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Infinite-order non-Born-Oppenheimer perturbation theory for systems with intersecting potentials
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We analyze models for two intersecting electronic states coupled by one nuclear coordinate. The correspond-
ing model-Hamiltonians depend on a perturbation parametera. Its variation allows us to switch on the
nonadiabatic coupling continuously. We derive analytical expressions for the eigenstates and energies as
function ofa in the diabatic representation. We rederive the expression for the energy eigenvalues by complete
resummation of the Brillouin-Wigner perturbation series in the Born-Oppenheimer basis. We find that the
divergences of the nonadiabatic coupling cancel strictly order by order. The admixture of high energy com-
ponents is shown explicitly.
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I. INTRODUCTION

The intersection of potential energy surfaces and, link
with it, the breakdown of the Born-Oppenheimer~BO!
approximation1 has attracted considerable interest as, afte
prediction by Teller@7,8#, so-called ‘‘conical intersections’
have turned out to play a key role in the path of photoche
cal reactions@9#. These conical intersections have been s
tematically classified@10# as codimension two-crossing
Also the conceptually simpler codimension one-crossi
appear in molecular physics, e.g., in theE3b Jahn-Teller
effect @11#. This effectively one-dimensional crossing is re
resentable as a limit of avoided intersections. In this lim
the nonadiabatic~NA! coupling matrix elements diverge se
riously, so that they are not even representable in a distr
tional sense. If we write the Hamiltonian as

H5HBO1HNA, ~1.1!

one can distinguish the nondiagonal nonadiabatic elem
HND from the diagonal~Born-Huang! oneHD so that

HNA5HD1HND. ~1.2!

Wagner@12# and Špirko et al. @13,14# independently studied
this problem treating the NA-coupling perturbationally. If w
call the perturbation parametera, Wagner studied two cases

Ha5HBO1aHD1aHND ~1.3!

and

Ha5HBO1HD1aHND, ~1.4!

which both reduce to Eq.~1.1! in the limit a51. In zeroth
order Eq.~1.3! corresponds to the BO approximation, whi
Eq. ~1.4! corresponds to the Born-Huang adiabatic appro
mation. Wagner came to the conclusion that neither the

1The term BO-approximation@1–5# is used, often without distinc-
tion, to designate a couple of different although related metho
We will use the term BO-approximation and other nomenclature
defined in@4# ~for a critical review of terminology, see@6#!.
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nor the second expression can be taken as a legitimate z
order Hamiltonian to establish a perturbation expansi
Similar objections are widespread in the literature@15#.

On the other hand Sˇpirko et al., start from Eq.~1.4! and
calculate numerically the Rayleigh-Schro¨dinger series for
near-avoided intersections. Although sometimes diverg
this series can be Pade´-summed to give the correct result. A
has been noted already by Teller@7,8#, the Born-Huang term,
which is most divergent at an intersection, gives a contri
tion of the same order of magnitude as the square of
nondiagonal terms. It therefore appears natural to use
a-dependent Hamiltonian of the form

Ha5HBO1a2HD1aHND. ~1.5!

For the case of a two-state system as studied in@12,13# we
then show that for an intersection, the most serious div
gences in the energy series cancel within each order. Fur
for each value ofa, we are then able to construct an equiv
lent diabatic Hamiltonian whose eigenenergies are ea
found. Under the further restriction that the Hamiltonian po
sesses a Fulton-Gouterman mirror symmetry@16#, we con-
struct the whole perturbation series explicitly and show t
resummation gives the energies known already from the
abatic representation.

II. THE TWO-STATE MODEL FOR AN INTERSECTION

We want to start with a Hamiltonian, consisting of tw
electronic states and one vibrational degree of freedomx,
with quite general diagonalg(x) and nondiagonalf (x) in-
teraction potentials,

HDIA5
1

2 H S 2
d2

dx2
12U~x!D s01 f ~x!s12g~x!s3J .

~2.1!

s0 is the 232 unit matrix and thes i with i 51,2,3 are the
usual Pauli matrices. We define further the projectors on
eigenstatesu↑/↓& of s3 , s↑/↓5 1

2 (16s3). The variablez

may take the two values↑ and ↓. If z5↑/↓, then z̄5↓/↑,
i.e., the slash symbolizes interchange of the values.

s.
s
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This Hamiltonian has been used by Sˇpirko and Cižek
@13#. It is given in a diabatic representation. In the followin
we specify the terminus ‘‘intersection.’’

If for some valuex0, the functionAf 2(x)1g2(x) has a
minimum, we speak of an avoided intersection. Furthe
Af 2(x0)1g2(x0)50, which clearly includes bothf (x0)50
andg(x0)50, we speak of a true intersection.

The meaning of this definition will become clearer if w
switch to the Born-Oppenheimer adiabatic representation
means of the unitary operator

S5exp@ iP~x!s2#, ~2.2!

with

P~x!5
1

2
arctan

f ~x!

g~x!
. ~2.3!

The transformed HamiltonianH̃, now in the adiabatic repre
sentation is

H̃5S1HDIAS5HBO1HNA. ~2.4!

It splits into two parts, namely, the Born-Oppenheimer p

HBO5
1

2 H S 2
d2

dx2
12U~x!D s02Af 2~x!1g2~x!s3J

5Ha↑s↑1Hb↓s↓ , ~2.5!

and the nonadiabatic part,

HNA52
1

2
S1F d2

dx2
,SG5

1

2
„$p,P8~x!s2%1@P8~x!#2s0….

~2.6!

In the adiabatic representation the potential is now diago
while nondiagonal contributions are found in the kinetic e
ergy. Now we see that the distance of the potential ene
curves of the adiabatic states will be minimal atx0 if we
have an avoided intersection, or it will be zero for a tr
intersection.

We fix the origin of our coordinate system so that it c
incides with the locus of the intersection,x050. Applying a
global gauge transformation, exp(iws2), with an appropri-
ately chosen constantw, we may always achievef (0)50.
On the other hand, from the definition of an avoided int
section it then follows that f (0) f 8(0)1g(0)g8(0)
5g(0)g8(0)50, so thatg8(0)50, too.

In the following we analyze the various contributions
the nonadiabatic coupling Hamiltonian~2.6!: The anticom-
mutator on the right-hand-side~rhs! of Eq. ~2.6! represents a
momentum-dependent coupling of the electronic sta
while the second term is known as Born-Huang perturba
term. If we reduce the valueg̃ªg(0), thenonadiabatic term
P8(x) will be more and more spiked atx50, the shape of
the spike will be locally Lorentzian with a width proportion
to g̃ @Eq. ~4.10!#. Depending on which functions this oper
tor acts, we can sometimes interpret it in the limitg̃→0 as
04251
if

y

t

l,
-
y

-

s,
n

Dirac’s delta-function. The intricacies of this limiting pro
cess will be discussed in Appendix D. The Born-Huang te
will then be seriously divergent as it is proportional
@P8(x)#2 and so diverges like the square of a delta functio
These divergencies represent the interesting feature app
ing at intersections that we want to study. On the other ha
these divergencies depend only on the vanishing ofg(0), we
therefore will restrict our calculations to the case thatg(x) is
a constantg(x)5g̃.

As we pursue a perturbational treatment, we have to
troduce a perturbation parametera into the Hamiltonian. In
this case we are no longer considering a single Hamilton
but a whole class of them. For perturbation theory~PT!,
these Hamiltonians have to be well defined for a whole ra
of values ofa. Due to the strong divergence of the Bor
Huang term in the limitg̃→0, the proper introduction ofa
will be of crucial importance. Teller@8# noted already that
the nondiagonal terms first contribute to the energy in sec
order, but then their contribution is about that of the Bor
Huang term. So it seems advantageous to replaceP(x) by
aP(x). Indeed with this choice we will be able to show th
the worst divergent terms cancel exactly order by order.
now write the nonadiabatic part as

Ha
NA52

1

2
Sa

1F d2

dx2
,SaG

5
1

2
@$p,aP8~x!s2%1$aP8~x!%2s0#, ~2.7!

with

Saªexp@ iaP~x!s2#. ~2.8!

For a51 this clearly reduces to Eq.~2.6!, while for a50
the nonadiabatic coupling vanishes at all, so that the
treatment becomes exact.

Before proceeding, we note that fora51, g(x) vanishes
identically and Eq.~2.1! is diagonalized~and still diabatic!
with S̃5exp(is2p/4) because this transformation changess1
into s3 ands3 into 2s1.

As an example considerU(x)5x2/211, f (x)52A2x,
andg(x)50. Again fora51, the above mentioned diagon
diabatic potentials have the shape of parabola with the
tices shifted tox56A2. The adiabatic potentials, which b
definition do not depend ona, are similar, but with a differ-
ent connection of the branches atx50, so that in effect we
get one W-shaped and one V-shaped potential,Va↑/b↓
5x2/2117uA2xu ~Fig. 1!.

III. EXACT SOLUTION IN THE DIABATIC BASIS

Applying the inverse of transformation~2.4! and using the
generalized operators~2.7!,~2.8!, we can introduce a gener
alized diabatic representation
0-2
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Ha
DIA5SaH̃aSa

1

5
1

2 F S 2
d2

dx2
12U~x!D s02Af 2~x!1g2~x!

3@2sin$2aP~x!%s11cos$2aP~x!%s3#G .

~3.1!

For g(x)50, as we will assume in the rest of this chapt
we get

Ha
DIA5

1

2 S 2
d2

dx2
12U~x!D s0

1
1

2 FsinS a
p

2 D f ~x!s12cosS a
p

2 D u f ~x!us3G .
~3.2!

If a50, we get back the BO Hamiltonian~2.5! while for
a51, we get the original diabatic Hamiltonian~2.1!. We
note that our problem is periodic ina with period 4. The
spectrum has a period 2 and depends only onuau.

In the following we evaluate the eigenstatesf(x)
5„f↑(x),f↓(x)…T and eigenenergiesẼ of Eq. ~3.2! for any
value ofa. As the diabatic and adiabatic representations
related via an unitary transformation, we solve in the sa
breath also the adiabatic problem~2.4!.

Unlike the nonadiabatic Hamiltonian~2.4!, the diabatic
Hamiltonian contains only potential terms that are finite,
pecially at x50. Therefore, the wave functions and the
logarithmic derivatives must be continuous there. Thou
the strategy we will apply is to solve the equation on the le
and right-half-axis separately and finally patch the two so
tions at x50. Although it is straightforward to do so fo
generalU(x) and f (x), we will only derive results for the

FIG. 1. The adiabatic potentialsVa↑/b↓(x).
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case where the Hamiltonian possesses so-called Fu
Gouterman symmetry@16#, which means here thatf (2x)
52 f (x) andU(2x)5U(x).

We note that

SaªexpS ia
p

4
sgn~x!s2D5H T1, x,0

T, x.0
~3.3!

with

T5cosS a
p

4 Ds01 i sinS a
p

4 Ds2 , ~3.4!

which does not depend onx. For xÞ0 the Hamiltonian~2.4!
will reduce to the BO Hamiltonian~2.5!. On the positive
half-line we introduce eigenstates of the latter as

Hzzcz
z5Ẽcz

z , ~3.5!

which should fulfill the boundary conditions

cz
z~0!51 and cz

z~1`!50. ~3.6!

Due to symmetry, we have the solutionscz
z(2x) on the

negative half-line. For the diabatic wave function, we get

f~x!5H T1
„v↑ca

↑~2x!,v↓cb
↓~2x!…T, x,0

T„w↑ca
↑~x!,w↓cb

↓~x!…T, x.0,
~3.7!

where we still have to determine the constantswz and vz .
Symmetry requires6w↑5v↑ and7w↓5v↓ . The continuity
condition atx50 reads

T1~6w↑ ,7w↓!T5T~w↑ ,w↓!T ~3.8!

or

s3T~w↑ ,w↓!T56T~w↑ ,w↓!T. ~3.9!

So, up to an overall normalization constant, we either h
w↑5cos(ap/4) andw↓5sin(ap/4), or w↑52sin(ap/4) and
w↓5cos(ap/4). Defining

lzzª
dcz

z~0!

dx Y cz
z~0! ~3.10!

as the logarithmic derivative ofcz
z(x) at x50, we get the

logarithmic derivative ofcz
z(2x) as2lzz . Since the loga-

rithmic derivative must be continuous too, it follows that

s3T~w↑la↑ ,w↓lb↓!T57T~w↑la↑ ,w↓lb↓!T ~3.11!

holds, and from this, we infer the result

2
la↑
lb↓

5tan2S a
p

4 D ~3.12!

for the plus sign in Eq.~3.9!, or

2
la↑
lb↓

5cot2S a
p

4 D ~3.13!
0-3



s
lic

t
fu

st

e
s

te

on

g
a

in
in

iffi

s

uc

y

for

ers

-

t
e
nto

it

FLORIAN DUFEY AND SIGHART FISCHER PHYSICAL REVIEW A63 042510
for the minus sign. Indeed, as the logarithmic derivative i
function of the energy, these last two expressions are imp
equations for the possible energy eigenvaluesẼ in depen-
dence of the parametera.

We note that the Hamiltonians~3.1! for different values of
a are identical forxÞ0. They are therefore merely differen
self-adjoint extensions whose domains contain functions
filling different boundary conditions atx50. It may be
viewed as another type of point interaction@17#, which are of
interest also in other branches of physics, e.g., relativi
quantum mechanics.

For U(x) and f (x) from the end of the second section, w
can express the functionscz

z as parabolic cylinder function
ca

↑(x)5DẼs21/2(A2x22) and cb
↓(x)5DẼs21/2(A2x12)

@18,19#. For a51, the spectrum is that of two degenera
harmonic oscillators. For other values ofa, the Eqs.~3.12!
and ~3.13! can easily be solved numerically~Fig. 2!. For a
50, the wave functions are either even or odd eigenfuncti
of the ‘‘double oscillators’’@19#, Ha↑ or of Hb↓ . We added
the corresponding labels in Fig. 2.

IV. PERTURBATIONAL SOLUTION IN THE
ADIABATIC BASIS

In this section, we will treat the nonadiabatic couplin
using perturbation theory. Assuming Fulton-Gouterm
symmetry @ f (2x)52 f (x) and U(2x)5U(x)#, we suc-
ceeded in summing analytically the whole series. We th
that the main features and peculiarities will survive also
the PT series of the case without symmetry but this is d
cult to prove analytically.

To begin, we will cast the Hamiltonian as given by Eq
~2.5! and~2.8! in an alternative form. In view of Eqs.~3.12!
and ~3.13! it appears especially advantageous to introd
the notions of supersymmetry~SUSY! @20# ~see Appendix
C!, because in this theory the logarithmic derivatives pla
special role.

FIG. 2. The spectrum for different values ofa.
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We factorize each of the two nuclear HamiltoniansHa↑
andHb↓ in Eq. ~2.5!,

HBO5Ha↑s↑1Hb↓s↓5~a1a1ka!s↑1~bb11kb!s↓ .
~4.1!

The SUSY partners ofHa↑ andHb↓ again are defined as

Ha↓5~aa11ka!,

Hb↑5~b1b1kb!. ~4.2!

Instead ofz, we introduced two operatorsa andb. We still
usez if we want to leave open whether we speak ofa or b. If
z5a(b), then againz̄5b(a). To motivate the introduction
of the superpartners further, we note that it is possible
special choices off , g, andU to achieve thatHa↓5Hb↓ and
Hb↑5Ha↑ , so that the two BO potentials are superpartn
of each other.

In Appendix A we will show that the nonadiabatic cou
pling can be brought in the following form:

HNA5AQ 1AW 1D1B'1Bi1C, ~4.3!

where the single terms are defined as

AQ ª
1

A2
~s2b1s1a1!aP8~x!,

AW ª
1

A2
aP8~x!~s2a1s1b1!, ~4.4!

Dª2
1

2
~s2Wb1s1Wa!aP8~x!, ~4.5!

Cª

1

2
aP8~x!

Ẽss02kas↓2kbs↑
Ẽss02Ha↓s↓2Hb↑s↑

aP8~x!, ~4.6!

B'ª2AW RAQ , ~4.7!

and

Biª2AW
us&^su

Ẽs2Es

AQ , ~4.8!

with

Rª
s02us&^su

Ẽss02Ha↑s↑2Hb↓s↓
. ~4.9!

Given two commuting operatorsX and Y21 ~the inverse of
Y), we writeX/YªXY215Y21X for the sake of a compac
notation. We will setẼs equal to the exact energy of th
perturbed state. It is easy to show that from the terms i
which we split the Born-Huang term, onlyB' is divergent,
while Bi andC are well defined.

In the rest of this section, we will concentrate on the lim
g̃→0. We then get
0-4
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INFINITE-ORDER NON-BORN-OPPENHEIMER . . . PHYSICAL REVIEW A63 042510
P8~x!5
1

2

g̃

f 2~x!1g̃2
f 8~x!

;
1

2

g

x21g2

5..
p

2
dg~x!, ~4.10!

where we setg5g̃/ f 8(0).
In the perturbation theory the Brillouin-Wigner~BW! ex-

pression for the energy may be written as

Ẽs2Es5 (
n50

`

^suHNA~RHNA!nus&

5^su~AQ 1AW 1AQ RAQ 1AQ RAW 1AW RAQ 1AW RAW

1B'1Bi1C1D1h.o.!us&. ~4.11!

To restrict the number of terms to be evaluated, we use
following attributes of the appearing operators.

~1! In the limit g→0, D vanishes, asW(0)50 andW(x)
is slowly varying, so the product with a sufficiently localize
function, likedg(x), vanishes.

~2! AW us&50, for the action of an oddz operator on
the—by assumption—even functionus& leads again to a
slowly varying odd function, which is annihilated by app
cation of the Lorentzian. ClearlyBi50 for this reason.

~3! The operatorsAQ ,AW are odd, so they only have matri
elements between an even and an odd function. Thus, in
perturbation expression~4.11!, only an even number ofA
operators appear. The operatorsB' andC are even, so they
have only matrix elements between two-odd or two-ev
functions. So clearly, the perturbation series will only co
tain terms of even order. From the discussion in Appendix
it further follows that actually only the matrix elements ofC
between even functions are not zero.

~4! For every term in the sum~4.11! containingAW RAQ in
some position, we can find one term differing only insofar
in this position appears the operatorB' instead, and vice
versa. Clearly, these terms cancel. This cancellation invo
only terms of the same order. All terms containingAW RAQ and
B' will fall completely out of the sum. This is very satisfac
tory, as these terms are the only divergent expressions in
sum. We just note that this cancellation will also occur
more general Hamiltonians for whichg(x) is not just a con-
stant and which need not be symmetric.

The reader may check that, up to second order, of
explicitly given terms in the last line of Eq.~4.11!, only the
term ^suCus& survives. Using all these properties, we c
express the perturbation series in a simpler form. With
operatorF

Fª (
m50

`

~AW R!2mC(
n50

`

~RAQ !2n ~4.12!
04251
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the perturbation series reads

^suF (
q50

`

~RF!qus&. ~4.13!

We still can further simplify this expression by introducing
state uone&, which obeys the following two conditions:~1!
uone& is a valid test function for Dirac’sd function, this
implies that it is of bounded variation.~2! ^oneud(x)uone&
51.

Let un& be a slowly varying function anduv& be arbitrary.
Then we can find a decomposition of matrix elements
volving the Lorentziandg(x)

lim
g→0

^nudg~x!uv&5^nud~x!uone& lim
g→0

^oneudg~x!uv&.

~4.14!

The functionsuone& and un& both are slowly varying, so we
could introduce thed function in the first factor. In the fol-
lowing, we will assume limg→0 without making it explicit
every time.

As all s operators in Eq.~4.13! appear only in even order
we can eliminate the shift operatorss1 ands2, so that we
get in effect two independent equations, containing eithers↑
or s↓ , depending on the initial stateus&. This state is char-
acterized by the set$z,z%, which is either$a,↑% or $b,↓%. For
the C operator, we write

C5
1

2 S a
p

2 D 2

dg

Ẽss02kas↓2kbs↑
Ẽss02Ha↓s↓2Hb↑s↑

dg

5(
nz̄

1

2 S a
p

2 D 2

dgunz̄&
Ẽs2kz̄

Ẽs2Enz̄

z ^nz̄udg

5
1

2 S a
p

2 D 2

dguone&(
nz̄

^oneudunz̄&

3
Ẽs2kz̄

Ẽs2Enz̄

z ^nz̄uduone&^oneudg

5S a
p

2 D 2Ẽs2kz̄

2
S̄ dguone&^oneudg . ~4.15!

We here introduce the two sums

S̄5S (
nz̄

^nz̄udunz̄&

Ẽs2Enz̄

z D ,

S5S (
nz

^nzudunz&

Ẽs2Enz

z D . ~4.16!

We note that the resolventR defined in Eq.~4.9!, appears in
Eq. ~4.13! sometimes ‘‘sandwiched’’ between the operato
AQ andAW . We may rewrite this similarly as
0-5
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AQ RAW 5S S2
^sudus&

Ẽs2Es
D AQ uone&^oneuAW . ~4.17!

Further, we write

ubuªUa p

2
^oneudg(

n
~RAQ !2nuone&U

52 tanS a
p

4 D , ~4.18!

where the last equality will be proven in Appendix D.
Finally, we get for the perturbation series

Ẽs2Es5ubu2^sudus&
Ẽs2kz̄

2
S̄

3 (
q50

` F ubu2
Ẽs2kz̄

2
S̄S S2

^sudus&

Ẽs2Es
D G q

.

~4.19!

After summation of the geometric series, we infer an i
plicit expression for the energy

ubu2
Ẽs2kz̄

2
S̄S51. ~4.20!

We found a simple and intuitive interpretation of this fo
mula. From Eq.~B13! it follows that the inverse of the sum
~4.16! S21 and S̄21, are the logarithmic derivativeslzz and
l z̄z of eigenstatesc̃z

z(x) and c̃ z̄
z(x) of the HamiltoniansHzz

andHz̄z at x50 belonging to the energyẼs . The values ofz
and z are that of the initial stateus&. From Appendix E, it
follows

2~Ẽs2kz̄!S̄5
Ẽs2kz̄

l z̄z

52l z̄z̄

5 ln@c̃ z̄
z̄
~2x!#8ux50 , ~4.21!

from which, together with the definition ofubu, and the en-
ergy expression~4.20!, we get

2
lzz

l z̄z̄

5tan2S a
p

4 D , ~4.22!

which coincides with Eq.~3.12! or ~3.13!.
We want to discuss the convergence properties of the

turbation series. Clearly Eq.~3.12! is an implicit equation for
the energyẼs as a function ofa. We will assume thatEs is
an isolated and simple eigenvalue ofHa↑ , corresponding to
a symmetric eigenfunction so thatla↑(Es)50. FurtherEs
should not lie in the spectrum ofHb↓ . Thenlb↓(Es) is finite
and nonzero. The left-hand-side of~3.12! is then also an
04251
-
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analytic function ofẼs at Es with nonvanishing first deriva-
tive. The implicit function theorem thus states thatẼs is an
analytic function of a at a50. This implies that the
Rayleigh-Schro¨dinger~RS! perturbation series has a nonze
radius of convergence~and obviously the BW series, too!.

V. DISCUSSION

The main goal of this paper is to show that, even in si
ations where the electronic potential energy surfaces cros
is possible to base a full perturbation expansion on the
approximation. After suitable introduction of the perturb
tion parametera, we succeed in showing this for system
involving only two electronic states and one nuclear coor
nate. For these, we can find an equivalent diabatic repre
tation, which allows us to solve the problem exactly for a
value ofa @see Eqs.~3.12! and~3.13!#. Generically, the im-
plicit function theorem then ensures the existence of a p
turbation expansion with nonzero radius of convergence.

For the special case that the problem shows a Fult
Gouterman symmetry, we can construct the perturbation
ries explicitly without referring to the diabatic represent
tion. This analysis reveals the role of the divergent terms
the nonadiabatic coupling: The most serious divergenc
cancel within each order. The weakest divergencies can
treated like Dirac’sd functions and lead to a change in th
boundary conditions at the locus of the intersection. Fina
in Appendix D, we show that the remaining divergences m
in states of infinitely high energy and therefore we can
treat them liked functions. Summation over the contributio
of these high energy states leads to a renormalization of
perturbation parameter. We like to point to an analogy in
Landau-Zener-type semiclassical treatment: There, the
erator x is replaced by a classical variablex(t)5vt, with
constant velocityv. In the adiabatic representation, we ge
time dependent wave functioncclas(t)5„c1(t),c2(t)…T. It is
found that the modulus of the two componentsc1,2(t) will
change rapidly on a scaleg/v, like the high energy states in
the full quantum mechanical treatment. The NA coupli
will be proportional todg(vt). Again, it is not allowed to
replace it by ad function.

A numerical RS calculation for near-avoided intersectio
would be hopeless if one had to perform summations o
states of arbitrarily high energy. It seems therefore man
tory to use alternative techniques like the one proposed
Hutson and Howard@21#, as actually used by Sˇpirko et al.
@13,14#. The perturbation scheme we used may not be
only one which will lead to regular perturbation series. N
merical evidence@13,14# indicates that the adiabatic schem
~1.4! will also lead to a regular perturbation expansion.

As we noted already, it has been questioned by m
authors that a perturbation expansion based on the BO
proximation can exist due to the divergence of the NA co
pling. In his analysis of the problem, Wagner@12# has cal-
culated expectation values ofHBO, HD, and HND with the
exact eigenfunctions ofHa at a51. He finds that all three
contain a divergent integral, which in his mind exclude
perturbation expansion. However, in almost any perturba
0-6
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expansion, we can find matrix elements with respect to so
functions that are divergent. The matrix elements of the p
turbation do not need to be small as such for the perturba
expansion to be analytic, but they have to be bounded w
respect to those ofH0 @22,23#, that is HBO in our case. In
fact, the divergences in the expectation values ofHBO, HD,
andHND are the same for all three of them. We therefore c
find a common bound for the latter two with respect to t
first ~To really prove the existence of a regular perturbat
series we would have to show that the expectation value
the perturbation are bounded with respect to those ofHBO for
all possible wave functions, not just with respect to t
eigenfunctions ofHa .)

APPENDIX A: DECOMPOSITION OF THE HAMILTONIAN

We express the momentum operator in terms of the g
eralized creation and annihilation operators z,

p52 i ~A2z2Wz!52 i ~2A2z11Wz!. ~A1!

The nonadiabatic part of the Hamiltonian~2.8! then becomes

HNA5
1

2
@aP8~x!#2s01

1

A2
@~s2b1s1a1!aP8~x!

1aP8~x!~s2a1s1b1!#

2
1

2
~s2Wb1s1Wa!aP8~x!

5
1

2
@aP8~x!#2s01AQ 1AW 1D. ~A2!

As we have a perturbational treatment in mind, we exte
the first term on the rhs of Eq.~A2!,

1

2
@aP8~x!#2s0

5
1

2
aP8~x!

Ẽss02kas↓2kbs↑2aa1s↓2b1bs↑
Ẽss02~aa11ka!s↓2~b1b1kb!s↑

3aP8~x!. ~A3!

We now split up the quotient in Eq.~A3!
04251
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n
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d

1

2
@aP8~x!#2s0

5
1

2
aP8~x!

Ẽss02kas↓2kbs↑
Ẽss02Ha↓s↓2Hb↑s↑

aP8~x!1
1

2
aP8~x!

3
2aa1s↓2b1bs↑

Ẽss02~aa11ka!s↓2~b1b1kb!s↑
aP8~x!

5C2
1

2
~s2a1s1b1!aP8~x!

s0

Ẽss02Ha↑s↑2Hb↓s↓

3~s2b1s1a1!aP8~x!

5C2AW RAQ 2AW
us&^su

Ẽs2Es

AQ 5C1B'1Bi . ~A4!

We made use of the intertwining relation~C4!. This splitting
is allowed, because each term in the nominator of Eq.~A3!
commutes separately with the denominator.

APPENDIX B: BRILLOUIN-WIGNER PERTURBATION
THEORY FOR SYMMETRIC POTENTIALS

WITH A DELTA PERTURBATION

In Brillouin-Wigner perturbation theory~BWPT!, we start
with an exact HamiltonianH̃, which we split in an unper-
turbed HamiltonianH and a perturbationh,

H̃5H1h. ~B1!

The zeroth order HamiltonianH has a complete set of eigen
functionsun&, with corresponding eigenenergiesEn ,

Hun&5Enun&, ~B2!

while we seek solutions of

H̃us̃&5Ẽsus̃&. ~B3!

us̃& here being the exact eigenstate corresponding to
zeroth order stateus&. In BWPT we get an implicit equation
for the energy

Ẽs2Es5^suh(
q50

` F (
n50

` S un&^nu
12us&^su

Ẽs2H
hD G q

us&

5^suh(
q50

`

~Rh!qus, ~B4!

with the definition of the resolventR, as in Eq.~4.9!,

R5
12us&^su

Ẽs2H
. ~B5!
0-7
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To show how BWPT works, we want to solve a simple e
ample, the result of which will nevertheless be useful wh
discussing the more complex intersection problem.

We assume that the unperturbed HamiltonianH is com-
posed of the kinetic energy operatorT and a potentialV,

H5T1V. ~B6!

FurtherV(x) shall be a symmetric function,

V~2x!5V~x!. ~B7!

The perturbation is simply a multiplel ~the perturbation
parameter! of a Lorentz functiondg(x) of width g,

h5ldg~x!, ~B8!

where

dg~x!5
1

p

g

x21g2
. ~B9!

We are especially interested in limg→0. In Appendix D we
show that we then may simply substitute the Lorentzian
Dirac’s d function, i.e.,h5ld(x). We note that for slowly
varying, but elsewhere arbitrary functionsua& and ub&, we
have the identity

^audub&^budua&5^audua&^budub&. ~B10!

With these specifications, Eq.~A4! reads (us& is taken to be
an even function!

Ẽs2Es5^suldus& (
q50

` F (
n50

` S ^nuldun&

Ẽs2En
D 2

^suldus&

Ẽs2Es
G q

,

^suldus&

Ẽs2Es

512F (
n50

` S ^nuldun&

Ẽs2En
D 2

^suldus&

Ẽs2Es
G .

~B11!

In the last step, we used that the sum overq forms a geo-
metric series.

So, we get an implicit equation for the energy in depe
dence on the perturbation parameterl

(
n50

`
^nudun&

Ẽs2En

5l21. ~B12!

On the other hand, it is known that the logarithmic deriv
tive of the wave function changes atx50 by 2l due to the
d-function. Keeping in mind that the wave function is sym
metric we can state alternatively that

c8~0!

c~0!
5l. ~B13!

Here c is an eigenfunction of the unperturbed Hamiltoni
to the energyẼs ,

Hc5Ẽsc, ~B14!
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fulfilling c(1`)50 ~albeit for lÞ0, this function will not
be normalizable!.

In the light of this result, we may interpret Eq.~B12! as a
relation of the energy of a solution of the unperturbed Sch¨-
dinger equation~B2!, with its logarithmic derivative atx
50.

APPENDIX C: SUPERSYMMETRY

It is known that every HamiltonianHz↑ of just one coor-
dinate may be factorized into a product of an operatorz and
its Hermitian conjugatez1 except for a constantkz ,

Hz↑52
1

2

d2

dx2
1Vz↑~x!5z1z1kz . ~C1!

We will write for its eigenstatesunz ,↑&, which belong to
Enz

↑ . Further we definekzªE0
↑ , and

zª
1

A2
S Wz~x!2

d

dxD . ~C2!

The functionWz(x) is called superpotential. Given the po
tentialVz↑(x), inserting Eqs.~C2! into Eq.~C1! gives a non-
linear first order differential equation, known as Riccat
equation, forWz(x). We will not have to solve this equation
but we may chose one integration constant at will. Furt
we can define the supersymmetric partner of the Hamilton
Hz↑ as

Hz↓ªzz11kz52
1

2

d2

dx2
1Vz↓~x!, ~C3!

with the samez andkz as in Eq.~C1!. The potentialVz↓ is
not completely defined throughVz↑ but will depend on the
choice of the integration constant forWz , too. Generally
there is no distinct choice for this constant, if howeverVz↑ is
symmetric then we may chooseWz(0)50, which forces the
potentialVz↓ to be symmetric, too. FurthermoreWz(x) will
then be an antisymmetric function. From the definitions~C1!
and ~C3! we get the intertwining relation

zHz↑5Hz↓z. ~C4!

Further we will make use of

Enz11
↑ 5Enz

↓ . ~C5!

APPENDIX D: MATRIX ELEMENTS OF OPERATORS
CONTAINING A NARROW LORENTZIAN

In our perturbational expressions we have to evalu
sums over matrix elements of operators containing a Lore
zian dg(x) in the limit g→0, between eigenstates of som
zeroth-order Hamiltonian,H0. For fixed but smallg these
states fall into two classes:~1! states of low energy, which
vary on a length scale which is much bigger thang; ~2!
states of high energy, which vary on a scale comparableg
0-8
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or smaller. We can represent them over the width of
Lorentzian by a WKB-type expansion,

cn,g~x'0!;A2

p
rn

21/2cos@p~0!x#5..cn,g
WKB~x!,

cn,u~x'0!;A2

p
rn

21/2sin@p~0!x#5..cn,u
WKB~x!. ~D1!

Herep(x)5A2@En2V(x)#. For x50 andEn@V(0) we get
p(0);A2En5..p0 andrn5dn/dp0.

If we would have to deal exclusively with matrix ele
ments between functions of the first class, we could dire
replace the Lorentzian by Dirac’sd function. But even with
the sum running over all intermediate states, the high-ene
states may nevertheless not contribute to the sum bec
they may be damped sufficiently due to the energy deno
nators of a resolventR like in Eq. ~4.9!. We will show that
this holds true if the perturbation is simply proportional
dg(x) like, e.g., in the simple example of Appendix B an
also in many sums, which we discussed in the main part,
not if the Lorentzian is further multiplied with a momentu
operator like in our NA coupling termsAQ ,AW in the expression
b.

As an example, we analyze the situation for the probl
discussed in Appendix B.

The terms in the sum~B4! we write aŝ vudgRdguw& ~the
functionsuv/w& being abbreviations for the rest of the term!,

^vudgRdguw&52(
n

^vudgun&
1

En2Ẽs

^nudguw&.

~D2!

We want to estimate their absolute value

z^vudgRdguw& z5u(
n

^vudgun&
1

En2Ẽs

^nudguw&u

<A^vudguv&^wudguw&(
n

^nudgun&

uEn2Ẽsu
,

~D3!

where, in the last step, asdg is a positive operator, we use
the Schwarz inequality. Now we discuss the contribution
states of high energy to the sum in Eq.~D3!,

(
n.N

^nudgun&

uEn2Ẽsu
}E

pN

` 1

p0
2

dp0}
1

pN
, ~D4!

where we made use of Eq.~D1!, to replace the sum by a
integral. pN may now be chosen so thatlNª2p/pN5g
3const@g. Then the sum over the high energy vanishes
least proportionally tog. This effectively restricts the sum
mation to run over the low-energy states, which are su
ciently slowly varying to allow for the introduction of th
d-function instead of the Lorentzian.
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Next we will prove the identity~4.18!. This can be written
as

b5S 1

A2
a

p

2 D 2

3H ^v,a↑udgRa1dgRbdguw,a↑&

^v,b↓udgRbdgRa1dguw,b↓&.
~D5!

We note that the operatorsa1 andb always occur in pairs,
for each of them is odd. The statesuv/w,zz& are quite arbi-
trary and serve simply as abbreviation for the rest of
expression, but are assumed to be even. In the following,
will only consider the first alternative in Eq.~D5!, for the
calculation for the other choice is analogous and leads to
same result.

Let us insert an eigensystem ofHzz ,

b5S 1

A2
a

p

2 D 2

^v,a↑,gudg(
n

una↑,g&

3^na↑,gu
1

Ha↑2Ẽs

a1dg(
m

umb↓,u&

3^mb↓,uu
1

Hb↓2Ẽs

bdguw,a↑,g&. ~D6!

This can be written as

b5S 1

A2
a

p

2 D 2

^v,a↑,gudg(
n

una↑,g&

3
AEna

↑

Ena

↑ 2Ẽs

^~na21!↓,uudg(
m

umb↓,u&

3
2AEmb11

↓

Emb11
↓ 2Ẽs

^~mb11!↑,gudguw,a↑,g&. ~D7!

If we derive an upper bound for these terms, the m
difference to the treatment of the term~D2!, will be the ap-
pearance of an extra square root of the energy, proportio
to p0, in the numerator of an expression analogous to
~D4!. Instead, we would get an integral of the for
*pN

` 1/p0dp0, which is logarithmically divergent. This mean

by no way thatb does not exist, but it shows that the hig
energy states must be included in our analysis. Indeed,
can show that only these states contribute: The crucial p
here is that the second bracket in Eq.~D7! involves the ma-
trix element of the Lorentziandg with two odd functions. As
the odd functions are clearly zero atx50, this term will only
then be nonvanishing, if the odd functions are both oscil
ing on a length-scale small compared tog. For limg→0, we
get only a contribution from the high energy states, for wh
the WKB expression~D1! in this limit is exact. Asymptoti-
cally, we can further replacen61 by n and the energiesEnz

z

by p0
2/2. Also, it will then be correct to replace the summ

tion over n with an integration overp0. Now, if we regard
0-9
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the WKB functions~D1! as functions ofp0 instead ofn, then
for every value ofp0, we have an odd and an even functio
It will be advantageous, to introduce complex linear com
nations of these two functions

c6p0

WKB5
1

A2
~cp0 ,g

WKB6 icp0 ,u
WKB!, ~D8!

instead.
The range ofp0 is now extended to@2`,1`#. We must

compensate for the doubling of the integration interval
introducing an extra factor 1/2.

Asymptotically, the summations overm andn are equal,
but of opposite sign. This can be written more symmetrica
by writing 215 i 2. For symmetry reasons, only terms wi
an even number of summations~integrations! are nonzero, so
it does no harm, to include also the terms with an odd nu
ber of summations. While, up to this point, we had to disc
the summations over n and m separately, it will now
sufficient, to discuss just one representative integral overp0.
Introducing new statesuv/w& and changing to the positio
representation, we get

b52a
p

4E2`

1`

dx1 dx2^vudgux1&^x2udguw&

3E
2`

1`

dp0rn^x1up0 ,WKB&
1

p0
^p0 ,WKBux2&.

~D9!

The brackets in the integral overp0 are just the functions
~D8!. The range of the integration may be taken as@2`,
1`#, as the states with smallp0 will not contribute anyway.
So, the integral overp0 reduces to a simple Fourier integra

b52a
p

2E2`

1`

dx1 dx2 cv
†~x1!dg~x1!dg~x2!cw~x2!

3
1

2pE2`

1`dp0

p0
exp„ip0~x22x1!…

5S 2 ia
p

2 D E
2`

1`

dx1 dx2 cv
†~x1!dg~x1!

3
1

2
sgn~x22x1!dg~x2!cw~x2!. ~D10!

It is possible to expand the states denoted byv or w the
same way, completely. We then get
04251
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b522i H ia
p

4
2

1

2 (
n52

` F S ia
p

2 D nE
2`

1`S dx1 dg~x1!

3E
2`

1` H dx2 dg~x2!
1

2
sgn~x22x1!•••E

2`

1`Fdxi dg~xi !

3
1

2
sgn~xi2xi 21!•••E

2`

1`S dxn dg~xn!

3
1

2
sgn~xn2xn21! D •••G•••J D G J . ~D11!

Instead of the sgn function, we can write

1

2
sgn~x!5S 2

1

2
1u~x! D , ~D12!

u(x) being Heaviside’s step function. If we only had au
function instead of the sgn function, the multiple integra
for given in Eq.~D11! would be very simple. We would then
integrate over a wedge-shaped region in ann-dimensional
space with a symmetric integrand,

E •••E
x1,•••,xi,•••,xn

dxnf ~x1!••• f ~xn!5
1

n! S E
2`

1`

dx f~x! D n

,

~D13!

the function f (x) being arbitrary. We will now introduce a
short form for multiple integrals like Eq. ~D13!:
@1,u,u, . . . ,u#[@1,un21#. Here, eachu stands for a whole
integral *2`

1`dxi f (xi)u(xi2xi 21)••• and 1 for
*2`

1`(dxi f (xi)•••. Further we set@c,un#5c@1,un#, wherec
is an arbitrary number. A number 1 orc is by no way re-
stricted to stand in the first position, i.e., we allow also f
brackets like@a,un,b,um#, etc.,a andb again being arbitrary
constants. For these multiple integrals, we now find

@a,un,b,um#5@a,un#@b,um# ~D14!

and, using Eq.~D13!,

(
n50

`

@a,un#5aH expS E
2`

1`

f ~x! dxD 21J . ~D15!

In our problem, we have

f ~x!52 ia
p

2
dg~x!. ~D16!

From Eq.~D12! it follows that b may be written as a sum
over all possible square brackets which can be formed fr
inserting an arbitrary number ofu ’s and21/2’s in each po-
sition ~excluding the first, which is always occupied b
21/2). Tacitly assuming that this sum is convergent, we m
reorder it and sum first over terms containing an equal nu
ber of 21/2’s, but differ in the number ofu ’s. In a second
step, we then sum over the number of21/2’s,
0-10
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b5~22i !(
j 51

`

(
$n%5$0, . . . ,0%

$`, . . . ,̀ % F2
1

2
,un1, . . . ,2

1

2
,unj G

5~22i !(
j 51

` S (
n50

` F2
1

2
,unG D j

5~22i !(
j 51

` S 2
1

2
~e2 iap/221! D j

522i tanS a
p

4 D . ~D17!

So we have proven Eq.~4.19!.

APPENDIX E: LOGARITHMIC DERIVATIVES OF SUSY
PARTNER FUNCTIONS

What is the connection between the logarithmic deri
tives of a wave functionc↑ and its SUSY partnerc↓?

Let c↑ fulfill

c1cc↑5Ec↑ ~E1!

andc↓ fulfill

cc1c↓5Ec↓. ~E2!

The two functionsc↑ andc↓ are related as

c↑5
1

AE
c1c↓. ~E3!
n,

em

s

m

-
i-

s-
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It is now straightforward to relate also the logarithmic d
rivatives. Again we use the idea to express the deriva
through the creation operatorc1,

~ ln c↑!85
~c↑!8

c↑

5S d

dx
c1c↓D Y c1c↓

5@~Wcc
12A2E!c↓#Y F 1

A2
S Wc1

d

dxDc↓G .

~E4!

If the partner potentials are both symmetric, the super
tential Wc , will be antisymmetric. EspeciallyWc(0)50.
Then our expression simplifies further, to give

ln„c↑~0!…8522E
c↓

~c↓!8
U

x50

5
22E

ln„c↓~0!…8
~E5!

or

l↑5
22E

l↓
. ~E6!
m
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@9# H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Che

Phys.57, 59 ~1984!.
@10# G. A. Hagedorn,Molecular Propagation Through Electron

Energy Level Crossings, Memoirs of the American Mathemati
cal Society Vol. 536~American Mathematical Society, Prov
dence, RI, 1994!.

@11# R. Englman, inThe Jahn-Teller Effect in Molecules and Cry
tals, edited by J. B. Birks~Wiley-Interscience, London, 1972!.
.

.

@12# M. Wagner, J. Chem. Phys.82, 3207~1985!.
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