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Logarithmic two-loop corrections to the Lamb shift in hydrogen
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Higher-order @/7)? (Z«)® logarithmic corrections to the hydrogen Lamb shift are calculated. The results
obtained show the two-loop contribution has a very peculiar behavior and significantly alter the theoretical
predictions for low-lyingS states.
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The calculation of the two-loop contribution to the Lamb incorrect, a very recent, third numerical result by Yerokhin
shift in hydrogen is one of the most challenging projects inin [10], confirmed the first onE7]. So, this situation with the
bound state QED1,2]. Since direct numerical calculations two-loop contribution is very unclear. Moreover, the analytic
with the use of Dirac-Coulomb propagators have not yewalue Ir¥(Za) 2 term corresponding to all the diagrams was
been completed, one has to rely on #he expansion confirmed independently by several groups, so this situation
is even more confusing. It was argued by Yerokhir 10]
that the If(Za) 2 term for this one loop-by-loop diagram is
different from the total value oBg3; and in fact found an
) Coa additional contribution. However, the value for this term
+(Za)T{In(Za)"*}"Bes coming from all the diagrams might be correct because other
+{IN(Za) 2}2Bgy+ IN(Za) 2B+ Begl + - - -} diagra_\ms may contain qomp_ensat_ing terms. The goal of this

work is to shed some light into higher-order two-loop cor-
(1) rections and calculate all the logarithmic terBis,Bg,, and
Bg1- We find that indeed the two-loop contribution has a
very peculiar behavior as the higher order teBg, domi-
nates and reverses the sign for the overall logarithmic con-
tribution. In the following sections we present some details
of this calculation. First, a simple example is worked out to
B,o=0.538 941. 2 demonstrate the method, then we pass to the most difficult
two-photon-loop diagrams and complete with the remaining

The calculation of the next order correcti@, was com- diagrams containingl an electron Iqop. Conclusions with
pleted only a few years ago independently by two groups irProspects of calculation g, summarize this work.
[3,4]. The value was surprisingly large,

o 2
AE=m(;) (Za)*B 4o+ (Za)Bs

The leading-order correctioB,, can be obtained from the
slope of the electron form factofs; andF, at g>=0. It is
known analytically and its numerical value is quite snifdf

S states including vacuum polarization

I. SIMPLE EXAMPLE

Moreover, this correction led to a strong disagreement in The example to demonsirate the calculational method is

He" Lamb shift with the most precise experimental value inthe asymptotic expansion of

[5] while for hydrogen Lamb shift, it led to an agreement

with the Mainz value for the proton charge rad{@. This P(w)=(¢|p 1 pl &) (4)
large value ofBs, compared toB,, indicates a very slow E-(H+w)

convergence or even might suggest a nonperturbative behav-
ior of the two-loop contribution. Indeed, the direct numerical

calculations of one diagram, the loop-by-loop electron self- =_ E + 3_4‘/5 4712In(2) +4 In() +...
energy by Mallampalli and Sapirstein fid], shows that the 0 w2 w®
value of this correction af=1 is of different sign and mag- 5

nitude than the one based on the first two terms of analytic

expansion. Moreover, this numerical calculation was in dis-around largew for the ground state of the hydrogen atom.
agreement with the analytical valueB§; in [8] while it was ~ More precisely, we concentrate on the 3 term. For sim-
argued in[8] that this correction comes only from this dia- plicity, we put herem=1,a=1. From one sideP(w) is
gram in the covariant gauge. A year later another gri@lp known analytically[11]

calculated numerically this diagram and found an agreement

with the analytic expansion including3@«) 2 term. While 384,

this may suggest that the first numerical calculations were Plw)=————F——1F1(42-73-7,), (6)
(1+7)82-17)
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1—7\2 1 With the regularized potentiaR— Pg) one can expan®g
=l—, 77—, 7 in (H—E)/w that leads to
Sl 2(w+1/2) " (H=8)

1 1
so one could get this coefficient from here. However, our  Pg=——(g|p(H—E)?p|¢p)=——(¢|V'(r)?|¢),
final goal is to calculate the two-loop contribution for which w ®
no analytic formula has been derived so far. Therefore, we ©)
use a different approach based on the effective Hamiltonian. V()2 by =21+81n(3)—8 In(\)— 2 10
First, we regularize the Coulomb interaction by the following (V' (D7) (3) (M-2, (19
replacement: where the last expectation value is taken frig]. The re-
1 1 maining part, which was left out by this replacement, is ob-
V(r)=———o—>(1-eM). ®) tained from the subtr_acted forward-scattering amplitude.
r Two photon exchange is

P (<) p p N (=1) N p|l 22 11
p* p22+w p*  p* pP+A2 pU2+w pP+A2 pt| o3

d3p
P2: J —6477
(2m)?

where we keep only the 3 term (0~ ! and w2 are subtracted out before the integrajiofihe three-photon exchange
requires more subtractions. One Coulomb exchange between photon verticeB gives

d3 d3 ’
P3A:f P —p64’7T
(2m?*) (2m)®

P (=) (=47 (=1 p
p'4pt+tw q*> pYtwpt

PN (5 (Z4m N (=) N p
p'tp PN p'i2tw  g® AN*+0® p%2+w p?+A? pt

_4Inw—8ln)\—8ln3+20In2

12
w3 (
The Coulomb exchanges out of photon vertices dg
d*p %’ (11 1 1 1 AN 1 A 1 N\ 1
P38=—2048n2f — === — —
(271_)3 (277)3 pr4 q2 p2+2w p4 p/4 )\2+p/2 q2 )\2+q2 p2+2w )\2+p2 p4
2—32In(2)+161In(3)
- - _ (13
w
|
There is an implicit subtraction gb’=0 for removal of [I. TWO-LOOP LAMB SHIFT

smallp’ divergence. It corresponds to subtraction of lower-
order contributions. Additionally, only the 3 term is se-
lected. The sum

The calculations of the two-loop Lamb shift in the order
of a?(Za)® is more complicated due to the presence of pow-
ers of In¢a). It reflects the fact that several energy and mo-
mentum regions contribute. For these calculations we intro-
4-121In(2)+ 4 In(w) duce a number of cutoff parameters to separate different

3 (14 regions and calculate them independently. In Fig. 1 the inte-
@ gration region of two photon energies andw, is split with
the help ofeq,e,,€;,€5. Additionally X “splits” the inte-
is independent ok in the limit of large\ and agrees with gration over electron momenta. The splitting itself does not
that from the expansion of analytic formula in E§). The  help too much. The key trick is the assumption that after
advantage of this method is the direct application to the twoexpansion inZa one goes to the limitg,—0, €,—0, €,
loop Lamb shift. —0, €,—0, A— in the order as written. The two-loop

P= PR+ P2+ P3A+ P33=
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EMm

T N .

FIG. 2. Two-loop diagrams in the Coulomb gauge in NRQED.

&2 5777 En rithms. The constant terBg, is left unevaluated, however,
. o " we lay the groundwork for its calculation.
1 1 1
FIG. 1. Division of integration region into four parts depending
on the value of both photon frequencies<e;. Ill. CONTRIBUTION E_
T . . The diagrams in the Coulomb gauge (NRQED) are
contribution is split accordingly presented in Fig. 2. We calculate them first for photon ener-
AE=E +Ey+Eg+Ey, (15)  gies inside a rectangular box<Qv;<e€;, 0<w,<e€;, €

<€, and then combine to the regid) as shown in Fig. 1.
and calculated separately, each term in the most convenieiihe expression derived from nonrelativistic QED for all
gauge. In the following sections we calculate all the loga-these diagrams is

2
o= 2a fEld ffzd < | i 1 j 1 i 1 j| >
S gmm) o deren)y G020 P i o) PE- (ot wp) P E-(Hray) P ¢
1 i i 1 J. 1 i
P e T o) P E-(Hrartwp) P E-(Hrap P19
1 i ]. 1 j i
TP e Ty P E-(Hrwrrwp) P E=(Hrap) P19
"y i 1 i 1 J. 1 j|
(¢lp E-(Htw) " (E—H) " E-(Htap) " ¢)
L — 14X slp! ¢)
2P E-(Htwy P P [E—(H+w2)]2p
—}<¢>Ip‘;p‘|¢><¢|pj;p"l¢>+m<¢lp‘ - - p'l#)
2 E-(H+w,) [E—(H+w;)]? E-(H+w;) E-(H+w))
m i i m i 1 i 16
|
It is a two-loop analog of Bethe logarithms. We have not € €
found a way to calculate its matrix elements analytically in a &= L( —2—2) . a7
a” a

compact form, therefore we proceed in a different way. One
finds that&, as in Eq.(16) depends o only throughe, and

€5 To find the logarithmic dependence, we differentigteover
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€, and €5, which with the help ofe,<e€; leads to a much
simpler expression. The first derivative leads to

2) 2 Joez

. 1 )
X((ﬁlp'mp'l@,

IEL

<

2a

3m™m

15e, w0205

(18)

whereé ;. 53y denotes first-order corrections ¢goH, E due to

w8%(r) operator. This integral was considered and calculated
in the context of hyperfine splitting in hydrogenlike systems
[13] since the Fermi spin-spin interaction is also proportional

to 6°(r). The result from that paper that is extended here t
any value of principal quantum number is

2 € : 1 i
5 0n5%(n) fo dww(s|p E-Hto)’ |p)

3mm
_a ,F0
RN (19
2
F(n)=— §|n26+|n2[2{1—2 In(2)}
8/3 1 1 | " c N
+§ Z_’_R ﬁ n(n)+ (n)+ + (n),
(20)
whereN has been calculated only for=1.
N=N(1)=17.829909 3, (21

andW¥=TI"/T" with EulerT" function and EulelC constant

1
-C, W¥(n)= 1+2

(1) .+ —-C.

n—1
(22

3

We have introduced here a notaties €/ a?, which is to be
used throughout this work. The result for=1 with &
=m(al/m)?ab is

]

IEL

2 _
€15, —§|n2(62)+2(1—2|n2)|n(62)+

J
(23

The second derivative ovet, is little more difficult to cal-
culate:

o

€
2 e, 0"62

J dwlwlfz{ -}

o L1

37m?

dwjw,€5{-- - }=A+B.

37m?
(24
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One splits it into two parts with the assumptief<e,. The
first term A has the same form as that in E@3) with e,
replaced bye; . The second terrB is, in turn, split into two
partsB=B, +B,,;, whereB, is calculated with the regular-
ized Coulomb potential as in E). One can expand here in
the ratio H—E)/w that leads to the expression

E
BL=gIn ( ){<¢I4ms3<r myny 4w (r)| b)
1
+5<¢|V24wa€<r)l¢>}- (25

%Both the terms inside the above braces have already been
calculated in context of the positronium energy levelglig|

1
<¢|4wé\2<r>m4wa€<r>|¢>
I 3 3 2
3 2+2In—+8|n——§+—
+2{In(n)—\P(n)—C}}, (26)
(¢|V247nf\(r)|¢>=—%{—%4—)\—4-%6In?—l :
n n
(27)

with n=1 in our caseBy is the difference betweeB and

B, . In this difference only large electron momenta contrib-
ute, therefore it could be obtained in the scattering amplitude
approximation in the same way & and P; in a simple
example in the previous section. The result is

A , e @ @
By=€=|8+57m —In[=|+2\In| = | —50In(2)In| =
9 €1 €1 €1
€1 €1 A
+18In(3)In| = | +In| =] +4In ;)In(—”.
€ €2 € \/6:2

(28)

The completeB term is
4 — _ -
B=£ g[8+ 572+ 31n(e;)—6 In(2)In(e;) — 2 In(€e1)In(€,)

+In(e)?—31In(e)) +6 In(2)In(e)) +In(e))?]. (29
We can now go back to E@24) for the second derivative of
&, which is a sum ofA andB

4

3N
= 8+7+5’772+3|n

9 _

€5, (€1)—6In(2)In(ey)

—21n(ep)In(e) +In(ez)? (30)

3-4
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The expression fo€; that matches both derivatives is

— — |2NIn(e;) 32In(e;) 2NIn(e;
SL(el,ez>=5{ (e, 320e) 2N inGey

.\ 2072In(€,) +4 In(e;)In(€y)

9 3
8In(2)In(e;)In(ex) 4 In(ey)In(ey)?
B 3 h 9
41n(e,)?

The constant terntno logarithmsis not included hereE; as

shown in Fig. 1 is integrated over the region, which is a

combination of three rectangles
€, € €r

+5L< 2,—) EL( —2) (32
a” o a

IV. CONTRIBUTION Ey

52

EL—EL(

PHYSICAL REVIEW A 63 042503

V(e d). (39

H)'

The corresponding matrix element is given in E2f), so E,1:
becomes

El—g 10 4| ) 10 4I )
F" 16l 9 3 n(2e;) 9 3 n(2e,)

4N-16Ins —4—641n
STy TmaTRaly )

Ef=(o|V(

61)(E

(39

One needs only Ik term since others do not give ¢n Eﬁ is
the contribution from electron formfactofs; and F, at g°
=0 on relativistic(Dirac) wave function. We know it from
the one-loop case that for vacuum polarizatiog = A,y/2.
The same holds for two-loop contribution, thus we have

_,Bao

=€Ina 5 (40)

Diagrams with closed fermion loop are automatically in-
cluded in the above formula. Other contributions coming

In the one-loop case, contribution to energy coming fromfrom these diagrams are calculated in Sec. VII.

photon energie&’> ¢ is

SE=(¢|V|¢), (33

10 4
V(e)=a253(r){§—§ln(26) : (34)

Ey is aV correction to the Bethe logarithm
2a 1 :
Em=3_ 5V(sl)f dow(g|p E-(Htw) p'l#). (35

It has the same form as E@R3), so after symmetrization
€1 € |t iS

£ _5 10 4I D!
M=5|g ~3in(2ey)
2 €y €y
X| == =+2(1-2In2)In = +N|+ (1 €,).
3 a2 a2
(36)

V. CONTRIBUTION Eg

Er is the two-loop contribution with regularized Coulomb
interaction and with both photon energies limited from be-

low by e. It is a sum of three terms

Er=Ef+EZ+E2,

37)

E2 is the contribution fromF; and F} calculated with
nonrelativistic wave functions. It leads to the matrix element
(p|V25%(r),| #) that does not lead to k. Hence, it does not
contribute to Inu.

VI. CONTRIBUTION Ey

Ey is the contribution obtained from the two-loop three-
photon exchange forward-scattering amplitude. It requires
subtractions of terms contributing to Lamb shift at lower
orders. After subtractions it is finite and dependseqne,,
and A=\ «. When combined wittE, andEg, the depen-
dence oneq,e,, and A should cancel out. Having this in
mind, the Ina contribution could be obtained by the replace-
mentA — 1/« in E,lz in Eq. (39). However, the constant term
Bgg requires complete calculation &y, which we think is
the most difficult of the contributions.

VIl. DIAGRAMS WITH CLOSED FERMION LOOP

There is a small logarithmic contribution coming from
diagrams with a closed fermion loop. They are partially in-
cluded inEZ . Two other contribution&y, andEZ, are the
following. The second-order correction coming from the
one-loop vacuum polarization is

4 2
Ele=e] - 15) (A0 gy KON 8] 5] e
(41

The second contributiof?, is the electron self-energy in

defined and calculated as followsf is a second-order cor- the Coulomb potential including vacuum polarizationP)

rection coming fromv(e;) andV(eZ) with V defined in Eq.
(34), here additionally with\ regularization

correction. It is calculated in a similar way as previous cor-
rections. One splits it into three parts

042503-5
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E\2,p= C_+Cy+Cy. (42)  the source of additional terms, which were not accounted for
in the calculation if8]. An additional result of this work is
C_ is a VP correctionV= — (4/15)8°(r) to the Bethe loga- the state dependence & coefficients, which is obtained

rithm, from n dependence of matrix elements in EX)), (26), and
(27),
Cimgody [ dooldlp ey PI6) @3
LT3, 07, 00 - 16(3 1 1
37 V) E-(H+o) Bean)=Bext 5| 7+ 55—+~ (M +¥(+C],
914 4n?
4 2 € € (52
=& -/l ~3 In? — +2(1-2In2)In— +N|.
@ @ (a4 g 4 N — N 304 32 02
Cw is a second-order correction coming from self-energy
and VP, 3 1 1
X Z+ﬁ—ﬁ—ln(n)+w(n)+c . (52
INERELIEY 4 :
Cw=2{7] g 3n2e)| ~ 135 The n dependence oBg, agrees with the former result in
[14] (apart from the misprint in the overall sign ther8g;
depends oM coefficient, the Dirac delta correction to Bethe
(¢l 8(r) (E— H) ”(r)|¢> (45) logarithms, which has not been calculated yet for other states
than 1S, therefore its complete state dependence is unknown.
10 4 4 However, one may expect to a good approximation bhat
—28 g —3zIn2e|| —3g|ine. (46)  independent of as it is for Bethe logarithms.

Because of the large value Bf;, the theoretical predic-

Cy is given by the scattering amplitude. Since we calculateions for hydrogen Lamb shift are going to be changed. The
only the logarithmic part, instead of calculatiBy; we re-  total logarithmic contribution is 16.9 kHz for theSlstate,
placed I\ by —In « in the equation above. The logarithmic compared to the previous one, based only &g
part of the electron self-energy in the Coulomb potential in-—28.4 kHz. The theoretical predictions for Lamb shift in
cluding vacuum polarization correction is hydrogen with proton radius,=0.862(12) fm from[15],

using recent updates: analytical calculations of the three-loop
47) contribution by Melnikov and Ritbergen 6] and direct

numerical calculation of one-loop self-energy by Jentschura

et al.in [17] are(see details in the Appendix
This completes the treatment of the two-loop logarithmic

correction. E (19)»=817281610)(32) kHz, (53

472 2
E\Z,P=81—5{§(Ina2)2+4 §+|n2)|n a 2.

VIIl. SUMMARY EL(25—-2Py»)n=10578421)(4) kHz, (54

The sum of all the logarithmic terms in Eq82), (36), Where we assumed fdBg,=0= 100, which gives the first
(37), (42), and(47) is uncertainty. FoP states we negled@ terms completely. The
second uncertainty comes from the proton-charge radius.

8 Since it dominates the theoretical error, we emphasize the
863:_2_7:_0'296 296, (48) importance of the muonic-hydrogen measurement from
which r, could be precisely obtained. Current theoretical
104 161n2 predictions agree well with the most precise experimental
BGQIE’— T =-0.461891, (49) values:

EL(1S)exp=8 17283722) kHz(Refs[18] and [19]),
39751 4N 55m° 616In2 3w°In2 401’2 L1Se 122 KHz(Refs| 18] [ ])(55)

Ber=T0s00" 3 " 27 13 | 4 9
EL(25— 2Py )5) e 1 0578459) kHz(Ref[20]),
) (56

8

EL(25—2P 1)) exp=1 057 84212) kHz(Ref[21]).
—50.309 654. (50) (57)

First of all the result foBg; is surprisingly large and reverses Due to large uncertainty and ambiguities with the proton-
the sign of the overall logarithmic contributioBg; agrees charge radius, one may regard the Lamb measurement as a
with the result obtained first ih8]. However, as it was determination ofr,. In this way, from 1S Lamb shift one
pointed out by Yerokhirf10], the loop-by-loop diagram is obtains
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r,=0.86912) fm. (58 In general, the Lamb shift in light-hydrogen-like systems is a
sum of nonrecoil, recoil, and the proton-structure contribu-
The logarithmic two-loop corrections significantly alter the- tions. In the nonrecoil limit, known terms are
oretical predictions for the Lamb shift in the single ionized
helium as well. The current theoretical value is

E,=m —| { Aot Ayl +(Za)Agyt (Za)?

a(Za)? ( ,u) 3
EL(2S—2Py,)q=14 041.578) MHz. (59) 3

It does not agree with either the experimental value from 2 a
[22] or the recent update 23], respectively, X[Agk "+ Agil + Ago Za) ]+ —[Bao+ (Za)Bso
EL (25— 2Py)eo=14042.5216) MHz,  (60) +(Za)*{Begl. >+ Bgol.?+ Beil + Bgo Za)}]

2
EL(2S2P1)e=14041.1817) MHz.  (61) + (%

C4o] ) (A2)

One may wonder abouBg, and further higher-order terms
keeping in mind the large value &,. There are two pos- where u is the reduced mass,m=m,, and L
sible and complementary ongoing projects: the direct calcu= In{m/[ u(Za)?]}. Most of these coefficients could be found
lation of this term and numerical calculation of completein any review such a$l] or [2]. The recent result is the
two-loop diagrams with Dirac-Coulomb propagators. Whiledirect numerical calculations of one-loop self-energy, which
the second would be the best way, the numerical accuragyives for hydrogenZ=1),
might be limited at smalZ such as wheZ=1. In the direct
calculation ofBgy one has to consider three points: the two- 2
loop Bethe logarithms withe cutoffs, two-loop scattering - {_ (59_77_”

. ! > Agy(1S,a)=—30.290 24-| —0.6187% ,
amplitude with the photon mags, and the transition terms 45 27
betweene and w. This project seems to be achievable using

the methods developed f@g, positronium decay rate, and 19 2
the one applied here. Agy(2S,a)=—31.18515 { —0.8089+(4—5— E) }
ACKNOWLEDGMENTS
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2
Ago(2S,2a) = — 30.644 66+ [ —0.7961 5 E) } ,
APPENDIX: FORMULAS FOR CALCULATIONS OF

LAMB SHIFT

In the calculation of hydrogen and helium Lamb shift we Aso( 2P 1/2,2a) = —0.949 46-0.0638, (Ad)

use the following physical constants:
where the second term is the vacuum polarizaf@f]. An-

R=10973731.5685184) m™ ', other recent result is the analytical calculation of the three-
loop contribution in[16]. Together with the previously
€=299792458 msl, known vacuum polarization and anomalous magnetic mo-

ment it amounts to
a~1=137.035999 5&0),

Cag=0.417 508. (AS)
m
#’ =1836.152 667 639),

N In this work we calculate all the logarithmic two-loop cor-

rections forS states. However, fdP state onlyBg, is known.

%:7294_299 50816), For this reason, in the theoretical predictions for hydrogen
Me and helium, we totally neglected higher-order two-loop cor-
rections forP states, but include8,, only. We neglect also
r,=0.86212) fm, the dependence ® in Eq. (20) on principal quantum num-
ber n, sinceN has not yet been calculated for 1. Recoill
r,=16731) fm. (A1) corrections, not included in EgA2), sum to
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= 50In(Za) - 8 ko(n,1)

oE= 3 3

p® (Za)®|1
_mM 7Tn3

1
In _—5|0

2 v C ! 1
S]HE(MHCH oo+ -

2n

14
+§5|0

b ol

7 1-8 ] (Za)5 m?
—

C31(1+1)(21+1)

nd M

(Za)® m?
><5,0[1.3644$2)]+TVD60, (A6)

where

7
Deo(NSyp) =4 In(2) - X

PHYSICAL REVIEW A63 042503

I(1+1)
2

2

I=1)= .
Ded|=1) (412—1)(21 +3)

3—

(A7)

n

The finite-charge distribution of the nucleus and its self-

energy give corrections

2 4 ul
SE=——=(Za)* %285+ —(Z%a
3n3( ) 7T <d19 3 |v|2( )

n3

X(Za)*

In . (A8)

M
Za)? S0~ Inkg(n,l)

M

In the theoretical predictions presented in this paper, we have
proton-structure corrections and
higher-order recoil corrections, which at present are negli-

neglected higher-order

gible.
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