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Entanglement purification of unknown quantum states
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A concern has been expressed that ‘‘the Jaynes principle can produce fake entanglement’’@R. Horodecki
et al., Phys. Rev. A59, 1799 ~1999!#. In this paper we discuss the general problem of distilling maximally
entangled states fromN copies of a bipartite quantum system about which only partial information is known,
for instance, in the form of a given expectation value. We point out that there is indeed a problem with
applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this
problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state
r (N) of theN copies of the quantum system isexchangeable, one can write down a simple general expression
for r (N). By measuring one or more of the subsystems, one can gain information and update the state estimate
for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to
modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be
applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an un-
known or partially known quantum state.
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I. INTRODUCTION

Entanglement is a quantum-mechanical resource that
be used for a number of tasks, including quantum telepo
tion, quantum cryptography, and quantum dense cod
Since real quantum channels are noisy, it is very difficult
create perfect entanglement directly between two distant
ties. There is thus a need to purify~or distill! partial en-
tanglement. Suppose two parties shareN pairs of qubits such
that each pair is in the same entangled but mixed stater, the
total stater (N) of all N pairs thus being theN-fold tensor
product r (N)5r ^ N[r ^ . . . ^ r. There exist protocols
@1–4#, using only local operations and classical communi
tion, which allow the two parties to transformM,N of the
pairs into maximally entangled states, for instance, sin
states. In the limitN→`, the fidelity of the singlets ap
proaches one and the fractionM /N a fixed limit, called the
asymptotic yield.

In this paper, we consider the more general case in wh
the initial stater (N) is not a tensor-product state. This corr
sponds to the realistic situation that the stater of each indi-
vidual pair is not perfectly known, for instance, because o
of the particles has been sent through a channel with o
partially known characteristics. In Secs. III and IV, we app
the entanglement purification methods known as one-w
hashing@2# and recurrence@2,4# to partially known, includ-
ing completely unknown, quantum states. It turns out that
generalization of the recurrence method is straightforwa
whereas the hashing method as it is described in Ref.@2#
depends on the initial state being of tensor-product form
therefore requires a more careful analysis. Unlike Gied
et al. @5#, who have studied entanglement purification w
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imperfect quantum operations, we assume that all operat
are error-free. A paper related to ours is Ref.@6# by Eisert
et al., who study how distillable entanglement decreas
when information about a quantum state is lost.

Before we turn to the actual entanglement purificati
protocols, we discuss, in Sec. II, the problem of what den
operatorr (N) to assign toN pairs of qubits if only partial
information is available. This is an unsolved problem, a
we do not attempt to give a general solution. We show, ho
ever, that under the additional assumption ofexchangeabil-
ity, the stater (N) must have a certain simple form, which
amenable to entanglement purification. Our discussion a
provides a resolution of the apparent paradox found by Ho
decki et al. @7#, who give an example where applying th
Jaynes principle of maximum entropy@8,9# leads to a state
with more distillable entanglement than seems to be w
ranted by the available information. We conclude in Sec.

II. STATE ASSIGNMENT BASED ON PARTIAL
INFORMATION

Let us consider the example given by Horodeckiet al. @7#.
The authors consider a system composed of a single pa
qubits and define an operator

B5
1

2
~sx^ sx1sz^ sz!5~F12C2!, ~1!

where C65uC6&^C6u, F65uF6&^F6u are projectors
onto the Bell states,

uF6&5
1

A2
~ u00&6u11&),e,
©2001 The American Physical Society09-1
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uC6&5
1

A2
~ u01&6u10&). ~2!

Our definition ofB differs from that of Ref.@7# by a constant
factor to simplify the expressions. Ifall that is knownabout
the system state is the expectation value^B&51/2, then
Jaynes’s principle of maximum entropy stipulates that o
should assign the state of maximum von Neumann entr
compatible with the constraint^B&51/2, which in this case
is

rJ5
9

16
F11

1

16
C21

3

16
~C11F2!. ~3!

This state has distillable entanglement. Horodeckiet al. @7#
point out that the state

rH5
1

2
F11

1

4
~C11F2! ~4!

also satisfies the constraint^B&51/2, but is separable and
hence, unentangled. They conclude that the entangleme
the maximum entropy staterJ is ‘‘fake,’’ because it violates
the condition that an inference scheme ‘‘should not give
an inseparable estimated state if only theoretically there
ists a separable state consistent with the measured data.
an alternative to the Jaynes principle, they propose firs
minimize the entanglement and then to find the state
maximum entropy among those states that have minimal
tanglement. For the constraint^B&51/2, this alternative
scheme results in the staterH given above.

A simple defense of the Jaynes principle would be
following ~see also Refs.@10,11#!. The alternative procedur
proposed by Horodeckiet al.assumes additional informatio
about the two qubits, namely that entanglement isa priori
unlikely. This would be reasonable, e.g., in a situation wh
the parties know that the state has been prepared by an
versary whose objective is to let them have as little entan
ment as possible. But then more is known about the s
than just the given expectation value and, hence, the assu
tions behind the Jaynes procedure are not fulfilled.

If there is no specific additional information, however, t
maximum entropy state assignmentrJ is preferable to the
minimum entanglement assignmentrH . Indeed, if a projec-
tive measurement in the Bell basis is performed, assign
rH corresponds to assigning zero probability to the meas
ment outcomeC2 , an outcome that is not ruled out by th
constraint^B&51/2. In this sense, the minimum entangl
ment assignment is inconsistent with the prior informatio

By contrast, no inconsistency of this kind can arise fro
the maximum entropy assignment in the absence of p
information beyond the given expectation value. Any me
surement outcome that can be obtained from any state
sistent with the constraint can also be obtained fromrJ .
Indeed, for the case at hand, therJ of Eq. ~3! has a nonzero
probability for any measurement outcome whatever~this is
generally true for maximum entropy state assignments,
cept in singular cases!. No measurement on a single syste
in an unknown state can tell if that system is entangled
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not; the only way to do so is to look at the outcomes p
duced by measurements onmultiple copies. In particular,
there is no way to turn a singlerJ state into a maximally
entangled state, even probabilistically@12#, by local opera-
tions and classical communication. Thus, the prediction
‘‘fake entanglement’’ forrJ causes no practical difficulty. I
merely represents the fact that, in some sense,most states
that are consistent with the constraint are also entangled

We now turn to the case in which the parties share not
one, butN qubit pairs. We denote byr (N) the total state of
the N pairs and assume that theN pairs are known to satisfy
the constraintŝB&k[Tr(rkB)51/2 for k51, . . . ,N, where
rk is the reduced density operator of thekth pair. In this
case, the state assignmentr (N)5rJ

^ N is not supported by the
prior information, even though this is the state of maximu
entropy compatible with the given expectation values. F
largeN, this state assignment corresponds to the definite
diction that a nonzero number of perfect singlets can be
tilled, which is certainly not implied by the given expectatio
values. The alternative state assignmentr (N)5rH

^ N would,
however, be equally unsupported by the prior information
corresponds to the definite prediction thatno singlets can be
distilled from theN pairs, which is the minimum number o
distillable singlets compatible with thea priori knowledge.
Although this is a very cautious prediction, it is also n
implied by the given expectation values.

The fact that a naı¨ve application of the principle of maxi
mum entropy to many copies of a system fails is essenti
of classical origin and is not unique to problems involvin
entanglement. Jaynes@13# has given a thorough discussion
this problem, which can be explained by a simple examp
Consider a possibly loaded die. All that is known about t
die is the mean valuên&[(nnp(n)53.5, wherep(n) is the
probability of the outcomen, n51, . . . ,6. Theprobability
distribution of maximum entropy compatible with the give
mean-value constraint isp(n)51/6 for n51, . . . ,6. Now,
consider throwing the dieN times. A naı¨ve application of the
maximum entropy principle would predict that theN dice
throws were independent and identically distributed~iid! ac-
cording to the single-trial distributionp(n). This would lead
to the prediction that the fraction of throws showing a
particular outcome would approximate 1/6 with arbitra
precision asN tended to infinity. This prediction, however, i
not implied by the prior knowledge, which is compatib
with many possible outcome sequences, including seque
in which only the eventsn51 andn56 ever occur—quite
possible, if the die is loaded. Moreover, with an i.i.d. dist
bution, the results of earlier throws imply nothing about t
probability of later outcomes. Even the most gullible ga
bler might become suspicious if one and six were the o
outcomes after thousands of throws.

In Ref. @13#, Jaynes discusses how to choose the multit
distribution in the classical case. The starting point of
discussion is the assumption that the probability distribut
of the N dice throws isexchangeable. The same assumptio
is the starting point for our quantum analysis. If exchang
ability is assumed, the task of assigning a state ofN qubit
pairs compatible with the constraints given above is mu
simplified. A stater (N) of N copies of a system is exchang
9-2
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ENTANGLEMENT PURIFICATION OF UNKNOWN . . . PHYSICAL REVIEW A63 042309
able if it is a member of an exchangeable sequencer (k), k
51,2, . . . . Anexchangeable sequence is defined by

~i! r (k)5Trk11r (k11) for all k, where Trk11 denotes the
partial trace over the (k11)th system, and

~ii ! eachr (k) is invariant under permutations of thek sys-
tems on which it is defined.

This definition is the quantum generalization of de Fin
ti’s @14# definition of exchangeable sequences of class
random variables.

A stater (N) is exchangeable if and only if it can be wri
ten in the form

r (N)5E dr p~r!r ^ N, ~5!

wheredr is a measure on density operator space, andp(r) is
a normalized generating function,*dr p(r)51. This is a
consequence of the quantum de Finetti theorem, the quan
version of the fundamental representation theorem due t
Finetti @14#. The quantum theorem was first proved by Hu
son and Moody@15# after pioneering work by Sto”rmer @16#;
for an elementary proof, see Ref.@17#.

How, in general, do we pickp(r)dr? To our knowledge,
there is no universal rule for this task, although there exi
number of proposals for unbiased measuresdr on density
operator space@18–21#. These can be interpreted as propo
als for state assignments forN systems under the sole a
sumption of exchangeability, i.e., using a generating funct
p(r)51.

If, in addition to exchangeability, there is a mean-val
constraint̂ O&5o, the naı¨ve Jaynes maximum entropy sta
assignment leads to a generating function of the formp(r)
5d(r2rJ), whererJ is the single-system state of maximu
entropy, subject to the constraint; this generating functio
unacceptable for the reasons given above. A good choic
p(r)dr should be nonzero for allr that are compatible with
the prior information—we should never arbitrarily rule o
any possibility. Similarly,p(r)dr ought to vanish for anyr
that is actually ruled out by the prior information. We ther
fore would expect a multisystem generalization of Jayne
maximum entropy procedure to have the form

pMAXENT~r!dr5Nd@o2Tr~Or!# f ~r!dr, ~6!

whereN is a normalization constant andf (r)dr is strictly
positive. The exact form of the functionf (r) and of the
measuredr is the subject of ongoing research. In the spirit
the single-system Jaynes principle,p(r)dr should favor
statesr with higher von Neumann entropyS(r) and should
give the usualrJ whenN51 @22#.

Given an initial state assignment of the form~5!, addi-
tional information can be obtained, e.g., by making measu
ments on individual subsystems. Suppose a measure
outcomek is represented by a positive single-system ope
tor Fk , with (kFk51; i.e., theFk form a positive-operator
valued measure~POVM! @23#. Given that the subsystem is i
state r, the probability of getting outcomek is p(kur)
04230
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5Tr@Fkr#. If the total state is given by Eq.~5!, the probabil-
ity of outcomek in a measurement on a single subsystem
then

pk5E dr p~r!p~kur!. ~7!

After the measurement, we must update the state of the
mainingN21 systems by the Bayes rule,

r (N21)5E dr p~ruk!r ^ (N21), ~8!

where@24#

p~ruk!5
p~r!p~kur!

pk
. ~9!

By doing different measurements on several subsystems
acquire more and more data; if these measurements are
sen well, the resulting posteriorppost(r) becomes more and
more peaked and has less and less dependence on the c
of prior p(r). This procedure is a straightforward Bayesi
version of quantum-state tomography@25–27#.

The condition of exchangeability in combination with th
quantum de Finetti theorem provides only a partial solut
to the problem of state assignment in the presence of pa
information, but we show in the next two sections that e
changeability alone is sufficient to guarantee that the
tanglement purification procedures known as one-way ha
ing and recurrence can be carried out. The probability
distilling a positive yield of maximally entangled states d
pends on the exact form ofp(r)dr in Eq. ~5!. It is exchange-
able states of this type that are provided by the generaliza
~6! of the Jaynes construction@22#, so we conclude that a
least in principle, it is indeed possible to purify entangleme
from partially known states.

III. ENTANGLEMENT PURIFICATION BY ONE-WAY
HASHING

In this section, we first present a version of the one-w
hashing algorithm that proceeds by Bayesian updating of
probabilities for products of Bell states and that can, in pr
ciple, be applied to general exchangeable states. We
briefly sketch the argument given in Ref.@2# that for a prod-
uct stater ^ N, wherer is Bell diagonal with von Neumann
entropyS, the asymptotic yield of pure singlets is given b
N(12S). We show how to modify this argument so that
can be applied to general exchangeable states. Finally
give a simplified Bayesian hashing algorithm for exchan
able states and discuss its asymptotic yield. Our analys
restricted to pairs of qubits, but the method generali
straightforwardly to arbitrary Hilbert space dimensions.

We restrict attention to Bell-diagonal states, i.e., mixtu
of the Bell states,

rwW 5w1C21w2C11w3F21w4F1 , ~10!
9-3
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where we denote the weights bywW 5$w1 ,w2 ,w3 ,w4%, w1
1w21w31w451, wj>0 for j 51, . . . ,4.Most existing en-
tanglement purification procedures begin by making this
sumption. If it does not hold, it is possible to put any state
this form by ‘‘twirling,’’ that is, by randomly rotating both
spins of an entangled pair. The final yield of maximally e
tangled states cannot be diminished by omitting this s
however, so it is better to think of twirling as a conceptu
rather than a physical procedure. After twirling, the initia
exchangeable state~5! of our N pairs of qubits becomes

r (N)5E dwW p~wW !rwW
^ N , ~11!

where

E dwW p~wW !51. ~12!

We now define the set of labeled states

r005C2 , r015C1 ,

r105F2 , r115F1 . ~13!

The first bit in the label tells us whether the pair is in aC or
a F state; the second bit tells us whether it is in a1 or 2
state. If we are restricted to local measurements and clas
communication on a single pair, the best we can do is
determine one of these two bits, but not both, and the
will be left in an unentangled state. Bennettet al. have
shown, however, that if we can manipulate the qubits coll
tively, much more interesting measurements are possible@2#.

The first step is to rewrite the state~11! as a probability
distribution over strings of bits, with each qubit pair asso
ated with two bits in the string. For this, we define the pro
uct distribution

p~ i 1i 2¯ i 2NuwW !5wi 1i 2
wi 3i 4

¯wi 2N21i 2N
, ~14!

where w00[w1 , w01[w2 , w10[w3, and w11[w4. Using
this notation,

r (N)5 (
i 1 ,i 2 , . . . ,i 2N

p~ i 1i 2¯ i 2N!r i 1i 2
^¯^ r i 2N21i 2N

,

~15!

where

p~ i 1i 2¯ i 2N!5E dwW p~wW !p~ i 1i 2¯ i 2NuwW !. ~16!

We now select a random subset of the bitsi 1¯ i 2N and
list all the qubit pairs that have at least one associated b
the subset. From this list we choose one qubit pair to be
target. For each of the other qubit pairs in the list, Alice a
Bob both perform one of a set of three unitary transform
tions on their half of the pair, followed by a bilatera
controlled–NOT operation onto the target pair. This sequen
of operations is equivalent to replacing one of the bits of
04230
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target pair with the parity of a subset of all the bits. T
choice of unitary transformation corresponds to including
first, second, or both of the bits from a particular pair in t
parity calculation. Then a measurement is performed on
target pair.~The details of this procedure are given in@2#.!
By carrying out such a procedure, one bit of joint inform
tion is acquired about all the pairs, at the expense of sa
ficing one entangled pair~that is, two bits!. The unmeasured
pairs in general undergo an invertible transformation amo
the Bell states, but they do not become entangled with e
other, and this transformation can, if one chooses, be und
leaving the sequence of bits for the unmeasured pairs u
tered. Bennettet al.have shown that such a procedure can
equivalent to finding the parity of any subset of the 2N bits.
This parity bit then allows one to update the probability d
tribution for the remaining 2(N21)-bit string.

Let us examine this in a little more detail. LetıW
[ i 1i 2¯ i 2N denote a sequence of bits. We can select a s
set of these bits by giving another sequencexW , which in-
cludes a 1 for each bit to be included in the subset and a 0 for
the rest. The parity of the subset is then

pxW~ ıW ![xW• ıW[S (
m51

2N

xmi mDmod 2. ~17!

For a givenıW, the probability of getting a valuepxW for the
parity is either 0 or 1, so the probability of gettingpxW as a
measurement result is

p~pxW !5(
ıW

p~pxWu ıW !p~ ıW !5(
ıW

dpxW ,xW• ıWp~ ıW !. ~18!

For simplicity, let us assume that the target pair is the last
the last two bits are sacrificed; the new state for theN21
remaining pairs is

r (N21)5(
ıW8

p~ ıW8upxW !r i 1i 2
^ r i 3i 4

^¯^ r i 2N23i 2N22
,

~19!

where ıW8[ i 1i 2¯ i 2N22 and

p~ ıW8upxW !5 (
i 2N21 ,i 2N

p~ ıWupxW !5 (
i 2N21 ,i 2N

p~ ıW !p~pxWu ıW !

p~pxW !
.

~20!

Note that while the initial probability distributionp( ıW) is
symmetric under interchanges of the pairs, this symmetr
lost after measurement.

The purification scheme follows simply from this. On
chooses subsets of the bit string at random and meas
their parity, sacrificing one pair with each measurement,
updating the probability distribution for the remainin
strings. This procedure is repeated until one is left with o
a single string, sayıW0, with probability 12d for some small
d. Written more formally, the posterior probabilityppost at
the end of the procedure, conditioned on all measurem
results, has the propertyppost( ıW0)512d for some sequence
9-4
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ıW0. One then knows with high probability the maximally e
tangled state of each remaining pair, which can then be tr
formed into a standard state~such asC2) by local opera-
tions. The yield of this procedure is the number of entang
pairs left at the end.

It is clear that there are states for which the yield is ze
The obvious example is a stater ^ N wherer is unentangled.
For states of the formrwW

^ N , Bennettet al. have shown that
asymptotically, the method gives a yield ofN(12SwW ) maxi-
mally entangled pairs with fidelity approaching 1, where

SwW 52(
j 51

4

wj logwj52Tr~rwW logrwW ! ~21!

is the entropy ofrwW . The argument makes use of the the
rem of typical sequences@28# ~which is closely related to
Shannon’s noiseless coding theorem@29#!, according to
which, for anye.0 andd.0 and sufficiently largeN, there
exists a subsetSTYP(N) of the set of all sequencesıW with the
following properties:

p@STYP~N!#[ (
ıWPSTYP(N)

p~ ıWuwW !>12e, ~22!

i.e., the total probability of the setSTYP(N) is arbitrarily
close to 1; and

uSTYP~N!u<2N(SwW 1d), ~23!

i.e., the number of sequences inSTYP(N) is not much larger
than 2NSwW . The setSTYP(N) is called the set of typical se
quences. Since the parity measurement in each has
round rules out half the typical sequences on average,
since essentially all the probability is concentrated on
typical sequences, it can be expected that after sacrifi
approximatelyNSwW pairs, essentially all the probability i
concentrated on a single typical sequence. Clearly this le
to a positive yield only ifSwW ,1.

The theorem of typical sequences does not hold in gen
for sequences corresponding to exchangeable states o
form ~11!. To apply the hashing method in this case, we r
on a generalization of the theorem of typical sequences
to Cziszár and Körner @30# ~this theorem has recently bee
used by Jozsaet al. @31# to derive a universal quantum in
formation compressing scheme!. Applied to our setting, the
theorem is that, given a fixed entropyS0, then for anye
.0 andd.0 and sufficiently largeN, there exists a subse
SCK(N) of the set of all sequencesıW with the following prop-
erties:

(
ıWPSCK(N)

p~ ıWuwW !>12e, ~24!

for all wW such thatSwW ,S0, which means that the setSCK(N)
is typical for all probability distributions with entropy les
thanS0; and

uSCK~N!u<2N(S01d), ~25!
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i.e., the number of sequences inSCK(N) is not much larger
than 2NS0. In the following, when we write ‘‘typical se-
quences,’’ we mean sequences inSCK(N), whereas by
‘‘atypical sequences’’ we mean sequences inS̄CK(N), the
complement ofSCK(N).

Now assume that we want to perform the hashing pro
col on a state ofN pairs of the form~11! with the property

E
SwW .S0

dwW p~wW !5h!1 ~26!

for some entropyS0,1; i.e., there is only a smalla priori
probability that the entropy of the unknown state exceeds
given valueS0. ~The case of states that do not have th
property will be discussed at the end of this section.! Fur-
thermore, assume thatN is large enough that there exists
Cziszár-Körner setSCK(N) with constantse,d!1 in Eqs.
~24! and ~25!. It then follows that

p@SCK~N!#[ (
ıWPSCK(N)

p~ ıW !

5 (
ıWPSCK(N)

E dwW p~wW !p~ ıWuwW !

> (
ıWPSCK(N)

E
SwW ,S0

dwW p~wW !p~ ıWuwW !

5E
SwW ,S0

dwW p~wW ! (
ıWPSCK(N)

p~ ıWuwW !

>E
SwW ,S0

dwW p~wW !~12e!

5~12h!~12e!

>12h2e, ~27!

where Eqs.~12!, ~24!, and~26! have been used.
We use this inequality, in combination with Eq.~25!, to

derive the asymptotic yield of the hashing algorithm appl
to exchangeable states. We restrict our analysis to a sim
fied protocol, in which we choose a numberr, somewhat
larger thanN(S01d), such that

z[2N(S01d)2r!1. ~28!

We begin with input stringsıW that have probabilityp( ıW). Let
h denote a sequence ofr parity checks on random subset
and let oW 5o1 , . . . ,or denote ther-bit string of parity
checks, or outcomes.~Note that we denote all strings of bit
as vectors, even though they are not all of the same leng!
The probability distributionp(h) on parity-check sequence
is weighted uniformly on all sequences. For a given inp
string ıW and a given parity-check sequenceh, the outcomeoW

is determined; we denote this deterministic outcome byoW h; ıW .
We can express this deterministic outcome in terms o
9-5
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probability for outcome stringoW , given parity-check se-
quenceh and input stringıW:

p~oW uh, ıW !5doW ,oW h; ıW
. ~29!

Since for each parity-check bit obtained, two bits of t
input string are discarded, two strings with the same pa
check, which differ only on those two bits, become the sa
after that step. Afterr steps of a parity-check sequenceh,
there will be onlyN2r entangled pairs, corresponding to
string of 2(N2r ) bits. If one starts with a stringıW, one will
be left with a shorter substringıWh( ıW). Different initial strings
ıW that generate the same outcomeoW and lead to the same fina
substringıWh( ıW) are equivalent for practical purposes. Let
denote the set of allinput strings ıW that lead to outcomeoW

and to output substring ıWh by I h(oW , ıWh)[$ ıWuoW h; ıW5oW , ıWh( ıW)
5 ıWh%.

For parity-check sequenceh, we are interested in out
comesoW such that alltypical input stringsıW that lead tooW

produce the same output stringıWh( ıW). For outcomes where
this is the case, the procedure picks out a unique ou
string from among all those that could be produced by
typical input string. In this case, we say that weacceptthe
outcome oW and the corresponding unique output strin
which we denote byıWh;oW . In this way, we divide the out-
comes for a parity-check sequenceh into two sets, the set o
accepted outcomes,Ah , and its complement. For an outcom
that we accept and for a typical input string, we can write
conditional probability~29! as

p„oW uh, ıW, ıWPSCK~N!…5H 1, if ıWPI h~oW , ıWh;oW !,

0, if ıW¹I h~oW , ıWh;oW !,

5doW ,oW h; ıW
d ıWh( ıW), ıWh;oW

for oW PAh .

~30!

Though the additional Kronecker delta in this expression
redundant, it reminds one that anytypical input string ıW that
leads to anacceptedoutcomeoW produces output stringıWh;oW .
Notice that this is not true for atypical input strings: an aty
cal input string can have outcomeoW and produce outcome
string ıWh;oW or a different output string.

The probability that the outcome is accepted, given in
string ıW and parity-check sequenceh, is

p~acceptuh, ıW !5 (
oW PAh

p~oW uh, ıW !

5 (
oW PAh

doW ,oW h; ıW

5H 1, if ıW leads to an accepted outcome

0, if ıW does not lead to an accepted

outcome.

~31!
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Notice that this conditional acceptance probability can
nonzero for atypical input strings. The complementary pro
ability, that the outcome is not accepted, givenıW and h, is
given by

p~acceptuh, ıW !5 (
oW ¹Ah

p~oW uh, ıW !

5 (
oW ¹Ah

doW ,oW h; ıW

5H 0, if ıW leads to an accepted outcome,

1, if ıW does not lead to an accepted

outcome.

~32!

If the input string is a typical string, the conditional acce
tance probability can also be written as

p@acceptuh, ıW, ıWPSCK~N!#5 (
oW PAh

doW ,oW h; ıW
d ıWh( ıW), ıWh;oW

~33!

@see Eq.~30!#.
What we are interested in for the present is the probab

to have an outcome that is accepted, given a typical in
string, but averaged over all parity-check sequences:

p@acceptu ıW, ıWPSCK~N!#5(
h

p@acceptuh, ıW,

ıWPSCK~N!#p~h!

5(
h

p~h! (
oW PAh

doW ,oW h; ıW
d ıWh( ıW), ıWh;oW

.

~34!

The complementary probability,

p@acceptu ıW, ıWPSCK~N!#5(
h

p@acceptuh, ıW,

ıWPSCK~N!#p~h!

5(
h

p~h! (
oW ¹Ah

doW ,oW h; ıW
, ~35!

is the average probability not to have an outcome tha
accepted, given the typical input stringıW. This probability is
the probability that for a random parity-check sequence,
typical input stringıW leads to an outcome that does not pi
out a unique output stringıWh;oW , i.e., leads to an output strin
that could have been produced by more than one typ
input string. We can bound this probability in the followin
way. The number of typical sequences satisfiesuSCK(N)u
<2N(S01d). For parity subsets chosen randomly, the pro
ability that two typical input strings,ıW and W, agree on allr
9-6
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parity checks—i.e., have the same outcome—is<22r ; thus
the probability thatıW andW agree on allr parity checksand

producedifferent output strings,ıWh( ıW) and ıWh(W), is <22r .
Hence, the probability of not producing a unique outp
given a typical inputıW, is bounded by

p@acceptu ıW, ıWPSCK~N!#<22r32N(S01d)5z. ~36!

This implies that the conditional acceptance probability~34!
satisfies

p@acceptu ıW, ıWPSCK~N!#>12z. ~37!

The Bayes rule tells us that the posterior probability
output stringıWh , givenh andoW , is

p~ ıWhuh,oW !5 (
ıWPI h(oW , ıWh)

p~ ıWuh,oW !

5 (
ıWPI h(oW , ıWh)

p~oW uh, ıW !p~h!p~ ıW !

p~oW uh!p~h!

5 (
ıWPI h(oW , ıWh)

p~oW uh, ıW !p~ ıW !

p~oW uh!
, ~38!

where

p~oW uh!5(
ıW

p~oW uh, ıW !p~ ıW ! ~39!

is the probability for outcome stringoW , given parity-check
sequenceh.

Given a parity-check sequenceh and an accepted outcom
oW PAh for that sequence, we judge the ‘‘success’’ of t
accepted output stringıWh;oW by the posterior probability, i.e,

p~successuh,oW !5p~ ıWh;oW uh,oW !

5 (
ıWPI h(oW , ıWh;oW )

p~ ıWuh,oW ! for oW PAh .

~40!

The total probability of success,p(success), is obtained b
averaging over all parity-check sequencesh and over all ac-
cepted outcomesoW PAh . This probability can be manipu
lated in the following ways:

p~success!5(
h

(
oW PAh

p~successuh,oW !p~oW uh!p~h!

5(
h

(
oW PAh

(
ıWPI h(oW , ıWh;oW )

p~ ıWuh,oW !p~oW uh!p~h!

5(
h

(
oW PAh

(
ıWPI h(oW , ıWh;oW )

p~oW uh, ıW !p~h!p~ ıW !
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(
oW PAh

(
ıWPI h(oW , ıWh;oW )

ıWPSCK(N)

p~oW uh, ıW !p~h!p~ ıW !

5(
h

(
oW PAh

(
ıWPSCK(N)

doW ,oW h; ıW
d ıWh( ıW), ıWh;oW

p~h!p~ ıW !.

~41!

The inequality here follows from restricting the sum ov
input strings to typical strings and reflects the fact that
atypical string might lead to an accepted outcomeand to the
accepted output stringıWh;oW , thereby contributing to the suc
cess probability. The final equality comes from using E
~30! for p(oW uh, ıW). Using Eqs.~27!, ~34!, and ~37!, we can
now bound the probability of success:

p~success!> (
ıWPSCK(N)

p~ ıW !(
h

p~h! (
oW PAh

doW ,oW h; ıW
d ıWh( ıW), ıWh;oW

5 (
ıWPSCK(N)

p~ ıW !p@acceptu ıW, ıWPSCK~N!#

>~12z! (
ıWPSCK(N)

p~ ıW !

5~12z!p@SCK~N!#

>~12z!~12h2e!

>12z2h2e. ~42!

This is the desired result. Assuming we can choose arbit
positive constantse andh and have sufficiently largeN, the
probability ~42! can be made arbitrarily close to one.

Except for certain singular distributionsp(wW ), given an
exchangeable state of the form~11!, it is always possible to
makeh in Eq. ~26! arbitrarily small by choosing the entrop
S0 sufficiently large (0<S0,2); if S0>1, however, then the
number of hashing roundsr>N, which means there is no
yield since N2r<0. To decrease the value ofS0 and
thereby make the yield positive or increase an already p
tive yield, one can perform quantum-state tomography
some of the pairs to obtain more data about the state, ge
ally producing a narrower posterior distributionp8(wW ) ~see
Sec. II!. The width of the posterior distribution depends o
the number of pairs sacrificed for the tomographic measu
ments, but not on the total number of pairsN. The number of
pairs needed for tomography can therefore be neglecte
the asymptotic limit of largeN.

Asymptotically, the prior probability of obtaining a pos
terior p8(wW ) concentrated atwW 5wW 0 with an entropySwW 0

,S0 is given by the expression

p~S,S0![E
SwW ,S0

dwW p~wW !, ~43!
9-7
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wherep(wW ) is the prior distribution~11! defining the initial
state. Putting everything together we see that, forS0,1,
p(S,S0) is the probability of obtaining an asymptotic yie
of N(12S0) using a combination of quantum-state tomo
raphy and one-way hashing.

If most of the prior distributionp(wW ) is concentrated on
states with an entropy exceeding one bit, i.e., ifp(S,1) is
small, then it will normally be a better strategy to precede
hashing procedure by a few iterations of the recurre
method. This is the content of the next section.

IV. ENTANGLEMENT PURIFICATION BY RECURRENCE

If the generating functionp(wW ) has no significant suppor
on weightswW with SwW ,1, then hashing cannot be used f
entanglement purification, at least initially. It might still b
possible, however, to distill some entanglement by using
more robust~but far more wasteful! technique ofrecurrence
@2,4#.

In the recurrence algorithm, an initial set of 2N entangled
qubit pairs is grouped intoN sets of two pairs each. In eac
set, one pair is designated thetarget pair, and the other the
control pair. Alice and Bob thus haveN target qubits andN
control qubits each. Alice now rotates all her qubits byp/2
about thex axis, while Bob rotates all his qubits by2p/2
about thex axis. Each of them then performs a controlle
NOT operation from each control qubit onto the correspo
ing target qubit and measures his or her target qubits in tz
basis (u0& and u1&). The target qubits are then discarded.
Alice and Bob both get the same result for a given target p
~i.e., both 0 or both 1!, the procedure has succeeded, and
control pair can be shown to have increased entanglemen
their results differ, the procedure has failed, and the con
qubits must also be discarded.

If the state of both target and control pairs is of form~10!,
the probability of success is

ps5ps~wW !5~w11w4!21~w21w3!2, ~44!

and the new state of the control pair after the measurem
has weights@4#

w1852w2w3 /ps ,

w285~w2
21w3

2!/ps ,

w3852w1w4 /ps ,

w485~w1
21w4

2!/ps . ~45!

If initially w4.1/2, then this procedure converges towar
w451. The convergence is slow, however, and since m
than half of all the pairs is discarded each time, the yield
generally low.

Suppose that instead of a product state we have an
changeable state of the form~11!, perhaps arising from a
Jaynes-type state assignment. We can carry out the pr
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with a target and control bit. If there are initially 2N pairs in
the state

r (2N)5E dwW p~wW !rwW
^ 2N , ~46!

then after performing the measurements, Alice and Bob w
get the same resultNs times and different resultsN2Ns
times, leaving them with a new state of the form~46! for Ns

pairs. For largeN, the posterior distributionp(wW uNs) will
generally be sharply peaked about thosewW that give a value
of ps close toNs /N. Unlike hashing, the recurrence algo
rithm produces a posterior stater (Ns) which is exchangeable
We now turn to how we find this state in light of the me
surement results.

Compared with the hashing algorithm, where precis
one bit of information is obtained in each round of the pr
cedure, in the recurrence method much more informatio
obtained, namely the value ofNs . We can therefore deduc
the posterior distribution

p~wW uNs!5
p~NsuwW !p~wW !

p~Ns!
, ~47!

where

p~NsuwW !5S N
Ns

D @ps~wW !#Ns@12ps~wW !#N2Ns, ~48!

and

p~Ns!5E dwW p~NsuwW !p~wW !. ~49!

Because the remaining states have been transformed ac
ing to Eq.~45!, we must also change to the new variableswW 8.
So the new state is

r̃ (Ns)5E dwW 8 p8~wW 8!r~wW 8! ^ Ns, ~50!

where

p8~wW 8!dwW 85p~wW uNs! dwW . ~51!

While this Bayesian procedure is very simple compared
the hashing method, it is still a bit too complicated for simp
illustration. There is, however, an even simpler variant
this technique that is easy to analyze. Suppose that, ins
of the general Bell-diagonal state~10!, we have an initial
Werner state,

r~F !5FF11
12F

3
~F21C11C2!. ~52!

We can carry out the recurrence procedure exactly as ab
with the probability of success

ps~F !5~8F224F15!/9; ~53!
9-8
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here F denotes the fidelity of the state withF1 , with F
.1/2 necessary for distillability. The recurrence proced
does not in general lead to a new state of form~52!, but by
twirling the state, can be put in this form, at the cost of so
increase in entropy. The new state has a fidelity

F85
10F222F11

8F224F15
. ~54!

Suppose that we have 2N entangled pairs, with partia
information sufficient to determine that they are all in a st
of the form ~52!, but not to determine the exact fidelityF.
The joint state of the pairs is then

r (2N)5E dF p~F !r~F ! ^ 2N. ~55!

We then group the pairs into sets of two and carry out
recurrence procedure on each set, withNs successful results
We can then deduce a revised generating function

FIG. 1. Plots of an initially uniform distribution for the gene
alized Werner state for fidelities betweenF51/4 ~maximally
mixed! andF51 ~maximally entangled! and updated distributions
after one round of the simplified recurrence method. Before
round there are 2N pairs; we assume the procedure succeeds
Ns52N/3 cases (ps52/3). The new distribution is plotted forN
59,18,48,99. The new distribution is more and more highly pea
for biggerN, and the probability of unentangled states is more a
more strongly suppressed.
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p~FuNs!5
p~NsuF !p~F !

p~Ns!
, ~56!

where

p~NsuF !5S N
Ns

D @ps~F !#Ns@12ps~F !#N2Ns, ~57!

and

p~Ns!5E dF p~NsuF !p~F !. ~58!

The new density operator for theNs remaining pairs is

r (Ns)5E dF8 p8~F8!r~F8! ^ Ns, ~59!

where the posterior distribution is expressed in terms of
new variableF8 given by Eq.~54!. Working this out explic-
itly, we get

p8~F8!5S 8F~F8!221
3~324F8!

A6F824F8221
D p@F~F8!uNs#

1028F8
,

~60!

whereF(F8) is the inverse of Eq.~54!:

F~F8!5
~122F8!13A6F824F8221

1028F8
. ~61!

We can see how much information is gained by a sin
round of the recurrence method using this simplified vers
as an example. If the initial generating function is a unifo
distribution,p(F)54/3 for 1/4,F,1, then for largeN, the
posterior distribution is highly peaked after one round. W
see this in Fig. 1, where the prior and posterior distributio
are shown for different values ofN and a typical choice of
Ns . Note that states with 1/4,F,1/2 move towardsF
51/4 under the procedure, producing a peak about the c
pletely mixed state; for highN and the value ofps used in
our example, this peak is suppressed by the Bayesian up
ing. States withF.1/2 move towardsF51. The procedure
has fixed points atF51/4, F51/2, andF51.

It should be noted that because of its extremely sm
yield, the recurrence method should never be used if has
is possible. An initial state that cannot be distilled by t
hashing method, however, might, after one or more rou
of the recurrence method, satisfy the criterion~26! for some
value of S0,1. If that is so, then a combination of tomog
raphy and hashing should be used thereafter, as describ
the last section.

Similarly, if p(r) has some support on distillable an
some on undistillable states, a few rounds of the recurre
method generally produces convergence on either a dis
able or undistillable state, without ambiguity. Under certa
circumstances, however, it might be beneficial to supplem
this with tomographic measurements on a number of pair
well. For example, the updating procedure~45! treats the
coefficientsw1 ,w4 and w2 ,w3 symmetrically. An initially
symmetric state thus has this symmetry preserved, and

e
in

d
d
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distributionp(wW ) might become double peaked. In this ca
measuring a small number of pairs would suffice to elimin
one of the two peaks.

V. CONCLUSION

In this paper, we have discussed the problems that aris
naı̈vely applying the Jaynes maximum-entropy construct
to multiple copies of a system, about which only partial
formation is available. Rather than simply assigningN copies
of the single-system Jaynes staterJ to the N systems, one
should instead assign anexchangeablestate of the form~5!.
This assumption is the starting point for entanglement m
nipulation in the case of partially known or unknown stat
Given such an exchangeable state, by measuring some o
systems, one can obtain information about the state of
others; the state of the remaining systems is then upd
with the quantum version of the Bayes rule.

Using this rule, we have given a Bayesian account of
entanglement purification procedures of one-way hash
and recurrence. The Bayesian formulation allows us to p
vide a straightforward discussion of the conditions un
which maximally entangled states can be distilled from u
.

v

ev
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ett
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known or partially known quantum states. For one-way ha
ing, we have given thea priori probabilities for the possible
asymptotic yields of maximally entangled pairs. Our resu
can be used to decide which combination of quantum-s
tomography, recurrence, and hashing to use to obtain
highest expected yield, both asymptotically and in the c
of a fixed number of initially given pairs. Although our dis
cussion is entirely in terms of pairs of qubits, the method
general and can be applied to any generalization of has
or recurrence in Hilbert spaces of higher dimension.
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