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Demonstration of initial-state dependence in time-dependent density-functional theory
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Time-dependent density functionals depend in principle on the initial state of a system, but this is ignored in
functional approximations presently in use. For one electron, it is shown that there is no initial-state depen-
dence: for any density, only one initial state produces a well-behaved potential. For two noninteracting elec-
trons with the same spin in one dimension, an initial potential that makes an alternative initial wave function
evolve with the same density and current as a ground state is calculated. This potential is well-behaved, and
can be made arbitrarily different from the original potential.
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I. INTRODUCTION AND CONCLUSIONS

Ground-state density-functional theory@1,2# has had an
enormous impact on solid-state physics since its invent
and on quantum chemistry in recent years@3#. Time-
dependent density-functional theory allows the external
tential acting on the electrons to be time dependent, an
opens the door to a wealth of interesting and important p
nomena that are not easily accessible, if at all, within st
theory. Important examples include atomic and molecu
collisions@4#, atoms and molecules in intense laser fields@5#,
electronic transition energies and oscillator strengths@6,7#,
frequency-dependent polarizabilities and hyperpolarizab
ties, etc. @8#, and there has been an explosion of tim
dependent Kohn-Sham calculations in all these fields. In
most all these calculations, the ubiquitous adiabatic loc
density approximation ~ALDA ! @9,10# is used to
approximate the unknown time-dependent exchan
correlation potential, i.e.,vXC

ALDA @n#(r t)5vXC
unif(n(r t)), where

vXC
unif(n) is theground-stateexchange-correlation potential o

a uniform electron gas of densityn. While this seems ad
equate for many purposes@11#, little is known about its ac-
curacy under the myriad of circumstances in which it h
been applied.

Runge and Gross@12# formally established the time
dependent density-functional theory~TDDFT!, showing that,
for a given initial state, the evolving density uniquely ide
tifies the ~time-dependent! potential. This established th
correspondence of a unique noninteracting system to e
interacting system and so a set of one-particle Kohn-Sh
equations, much like in the static theory. This one-to-o
mapping between densities and potentials is the tim
dependent analog of the Hohenberg-Kohn theorem, but w
a major difference: in the time-dependent case, the map
is unique only for a specified initial state. The functionals
TDDFT depend not only on the time-dependent density
also on the initial state. This dependence is largely un
plored and indeed often neglected, for example in the ALD
for the exchange-correlation potential mentioned above.

What do we mean by an initial-state dependence?
ground-state theory, there is a simple one-to-one relation
tween ground-state densities and Kohn-Sham potentialsvS ,
assuming they exist. For example, for one electron in
dimension, we can easily invert the Schro¨dinger equation, to
yield
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vS~x!5
d2An~x!/dx2

2An~x!
1e, ~1!

wheren(x) is the ground-state density. We use atomic un
throughout (\5m5e251). ForN electrons in three dimen
sions, one can easily imagine continuously alteringvS(r ),
the Kohn-Sham potential, solving the Schro¨dinger equation,
finding the orbitals and calculating their density, until th
correctvS(r ) is found to reproduce the desired density. B
the Hohenberg-Kohn theorem, this potential is unique, a
several clever schemes for implementing this idea have
peared in the literature@13–21#. This procedure could in
principle be implemented for interacting electrons, if a s
ficiently versatile and accurate interacting Schro¨dinger equa-
tion solver were available.

Now consider the one-dimensional one-electron densi

n~x!52x2 exp~2x2!/Ap, ~2!

~actually the density of the first excited state of a harmo
oscillator!. If we consider this as a ground-state density,
are in for an unpleasant surprise. Feeding it into Eq.~1!, we
find that the potential which generates this density is pa
bolic almost everywhere (x2/2), but has a nasty unphysica
spike at x50, of the form d(x)/uxu. We usually exclude
such potentials from consideration@22#, and regard this den
sity as not beingv-representable.

But now imagine this density as being the density o
first excited state. In this case, the relation between den
and potential isdifferent, because the orbital changes sign
the node. The mapping becomes

vS~x!5
d2@sgn~x2x0!An~x!#/dx2

2@sgn~x2x0!An~x!#
1e, ~3!

where sgn(x)51 for x.0 and 21 for x,0, and n(x0)
50. If we use this mapping, we find a perfectly smoo
parabolic well (x2/2). This is a simple example of how th
mapping between densities and potentials depends on
initial state.

More generally, for any given time-dependent dens
n(r t), we ask how the potentialv(r t), whose wave function
yields that density, depends on the choice of initial wa
function C0, i.e., in generalv@C0 ,n#(r t). Our aim in this
©2001 The American Physical Society01-1
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paper is to explicitly calculate two different potentials givin
rise to the same time-dependent density by having two
ferent initial states. Note that even finding such a case
nontrivial. The choice of wave functions is greatly restrict
by the time-dependent density. As van Leeuwen pointed
@23#, the continuity equationṅ52“• j implies that only
wave functions that have the correct initial current are c
didates for generating a given time-dependent density.
Leeuwen also showed how to explicitly construct the pot
tial generating a given density from an allowed initial wa
function using equations of motion.

Why is this important? The exchange-correlation pot
tial, vXC(r t), of TDDFT is the difference between a Kohn
Sham potential and the sum of the external and Hartree
tentials. Since both the interacting and noninteract
mappings can depend on the choice of initial state, this
tential is a functional of both initial states and the dens
i.e., vXC@n,C0 ,F0#(r t). But in common practice, only the
dependence on the density is approximated. We show be
that this misses significant dependences on the initial s
~which can in turn be related to memory effects, i.e., dep
dences on the density at prior times!.

In the special case of one electron, we prove in Sec.
that only one initial state has a physically well-behaved
tential. Any attempt to find another initial state whic
evolves in a different potential with the same evolving de
sity results in a ‘‘pathological’’ potential. The potential e
ther has the strong features at nodes mentioned abov
rapidly plunges to minus infinity at large distances where
density decays.~How such a potential can support a loca
ized density is discussed in Sec. III.! Such nonphysical state
and potentials are excluded from consideration~as indeed
they are in the Runge-Gross theorem!. Thus there is no
initial-state dependence for one electron.

We might then reasonably ask whether we can ever fin
well-behaved potential for more than one allowed init
wave function. The answer is yes, which we demonstr
with a specific example. Consider two noninteracting el
trons of the same spin in a harmonic well. In the ground s
of this two-electron system, the first electron occupies
oscillator ground state, and the second occupies the first
cited state, as shown in Fig. 1. If we keep the potential c
stant, the density will not change. By multiplying each o
bital by a spatially varying phase, and choosing these ph
to make the current vanish, we find an allowed alternat
initial state~see Sec. III for details!. van Leeuwen’s prescrip
tion then yields a unique potential which makes this wa
function evolve with the same density. The difference is p
fectly well-behaved, and can be made arbitrarily large
adjusting a constant in the phases of the alternative orbi
To our knowledge, this is the first explicit construction
two different potentials that yield the same time-depend
density. Other examples are given in Sec. III.

Now imagine that the density of Fig. 1 is the ground-st
density of someinteracting two-electron system, in som
external potentialvext(x). Then both potentials shown i
lower panels of Fig. 1 are possible Kohn-Sham potent
vS(x) for this system. Since the Hartree potential is uniqu
determined by the density, we have two very differe
04250
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exchange-correlation potentials, differing by the amou
shown. In fact, different choices of the initial wave functio
allow us to make the two dips arbitrarily deep or small. A
purely density-functional approximation misses this effe
entirely, and will produce the same exchange-correlation
tential for all cases.

So, even in the simplest case of nondegenerate interac
and Kohn-Sham ground states, one can choose an altern
Kohn-Sham initial state, whose potential will look very di
ferent from that which evolves from the initial ground sta
In practice, the majority of applications of TDDFT present
involve response properties of the ground state of a syst
and one naturally chooses to start the Kohn-Sham syste
its ground state. This choice is also dictated by the comm
use of adiabatic approximations for exchange-correlation
tentials, which are approximateground-state potentials
evaluated on the instantaneous density. Such models
clearly be inaccurate even att50 if we start our Kohn-Sham
calculation in any state other than its ground state.

The initial-state dependence of functionals is deeply c
nected to the issue of memory effects which are ignored
most TDDFT functional approximations used today. Y
these can often play a large role in exchange-correlation
ergies in fully time-dependent~i.e., nonperturbative! calcula-
tions @24#, as well as giving rise to frequency dependence
the exchange-correlation kernel@ f XC(v)# in linear response
theory @25#. Functionals in general depend not only on t
density at the present time, but also on its history. They m
have a very nonlocal~in time! dependence on the densit
But still more about the past is required: the functional
also haunted by the initial wave function. The initial sta
dependence is inextricably linked to the history of the de
sity, and in fact can often be absorbed into densi
dependence along a pseudoprehistory@26#. The results of
this current paper shed some light on the importance

FIG. 1. The top left-hand plot shows the ground-state orbit
f1 ~solid! andf2 ~dashed! and their densityn ~thick solid line! for
the harmonic potential in the lower-left-hand plot~atomic units!.
The top right-hand plot contains the real and imaginary parts

alternative orbitalsf̃1 ~solid line! and f̃2 ~dashed line!, and their
densityn ~thick solid line!, while below is the unique initial poten

tial ṽ ~solid line! that keeps the density constant.
1-2
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DEMONSTRATION OF INITIAL-STATE DEPENDENCE . . . PHYSICAL REVIEW A63 042501
memory effects arising from the initial wave function. T
summarize, we have shown that there is no initial-state
pendence for one electron, and that there can be arbitr
large initial-state dependence for two electrons.

II. THEORY

Consider a many-electron densityn(r t) evolving in time
under an external~time-dependent! potentialv(r t). Can we
obtain the same evolving densityn(r t) by propagating some
different initial state in a different potentialṽ(r t)? This was
answered in the affirmative in Ref.@23# under the condition
that the two initial states have the same initial density a
initial first time derivative of the density. Here we shall sho
that additional restrictions are required on the initial state
this statement to hold. In the one-electron case, the additi
restrictions are so strong that there isno other initial state
that evolves with the same density, as another does
different potential.

A. One electron

Any two one-electron wave functionsf(r t) and f̃(r t),
with the same densityn(r t)5uf(r t)u25uf̃(r t)u2, are related
by a space- and time-dependent phase factor,

f̃~r t !5f~r t !exp@ ia~r t !#, ~4!

where the phasea(r t) is real. The evolution of each wav
function is determined by the time-dependent Schro¨dinger
equation with its potential~dot implies a time derivative!:

@2“

2/21v~r t !#f~r t !5 i ḟ~r t !. ~5!

Both will satisfy the continuity equation

ṅ~r t !52“• j ~r t !, ~6!

where the current density of a wave functionf is

j ~r t !5 i @f~r t !“f* ~r t !2f* ~r t !“f~r t !#/2. ~7!

Substitutingf̃(r t) from Eq. ~4! into Eq. ~7!, we obtain

D j ~r t !5n~r t !“a~r t !. ~8!

~We use the notationDa to denoteã2a.! Because the den
sities are the same for all times,Dṅ(r t)50, so, by Eq.~6!,

“•@n~r t !“a~r t !#50. ~9!

Integrating Eq.~9! with a(r t), and performing the integra
by parts, we find

E d3r n~r t !u“a~r t !u250. ~10!

We have taken the surface term*d2S•(an“a), evaluated
on a closed surface at infinity, to be zero: this arises from
physical requirement that at infinity, where the electron d
sity decays, any physical potential remains finite.~In fact this
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condition is required in the proof of the Runge-Gross the
rem@12#!. If the surface term did not vanish, thena“a must
grow at least as fast as@r 2n(r )#21 as r approaches infinity.
This would lead to a potential that slides down to2`,
which can be seen by inversion of the time-dependent Sc¨-
dinger equation in the limit of large distances. The st
would oscillate infinitely wildly at large distances in the tai
of the density, but the decay of the density is not enough
compensate for the energy that the wild oscillations imp
this state would have an infinite kinetic energy, momentu
and potential energy.~We shall see this explicitly in Sec
III A !. So for physical situations, the surface term vanish

Because the integrand above cannot be negative, y
integrates to zero, the integrand itself must be zero eve
where. Thus“a(r t)50 everywhere except perhaps at nod
of the wave function wheren(r0t)50. In fact, even at the
nodes,“a(r0t)50 to avoid highly singular potentials: i
“a was finite at the nodes and zero everywhere else, then
a distribution, it is equivalent to being zero everywhere;
example, its integrala is constant. There remains the pos
bility that “a is a sum of delta functions centered at t
nodes; however, this leads to potentials which are hig
singular at the nodes, as in Sec. I. Such unphysical poten
are excluded from consideration, so that“a(r t)50, i.e.,
a(r t)5c(t). The wave functionsf(r t) andf̃(r t) can there-
fore differ only by an irrelevant time-dependent phase.
particular, this means that only one initial state and one
tential can give rise to a particular density, i.e., the evolv
density is enough to completely determine the potential
initial states.

The one-electron case is a simple counterexample to
conclusions in Ref.@23#, which rely on the existence of a
solution to

“•@n“Dv#5h~r t !, ~11!

whereh(r t) involves expectation values of derivatives of th
momentum-stress tensor and derivatives of the interac
~see Sec. II B!. This is to be solved for the potential subje
to the requirements that the two initial states have the sa
n(r0) andṅ(r0), and that“Dv→0 asr→`. The two ini-
tial wave functions in the one-electron case have the sa
initial n(r0) @Eq. ~4!# andṅ(r0) @Eq. ~9!#, but no two physi-
cal potentials exist under which they would evolve with t
same density, because there is no solution to Eq.~11! subject
to the boundary condition that“Dv50. ~For an explicit
demonstration of this in one-dimension, see Sec. III A.!

Note that although the density and the first time derivat
of the density are the same for the two candidate initial wa
functions, their momenta are different. The momentum
one of the states in fact is infinite. Requiring the initial m
menta to be the same would be an additional restriction
the wave function. We shall come back to a closely rela
point at the end of Sec. II B.

B. Many-electron case

In this section we follow van Leeuwen’s prescription
find the potential needed to make a given initial state evo
1-3
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with the same density as that of another. However we s
plify the equations there somewhat to make the search
the solution of the potential easier. Given an initial stateC0
which evolves with densityn(r t) in a potentialv(r t), we

solve for the potentialṽ(r t) in which a stateC̃ evolves with

the same densityn(r t). If we requireC̃ to have the same
initial density and initial first time derivative of the densit
then a solution forṽ may be obtained from equating th
equations for the second derivatives of the density for e
wave function, subject to an appropriate boundary condit
like Dv→0 at large distances. We are not guaranteed
such a solution exists: the wave function must have the
ditional restriction that the initial potential computed in th
way is bounded at infinity.

The equation of motion forṅ yields @Eq. ~15! of Ref.
@23##

n̈~r t !5“•@n~r t !“v~r t !1t~r t !1fee~r t !#, ~12!

where

t~r t !5~“82“ !~“22“82!r1~r 8r t !ur85r/4 ~13!

and

fee~r t !5E d3r 8P~r 8r t !“vee~ ur 82r u!/2, ~14!

where r1(r 8r t) is the ~off-diagonal! one-electron reduced
density matrix,P(r 8r t) is the pair density~diagonal two-
electron reduced density matrix! and vee(u) is the two-
particle interaction, e.g., 1/u. Here and in what follows,“
and“8 indicate the partial gradient operators with respec
r and r 8, respectively. In Eq.~13! and similar following
equations,r 8 is set equal tor after the derivatives are taken

The idea@23# is to subtract Eq.~12! for wave functionC

from that for wavefunctionC̃, and require thatn̈ is the same
for each. First we simplify the kinetic-type termt. Differen-
tiating the continuity equation@Eq. ~6!# implies

~“1“8!~“22“82!Dr1~r 8r t !ur85r50. ~15!

This equality enables us to incorporate the satisfaction of
equation of continuity in Eq.~12! ~when we subtract the

equation forC from that for C̃), and it also simplifies the
kinetic-type term:

Dt~r t !52“~“22“82!Dr1~r 8r t !ur85r/2. ~16!

~We note that although this is no longer explicitly real, it
in fact real for states with the same density and first ti
derivative.! So our simplified equation to solve becomes

“•@n“Dv1Dt1Dfee#50, ~17!

whereDt is given by Eq.~16! andDfee is given by Eq.~14!,
applied to the pair density difference.

To calculate the derivatives in the kinetic-type term, w
define
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g~rr 8t !5D logr1~r 8r t !. ~18!

Note that g vanishes at r5r 8, and since r1(r 8r t)
5r1* (rr 8t), g(r 8r t)5g* (rr 8t). These relations also imply
that“mg(r 8r t)ur85r5“

mg* (rr 8t)ur85r . Writing

g~rr 8t !5b~rr 8t !1 ia~rr 8t !, ~19!

where a and b are real functions, we also find
“b(r 8r t)ur85r50, since “@b(r 8r t)ur85r#50. Also, “

•“8a(r 8r t)ur85r50, which follows from the antisymmetry
of a. The generalization of Eq.~8! is

D j ~r t !5n~r t !“a~r 8r t !ur85r . ~20!

Continuity @Eq. ~6!# then gives us a condition on the nea
diagonal elements ofa:

“•@n~r t !“a~r 8r t !ur85r#50. ~21!

Using all these results in Eq.~17!, we find

“Dv~r t !5~ ṅ“a2“

2a“ Im r11“3B!/n

1“ Re~“g•“r12“8g•“8r1!/n

1
1

2
“ Re@~“g!22~“8g!2#

1
1

2
“~“22“82!b

2
1

2n~r t !E d3r 8DP~rr 8t !“vee~ ur 82r u!,

~22!

where in the first three lines we have omitted the argume
and it is understood thatr 8 and r are set equal after all the
derivatives are taken.B(r t) is an undetermined vector whos
role, together with an additional constantC(t), is to ensure
satisfaction of a boundary condition on the potential.

Now the prescription is to pick an initial state which h
the same initial density and initial first time derivative of th
density as the stateC; that is, requireg(rr 0)50, and Eq.
~21! is taken att50. Then one can evaluate Eq.~22! at t

50 and so findṽ(r0). The procedure fort.0 is described
in detail in Ref.@23#. In order for this procedure to yield a
well-behaved physical potential, one needs to first check
the initial potential is not divergent at infinity. Equivalently
we may require that the elements of the momentum-st
tensor appearing in Eq.~11! do not diverge at infinity. This
gives an additional restriction on the initial state. In the on
electron case, this restriction rules outany other candidate
for an initial wave function which evolves with the sam
density as another wave function does in another poten
there is no way to pickB(r0) or the constantC(0) to satisfy
any physical boundary condition discussed above. In
many-electron case, our additional condition restricts the
lowable wave functions, but does not render the question
initial-state dependence moot as in the one-electron cas
1-4
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III. EXAMPLES

A. One electron in one dimension

By studying the time-dependent Schro¨dinger equation for
one electron in one dimension, it is simple to find explici
the potentialṽ(xt) which cajolesf̃(xt) into evolving with
the same density as that off(xt), which evolves in a differ-
ent potentialv(xt). Consistent with the conclusions abov
this potential diverges to2` at largex, which is unphysical.
The initial state is pathological in the sense that its expe
tion value of momentum, kinetic energy and potential ene
all diverge. A phase-space picture helps us to see how su
potential can hold a localized density.

Inserting Eq. ~4! into the time-dependent Schro¨dinger
equation~5!, and calculating the derivatives, we obtain

Dv5 ia9/21 ia8f8/f2a82/22ȧ50. ~23!

where primes denote spatial derivatives. We now writef in
terms of an amplitude and phase

f~xt!5An~xt!exp@ iu~xt!#. ~24!

Substituting into Eq.~23!, and setting the real and imagina
terms separately to zero, yields

Dv52ȧ2a8u82a82/2, a91a8n8/n50. ~25!

For a8 we find:

a85c~ t !/n~xt!. ~26!

We observe that this is also obtained when Eq.~9! ~which
arose from setting the time-derivatives of the densities to
equal! is considered in one dimension. Integrating once m
gives

a~xt!5c~ t !Ex dx8

n~x8t !
1d~ t !. ~27!

Plugging this solution into Eq.~25! gives

Dv~xt!52
c~ t !u8~xt!

n~xt!
2

1

2

c2~ t !

n2~xt!
2 ċ~ t !Ex dx8

n~x8t !

1c~ t !Ex ṅ~x8t !

n2~x8t !
dx82ḋ~ t !. ~28!

We see immediately the divergence of this potential@for
nonzeroc(t)# where the density decays at largex. This dem-
onstrates by explicit solution of the time-dependent Sch¨-
dinger equation that the only potentials in which a dens
can be made to evolve as the density in some other pote
are unphysical, consistent with the conclusions of Sec. I

The statef̃ oscillates more and more wildly asx becomes
larger in the tails of the wave function. Although the dec
of the density at large distances unweights the rapidly os
lating phase, it is not enough to cancel the infinite ene
that the wild oscillations contribute. Calculating the expec
04250
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tion value of momentum or kinetic energy in the state@Eq.
~4!# with a given by Eq.~27!, for a typical density and state
f ~e.g., one which decays exponentially at largex), we find
that they blow up.

At first glance it may be striking that a potential whic
plunges to minus infinity at large distances can hold a w
function which is localized in a finite region in space. Co
sider the special case in thatf(xt) is an eigenstate of a
time-independent potentialv(x). Let us also choosec(t)
5c to be time independent, so thatṽ(x) is also time inde-
pendent andf̃(xt) is an eigenstate of it. Let the densit
n(x)5uf(xt)u25uf̃(xt)u2 be localized at the origin. For ex
ample,v might be a potential well with flat asymptotes. The
we have the interesting situation where the eigenstatef̃(x)
is localized at the origin of its potentialṽ which plummets to
2` at largex. In Figs. 2 and 3 we have plotted the pote
tials, densities, and~real part of the! wave functions for the
two cases; note the steep cliffs ofṽ and the rapid oscillations
of f̃ as x becomes large, as we predicted. We chose
potentialv52sech2(x), and the statef as its ground state
In the lower half of each figure are the classical phase sp
pictures ~the classical energy contours! for the two poten-
tials; to a good approximation the quantum eigenstates lie
those contours which have the correctly quantized ene
~semiclassical approximation@27#!. In Fig. 2 we show the
situation for potentialv; f lies on the heavily drawn con
tour shown, which is a bound state oscillating inside t
well. In Fig. 3 we show the situation forṽ; the heavy con-
tour thatf̃ lies on is of a different nature, not bound in an
region in space. However, its two branches fall away fro
the origin very sharply, so that although they eventually e
tend out to largex, the projection on thex plane is much

FIG. 2. The lower figure shows classical phase-space cont
for the sech2 well. The top figure shows the potential~dashed line!,
the wave function~solid line! corresponding to the heavily draw
contour in the phase-space below, and its density~thick solid line!.
1-5
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denser near the origin than further away. This is how suc
potential can support a localized density near the origin. T
phase of the wave function in a semiclassical view is giv
by the action integral*p(x)dx along the contour, and th
large step inp that is made in a short step inx thus implies
that the phase oscillates rapidly. The tails of the dens
which is the same in both cases, arise from fundament
different processes: in the case of the simple sech2 well ~Fig.
2! the tails arise from classically forbidden tunnelin
whereas in the case of the divergent potential~Fig. 3! they
are classically allowed but have an exponentially small a
plitude.

Finally, we relate the result forṽ @Eq. ~28!# to that ob-
tained from the approach in Ref.@23# ~and outlined in Sec.
II B !. Observe that for one electron, the initial conditions
f̃ required in Ref.@23# are the same as our Eqs.~4! and~9!
@or, equivalently Eq.~26!#, each evaluated att50. In one
dimension it is then a straightforward exercise to calcul
the terms of Eq.~22! at t50, and, if we disregard the bound
ary condition, we can thus obtain an equation for the slop
the potential. This potential gradient is consistent with E
~28! evaluated att50 that we obtained by the time
dependent Schro¨dinger’s equation above; here we obtain

Dv85~c2n812cnṅ12c j1n2f !/n3, ~29!

where n5n(x0),j 5 j (x0),v5v(x0),c5c(0), and f is a
constant to be determined by the boundary conditionDv
→0 at `. However, in the present one-electron case suc
boundary condition cannot be satisfied.

B. Two noninteracting electrons in one dimension

Here we explicitly construct the potential at the initi
time under which two initial noninteracting wave function

FIG. 3. As for Fig. 2, but for the pathological potential d
scribed in the text withc50.2. The thinner solid line in the top

figure is the real part off̃.
04250
a
e
n

,
ly
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e
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a

evolve with the same density. Letf1 and f2 represent the
initial orbitals for an initial stateF, andf̃1 andf̃2 represent

those for another initial stateF̃. We choose

f̃ i~x!5f i~x!exp@ iu i~x!#, ~30!

whereu i(x) are real functions. This form guarantees that t
densities are the same initially. The difference of initial cu

rent betweenF̃ andF is

D j 5u18~x!uf1~x!u21u28~x!uf2~x!u2, ~31!

where the prime indicates differentiation, and so the con
tion of equal initialṅ becomes

]

]x
@u18~x!uf1~x!u21u28~x!uf2~x!u2#50. ~32!

The choices

u18~x!5cuf2~x!u2 and u28~x!52cuf1~x!u2, ~33!

wherec is some constant, ensures that Eq.~32! is satisfied.
To simplify the calculation of the potential gradient in E

~22! further, we take the orbitalsf1 andf2 to be real, and
take the density to be time independent. After straightf
ward calculations we arrive at

Dv852c2@n8f1
2f2

2/n12f1f2~f2f181f1f28!#. ~34!

This gives the initial gradient of the potential in whichF̃
will evolve with the same density as that ofF at t50.

These equations were used to formulate Fig. 1, for wh
c54. The orbitalsf i(x) are just the lowest and first excite
states of the harmonic oscillator of force constantk51, and
so their density remains constant in this potential. Althou
this kind of potential is not strictly allowed because it do
not remain finite at̀ , we expect that the results still hold fo
well-behaved initial states: the difference between the po

tials for F andF̃ vanishes at̀ . Moreover, it, or rather, the
interacting three-dimensional version~Hooke’s atom! is in-
structive for studying properties of density functionals~see,
e.g., Ref.@28#! because an exact solution is known. We c
make the dips on the right of the figure arbitrarily larg
simply by increasingc. Note that the alternative orbital
probably do not yield an eigenstate of this potential. In t
next instant, this alternative potential will change, in order
keep the density constant. This change can be calculated
ing van Leeuwen’s prescription.
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