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Relativistic multireference many-body perturbation-theory calculations of the magnetic-dipole
and electric-quadrupole transition probabilities of ions in the silicon isoelectronic sequence
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Relativistic multireference many-body perturbation theory is employed to calculate the energy spectra,
magnetic-dipole, and electric-quadrupole transition probabilities of the lotRestine-structure states of ions
in the silicon isoelectronic sequence. Theoretical lifetimes o?mgz states are evaluated and compared with
recent experiments.
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[. INTRODUCTION tokamak fusion test plasnja1], was observed using an elec-
tron beam ion trap12]. The lifetime of the 3%3p? 3P, state
There has been considerable interest in the electronic trawvas measured in three recent experim¢bgs-14. The most
sitions and radiative transition rates among multiplet statesecent determinatiofil2], with a novel transmission grating
of open-shell ions[1-3]. Accurate estimates of radiative spectrometer of higher speed and spectral resolution, devi-
transition probabilities among multiplet states are an imporates significantly from the previous two. In the present study,
tant source for successful experimental identification of theve employ recently developed relativistic MR-M®,15] to
spectra of astrophysical and laboratory plasma. Probabilitiegalculate the energy levels of thes’3p®°Po,, fine-
of magnetic-dipole and electric-quadrupole transitions, inStructure statesM1 andE2 transition probabilities among
particular, are important in plasma diagnosiics, but experiy oS¢ €12 liibglr:e%ttrz(ra\igfzgqmueesng; tiﬁézthsgrﬁ:; fetime of
:ﬁg::l tﬂgﬁglcnaelltﬁsnti;faigzse qu_antmes 'S dlf-f eul, aqd ac the 3P, state of a siliconlike krypton ion is compared with
provide valuable information. A )
number of theoretical calculations on electric and magneti(Ehe three recent experimental results.
multipole transition rates have been performed in recent
years by various approximations, and it has become evident
that accurate, correlated wave functions must be employed t@. Relativistic multireference many-body perturbation theory
evaluate the transition rates accurately-8].

IIl. METHOD

L . : . . The effectiveN-electron Hamiltoniariin atomic unit$ for
Relativistic multiconfiguration Dirac-FockMCDF) self- the development of our relativistic MR-MP algorithm is

consistent-field(SCH calculations have been widely em- yayon 1o be the relativistic “no-pair’ Dirac-Coulomb-Breit
ployed to calculate transition energies and transition rates(DCB) Hamiltonian[16,17,
Relativistic MCDF SCF is effective in treating nondynamic
correlation. It fails, however, to account for the bulk of dy- N )
namic correlation, and thus often fails to provide accurate HDCBZEi hp(i)+ L
transition energies, and semiempirical adjustment of com-
puted transition rates is required to obtain agreement witkyith
experiment. For the electric-dipole forbidden transitions in
high-Z ions, electric-quadrupoleE2) transition rates are
dominant over magnetic-dipolé(1) rates. Accurate calcu-
lation of transition energies is necessary becdt®@eransi-
tion rates involve a fifth power dependence on transition enHerehp(i) is the Dirac one-electron Hamiltonian. The DCB
ergy. Thus, an accurate relativistic many-body algorithmHamiltonian is covariant to first order and increases the ac-
must be brought to bear on the prediction of transition enereuracy of calculated fine-structure splittings and inner-shell
gies and transition ratg$—8]. One of the most advanced binding energies. Higher-order QED effects appear first in
methods for treating many-electron systems is relativistiorder . The nucleus is modeled as a sphere of uniform
multireference Mber-Plesset perturbation theofiR-MP) proton charge distribution.£, =L (1)L, (1)---L (1),
[9] based on multiconfiguration Dirac-Fock-BréMCDFB)  whereL (1) is the projection operator onto the spdze’)
SCF wave function$10]. Relativistic MR-MP accounts for spanned by the positive-energy eigenfunctions of the matrix
relativistic, nondynamic, and dynamical Dirac-Coulomb andDirac-Fock-Breit (DFB) SCF equation17,18. £, is the
Breit correlation energies and Lamb shift corrections in tranprojection operator onto the positive-energy spaog”)
sition energy calculations. It can provide accurate transitiorspanned by theN-electron configuration-state functions
energies and transition rates among multiplet states of atom(€FSs constructed from the positive-energy eigenfunctions
for a broad range of ionizations. of the matrix DFB SCF. It takes into account the field-
Recently, the intenses33p? 3P,-3P; line in the visible theoretic condition that the negative-energy states be filled.
spectrum of a siliconlike krypton ion, first observed in a The eigenfunctions of the matrix DFB SCF equation clearly
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separate into two discrete manifold{") andD("), respec- pressions of the perturbation series for the zero-order state
tively, of positive- and negative-energy states. As a resultapproximated by ¢« (yxJm)). The second-order energy is
the positive-energy projection operators can be accommaiven by
dated easily in many-body calculations. The formal condi-
tions on the projection are automatically satisfied when only E&Z):<¢K(ijw)|v7zv| (Y Jm)). (7)
the positive-energy spinors are employed.
N-electron eigenfunctions of the no-pair DCB Hamil- yere R is the resolvent operator,
tonian are approximated by a linear combination Mf
configuration-state functiong®{*)(y,Jm);1=1,2,... M} R=0M(EQ—Hy)
e P, constructed from positive-energy eigenfunctions of K o

the matrix MCDFB SCF equatiofi0], +)

v Q=3 [ U nTm) (@[ (nIm|. @
Uiy Im) =2 Ced} (o Tm). 3
The projection operato® (") projects onto the subspace

The MCDFB SCF wave functios(yx ) is an eigen- spanned by a residual spaé”) =) -+ All the per-
function of the angular momentum and parity operators witHurbation corrections beyond first order describe relativistic
total angular momentuny and paritysr. y denotes a set of €lectron correlatiorf 15], including cross contributions be-
guantum numbers other thap and 7 necessary to Specify tween relativistic and correlation effects, i.e., the relativistic
the state unique|y_ The total DCB energy of the generamany'bOdy shift. When the effective electron-electron inter-

MCDFB electronic stately(y«Jm) can be expressed as  action is approximated by the instantaneous Coulomb inter-
action 1f,, relativistic electron correlation is termed DC

(+) correlation [18]. Inclusion of the frequency-independent
EMC(yxJm) =2, CiCix Breit interaction in the effective electron-electron interaction
1J yields the no-pair DCB Hamiltonian, and the relativistic
electron correlation arising from the DCB Hamiltonian is the
DCB correlation 18]. The essential features of the theory are
(4) its treatment of the state-specific nondynamical correlation in
zero order through an MCDFB SCF and recovery of the
Here, it is assumed that(yxJ7) and <D5+)(73jw) are  remaining correlation, predominantly dynamic pair correla-
normalized. Matrix MCDFB SCF calculations were per- tion, by second-order perturbation theory.
formed to obtain a single set of spinors for all thg" L , Radiative corrections, Lamb shifts, were estimated for
fine-structure states by optimizing tlieaveraged MC ener- each state by evaluating the electron self-energy and vacuum
gies, providing the same radial spinors for the differght polarization following an approximation scheme discussed
stateq 9], by Indelicato, Gorceix, and Desclay®2]. The code de-
scribed in Refs[22] and[23] was adapted to our basis-set
(2J+1) expansion calculations for this purpose, and the necessary
EYG= > —————EM(yIm), (5)  radial integrals were evaluated analytically. In this scheme
J 2 (27 +1) [23], the screening of the self-energy is estimated by inte-
7 grating the charge density of a spinor to a short distance from
the origin, typically 0.3 Compton wavelength. The ratio of
where summation7 and J’ runs over a set of>*!L, (7  the integral computed with an MCDFB SCF spinor and that
=|L—-9|,...,|L+9]) fine-structure statesS andL are the obtained from the corresponding hydrogenic spinor is used
spin and orbital angular momentum quantum numbers. Tdo scale the self-energy correction for a bare nuclear charge,
remove the arbitrariness of the matrix MCDFB SCF spinorswhich has been computed by Mof#4].
and density weightin§19,20, the canonical SCF spinors are
transformed into natural spinors for subsequent perturbation B. Transition probabilities
calculations.
The no-pair DCB Hamiltoniam J~g is decomposed into
two parts, unperturbed Hamiltoniar, and perturbatiorV,

following Mdller and Plesset19-21], hin(F, @) = — Ca- A(r, )+ (1, ). 9)

X{D (o Tm) [H gl D8 (3 Tm)).

The interaction of a single electron with the electromag-
netic field is described by the interaction Hamiltonian

N
Hicg=Ho+ V:Z Fali)+V, (6) Here the four-component potential was expressed as vector

potential A(r,w) and scalar potentiab(r,w). It is assumed

that the interaction Hamiltonian has incoming photon field
where the unperturbed model Hamiltonigy is a sum of time dependence '“!. By multipole expansion of the vector
average DF operatofs,, [19]. The application of Rayleigh- potential A(r,w) and scalar potentiap(r,w) [25], the mul-
Schralinger perturbation theory provides order-by-order ex-tipole interaction Hamiltoniar(h;,(r,));y is obtained in
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terms of multipole transition operatdr%,,(r,w) for the mag- (2J+1)(J+1)

B{}JKHK’:Zaw [(T?>K’K]2:AﬂJK’ﬂK-

netic multipoles ¢=M) and electric multipoles{¢=E) in (27+1)J
the following way: (16)
) (23+1)(I+1) In the lowest order of Rayleigh-Schtimger perturbation
(hin(r, @))gm=—ic \ ——5—tm(r.®). (10 theory, the multipole transition amplitude between states

andK' is
The matrix element$t3">ij for magnetic multipole transi- NG o ,
tion between the single-particle staieandj are given as (13 kk = ¥k (vIm) Tyl (yr T 7))

KitKj. - e (D) TS (o, T !
<tgﬂ>ij:<—Ki||C(J)||Kj>J JI+1]JJ(kr) % CiCrric (P nTmI Towl @1 (910 T )

X[P(NQ(N+P(NQ(NIdr. (A1) 17
and using the order-by-order expressions of the perturbation
series for the state approximated by MCDF SCF wave func-
tion ¢k (v Jm) of Eq. (3), the next-order transition ampli-

The one-electron reduced matrix eleme(tf§);; for transi-
tion between the single-particle staieand| are given(see

[5,26] for detaily in the length form as wde i
() =(allCOl | | TPy o)y (Tt =R T m) [Tl i (v T )
Ki— Kj +<(?[/K(yK\7W)|T39M|w(Kl,)(yKyJW,)>+...'
+QINQ(N]+jara(kn)| 557 [PINQ;(r) .

where the first-order wave function is defined as

+Pi(r)Qi(r)J+[Pi(r)Q;(r)— Pj(r)Qi(r)]Hdr

| (v Tm) =RV g (v T)). (19
12
(12 As with the second-order enerdigs. (7) and (8)], the
and in the velocity form as first-order transition amplitude can be expressed in terms of
CSFs in the following way:
. =i alkn)
(t5¢ )>ij:<Ki||C(J)||Kj>f | J]Jrll (]J(kr)+ " ) ) (+) (+)
<TJ>KK':; 2 CikCrxr
X[Pi(r)Qj(r)+P;(r)Qi(r)] bl
R E PR )]]d [(@fVIO )@ T 0f)
(DQi(r)=Pi(r)Qi(r r,
Kr i j j i E|CSF_ E(LZSF
13 (@([Th o) @{V|2 ()
wherej ;(kr) is the spherical Bessel functiok,is the photon + E,C,SF— EcL:SF - (20

wave vector, anck=|k|. C is the irreducible tensor of

rank J with components related to the spherical harmonics as  one-electron reduced matrix eIeme(tt?;)” given in Egs.
CY'=\4x/(23+1)Y{). The electromagnetic interaction (11)—(13) are frequency-dependent through spherical Bessel
Hine Of @ many-electron system is the sum of the interactiongunctionsj ;(kr). The corrections arising from approximate
of all electrons photon frequency may be eliminated semiempirically using
experimental transition energies. In the present study, transi-
Hi= > (hndiara, (14  tion energiesand photon frequenqias“”“z)) calculated
i by MR-MP second-order perturbation theory are close to the
experimental values, and the terms arising from corrections
as well as the multipole transition operafb?M, to the photon frequencygw = w®"—w®"1*2) in both zero-
and first-order transition amplitudes are significantly smaller
T, = 2 ara; . (15) and may be neglgp_ted. When the first-order correcti(_)ns to
IMT 4 ARIMANE ) transition probabilities[Eq. (20)] are calculated using
second-order MR-MP transition energies, however, the zero-
The absorption probabilitiy .. per unit time of transition order transition amplitudgEq. (17)] must also be recalcu-
between statelsj (v 7)) and| i (yk: T 7')) with tran-  lated using the frequenay(©*1+2),
sition energy AE=hw=Ey,—Ex is equal to the The large and small radial components of the Dirac
spontaneous-emission probabil&y. , and is expressed as spinors of symmetryx are expanded in sets of even-
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tempered Gaussian-type functiod&TF9 that satisfy the TABLE |. First-order energies Kycprg), Lamb shifts (LS),
boundary conditions associated with the finite nuclg2ig.  second-order Dirac-Coulomb correlation energieg&}), and
The speed of light is taken to be 137.0359895 a.u. throughsecond-order Breit correlation correction8®) of the fine-
out this study. The GTFs that satisfy the boundary conditiongtructure componentss&3p® °p ;. Energies are in atomic units.
associated with the finite nucleus are automatically kineti=

cally balanced[27]. For all the systems studied, even- £ Ewcors LS ER B®
tempered basis sets of €22p20d18f15915h15i15 G 3s%3p2 %P,
spinors were employed. The order of the partial-wave expansg 1510265253 0312364 —0.498968 —0.019258

sion (Lnhad. the highest angular momentum of the spinors28
included in the virtual space, k=7 throughout this

study. The nuclei were modeled as spheres of uniform protoa2
charge in all calculations. Atomic masses for thé?fe(Z
=26), Ni*** (z=28), zn'®" (Zz=30), Gé%" (z=32),
Se% (z=34), Kr*?" (2=36), SF*" (2z=38), zr%" (z

—1427.998246  0.402883 —0.503985 —0.022850
—1664.395044  0.510152 —0.508534 —0.026715
—1919.603328 0.635785 —0.512917 —0.030959
34 —2193.784675 0.781448 —0.517071 —0.035564
36 —2487.115354  0.948860 —0.521049 —0.040452

=40), M3+ (2=142), REL (2=45), Agg3+ (2=47), 38 —2799.786683  1.139796 —0.524879 —0.045884

S5 (Z=50), and X&% (Z—54) ions are, respectively, 40  ~3132005530 1356095 ~0528591 -0.051613
55.847, 58.693, 65.30, 72.61, 78.96, 83.80, 87.62, 91.2242 ~ —3483.995009 1599657 —0.532201 —0.057653
95.94, 102.9055, 107.8682, 118.710, and 131.29. All elec?>  —4049.581628  2.020504 —0.537468 —0.067780
trons have been included in the MR-MP perturbation theor;f17 —4452.092554  2.341131 —0.540909 —0.075030
calculations to calculate accurately the effects of relativity oP® ~ —5094.758460  2.887733 —0.546027 —0.086783

electron correlation. 54 —6025.951504 3.751621 —0.552828 —0.104222
3s?3p? %p,

IIl. RESULTS AND DISCUSSION 26  —1210.220553 0.312460 —0.501478 —0.019268

_ _ 28  —1427.927750 0.403037 —0.506685 —0.022814

A. Fine-structure term energy separation 30 —1664.287843 0.510387 —0.511482 —0.026501

MCDFB SCF calculations on the siliconlike ions were 32 —1919.445556  0.636129 —0.515915 —0.030682

performed to obtain a single orthonormal set of spinors for34 ~ —2193.559300 0.781932 —0.520031 —0.035211

all the lowest 3?3p? J=0, 1, and 2 fine-structure states by 36 ~ —2486.801951  0.949516 —0.523884 —0.040087

optimizing the 7-averaged MC energig4.0]: 38  —2799.361237 1.140661 —0.527528 —0.045355

40 —3131.440209 1.357205 —0.531003 —0.050978

EYC (yTm= > (27+DEMS(yJm)/ (27+1) 42 —3483.257890 1601054 0534348 —0.056856
J=0,1.2 45 —4048.517324  2.022412 —0.539192 -—0.066814

(21 a7 —4450.756767  2.343436 —0.542343 —0.073911
. . - . 50 —5092.922223 2.890724 —0.547006 —0.085394
instead of performing state-specific MCDFB calculations ON., 5023242682 3755697 —0.553209 —0.102369
each fine-structure state. The approach is especially effect|v3§
for computing small fine-structure splitting6.e., near- S

23p2 3P2

degeneracy among the pg, and By, spinord. The 26  —1210.174789 0312511 —0.505350 —0.019288
MCDFB SCF is a complete active space SIOFLO] within 28 —1427.867054  0.403096 —0.510883 - 0.022834
the =3 (3513011303305 3ds) Spinor subspace. In 30 ~ —1664.211146 0510450 —0516112 —0.026499
the MCDFB SCF calculations. thesdy, 251, and Zype, 32  —1910.352554  0.636101 —0521032 —0.030690
spinors were kept fully occupied, and the remaining four34 ~ —2193.450242  0.781990 —0.525653 —0.035203
electrons were treated as active electrons in generating comé ~ —2486.677368  0.949568 —0.529984 —0.040078
plete active space CSFs within the subspace. Thus, the nu8  —2799.221748  1.140707 —0.534050 —0.045344

bers of CSFs generated are, respectively, 29, 45, and 70, {6 ~ —3131.286406 1.357246 —0.537881 —0.051024
the 7=0, 1, and 2 states. Following the MCDFB SCF cal-42  —3483.090302 1.601089 —0.541520 —0.056892
culations, state-specific MR-MP calculations were carried#5  —4048.329901  2.022439 —0.546695 —0.066873
out on each of the Iowes?PJ (7=0,1,2 fine-structure 47 —4450.556589  2.343458 —0.550010 —0.073997
states of the siliconlike ions employing the orthonormal se60  —5092.703488 2.890738 —0.554854 —0.085474
of spinors. Table I displays the computed MCDFB SCF en54  —6023.000106 3.755698 —0.561193 —0.102445
ergies Eyvcpes), Lamb shifts(LS), second-order DC corre-
lation corrections IE(ng), and second-order Breit interaction
energies B®) of the 3P,,, even-parity states of orbit interaction, are not large, and thus the CSFs arising
Fet?t (Z=26) through Xé% (Z=54). from 3s?3p?,, and &%3p3,, configurations are nearly degen-
Among the numerous CSFs included in the MCDFB SCF erate, and there is a strong configuration interaction between
the electronic configurationss33p?, and 3?3p3, espe- them. For the lowes/=0 (°P,) state of F&*, the MCDF
cially interact strongly in low- and intermediafespecies. SCF calculations yield configuration mixing coefficients
The 3p;, and g, spinors are nearly degenerate in thenearly equal in magnitude, 0.8924 ane0.4126, respec-
Fe'?* (Z=26) ion because relativistic effects, e.g., the spin-tively, for the two CSFs arising from thes33p?, and
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TABLE Il. Leading configuration-mixing coefficients of the 3523p§,2 (Table 1l). As Z increases, relativity lifts the near-
3s?3p? P, , states of ions along the silicon isoelectronic se- o ' o
- degeneracy and significantly weakens the configuration in-

uence. . o
q teraction between the two CSFs because it induces a large
7 J Castap?, Cas23p,,301 Caszap2, sgparatlon between thep3d, and 30_3,2 spinor energies and
simultaneously a smaller separation between thg, &and
26 0 0.8924 —0.4126 3py, spinor energief28]. Table 11 displays just such a trend
1 0.9833 as the nuclear charge increases. The MCDF SCF onfthe
2 0.7674 0.6139 =0 state of X&% (Z=54) yields configuration mixing co-
36 0 0.9617 —0.2260 efficients of 0.9917 and-0.0705, respectively, for the two
1 0.9877 CSFs arising from §3p?,, and &%3p3,,. Configuration in-
42 % 0.9787 0.9500 %212%2 teraction between the two CSFs for Re is reduced dra-
: e matically by relativity, making 323p§,2 the dominant con-
1 0.9898 . . . i
5 0.9770 0.1572 figuration. A complete active space SCEO| within the n
54 0 0.9917 : 70'0705 =3 complex gives rise to 45 CSFs for the= 1, even-parity
: : state, the electronic configuratiors®8p,,,3pa, being the
1 0.9934 dominant confguration with mixing coefficients of 0.9833
2 0.9910 0.0639

for Z=26 and 0.9934 foZz=>54. Thus the7=1 state does
not exhibit near-degeneracy in the low- to higtseries. The
J=2, even-parity CSFs behave like those of e 0 state,

TABLE IIl. Energy levels (cm?) of the 3s?3p? 3P , fine-structure components relative to the ground
3s?3p? 3P, state. Values in parentheses are the deviations from experiment of the calculated fine-structure

intervals.

Z Envcors Emrvp Huang?[4] Kohstall et al.? [30] Expt.©
3s?3p? %P,

26 9831(-528) 927825) 921984) 91851198 9302.5
28 15506 588) 14922(4) 14758160 14917.5
30 23579¢ 623) 22979¢ 23) 22709247) 22714245 22956
32 34702( 625) 34105¢ 38) 3372%352) 34076.7
34 49570¢ 614) 48998( 42) 48507449 48956
36 68928(-559) 68386(17) 67801568 67813556) 68369
38 93564(-474) 93099¢9) 92395695 93090
40 124317¢ 395) 123927¢7) 123122798 123920
42 162086¢ 356) 161790¢ 60) 160875855 161730
45 234007 233841 232789

47 293677 293610 292456

50 403664 403754 402435

54 595412 595735 594139

3s?3p? %p,

26 19887( 1326) 184783 18694(— 133) 18458108 18561.0
28 28840 1463) 2733047) 27607(- 230) 27376.5
30 40426( 1585) 3881(81) 39191(-350) 38677164 38841
32 55128¢ 1715) 534067) 53905(—495) 534125
34 73518 1823) 71714¢ 19) 72315¢ 620) 71695
36 96282( 1885) 94403¢ 6) 95098( 701) 94098304) 94397
38 124189¢ 1848) 1222006)  123024( 683) 122341
40 158082¢ 1854) 1561785  156936( 708) 156228
42 198875( 1866) 19699712  197746( 737) 197009
45 275147 273321 274045

47 337616 335845 336524

50 451674 450024 450587

54 648652 647206 647520

#Huang[4], n=3 complex finite-difference MCDF calculations.

bh=3,4,5 MCDF calculations by Kohstadlt al. from Ref.[30].
°NIST experimental data from Ref29].
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FIG. 1. Contributions of the first-order MCDFB energies to the .
3s23p? fine-structure intervals. Atomic number

FIG. 2. Contributions of the second-order Dirac-Coulomb cor-
dispaying near-degeneracy and strong configuration intera¢elation energies to thes33p? fine-structure intervals.
tion.

In Table Ill, a detailed comparison of theoretical and ex-for in the MCDFB SCF calculations. Our MR-MP perturba-
perimental data is made on the fine-structure term energieson theory accurately accounts for both nondynamical and
(cm™1) relative to the ground/=0 (3s?3p?3P,) state. Ex-  dynamical correlatiofi9,15]. The term energy separations in
perimental fine-structure interve&9] are reproduced in the column 3, computed with MR-MP and corrected by the
last column for comparison. Theoretical MCDFB and Lamb shifts, dramatically improve over those computed with
MR-MP term energy separations of ti#, (J=1) and MCDFB SCF, in excellent agreement with experiment
3P, (J=2), given, respectively, in the second and third throughout the isoelectronic sequence. Values in parentheses
columns of the table, were computed by subtracting the totadre the deviations from experiment of the calculated fine-
MCDFB and MR-MP energies of the ground7  structure intervals. The deviations between the computed and
=0 (3s?3p?°3P,) state from those of theZ=1 and7=2  experimental®P,-*P, fine-structure intervals range from a
levels. The fourth and fifth columns contain the fine-structuremere 4 cm?! atZ=281t0 60 cm ! atZ=42. The small, but
intervals obtained, respectively, by Huap#j and Kohstall uneven, deviations from experiment of the calculated fine-
et al. [30] in large-scale MCDF SCF calculations for com- structure intervals with no cle&-dependent trend are most
parison. likely due to theJ-averaged MCDFB SCF employed to gen-

Most of the experimentally determined fine-structure in-erate zero-order wave functions. The deviations from experi-
tervals are reproduced by the complete active space MCDFBient of theJ-averaged MCDFB SCF energies fail to show
calculations within then=3 complex, which account for any clear Z-dependent trend, while in the state-specific
nondynamical correlatioiquasidegeneragyIn Fe?", the ~ MCDF SCF calculations of Huang and Kohstatial, the
lowest 3P; (J=1) and 3P, (J=2) state energies com- deviations increase monotonically Zsncreases.
puted are, respectively, 9831 chand 19887 cm' above Figures 1-4 show the contributions from each order of
the ground®P, (J=0) state, while experimental values are, perturbation theory to the s83p? fine-structure intervals.
respectively, 9303 cmt and 18561 cm! [29]. For The contributions of the first-ordetMCDFB) energies
Mo?* (Z=42), the lowest®P; (J=0) and P, (J=1) (AEwmcprs), second-order Dirac-Coulomb correlation ener-
state energies computed in MCDFB SCF calculations aregies (AE(DzC)), second-order Breit interaction energies
respectively, 162086 cit and 198875 cm' above the (AB®), and the Lamb shifts{LS) to the 3?3p? fine-
ground ®P, (J=2) state, while the corresponding experi- structure intervals are displayed, respectively, in Figs. 1, 2, 3,
mental values are, respectively, 161730 émand and 4 as functions of atomic numb&r The MCDFB SCF
197009 cm?. The residual discrepancy is primarily due to and MR-MP calculations, as well as the Lamb shifts, result
dynamic correlation and radiative corrections unaccounteéh significant corrections and yield close agreement between
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FIG. 3. Contributions of the second-order Breit interaction en- Atomic number
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ergies to the 8°3p~ fine-structure intervals. FIG. 4. Contributions of the Lamb shifts to thes?3p? fine-

. . . structure intervals.
the calculated and experimental fine-structure intervals. The

largest contribution to the fine-structure term energy separa- . . . .
tions comes from the first-order MCDFB energies by which&'€ nonorthogonal, which explains the noticeable differences

the bulk of the separations are reproduced. However, thB€tween our MCDFB results and Huang's for l@wens. As
figures exemplify the importance mE(ch) andA LS in ac- Zincreases, the fine-structure intervals amdl andE2 tran-
curately predicting fine-structure term energy separationsion Probabilities computed with our-averaged MCDFB

The Lamb shift correction LS is small at the lowZ end, SCF agree with those computed with state-specific MCDF

but increases rapidly &increases and becomes comparableSCF: The M1 transition probabilities computed with

in magnitude at the largg&-end with the second-order Dirac- MR'MP wave funqtions, which account for_dynamical cor-
Coulomb correlation energieA,Egzg. relation, are consistently smaller in magnitude than those

computed with MCDFB wave functions. Theoreticisl1
o ) N transition probabilities computed with MR-MP wave func-
B. Magnetic-dipole and electric-quadrupole transition tions increase by two orders of magnitude Zsncreases,

probabilities among the 35°3p~ “P ; fine-structure states from 9586 sl atZ=26to 7.310k107 s ! atZ=54. E2

The theoreticaM 1 andE2 transition probabilities among transition probabilities are consistently four orders of magni-
the 3?3p?°P, (J7=0,1,2) fine-structure states of the  tude smaller than the correspondikil transition probabili-
=26-54 siliconlike ions were computed using the MCDFBties throughout the range of Zs. Thus the,-*P; transition
SCF and MR-MP wave functions. To evaluate them, we fol-is dominated by the magnetic-dipole decay. There is a sig-
lowed the method outlined in Sec. Il. In Table IV, we list the nificant disagreement between the length and velocity forms
M1 andE2 transition probabilities for thes33p?3P,-3P,  of the computedE2 transition probabilities at the lo&-end
transition. In each entryE2 transition probabilities com- because of its minute magnitude and because the contribu-
puted in both the lengtt) and velocity ¢) forms are given tions from negative-energy states are not accounted for to
to see the level of agreement between the two forms foensure gauge independenié&6]. The agreement between
electric-quadrupole transition probabilities. Available experi-the two forms improves, to within about 10% f&@= 30,
mental fine-structure intervals are given in the third columnwith increasingZ along the isoelectronic sequence. The dis-
for Z=26 through 42. In columns 4 and 5, theoretical fine-agreement between the length and velocity forms computed
structure intervals and11 andE2 transition probabiliies with MCDFB SCF wave functions, however, remains large
computed with MCDFB SCF wave functions are given. Inalong the isoelectronic sequence.
columns 6 and 7, we list those computed with MR-MP wave In Table V, we list theM1 transition probabilities,
functions. In the last two columns, Huang's theoretical re-Afcpes andANz.ve . for the 323p? P, -3P,, transition com-
sults[4] are given for comparison. The values from Rdfl  puted, respectively, with MCDFB and MR-MP wave func-
were obtained using state-specific MCDF SCF. The spinorions. Available experimental fine-structure intervals are
of different 7 states optimized in state-specific MCDF SCFgiven in the second column fa£=26 through 42. In col-
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TABLE IV. TheoreticalM1 andE2 transition probabilities (') between the fine-structure components
3s?3p? (P,-*P,) along the silicon isoelectronic sequence.

This work Previous work4]

z Type  AEep  AEmcors Avcors AEyr-mp AMR-MP AEMCPF2 Ancor?

26 M1 9259 10056 1.249-1) 9200 9.586+0) 9475 1.057+1)
E2(1) 5.840(— 4) 3.557(- 4) 4.093(- 4)
E2(v) 4.382(-3) 6.038(-4)

28 M1 12459 13334 2.745-1) 12408 2.216+1) 12849 2.486+1)
E2(I) 1.460(-3) 9.694(-4) 1.150(-3)
E2(v) 8.266(—3) 1.439(-3)

30 M1 15895 16847 5.1231) 15831 4.254+1) 16482 4.850+1)
E2()) 2.944(-3) 2.027(¢3) 2.509( 3)
E2(v) 1.308(- 2) 2.168(3)

32 M1 19336 20426 8.33%+1) 19301 7.058+1) 20180 8.124+1)
E2(I) 4.948(—3) 3.519(-3) 4.435(3)
E2(v) 1.779(-=2) 3.821(-3)

34 M1 22739 23948  1.22#2) 22716  1.047+2) 23808  1.218+2)
E2(I) 7.223(-3) 5.246(-3) 6.680(-3)
E2(v) 2.167(-2) 5.756(-3)

36 M1 26028 27354 1.673-2) 26017 1.4304+-2) 27297 1.668+2)
E2()) 9.521(-3) 7.074(3) 8.975(3)
E2(v) 2.444(-2) 8.363(3)

38 M1 29251 30625 2.166-2) 29196 1.877+2) 30629 2.171+2)
E2(I) 1.169(-2) 8.756(- 3) 1.115(-2)
E2(v) 2.631(—2) 9.743(-3)

40 M1 32308 33765 2.706-2) 32246 2.350+2) 33814 2.718+2)
E2(I) 1.368(-2) 1.038(-2) 1.315(-2)
E2(v) 2.749(- 2) 1.152(- 2)

42 M1 35279 36789 3.294-2) 35207 2.878+2) 36871 3.314+2)
E2()) 1.549(-2) 1.179¢2) 1.496(2)
E2(v) 2.824(-2) 1.313(2)

45 M1 41140 4.276+2) 39480 3.784+2) 41256 4.308+2)
E2(I) 1.788(-2) 1.398(-2) 1.736(-2)
E2(v) 2.888(—2) 1.548(-2)

47 M1 43939 5.008+2) 42235 4.454+2) 44068 5.044+2)
E2()) 1.930(- 2) 1.526(-2) 1.878(-2)
E2(v) 2.915(- 2) 1.687(-2)

50 M1 48010 6.22B+2) 46270 5.576+2) 48152 6.267+2)
E2()) 2.121(-2) 1.704(2) 2.070(2)
E2(v) 2.951(-2) 1.877(-2)

54 M1 53240 8.084+2) 51471 7.310+2) 55381 8.138+2)
E2(I) 2.343(-2) 1.918(-2) 2.289(-2)
E2(v) 2.989(-2) 2.104(-2)

8Huang[4], n=3 complex finite-difference MCDF calculations.

umns 3 and 4, respectively, theoretical fine-structure interwave functions, indicating the importance of dynamical cor-
vals andAN:,eg are presented. In columns 5 and 6, we listrelation in computing the fine-structure interval and wave
those computed with MR-MP wave functions. Theoreticalfunctions. Towards the largé- end, however, the fine-
M1 transition probabilitieé\M3 - increase by five orders of structure intervals and transition probabilitieSyépes and
magnitude ag increases, from 1.38510" s ! atZ=26 to AME e, computed with the two wave functions agree well,
2.743<10° s ! atZ=54. In the last two columns, Huang’s indicating that the dynamical correlation has small contribu-
theoretical result$4], computed using state-specific MCDF tions for largeZ ions.

SCF, are given for comparison. The transition probabilities In Table VI, we list the E2 transition probabilities,
computed with MR-MP wave functions are seen to be conAEZ; and AZ% . for the 3P,-3P, of siliconlike ions
sistently smaller than those computed with MCDFB SCFcomputed, respectively, with MCDFB SCF and MR-MP
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TABLE V. Theoretical M1 transition probabilities (s') between the fine-structure components
3s23p? (3P;-3Py) in siliconlike ions.

This work Previous work4]

z AEexpt AEMCDFB AM(%DFB AEMR—MP AI\M/Ié-MP AEMCDF é AM(JZ-DF a

26 9303 9831 1.6431) 9278 1.386+1) 9219 1.358+1)
28 14918 15506 6.329-1) 14922 5.642+1) 14758 5.466+1)
30 22956 23579 2.17#2) 22979 2.007+2) 22709 1.947+2)
32 34077 34702 6.77%2) 34105 6.404+2) 33725 6.214+2)
34 48956 49570 1.9443) 48998 1.8501+3) 48507 1.799+3)
36 68369 68928 5.0333) 68386 4.906+3) 67801 4.781+3)
38 93090 93564 1.22%4) 93099 1.206+4) 92395 1.178+4)
40 123920 124317 2.8004) 123927 2.770+4) 123122 2.716+4)
42 161730 162086 6.0864) 161790 6.050+4) 160875 5.92{+4)
45 234007 1.77#5) 233841 1.770+5) 232789 1.740+5)
47 293677 3.452+5) 293610 3.446+5) 292456 3.39¢+5)
50 403664 8.750+5) 403754 8.756+5) 402435 8.636+5)
54 595412 2.740+6) 595735 2.743+6) 594139 2.708+6)

3Huang[4], n=3 complex finite-difference MCDF calculations.

TABLE VI. Theoretical E2 transition probabilities (s') between the fine-structure components
3s?3p? (3P,-*P,) along the silicon isoelectronic sequence.

This work Previous work4]

z Type AEegp  AEwcors ANeors AEpr-mp ARk P AEMCPFa  ARRLE?

26 ) 18561 19887 4.068(3) 18478 2.618¢3) 18694 6.535¢ 3)
(v) 1.167(- 1) 1.211(2)

28 () 27377 28840  2.18%2) 27330  1.571¢2) 27607  3.135¢2)
(v) 4.081(-1) 5.008(-2)

30 () 38841 40426  1.004¢1) 38810  7.604(2) 39191  1.298(1)
(v) 1.290+0) 1.169(- 1)

32 () 53413 55128  3.999%1) 53406  3.203¢1) 53905  4.757¢1)
(v) 3.709+0) 4.318(-1)

34 ) 71691 73518 1.412-0) 71714 1.178+0) 72315 1.58(+0)
(v) 9.881(+0) 1.445+0)

36 (D] 94397 96282 4.612-0) 94403 3.920+0) 95098 4.847+0)
(v) 2.472+1) 4.634+0)

38 ) 122341 124189 1.336-1) 122295 1.1764+1) 123024 1.390+1)
(v) 5.901(+1) 1.292+1)

40 ) 156228 158082 3.666-1) 156173 3.300+1) 156936 3.750+1)
(v) 1.352+2) 3.519+1)

42 ) 197009 198875 9.503-1) 196997 8.70(1+1) 197746 9.656+1)
(v) 2.996+2) 9.099+1)

45 ) 275147 3.62(+2) 273321 3.376+2) 274045 3.644+2)
(v) 9.777+2) 3.460+2)

47 ) 337616 8.366+2) 335845 7.8701+2) 336524 8.390+2)
(v) 1.930+3) 8.003+2)

50 ) 451674 2.736+3) 450024 2.602+3) 450587 2.736+3)
(v) 5.492+3) 2.624+3)

54 ) 648652 1.184+4) 647206 1.136+4) 647520 1.18@+4)
(v) 2.054+4) 1.14Q+4)

8Huang[4], n=3 complex finite-difference MCDF calculations.
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TABLE VII. Theoretical lifetimes(s) of the 3s?3p? 3P, and TABLE IX. Percentage contribution of the multipole transition
3p, fine-structure states of ions along the silicon isoelectronic seprobabilities (s1) contributing to the lifetime of 8°3p? 3P, state
guence. of ions along the silicon isoelectronic sequence.

3s?3p2°%p, 3s?3p2°%p, E2 3s23p? (°P,-°P,) M1 3s23p? (°P,-°P,)
z TMCDEB TMRMP TMCDFB TMRMP lon ASZ e Percentage ANiue  percentage
26 6.086(-2) 7.220(2) 8.003(-2) 1.043(-1) Fet?" (z=26) 2.6-3) 0.03 9.6+0) 99.97
28 1.580¢-2) 1.7722) 3.640(2)  4.509(-2) Kr??* (z=36) 3.9+0) 3 1.4+2) 97
30 4593¢3) 4.713-3) 1.948(-2) 2.072(-2) Mo?8t (z=42) 8.1+1) 23 2.9+2) 77
32 1.477¢3)  1.5033) 1.192(-2) 1.260(2) Xe'" (Z=54) 1.1+4) 94 7.3+2) 6

34  5.144(4) 5263(-4) 8.057(-3) 9.444(-3)
36  1.987(-4) 2.038(-4) 5817(3) 6.765(3)

38 8.150(-5)  8.292(-5) 4.349(-3)  5.014(-3) because it is less sensitive to negative energy contributions
40  3.571¢5) 3.601(-5) 3.255(-3)  3.719(-3) [5,6]. For the 3?3p? 3P, fine-structure level of siliconlike
42 1.643(-5)  1.653(-5) 2.356(-3) 2.671(-3) ions, lifetimes decrease by five orders of magnitudeZas
45  5627¢6) 5646(-6) 1.266(-3) 1.397(-3) increases, ranging from 7.2210° 2 s at Z=26 to 3.65
47 2.897¢6) 2.902(-6) 7.477(-4) 8.113(-4) X107 s atZ="54, while for the 3?3p? 3P, state, there is a
50 1.142¢-6)  1.142(-6) 2.979(-4)  3.165(-4) decrease of four orders of magnitude.
54 3.6507) 3.646(7) 7.906(-5) 8.257(5) Table VIII compares the theoretical lifetimes of the
3s?3p? 3P, state of KF?" (Z=36) with those obtained in
recent experiment$12—14. Experimental lifetimese,y
wavefunctions in both the length and velocity forms. In col-measured in three recent experimefit&8—14 are listed in
umns 4 and 5, respectively, theoretical fine-structure interthe first column. The theoretical lifetimeg'* of the 3P,
vals andAépeg are given. In columns 6 and 7, we list those state evaluated solely using thél transition probabilities
computed with MR-MP wave functions. In the last two col- (ignoring the contribution of th&2 transition probabilities
umns, Huang'’s theoretical resu[#] are given for compari- are given in the next two columns, each evaluated, respec-
son. Like in the3P,-3P, transition, there is a significant tively, with the MCDFB SCF and MR-MP wave functions.
disagreement between the length and velocity forms of thehe lifetimes7\1*52() evaluated usingv 1 and the length
computedE2 transition probabilities at the lo®-end be- form of the E2 transition probabilities are given, respec-
cause contributions from negative energies are not includegively, in the fourth and fifth columns for MCDFB and
to ensure agreement between the two fof§6]. The agree- MR-MP wave functions. In the last two columns, we list the
ment between the two forms computed with MR-MP wavelifetimes 7M*"52() evaluated withM1 and the velocity
functions improves to within 10% with increasing form of the E2 transition probabilities. The lifetimes com-
Z (=38) along the isoelectronic sequence. Again the disputed with MCDFB SCF wave functions are consistently
agreement between the length and velocity forms computedwer than those computed with MR-MP wave functions,
with MCDFB SCF wave functions remains large along theand apparently support the smallest experimental lifetime of
isoelectronic sequence. 5.7+0.5 ms[13]. We believe this is primarily because the
Table VII gives the MCDFB and MR-MP theoretical life- theoretical fine-structure intervals computed with MCDFB
times, 7ycprs and Tyr.vp, respectively, of the §3p?°P,,  SCF wave functions are insufficiently accurate since the
states of ions along the silicon isoelectronic sequence. Theyethod fails to account for a significant fraction of dynami-
were computed by summing thé1 andE2 transition prob-  cal correlation. However, the lifetimes computed with the
abilities given in Tables IV, V, and VI to all possible lower correlated MR-MP wave functions are in the range 6.73—
levels. The length form of thE2 transition probabilities was 6.95 ms, clearly supporting the latest experimental lifetime
employed to evaluate the theoretical lifetimes throughout of 6.8+0.1 ms[12]. Our MR-MP theoretical lifetimes com-
puted in the length and velocity forms agree with this life-
TABLE VIII. Comparison of the theoretical and experimental time to within the experimental error limit. The radiative
lifetimes (ms) of the 3s*3p? °P, state KF** (Z=36) ion. decay of theP, state KF** occurs predominantly via the
magnetic-dipole®P,-3P; transition.
Table 1X displays percentage contributions of tB2(l)
Tet ~ MCDFB MR-MP MCDFB MR-MP MCDFB MR-MP  anq M1 transition probabilities to the lifetimes of thP,
5977 6.949 5817 6.765 5207 6732 State of silicor)like ions. Pgrgentage cor)triputions of B
5.7+0.52 and M1 transition probabilities to the lifetime of th&P,
state F&' (Z=26) ion are, respectively, 0.03% and

ML ML+E2() ML+E2()

6.3+0.3° . .

6.840.1° 99.97%, while they are, respectively, 94% and 6% for
Xe*" . Thus for lowZ ions, the radiative decay of th&P,

3Experiment, Ref[13]. state is predominantly via the magnetic-dipdR,->P; tran-

bExperiment, Ref[14]. sition, while it occurs via the electric-quadrupot®,-3P,

‘Experiment, Ref[12]. transition for highZ ions.
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IV. CONCLUSION the Lamb shifts. The correlation corrections due to the Cou-
L . lomb and Breit interactions to thE2 and M1 transition
Relativistic MR-MP perturbation theory has been em'operator have been accounted for in the first-order MR-MP

ployed to calculate the transition energies and magnetic- . I N
dipole and electric-quadrupole transition probabilities of sili- ave functions. The contributions of té1 andE2 transi

conlike ions. As a zero-order approximation, a large 3 tion probabilities to the lifetimes of thes33p P, have

complex reference space was chosen. The calculated seconbtf':en analyzed.

order MR-MP transition energies for various siliconlike ions

(26<Z=<54) are the most accurate among those obtained ACKNOWLEDGMENTS
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