term&, A in the expression

B

1
x{(n,T,g|——=a*é my | ,u
< aT g| HaT_ES y% | bl >

X<mbl1u|

_ E bs,lw,atl,g). (D6)
As an example, we analyze the situation for the problem bl s
The terms in the surtB4) we write as(v|6,Ré,|w) (the

functions|v/w) being abbreviations for the rest of the term

1 2
B=<Eag) (v.a1,9/6,2 [nal.9)
1 n
(v18,R0y W)= =3 (01 8yI) —(nl3,jw). =
(D2) X (e D) Lul8, 3 myl )

We want to estimate their absolute value

(mp+1)1,915,/w.al.g). (D7)

X
|<U|67R57|W>|:|§ <U|6y|n> E_E <n|57|w>| E#anrl_ES
n S
L (n|8,|n) If we derive an upper bound for these terms, the main
< (], Jv)(w|8,|w) >, —=, difference to the treatment of the teri@2), will be the ap-
n |En—Esl pearance of an extra square root of the energy, proportional

(D3)  t0 po, in the numerator of an expression analogous to Eq.
(D4). Instead, we would get an integral of the form
where, in the last step, a$, is a positive operator, we used f:lelpod Po, Which is logarithmically divergent. This means

states of high energy to the sum in EB3), energy states must be included in our analysis. Indeed, we
can show that only these states contribute: The crucial point

(n|,ln) (=1 1 here is that the second bracket in ER7) involves the ma-

I (D4 4rix element of the Lorentzia#,, with two odd functions. A

N E—EJ  Jonpl N rix element of the Lorentziad,, with two odd functions. As

the odd functions are clearly zeroxat 0, this term will only
then be nonvanishing, if the odd functions are both oscillat-
ing on a length-scale small comparedqtoFor lim,_,,, we
get only a contribution from the high energy states, for which

where we made use of E¢D1), to replace the sum by an
integral. py may now be chosen so thaty:=2#/py="7y

X const>y. Then the sum over the high energy vanishes a : AN X
least proportionally toy. This effectively restricts the sum- e WKB expressionD1) in this limit is exact. Asymptczﬂ-
mation to run over the low-energy states, which are suffically, we can further replace+ 1 by n and the energie&;,
ciently slowly varying to allow for the introduction of the by p2/2. Also, it will then be correct to replace the summa
S-function instead of the Lorentzian. tion overn with an integration ovep,. Now, if we regard
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the WKB functions(D1) as functions o instead ofn, then N o\ e
for every value ofp,, we have an odd and an even function. A= ~2I 42 nZ‘z ) f,x dxy (1)
It will be advantageous, to introduce complex linear combi-
nations of these two functions +o 1 +o
X[ ydx 5y(X2)§Sgr(X2_X1)' ] A% 6,(%0)
wks_ L wks WKB X L f+w dx, o
'pipo - E(wpo@l =+l lppo,u ’ (D8) 2 SPTXi=Xi1)- - —» Xn 0(%n)

R/ —

Instead of the sgn function, we can write

instead.

The range ofg is now extended tp— oo, +]. We must
compensate for the doubling of the integration interval by
introducing an extra factor 1/2. 1

Asymptotically, the summations oven andn are equal, Esgr{x)z
but of opposite sign. This can be written more symmetrically
by writing —1=i%. For symmetry reasons, only terms with g(x) being Heaviside’s step function. If we only hadéa
an even number of summatio(ietegrationy are nonzero, so - fynction instead of the sgn function, the multiple integrals
it does no harm, to include also the terms with an odd numfor given in Eq.(D11) would be very simple. We would then
ber of summations. While, up to this point, we had to diSCUS$ntegrate over a wedge-shaped region inradimensional
the summations over n and m separately, it will now bespace with a symmetric integrand,
sufficient, to discuss just one representative integral pyer

2

1
=+ H(X)), (D12

Introducing new statefy/w) and changing to the position f f 1 +oo n
representation, we get dx™f(xy)- - 'f(Xn):n—,(f dx f(X)> :
Xg<o << <Xy ' -
(D13
T + o0 . . . . .
__ dx: d 5 5 the functionf(x) being arbitrary. We will now introduce a
p=a 4J—oo X1 A9, x1) (xzl 8, w) short form for multiple integrals like Eq.(D13):
N L [1,0,6, ...,01=[1,6"1]. Here, eachy stands for a whole
0 . + 00
> d X WKB)—(po, WKB|x). integral [T dx; f(x)0(X;—X;_1)- - - and 1 for
wa Popn(¥4|Po >po<po ) ST2(dx; f(x;)- - -. Further we sefc,8"]1=c[1,0"], wherec

(D9) is an arbitrary number. A number 1 aris by no way re-
stricted to stand in the first position, i.e., we allow also for
brackets likd a, 6",b, 8™], etc.,a andb again being arbitrary

The brackets in the integral ovex, are just the functions constants. For these multiple integrals, we now find

(D8). The range of the integration may be taken[as», [a,6"b,60™]=[a,6"][b,6™] (D14)
+], as the states with smadl, will not contribute anyway.
So, the integral ovep, reduces to a simple Fourier integral, and, using Eq(D13),

P > [a,a”]za{ exp( fwf(x) dx) —1]. (D15)
B=—a§ﬁx dXy dXp 1 (X1) 8,/(X1) 8,(X2) thu(X2) n=0 -
In our problem, we have
1 (+=dpo )
. » Eexmpo(Xz—xl)) o
f(x):—|a§b‘y(x). (D16)

:( —|a;) f OOdX:]_ dX2 (ﬂl(xl)éy(xl)

—oo

From Eq.(D12) it follows that 8 may be written as a sum

over all possible square brackets which can be formed from

1
X5 SQMXa—X1) 0,(X2) hu(X2)- (D10)  inserting an arbitrary number @fs and —1/2’s in each po-
sition (excluding the first, which is always occupied by

—1/2). Tacitly assuming that this sum is convergent, we may
reorder it and sum first over terms containing an equal num-

It is possible to expand the states denotedvbyr w the  ber of —1/2’s, but differ in the number o#’s. In a second
same way, completely. We then get step, we then sum over the number-oi/2’s,
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o {0} It is now straightforward to relate also the logarithmic de-
,8—(—2|)E Z [— 5,0”1, — E,G”J} rivatives. Again we use the idea to express the derivative
=1 {n}={0..... through the creation operatof’,
© 0 1 ]
=(—2i —5.,0" '
oz (350 )
(Ingh)'=——
:(_2|)E (__(elaﬂ'IZ_l)) q
j=1 2 — _C+ lﬂl C+ wl
dx
aw
=-2i tar( a—) . (D17
4 1 d
=[<wcc+—ﬁE)w]/ | Wet d—x)wl :
So we have proven E¢4.19. V2

(E4)
APPENDIX E: LOGARITHMIC DERIVATIVES OF SUSY

PARTNER FUNCTIONS . .
If the partner potentials are both symmetric, the superpo-

What is the connection between the logarithmic derivatential W,, will be antisymmetric. Especially,(0)=0.

tives of a wave functiony' and its SUSY partne! ? Then our expression simplifies further, to give
Let ¢! fulffill
ctey!=Ey! (ED ot _2E
In(y'(0))'=—2E——| =————  (EY
and ¢! fulfill ()" 1,y In((0))
cctyl=Eyl. (E2)
or
The two functionsyy! and ! are related as
y=—c* gl (E3 N—— (E®)
=—cCc . =
JE DY
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