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Demonstration of initial-state dependence in time-dependent density-functional theory
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Time-dependent density functionals depend in principle on the initial state of a system, but this is ignored in
functional approximations presently in use. For one electron, it is shown that there is no initial-state depen-
dence: for any density, only one initial state produces a well-behaved potential. For two noninteracting elec-
trons with the same spin in one dimension, an initial potential that makes an alternative initial wave function
evolve with the same density and current as a ground state is calculated. This potential is well-behaved, and
can be made arbitrarily different from the original potential.
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I. INTRODUCTION AND CONCLUSIONS dzm/dxz
vg(X)= —— te¢, (1)
Ground-state density-functional theofy,2] has had an 2yn(x)

enormous impact on solid-state physics since its invention, . ) ) _
and on quantum chemistry in recent yed@). Time- wheren(x) is the ground-state density. We use atomic units
" _ 2 . .
dependent density-functional theory allows the external pothroughout ¢=m=e“=1). ForN electrons in three dimen-
tential acting on the electrons to be time dependent, and s§ons, one can easily imagine continuously alteringr),
opens the door to a wealth of interesting and important phet’® Kohn-Sham potential, solving the Scilirger equation,
nomena that are not easily accessible, if at all, within statidinding the orbitals and calculating their density, until the
theory. Important examples include atomic and moleculafOrrectvs(r) is found to reproduce the desired density. By
collisions[4], atoms and molecules in intense laser figkls  the Hohenberg-Kohn theorem, this potential is unique, and
electronic transition energies and oscillator streng@hg], ~ Several clever schemes for implementing this idea have ap-
frequency-dependent polarizabilities and hyperpolarizabiliPeared in the literatur¢13-21. This procedure could in
ties, etc.[8], and there has been an explosion of time-Principle be implemented for interacting electrons, if a suf-
dependent Kohn-Sham calculations in all these fields. In alficiently versatile and accurate interacting Sahinger equa-

most all these calculations, the ubiquitous adiabatic localtion solver were available.

density approximation (ALDA) [9,10] is used to Now consider the one-dimensional one-electron density
approximate the unknown time-dependent exchange- oo 2
correlation potential, i.euy>A[n](rt) =vYa(n(rt)), where N(x) =2x"exp(—x9)/ym, 2

v§‘(”c”(n) is theground-stateexchange-correlation potential of

a uniform electron gas of density. While this seems ad-
equate for many purposé&l], little is known about its ac-
curacy under the myriad of circumstances in which it ha
been applied.

Runge and Gros$12] formally established the time-
dependent density-functional thedfyDDFT), showing that,
for a given initial state, the evolving density uniquely iden-
tifies the (time-dependentpotential. This established the

correspondence of a unique noninteracting system to eaq'ﬂ'st excited state. In this case, the relation between density

Interacting system.and_ SO a set .Of one-partlcl_e KOhr"Sh"’mé'md potential iglifferent because the orbital changes sign at
equations, much like in the static theory. This one-to-one[he node. The mapping becomes

mapping between densities and potentials is the time-
dependent analog of the Hohenberg-Kohn theorem, but with 2 —— 5
a major difference: in the time-dependent case, the mapping ve(X)= d7sgr(x—xo) Vn(x)1/dx
is unique only for a specified initial state. The functionals in 2[sgnx—Xg) vn(x)]
TDDFT depend not only on the time-dependent density but
also on the initial state. This dependence is largely unexwhere sgnx)=1 for x>0 and —1 for x<<0, and n(Xo)
plored and indeed often neglected, for example in the ALDA=0. If we use this mapping, we find a perfectly smooth
for the exchange-correlation potential mentioned above. parabolic well €2/2). This is a simple example of how the
What do we mean by an initial-state dependence? Imapping between densities and potentials depends on the
ground-state theory, there is a simple one-to-one relation benitial state.
tween ground-state densities and Kohn-Sham potentials More generally, for any given time-dependent density
assuming they exist. For example, for one electron in one(rt), we ask how the potential(rt), whose wave function
dimension, we can easily invert the Sctiimger equation, to  yields that density, depends on the choice of initial wave
yield function ¥, i.e., in generab[W¥q,n](rt). Our aim in this

(actually the density of the first excited state of a harmonic
oscillaton. If we consider this as a ground-state density, we
are in for an unpleasant surprise. Feeding it into @&gy. we
Sind that the potential which generates this density is para-
bolic almost everywherexf/2), but has a nasty unphysical
spike atx=0, of the form 8(x)/|x|. We usually exclude
such potentials from consideratip®2], and regard this den-
sity as not being -representable.

But now imagine this density as being the density of a

+e€, (3)
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paper is to explicitly calculate two different potentials giving
rise to the same time-dependent density by having two dif-
ferent initial states. Note that even finding such a case is
nontrivial. The choice of wave functions is greatly restricted
by the time-dependent density. As van Leeuwen pointed out
[23], the continuity equatiom=—V-j implies that only
wave functions that have the correct initial current are can-
didates for generating a given time-dependent density. van
Leeuwen also showed how to explicitly construct the poten-
tial generating a given density from an allowed initial wave
function using equations of motion.

Why is this important? The exchange-correlation poten-
tial, vyc(rt), of TDDFT is the difference between a Kohn-
Sham potential and the sum of the external and Hartree po-
tentials. Since both the interacting and noninteracting
mappings can depend on the choice of initial state, this po-
tential is a functional of both initial states and the density, FIG. 1. The top left-hand plot shows the ground-state orbitals
i.e., vxc[n,¥o,Po](rt). But in common practice, only the ¢, (solid) and ¢, (dashediand their density (thick solid line for
dependence on the density is approximated. We show belotie harmonic potential in the lower-left-hand pl@tomic units.
that this misses significant dependences on the initial statéhe top right-hand plot contains the real and imaginary parts of
(which can in turn be related to memory effects, i.e., depenalternative orbitalsp, (solid line) and ¢, (dashed ling and their
dences on the density at prior times densityn (thick solid line), while below is the unique initial poten-

In the special case of one electron, we prove in Sec. Il Ajal 3 (solid line) that keeps the density constant.
that only one initial state has a physically well-behaved po-
tential. Any attempt to find another initial state which exchange-correlation potentials, differing by the amount
evolves in a different potential with the same evolving den-shown. In fact, different choices of the initial wave function
sity results in a “pathological” potential. The potential ei- allow us to make the two dips arbitrarily deep or small. Any
ther has the strong features at nodes mentioned above, purely density-functional approximation misses this effect
rapidly plunges to minus infinity at large distances where theentirely, and will produce the same exchange-correlation po-
density decays(How such a potential can support a local- tential for all cases.
ized density is discussed in Sec.)llIuch nonphysical states So, even in the simplest case of nondegenerate interacting
and potentials are excluded from consideratias indeed and Kohn-Sham ground states, one can choose an alternative
they are in the Runge-Gross theoderiThus there is no Kohn-Sham initial state, whose potential will look very dif-
initial-state dependence for one electron. ferent from that which evolves from the initial ground state.

We might then reasonably ask whether we can ever find & practice, the majority of applications of TDDFT presently
well-behaved potential for more than one allowed initialinvolve response properties of the ground state of a system,
wave function. The answer is yes, which we demonstrateand one naturally chooses to start the Kohn-Sham system in
with a specific example. Consider two noninteracting elecdts ground state. This choice is also dictated by the common
trons of the same spin in a harmonic well. In the ground stat@ise of adiabatic approximations for exchange-correlation po-
of this two-electron system, the first electron occupies theentials, which are approximatground-state potentials
oscillator ground state, and the second occupies the first exevaluated on the instantaneous density. Such models will
cited state, as shown in Fig. 1. If we keep the potential conelearly be inaccurate eventat 0 if we start our Kohn-Sham
stant, the density will not change. By multiplying each or-calculation in any state other than its ground state.
bital by a spatially varying phase, and choosing these phases The initial-state dependence of functionals is deeply con-
to make the current vanish, we find an allowed alternativenected to the issue of memory effects which are ignored in
initial state(see Sec. Il for detai)svan Leeuwen’s prescrip- most TDDFT functional approximations used today. Yet
tion then yields a unique potential which makes this wavethese can often play a large role in exchange-correlation en-
function evolve with the same density. The difference is perergies in fully time-dependeirit.e., nonperturbativecalcula-
fectly well-behaved, and can be made arbitrarily large bytions[24], as well as giving rise to frequency dependence of
adjusting a constant in the phases of the alternative orbitalshe exchange-correlation kerrjély-(w)] in linear response
To our knowledge, this is the first explicit construction of theory[25]. Functionals in general depend not only on the
two different potentials that yield the same time-dependentiensity at the present time, but also on its history. They may
density. Other examples are given in Sec. Ill. have a very nonlocalin time) dependence on the density.

Now imagine that the density of Fig. 1 is the ground-stateBut still more about the past is required: the functional is
density of someinteracting two-electron system, in some also haunted by the initial wave function. The initial state
external potential.(X). Then both potentials shown in dependence is inextricably linked to the history of the den-
lower panels of Fig. 1 are possible Kohn-Sham potentialsity, and in fact can often be absorbed into density-
vg(x) for this system. Since the Hartree potential is uniquelydependence along a pseudoprehistd@§]. The results of
determined by the density, we have two very differentthis current paper shed some light on the importance of
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memory effects arising from the initial wave function. To condition is required in the proof of the Runge-Gross theo-
summarize, we have shown that there is no initial-state derem[12]). If the surface term did not vanish, theiV « must
pendence for one electron, and that there can be arbitrarilgrow at least as fast d$2n(r)] ! asr approaches infinity.

large initial-state dependence for two electrons. This would lead to a potential that slides down tox,
which can be seen by inversion of the time-dependent Schro
Il. THEORY dinger equation in the limit of large distances. The state

) ] o would oscillate infinitely wildly at large distances in the tails
Consider a many-electron densityrt) evolving in time  of the density, but the decay of the density is not enough to
under an externaltime-dependeftpotentialv(rt). Can we  compensate for the energy that the wild oscillations impart:
obtain the same evolving densityrt) by propagating some  thjs state would have an infinite kinetic energy, momentum,
different initial state in a different potential(rt)? This was and potential energytWe shall see this explicitly in Sec.
answered in the affirmative in Rdf23] under the condition Il A). So for physical situations, the surface term vanishes.
that the two initial states have the same initial density and Because the integrand above cannot be negative, yet it
initial first time derivative of the density. Here we shall show integrates to zero, the integrand itself must be zero every-
that additional restrictions are required on the initial state folwhere. ThusV a(rt) =0 everywhere except perhaps at nodes
this statement to hold. In the one-electron case, the additionalf the wave function whera(ryt)=0. In fact, even at the
restrictions are so strong that therenis other initial state  nodes,Va(rot)=0 to avoid highly singular potentials: if
that evolves with the same density, as another does in ¥« was finite at the nodes and zero everywhere else, then, as
different potential. a distribution, it is equivalent to being zero everywhere; for
example, its integrak is constant. There remains the possi-
A. One electron bility that Ve is a sum of delta functions centered at the
. ~ nodes; however, this leads to potentials which are highly
Any two one-electron wave functions(rt) and ¢(rt),  gjngular at the nodes, as in Sec. I. Such unphysical potentials
with the same density(rt) =|¢(rt)|*=[¢(rt)|? are related are excluded from consideration, so tHaw(rt)=0, i.e.,

by a space- and time-dependent phase factor, a(rt)=c(t). The wave functiong(rt) and¢(rt) can there-
~ B . fore differ only by an irrelevant time-dependent phase. In
p(r)=g(rtjexdia(ry)], (4) particular, this means that only one initial state and one po-

where the phase(rt) is real. The evolution of each wave tentia_ll can give rise to a particular density, i.e., the ev_olving
function is determined by the time-dependent Sdhrger density is enough to completely determine the potential and

equation with its potentialdot implies a time derivative initial states. _ _
The one-electron case is a simple counterexample to the
[—V22+u(rt)]p(rt)=id(rt). (5) conclusions in Ref[23], which rely on the existence of a
solution to

Both will satisfy the continuity equation
V- [nVAv]=n(rt), (11
n(rt)=—V-j(rt), (6)
wheren(rt) involves expectation values of derivatives of the
where the current density of a wave functignis momentum-stress tensor and derivatives of the interaction
) ) (see Sec. IIB This is to be solved for the potential subject
JO)=i[p(rt)Ve* (rt) = *(r)Vo(r)J12.  (7) g the requirements that the two initial states have the same

n(r0) andn(r0), and thatV Av—0 asr—d. The two ini-
tial wave functions in the one-electron case have the same
Aj(rt)=n(rt)Va(rt). (8) initial n(r0) [Eq.(4)] andn(r0) [Eq. (9)], but no two physi-
cal potentials exist under which they would evolve with the
(We use the notatioda to denotea—a.) Because the den- Same density, because there is no solution to(ED).subject

sities are the same for all ime&n(rt)=0, so, by Eq(6), to the bour_1dary co_no_lition tthAv=_O. (For an explicit
demonstration of this in one-dimension, see Sec. Il A.
V-[n(rt)Va(rt)]=0. 9) Note that although the density and the first time derivative
of the density are the same for the two candidate initial wave
Integrating Eq.(9) with «(rt), and performing the integral functions, their momenta are different. The momentum of

Substitutingg(rt) from Eq. (4) into Eq.(7), we obtain

by parts, we find one of the states in fact is infinite. Requiring the initial mo-
menta to be the same would be an additional restriction on
3 2_ the wave function. We shall come back to a closely related
=0. 1 .
j d*rn(r)|Va(rt)[*=0 (10 point at the end of Sec. IIB.

We have taken the surface terfad?S. (anVa), evaluated

on a closed surface at infinity, to be zero: this arises from the
physical requirement that at infinity, where the electron den- In this section we follow van Leeuwen’s prescription to
sity decays, any physical potential remains finfte.fact this  find the potential needed to make a given initial state evolve

B. Many-electron case
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with the same density as that of another. However we sim- y(rr't)=Alogp,(r'rt). (18)
plify the equations there somewhat to make the search for
the solution of the potential easier. Given an initial stéitg¢  Note that y vanishes atr=r’, and since p,(r'rt)

which evolves with densityi(rt) in a potentialv(rt), we  =p¥(rr't), y(r'rt)=+*(rr't). These relations also imply
solve for the potentiad (rt) in which a statel evolves with ~ that V™ y(r'rt)[, -, =V™y* (rr 't)[,, -, . Writing

.th'e. same (.jensim('rt_)'. If we .require\'If tq have the same y(rr )= B(r 't) +ialrr't), (19)
initial density and initial first time derivative of the density,

then a solution forv may be obtained from equating the where a« and B are real functions, we also find
equations for the second derivatives of the density for eacW g(r'rt)|,,_,=0, since V[B(r'rt)|,,—,]=0. Also, V
wave function, subject to an appropriate boundary condition V' a(r’rt)|,.—,=0, which follows from the antisymmetry

like Av—0 at large distances. We are not guaranteed thadf «. The generalization of E(8) is

such a solution exists: the wave function must have the ad-

ditional restriction that the initial potential computed in this Aj(rty=n(rt)Va(r'rt)|, . (20
way is bounded at infinity.

The equation of motion fon yields [Eq. (15) of Ref Continuity [Eq. (6)] then gives us a condition on the near-
[23]] ' " diagonal elements af:

A=V [n(r)Vo(rt) +t(r) +fr)], (12 V- [Inr)Va(rrt)]—]=0. @Y

Using all these results in Eq17), we find

where
—(r 2

t(rt):(vl_V)(VZ_VIZ)pl(r/rt)|r,:r/4 (13) VAv(rt)—(nVa—V aV Imp1+V><B)/n

and +VRegVy-Vp,—V'y-V'py)n
+EV RE(Vy)?—(V'y)?]
fee(rt)=f d3r'P(r'rt)Voed|r' —r|)/2, (14 2
1

where p4(r'rt) is the (off-diagona) one-electron reduced +§V(V2—V’2),B

density matrix,P(r'rt) is the pair density(diagonal two-

electron reduced density matriand ve(u) is the two- 1 s ) )

particle interaction, e.g., &/ Here and in what followsy - mf d*r"AP(rr ') Voed|r' —r|),
andV' indicate the partial gradient operators with respect to

r andr’, respectively. In Eq(13) and similar following (22

equationsr” is set equal to after the derivatives are taken. where in the first three lines we have omitted the arguments
The idea 23] is to subtract Eq(12) for wave function¥ . '
423 a12) and it is understood that andr are set equal after all the

derivatives are taker8(rt) is an undetermined vector whose
role, together with an additional constabt), is to ensure
satisfaction of a boundary condition on the potential.

Now the prescription is to pick an initial state which has
the same initial density and initial first time derivative of the
?ensity as the stat@; that is, requirey(rr 0)=0, and Eg.

21) is taken att=0. Then one can evaluate E®2) at t

=0 and so findv(r0). The procedure for>0 is described

in detail in Ref.[23]. In order for this procedure to yield a

well-behaved physical potential, one needs to first check that
At(rt)=—V(V2=V'2)Apy(r'rt)|,r_ /2. (16) the initial potential is not divergent at infinity. Equivalently,

we may require that the elements of the momentum-stress
(We note that although this is no longer explicitly real, it is tensor appearing in Eq11) do not diverge at infinity. This
in fact real for states with the same density and first timedives an additional restriction on the initial state. In the one-

derivative) So our simplified equation to solve becomes  electron case, this restriction rules ary other candidate
for an initial wave function which evolves with the same

V- [nVAv+At+Af]=0, (17)  density as another wave function does in another potential:
there is no way to picB(r0) or the constan€(0) to satisfy
whereAt is given by Eq(16) andAf..is given by Eq.(14), any physical boundary condition discussed above. In the

from that for wavefunction?’, and require that is the same
for each. First we simplify the kinetic-type terim Differen-
tiating the continuity equatiofEq. (6)] implies

(V+V')(VZ=V'2)Apy(r'rt)], -, =0. (19

This equality enables us to incorporate the satisfaction of th
equation of continuity in Eq(12) (when we subtract the

equation for¥ from that forqf), and it also simplifies the
kinetic-type term:

applied to the pair density difference. many-electron case, our additional condition restricts the al-
To calculate the derivatives in the kinetic-type term, welowable wave functions, but does not render the question of
define initial-state dependence moot as in the one-electron case.
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Ill. EXAMPLES 1 T T
A. One electron in one dimension A
By studying the time-dependent Sctinger equation for 0 ST o
one electron in one dimension, it is simple to find explicitly
the potentialv (xt) which cajoles@(xt) into evolving with -1p R .
the same density as that ¢{xt), which evolves in a differ-
ent potentialv (xt). Consistent with the conclusions above, 2 ) )

this potential diverges te- oo at largex, which is unphysical. -4 -2

The initial state is pathological in the sense that its expecta-

tion value of momentum, kinetic energy and potential energy

all diverge. A phase-space picture helps us to see how such a 7 i )

potential can hold a localized density. 3| i
Inserting Eq.(4) into the time-dependent Scltinger '

———-_——/\~_—
equation(5), and calculating the derivatives, we obtain o 0

Av=ia"2+ia' ¢'|p—a'?l2— a=0. (23 s
where primes denote spatial derivatives. We now wiiti . : ;
terms of an amplitude and phase -4 -2 g 2 4
d(xt)=yn(xt)exdio(xt)]. (24) FIG. 2. The lower figure shows classical phase-space contours

o ) ) ) for the sechwell. The top figure shows the potenti@ashed ling
Substituting into Eq(23), and setting the real and imaginary the wave function(solid line) corresponding to the heavily drawn
terms separately to zero, yields contour in the phase-space below, and its der{giigk solid ling.

Av=—a—a'0'—a'?2, a"+a'n’/n=0. (25 tion value of momentum or kinetic energy in the stpe.
(4)] with « given by Eq.(27), for a typical density and state

For o’ we find: ¢ (e.g., one which decays exponentially at large we find
, that they blow up.
a'=c(t)/n(xt). (26) At first glance it may be striking that a potential which

L . . plunges to minus infinity at large distances can hold a wave
We observe that this is also obtained when B).(which — f,nction which is localized in a finite region in space. Con-

arose from setting the time-derivatives of the densities to b%ider the special case in that(xt) is an eigenstate of a
equa) is considered in one dimension. Integrating once morqime-independent potential(x). Let us also choose(t)

gves =c to be time independent, so thafx) is also time inde-
x dx’ pendent andg(xt) is an eigenstate of it. Let the density
a(xt)=c(t)f n(x't) +d(v). 27 n(x)=|¢(xt)|2=|H(xt)|? be localized at the origin. For ex-
ample,p might be a potential well with flat asymptotes. Then
Plugging this solution into Eq25) gives we have the interesting situation Wh~ere the eigensited
is localized at the origin of its potentialwhich plummets to
B c(t)o'(xt) 1 c(t) . x dx’ —o at largex. In Figs. 2 and 3 we have plotted the poten-
Av(xt)=- nixty 2 n2(xt) —c(t n(x't) tials, densities, an¢real part of th¢ wave functions for the

. two cases; note the steep cliffswfand the rapid oscillations
xn(x't) . of ¢ asx becomes large, as we predicted. We chose the
+C(t)f n2(x't) dx’—d(t). (28) potentialv = —secH(x), and the state) as its ground state.
In the lower half of each figure are the classical phase space
We see immediately the divergence of this potenffat  pictures(the classical energy contourfor the two poten-
nonzeroc(t)] where the density decays at langeThis dem-  tials; to a good approximation the quantum eigenstates lie on
onstrates by explicit solution of the time-dependent Schrothose contours which have the correctly quantized energy
dinger equation that the only potentials in which a density(Semiclassical approximatiof27]). In Fig. 2 we show the
can be made to evolve as the density in some other potentigituation for potentiab; ¢ lies on the heavily drawn con-
are unphysical, consistent with the conclusions of Sec. Il Atour shown, which is a bound state oscillating inside the

The statep oscillates more and more wildly asbecomes ~ Well. In Fig. 3 we show the situation far; the heavy con-
larger in the tails of the wave function. Although the decaytour that?b lies on is of a different nature, not bound in any
of the density at large distances unweights the rapidly oscilregion in space. However, its two branches fall away from
lating phase, it is not enough to cancel the infinite energythe origin very sharply, so that although they eventually ex-
that the wild oscillations contribute. Calculating the expectatend out to largex, the projection on the plane is much
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1

- T evolve with the same density. Let; and ¢, represent the
initial orbitals for an initial stateP, and¢, and, represent
0 those for another initial stat®. We choose

A1k foT N - #i(x)= gi(x)exfif;(x)], (30)
where;(x) are real functions. This form guarantees that the
27 = ) E) A densities are the same initially. The difference of initial cur-

x rent betweenb and® is
Aj=01(3)] 1002+ 630 S2(x)|?, (31
3r |
where the prime indicates differentiation, and so the condi-
o OF R tion of equal initialn becomes
J
3r B 5[01(X)|¢>1(X)|2+ 05(x)| $2(x)|?]1=0. (32

-4

The choices

FIG. 3. As for Fig. 2, but for the pathological potential de- Vion 2 Voo 2
scribed in the text wittc=0.2. The thinner solid line in the top 01(x)=cldo(x)|* and 6y(x)=—c|p1(x)[?, (33

figure is the real part 0d.
9 part of wherec is some constant, ensures that E2p) is satisfied.

denser near the origin than further away. This is how such a To simplify the calculation of the potential gradient in Eq.

potential can support a localized density near the origin. Thé22) further, we take the orbitalg; and ¢, to be real, and

phase of the wave function in a semiclassical view is giverfake the density to be time independent. After straightfor-

by the action integral p(x)dx along the contour, and the ward calculations we arrive at

large step inp that is made in a short step inthus implies

that the phase oscillates rapidly. The tails of the density,  Av’'=—c?[n’ ¢pT5IN+2h1po(Pabi+ d1b)]. (34)

which is the same in both cases, arise from fundamentally

different processes: in the case of the simple el (Fig.  This gives the initial gradient of the potential in which

2) the ta}lls arise from cIa§S|caIIy forbldde_n tunneling, \will evolve with the same density as that ®f att=0.

whereas in the case of the divergent potenffiag. 3 they These equations were used to formulate Fig. 1, for which

are classically allowed but have an exponentially small amg— 4 The orbitalse; (x) are just the lowest and first excited

plitude. _ states of the harmonic oscillator of force constantl, and
Finally, we relate the result fay [Eq. (28)] to that ob-  so their density remains constant in this potential. Although

tained from the approach in R¢R3] (and outlined in Sec. this kind of potential is not strictly allowed because it does

[I1B). Observe that for one electron, the initial conditions onnot remain finite ate, we expect that the results still hold for

& required in Ref[23] are the same as our Eqd) and(9)  well-behaved initial states: the difference between the poten-

[or, equivalently Eq(26)], each evaluated @t=0. In one tjals for ® and® vanishes ate. Moreover, it, or rather, the
dimension it is then a straightforward exercise to calculatqmeracting three-dimensional versigHooke’s aton is in-

the terms of Eq(22) att=0, and, if we disregard the bound- structive for studying properties of density functionése,

ary condition, we can thus obtain an equation for the slope og g., Ref[28]) because an exact solution is known. We can
the potential. This potential gradient is consistent with Eq.make the d|ps on the right of the ﬁgure arbitrar“y |arge,
(28) evaluated att=0 that we obtained by the time- simply by increasingc. Note that the alternative orbitals
dependent Schdinger’s equation above; here we obtain  probably do not yield an eigenstate of this potential. In the
next instant, this alternative potential will change, in order to
keep the density constant. This change can be calculated us-
ing van Leeuwen'’s prescription.

Av’ =(c?n’ +2cnn+2cj+n?f)/n?, (29

where n=n(x0),j=j(x0),v=v(x0),c=c(0), andf is a
constant to be determined by the boundary conditian
—0 ato. However, in the present one-electron case such a ACKNOWLEDGMENTS
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