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Entanglement purification of unknown quantum states
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A concern has been expressed that “the Jaynes principle can produce fake entanglgRnéhttodecki
et al, Phys. Rev. A59, 1799(1999]. In this paper we discuss the general problem of distilling maximally
entangled states frofN copies of a bipartite quantum system about which only partial information is known,
for instance, in the form of a given expectation value. We point out that there is indeed a problem with
applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this
problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state
p™) of the N copies of the quantum systemedgchangeableone can write down a simple general expression
for p™™). By measuring one or more of the subsystems, one can gain information and update the state estimate
for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to
modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be
applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an un-
known or partially known quantum state.
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[. INTRODUCTION imperfect quantum operations, we assume that all operations
are error-free. A paper related to ours is Réfl by Eisert

Entanglement is a quantum-mechanical resource that caet al, who study how distillable entanglement decreases
be used for a number of tasks, including quantum teleportawhen information about a quantum state is lost.
tion, quantum cryptography, and quantum dense coding. Before we turn to the actual entanglement purification
Since real quantum channels are noisy, it is very difficult toprotocols, we discuss, in Sec. Il, the problem of what density
create perfect entanglement directly between two distant papperatorp™) to assign toN pairs of qubits if only partial
ties. There is thus a need to purifer distill) partial en- information is available. This is an unsolved problem, and
tanglement. Suppose two parties shidrgairs of qubits such we do not attempt to give a general solution. We show, how-
that each pair is in the same entangled but mixed gtatee  ever, that under the additional assumptionezthangeabil-
total statep®™ of all N pairs thus being thé-fold tensor ity, the statep™) must have a certain simple form, which is
product pM=p®N=p® ... ®p. There exist protocols amenable to entanglement purification. Our discussion also
[1-4], using only local operations and classical communicaprovides a resolution of the apparent paradox found by Horo-
tion, which allow the two parties to transforM <N of the  decki et al. [7], who give an example where applying the
pairs into maximally entangled states, for instance, singledaynes principle of maximum entrop8,9] leads to a state
states. In the limitN—«, the fidelity of the singlets ap- with more distillable entanglement than seems to be war-
proaches one and the fractidf/N a fixed limit, called the ranted by the available information. We conclude in Sec. V.
asymptotic yield.

In this paper, we consider the more general case in which
the initial statep™™) is not a tensor-product state. This corre- Il. STATE ASSIGNMENT BASED ON PARTIAL
sponds to the realistic situation that the statef each indi- INFORMATION

vidual pair is not perfectly known, for instance, because one | et ys consider the example given by Horodestkal.[7].

of the particles has been sent through a channel with onlyne authors consider a system composed of a single pair of
partially known characteristics. In Secs. lll and IV, we apply qupjts and define an operator

the entanglement purification methods known as one-way
hashing[2] and recurrenc§2,4] to partially known, includ-

ing completely unknown, quantum states. It turns out that the
generalization of the recurrence method is straightforward,
whereas the hashing method as it is described in F4f.
depends on the initial state being of tensor-product form and ]
therefore requires a more careful analysis. Unlike Giedkavhere W.=[W. XV.|, ®.=[d.)(d.| are projectors
et al. [5], who have studied entanglement purification with onto the Bell states,
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Our definition ofB differs from that of Ref[7] by a constant
factor to simplify the expressions. #il that is knownabout
the system state is the expectation vall@=1/2, then
Jaynes’s principle of maximum entropy stipulates that on
should assign the state of maximum von Neumann entro
compatible with the constraifB)=1/2, which in this case
is

1‘1’ 3 v, +P
Te¥-+ (Wt o).

16 @
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This state has distillable entanglement. Horodestlal. [ 7]
point out that the state

1 1
PH:§¢++Z("I’++¢—) (4)

also satisfies the constraifB)=1/2, but is separable and,
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not; the only way to do so is to look at the outcomes pro-
duced by measurements onultiple copies. In particular,
there is no way to turn a singlg; state into a maximally
entangled state, even probabilisticall}2], by local opera-
tions and classical communication. Thus, the prediction of
“fake entanglement” forp; causes no practical difficulty. It
merely represents the fact that, in some senseststates

Shat are consistent with the constraint are also entangled.
PY We now turn to the case in which the parties share not just

one, butN qubit pairs. We denote by the total state of
the N pairs and assume that thepairs are known to satisfy
the constraintgB),=Tr(pB)=1/2 fork=1, ... N, where

pk is the reduced density operator of théh pair. In this
case, the state assignmexﬁ”t‘):p?'“ is not supported by the
prior information, even though this is the state of maximum
entropy compatible with the given expectation values. For
largeN, this state assignment corresponds to the definite pre-
diction that a nonzero number of perfect singlets can be dis-
tilled, which is certainly not implied by the given expectation
values. The alternative state assignmﬁﬁ\t)zpﬁ'“ would,
however, be equally unsupported by the prior information. It

hence, unentangled. They conclude that the entanglement @orresponds to the definite prediction tmatsinglets can be

the maximum entropy staje; is “fake,” because it violates

distilled from theN pairs, which is the minimum number of

the condition that an inference scheme “should not give uglistillable singlets compatible with the priori knowledge.

an inseparable estimated state if only theoretically there exAlthough this is a very cautious prediction, it is also not
ists a separable state consistent with the measured data.” Asiplied by the given expectation values.

an alternative to the Jaynes principle, they propose first to The fact that a nae application of the principle of maxi-
minimize the entanglement and then to find the state ofmum entropy to many copies of a system fails is essentially
maximum entropy among those states that have minimal erof classical origin and is not unique to problems involving

tanglement. For the constraifB)=1/2, this alternative
scheme results in the statg given above.

entanglement. Jayng$3] has given a thorough discussion of
this problem, which can be explained by a simple example.

A simple defense of the Jaynes principle would be theConsider a possibly loaded die. All that is known about the

following (see also Refd10,11]). The alternative procedure
proposed by Horodeclkit al. assumes additional information
about the two qubits, namely that entanglemena igriori

die is the mean valug)==,np(n) = 3.5, wherep(n) is the
probability of the outcomen, n=1, ... ,6. Theprobability
distribution of maximum entropy compatible with the given

unlikely. This would be reasonable, e.g., in a situation whereanean-value constraint ip(n)=1/6 for n=1, ... ,6. Now,
the parties know that the state has been prepared by an acbnsider throwing the dibl times. A nave application of the
versary whose objective is to let them have as little entanglemaximum entropy principle would predict that tix dice
ment as possible. But then more is known about the statéhrows were independent and identically distributiédl) ac-
than just the given expectation value and, hence, the assumperding to the single-trial distributiop(n). This would lead

tions behind the Jaynes procedure are not fulfilled.

to the prediction that the fraction of throws showing any

If there is no specific additional information, however, the particular outcome would approximate 1/6 with arbitrary

maximum entropy state assignmepy is preferable to the
minimum entanglement assignmenf. Indeed, if a projec-

precision as\ tended to infinity. This prediction, however, is
not implied by the prior knowledge, which is compatible

tive measurement in the Bell basis is performed, assigningvith many possible outcome sequences, including sequences
pn corresponds to assigning zero probability to the measuran which only the eventei=1 andn=6 ever occur—quite

ment outcome¥ _, an outcome that is not ruled out by the

constraint{B)=1/2. In this sense, the minimum entangle-

ment assignment is inconsistent with the prior information.

possible, if the die is loaded. Moreover, with an i.i.d. distri-
bution, the results of earlier throws imply nothing about the
probability of later outcomes. Even the most gullible gam-

By contrast, no inconsistency of this kind can arise frombler might become suspicious if one and six were the only
the maximum entropy assignment in the absence of priooutcomes after thousands of throws.

information beyond the given expectation value. Any mea-

In Ref.[13], Jaynes discusses how to choose the multitrial

surement outcome that can be obtained from any state coulistribution in the classical case. The starting point of his

sistent with the constraint can also be obtained from
Indeed, for the case at hand, thgof Eq. (3) has a nonzero
probability for any measurement outcome whateftbis is

discussion is the assumption that the probability distribution
of the N dice throws isexchangeableThe same assumption
is the starting point for our quantum analysis. If exchange-

generally true for maximum entropy state assignments, exability is assumed, the task of assigning a statéNajubit
cept in singular cas@ésNo measurement on a single systempairs compatible with the constraints given above is much
in an unknown state can tell if that system is entangled osimplified. A statep(™) of N copies of a system is exchange-
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able if it is a member of an exchangeable sequesite k =Tr[ Fyp]. If the total state is given by E@5), the probabil-

=1,2,.... Anexchangeable sequence is defined by ity of outcomek in a measurement on a single subsystem is
(i) pNO=Tr,1p*"Y for all k, where Tg,, denotes the then

partial trace over thek(+ 1)th system, and
(ii) eachp™ is invariant under permutations of thesys-

tems on which it is defined. Pk= f dp p(p)p(K|p). ™
This definition is the quantum generalization of de Finet-

ti's [14] definition of exchangeable sequences of classicahfter the measurement, we must update the state of the re-

random variables. _ . ~ mainingN—1 systems by the Bayes rule,
A statep™ is exchangeable if and only if it can be writ-

ten in the form

p(N’l)If dp p(p|k)p®N1), (8)
o= [ dppip)p™ ®  where[24]
wheredp is a measure on density operator space,@pd is p(plk) = M_ (9)
a normalized generating functiofidp p(p)=1. This is a Pk

consequence of the quantum de Finetti theorem, the quantum

version of the fundamental representation theorem due to d8y doing different measurements on several subsystems, we

Finetti [14]. The quantum theorem was first proved by Hud-acquire more and more data; if these measurements are cho-

son and Moody 15] after pioneering work by $tmer[16];  sen well, the resulting posterigu,,s(p) becomes more and

for an elementary proof, see R¢L7]. more peaked and has less and less dependence on the choice
How, in general, do we pick(p)dp? To our knowledge, of prior p(p). This procedure is a straightforward Bayesian

there is no universal rule for this task, although there exist aersion of quantum-state tomograpf86—27.

number of proposals for unbiased measutpson density The condition of exchangeability in combination with the

operator spacgl8-21]. These can be interpreted as propos-quantum de Finetti theorem provides only a partial solution

als for state assignments fo¢f systems under the sole as- to the problem of state assignment in the presence of partial

sumption of exchangeability, i.e., using a generating functiorinformation, but we show in the next two sections that ex-

p(p)=1. changeability alone is sufficient to guarantee that the en-
If, in addition to exchangeability, there is a mean-valuetanglement purification procedures known as one-way hash-

constrainO) =0, the nave Jaynes maximum entropy state ing and recurrence can be carried out. The probability of

assignment leads to a generating function of the foigp)  distilling a positive yield of maximally entangled states de-

=48(p—p;), wherep; is the single-system state of maximum pends on the exact form @i(p)dp in Eq. (5). It is exchange-

entropy, subject to the constraint; this generating function igible states of this type that are provided by the generalization

unacceptable for the reasons given above. A good choice ¢6) of the Jaynes constructidi22], so we conclude that at

p(p)dp should be nonzero for afi that are compatible with least in principle, it is indeed possible to purify entanglement

the prior information—we should never arbitrarily rule out from partially known states.

any possibility. Similarlyp(p)dp ought to vanish for any

that is actually ruled out by the prior information. We there- || ENTANGLEMENT PURIFICATION BY ONE-WAY

fore would expect a multisystem generalization of Jaynes’s HASHING

maximum entropy procedure to have the form
In this section, we first present a version of the one-way

hashing algorithm that proceeds by Bayesian updating of the
Puaxent(p)dp=Nd[0—Tr(Op)]f(p)dp, ®  probabilities for products of Bell states and that can, i?] prin-
ciple, be applied to general exchangeable states. We then
where N is a normalization constant arfdp)dp is strictly ~ briefly sketch the argument given in Rg2] that for a prod-
positive. The exact form of the functioh(p) and of the uct statep®™, wherep is Bell diagonal with von Neumann
measuralp is the subject of ongoing research. In the spirit ofentropy S, the asymptotic yield of pure singlets is given by
the single-system Jaynes principlp(p)dp should favor N(1—S). We show how to modify this argument so that it
statesp with higher von Neumann entro@(p) and should can be applied to general exchangeable states. Finally, we
give the usuap; whenN=1 [22]. give a simplified Bayesian hashing algorithm for exchange-
Given an initial state assignment of the fori®), addi- able states and discuss its asymptotic yield. Our analysis is
tional information can be obtained, e.g., by making measurerestricted to pairs of qubits, but the method generalizes
ments on individual subsystems. Suppose a measuremesitaightforwardly to arbitrary Hilbert space dimensions.
outcomek is represented by a positive single-system opera- We restrict attention to Bell-diagonal states, i.e., mixtures
tor F,, with =, F,=1; i.e., theF, form a positive-operator 0f the Bell states,
valued measuréPOVM) [23]. Given that the subsystem is in
state p, the probability of getting outcoméd is p(k|p) P =W W_+wo W, +wa®_+w, P, (10
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where we denote the weights W}={W1,W21W3,W4}, W targ.et pair v_vith the parity of a subset of all the bit;. The
+Wy+wa+w,=1,w;=0 forj=1, ...,4Most existing en- choice of unitary transformation corresponds to including the
tanglement purification procedures begin by making this asfirst, second, or both of the bits from a particular pair in the
sumption. If it does not hold, it is possible to put any state inParity calculation. Then a measurement is performed on the
this form by “twirling,” that is, by randomly rotating both target pair.(The details of this procedure are given[®j.)
spins of an entangled pair. The final yield of maximally en-BY carrying out such a procedure, one bit of joint informa-
tangled states cannot be diminished by omitting this steplion is acquired about all the pairs, at the expense of sacri-
however, so it is better to think of twirling as a conceptual,ficing one entangled paithat is, two bits. The unmeasured
rather than a physical procedure. After twirling, the initial, Pairs in general undergo an invertible transformation among

exchangeable stat&) of our N pairs of qubits becomes the Bell states, but they do not become entangled with each
other, and this transformation can, if one chooses, be undone,

) - - eN leaving the sequence of bits for the unmeasured pairs unal-
p= [ dwp(w)p, ", (11 tered. Bennetet al. have shown that such a procedure can be
equivalent to finding the parity of any subset of thd Bits.
where This parity bit then allows one to update the probability dis-
tribution for the remaining 2{ — 1)-bit string.
J dwp(w)=1. (12 Let us examine this in a little more detail. Lat
=i,i,- i,y denote a sequence of bits. We can select a sub-
We now define the set of labeled states set of these bits by giving another sequemcewhich in-
cludes a 1 for each bit to be included in the subset arD for
poo=Y_, pu="., the rest. The parity of the subset is then
—® —® 13 o
pr0=®-. pu=®.. (13 (D) =X- rz( > xmim) mod 2. 17)
m=1
The first bit in the label tells us whether the pair is iaor
a® state; the second bit tells us whether it is irraor — For a givenr, the probability of getting a valuer; for the

state. If we are restricted to local measurements and classicaérity is either 0 or 1, so the probability of getting; as a
communication on a single pair, the best we can do is tQneasurement result is
determine one of these two bits, but not both, and the pair

will be left in an unentangled state. Benneit al. have

shown, however, that if we can manipulate the qubits collec- p(m) =2 p(s
tively, much more interesting measurements are posgtfle !

The first step is to rewrite the statgl) as a probability  For simplicity, let us assume that the target pair is the last, so

distribution over strings of bits, with each qubit pair associ-the last two bits are sacrificed; the new state for khel
ated with two bits in the string. For this, we define the prod-remaining pairs is
uct distribution

NDP(N=2 8. (). (18)

. . > (N-1)— o R -, )
p('l'Z'"|2N|W)=Wili2Wi3i4'"WiZN,liZNv (14 p ; p(i |7TX)p'1'2®p'3'4® ®p'2N—3'2N—2’
(19
where Wog=W,, Wg=W,, Wig=Ws;, and w{;=w,. Using )
this notation, where1’=iqi, ion_o and
N= > (4o ion)pii @ ®pi =, - p(Np(gl1)
P Pl o) pig, Pion-1ian’ p('|m)= 2 pllm= > —————
1,0, . don ioN—11i2N ioN—1+12N p(y)
(15 (20)
where

Note that while the initial probability distributiom)(f) is
symmetric under interchanges of the pairs, this symmetry is
p(iliz---iZN):J dwp(W)p(igip---ionw). (16)  lost after measurement.
The purification scheme follows simply from this. One
chooses subsets of the bit string at random and measures

list all the qubit pairs that have at least one associated bit iﬁhe'r parity, sacrificing one pair with each measurement, but

the subset. From this list we choose one qubit pair to be thgpdating t_he probabili';y distribution .for the remgining
target For each of the other qubit pairs in the list, Alice and strings. This procedure is repeated until one is left with only

Bob both perform one of a set of three unitary transforma2 Single string, sayo, with probability 1— & for some smalll
tions on their half of the pair, followed by a bilateral - Written more formally, the posterior probabilify,os; at
controlled-NOT operation onto the target pair. This sequencethe end of the procedure, conditioned on all measurement
of operations is equivalent to replacing one of the bits of theresults, has the properfy,.s( 1) =1— & for some sequence

We now select a random subset of the bits -i,y and
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lo. One then knows with high probability the maximally en- i-€., the number of sequencesd@x(N) is not much larger
tangled state of each remaining pair, which can then be tranghan 2'%. In the following, when we write “typical se-
formed into a standard statsuch asW_) by local opera- guences,” we mean sequences d&x(N), whereas by
tions. The yield of this procedure is the number of entangled‘atypical sequences” we mean sequencesSigk(N), the
pairs left at the end. complement ofSck(N).

It is clear that there are states for which the yield is zero. Now assume that we want to perform the hashing proto-
The obvious example is a stgt€" wherep is unentangled. col on a state oN pairs of the form(11) with the property
For states of the fornp;\%N, Bennettet al. have shown that

asymptotically, the method gives a yieldd{1—S;;) maxi- f dwp(w)= <1 (26)
mally entangled pairs with fidelity approaching 1, where Sw>So

4 for some entropy5,<<1; i.e., there is only a smal priori
Sv=-— 2 wjlogw; = —Tr(pylog py) (21)  probability that the entropy of the unknown state exceeds the

=1 given valueS,. (The case of states that do not have this
property will be discussed at the end of this secjidfur-
thermore, assume that is large enough that there exists a
Czisza-Korner setSqk(N) with constantse, <1 in Egs.
(24) and (25). It then follows that

is the entropy ofp,;. The argument makes use of the theo-
rem of typical sequenceg®8] (which is closely related to
Shannon’s noiseless coding theordi@9]), according to
which, for anye>0 and5>0 and sufficiently largéN, there
exists a subsefryp(N) of the set of all sequenceswith the

following properties: PLSc(N)I=_ X p(1)
e Scr(N)

PLShe(N) = X p(ilw)=1—¢, (22)

1eStyp(N)

_ 2| dwpw)p(i|w)
1 €Sck(N)

i.e., the total probability of the sefryp(N) is arbitrarily
close to 1; and

\

S [ owp@p(il)
| Sryp(N)[<2NGw+2), (23) 1eScr(N) ¥ Sw=So

i.e., the number of sequencesdryp(N) is not much larger :J dwp(w) > p(1|w)
than 2¥Sv. The setSyyp(N) is called the set of typical se- Sa<So T e Sck(N)
guences. Since the parity measurement in each hashing
round rules out half the typical sequences on average, and - -
since essentially all the probability is concentrated on the BL,KSode(W)(l_E)
typical sequences, it can be expected that after sacrificing
approximatelyNS;, pairs, essentially all the probability is =(1-7)(1—e)
concentrated on a single typical sequence. Clearly this leads
to a positive yield only ifS;<1. =1-7—¢, (27)
The theorem of typical sequences does not hold in general
for sequences corresponding to exchangeable states of théhere Eqs(12), (24), and(26) have been used.
form (11). To apply the hashing method in this case, we rely We use this inequality, in combination with E@®5), to
on a generalization of the theorem of typical sequences dugerive the asymptotic yield of the hashing algorithm applied
to Czisza and Kaner [30] (this theorem has recently been to exchangeable states. We restrict our analysis to a simpli-
used by Jozset al. [31] to derive a universal quantum in- fied protocol, in which we choose a numbersomewhat
formation compressing scheiné\pplied to our setting, the larger thanN(S,+ 6), such that
theorem is that, given a fixed entro[8y, then for anye

>0 and5>0 and sufficiently largeN, there exists a subset (=2t <y (28)
Sck(N) of the set of all sequenceswith the following prop- R .- S
eﬁ}iés-) q g prop We begin with input strings that have probabilitp(1). Let
' h denote a sequence ofparity checks on random subsets,
- - and let 6=01, ...,0, denote ther-bit string of parity
> plilw)=1-¢, (24 checks, or outcomegNote that we denote all strings of bits

& Sek(N) as vectors, even though they are not all of the same Iength.

) o Y v -check
for all W such thatS;;< Sy, which means that the s&k(N) The probability distributiorp(h) on parity-check sequences

is typical for all probability distributions with entropy less IS Yvelghted unllformly ‘?” all sequences. For a given lnpu
than Sy; and string | and a given parity-check sequeritehe outcome

is determined; we denote this deterministic outcomejy.
|Sck(N)|<2NSot9), (25  We can express this deterministic outcome in terms of a
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probability for outcome stringS, given parity-check se- Notice that this conditional acceptance probability can be
quenceh and input stringf: nonzero for atypical input strings. The complementary prob-

o ability, that the outcome is not accepted, givferamd h, is
p(olh,1) =85, - (29 given by

Since for each parity-check bit obtained, two bits of the —— a s
input string are discarded, two strings with the same parity p(accepih,1)= 2 p(olh,1)

check, which differ only on those two bits, become the same 0&An

after that step. After steps of a parity-check sequenlage

there will be onlyN—r entangled pairs, corresponding to a = 2 55,5}1;.‘
string of 2(N—r) bits. If one starts with a string, one will 0&An

be left with a shorter substring,(1). Different initial strings

> S ? 0, if I leadsto an accepted outcome,
I that generate the same outcomand lead to the same final

substringi (1) are equivalent for practical purposes. Let us =1 1. if 1 does not lead to an accepted
denote the set of alhput strings 1 that lead to outcome outcome.

and to output substring 1, by I(0,15)={1]|op;=0,14(1) (32)
= Ip}

For parity-check sequende, we are interested in out- If the input string is a typical string, the conditional accep-
comeso such that alltypical input stringsi that lead too ~ @nce probability can also be written as
produce the same output string(1). For outcomes where
this is the case, the procedure picks out a unique output  p[accepih,i,i e Sex(N)]= X 855 -0 i) - (33)
string from among all those that could be produced by a oAy, ’ '
typical input string. In this case, we say that weceptthe

outcome 6 and the corresponding unique output string,[S€€ EA(30]. , , o
which we denote byéh - In this way, we divide the out- What we are interested in for the present is the probability
;0" 1

comes for a parity-check sequerit@to two sets, the set of to _have an outcome that is acc_epted, given a typical input
accepted outcomed,, , and its complement. For an outcome Sting. but averaged over all parity-check sequences:
that we accept and for a typical input string, we can write the

conditional probablllly(29) as p[accepltr’ rE SCK(N)] = E p[accedth, r’
h

1, if relny(o,1hg),

pe[h.1reSeN)=) ) 16, I'e Sck(N)Ip(h)
= 85.6,.-01,(.i.c for ocAy. :Eh: p(h) > 36,64 10D
' ' oAy
(30 (34)
Though the additional Kronecker delta in this expression is -
redundant, it reminds one that atypical input string1 that The complementary probability,
leads to aracceptecbutcomeo produces output string,. . - . -
Notice that this is not true for atypical input strings: an atypi- placcepl, 1 e Sck(N)]= ; p[accepfh, 1,
cal input string can have outconeand produce outcome
string 1,.5 or a different output string. I e Sck(N)Ip(h)
The probability that the outcome is accepted, given input
string I and parity-check sequenteis => ph) > & - (35
h GeAn On;
p(accep|1h,|):6§ p(ofh.1) is the average probability not to have an outcome that is
" accepted, given the typical input strinTgThis probability is
=S the probability that for a random parity-check sequence, the
; ©:hii typical input stringl leads to an outcome that does not pick
0eAn ypical inpu g p

R out a unique output strim:Jh;g, i.e., leads to an output string
1, if 1 leads to an accepted outcome, that could have been produced by more than one typical
input string. We can bound this probability in the following
way. The number of typical sequences satisfiSgg(N)|
outcome. <2N(5*9  For parity subsets chosen randomly, the prob-

(31) ability that two typical input strings; and, agree on alf

=4 0, if I does not lead to an accepted
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parity checks—i.e., have the same outcome=<®&""; thus

the probability that” andj agree on alf parity checksand 2; & (Ear ) p(olh,1p(h)p(r)
producedifferent output strings,ip(1) and 1,(J), is <2". |EZCK(:\J;
Hence, the probability of not producing a unique output,
given a typical input, is bounded by :E ) ) 2 56,6h o p(h)p(|)
. h oecAp 1eSck(N)
placcepli, | e Sc(N)]<=2 "x 2N+ d=¢ (36 @)
This implies that the conditional acceptance probabilB%
satisfies The inequality here follows from restricting the sum over
input strings to typical strings and reflects the fact that an
p[accepltr, le Sck(N)]=1-¢. (37) atypical string might lead to an accepted outcame to the

accepted output strlngq 5, thereby contributing to the suc-
The Ba.yes rule tells us that the pOSterlor probablllty forcess probabmty The f|na| equa“ty comes from us|ng Eq

output stringiy,, givenh ando, is (30) for p(o|h,1). Using Egs.(27), (34), and (37), we can
now bound the probability of success:

p(ixlh,0)= 2 p(ilh,0)

1elp(o,1p)
R ) plsuccess= X p(NZ PN 2 655, 8,0,
p(olh, Np(h)p(1) e Sex(N) 0cAy
elain PR = 3 pi)placcepti,i < Sc(N)]
2l Ny T 1eSer(N)
_—— p(OIhLIilp(l)’ 38 cK
e Pl =1-0 3 (D)
where = o)
=(1=-0p[Sck(N)]

p(o[h)=2> p(o|h,Np(1) (39 =(1-0)(1-n—¢)

A =1-{—n—e. (42
is the probability for outcome string, given parity-check

sequencdl. This is the desired result. Assuming we can choose arbitrary
Given a parity-check sequenh@nd an accepted outcome qsitive constants and » and have sufficiently larg, the

oeA, for that sequence, we judge the “success” of theprobability (42) can be made arbitrarily close to one.

accepted output string,.; by the posterior probability, i.e, Except for certain singular distribution®(w), given an
exchangeable state of the forfhl), it is always possible to
make # in Eq. (26) arbitrarily small by choosing the entropy
S, sufficiently large (B=S,<2); if Sy=1, however, then the
= > p(i|h,0) foroeA,. number of hashing rounds=N, which means there is no
leln(0,Th:g) yield since N—r=<0. To decrease the value &, and
(40) thereby make the yield positive or increase an already posi-
tive yield, one can perform quantum-state tomography on

The total probability of succesg(success), is obtained by some of thg pairs to obtain more .data' ab.out.the §tate, gener-
averaging over all parity-check sequenteand over all ac- ally producing a narrower posterior distributiqri(w) (see

cepted 0utcome§eAh. This probability can be manipu- Sec. I). The Width of the_ posterior distribution d_epends on
lated in the following ways: the number of pairs sacrificed for the tomographic measure-

ments, but not on the total number of paitsThe number of
pairs needed for tomography can therefore be neglected in
(succes‘r—z E p(succesdh,0)p(olh)p(h) the asymptotic limit of largeN.
oeAy Asymptotically, the prior probability of obtaining a pos-

o terior p’(w) concentrated aw=w, with an entropyS;
=2 2 > pdilho)p(olhp(h) ’

p(succes$,0)=p(1y.5/h,0)

OEAh |e|h(o |h0)

—ZE > p(olh,Np(h)p(1)

OEAh IElh(O 'ho)

<S is given by the expression

P(S<Sy)= J%<%dv°p(vo)’ (43)
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wherep(w) is the prior distribution(11) defining the initial ~ dure exactly as before, grouping the pairs into sets of two,
state. Putting everything together we see that, 3gx1,  With atarget and control bit. If there are initially\2pairs in
P(S<S,) is the probability of obtaining an asymptotic yield the state
of N(1—Sp) using a combination of quantum-state tomog-
raphy and one-way has.hmlg. | . p(ZN)=f d\fvp(v(,)p\%z“, (46)

If most of the prior distributiorp(w) is concentrated on

states with an entropy exceeding one bit, i.ep(B<1) is  then after performing the measurements, Alice and Bob will
small, then it will normally be a better strategy to precede theget the same resull, times and different resulti— N

hashing procedure by a few iterations of the reCUITenCemes; leaving them with a new state of the fofd) for N
method. This is the content of the next section. . . L - .
pairs. For largeN, the posterior distributionp(w|Ng) will

generally be sharply peaked about theséhat give a value

of ps close toNg/N. Unlike hashing, the recurrence algo-
rithm produces a posterior stai€'s' which is exchangeable.
We now turn to how we find this state in light of the mea-
surement results.

Compared with the hashing algorithm, where precisely
e bit of information is obtained in each round of the pro-
cedure, in the recurrence method much more information is
obtained, namely the value dfs. We can therefore deduce
the posterior distribution

IV. ENTANGLEMENT PURIFICATION BY RECURRENCE

If the generating functionp(vT/) has no significant support

on weightsw with S;<1, then hashing cannot be used for
entanglement purification, at least initially. It might still be
possible, however, to distill some entanglement by using th%n
more robustbut far more wastefliltechnique ofrecurrence
[2,4].

In the recurrence algorithm, an initial set dilZntangled
qubit pairs is grouped intdl sets of two pairs each. In each

set, one pair is designated tterget pair, and the other the P(NJW)p(W)
control pair. Alice and Bob thus havi target qubits andN P(W|Ng) = —— " (47)
control qubits each. Alice now rotates all her qubits 2 P(Ns)

about thex axis, while Bob rotates all his qubits by m/2
about thex axis. Each of them then performs a controlled-
NOT operation from each control qubit onto the correspond- . N . .
ing target qubit and measures his or her target qubits iz the P(Ng/w)= ( N )[ps(W)]NS[l— p(W)INNs, (49
basis (0) and|1)). The target qubits are then discarded. If s
Alice and Bob both get the same result for a given target paignd
(i.e., both 0 or both 11 the procedure has succeeded, and the
control pair can be shown to have increased entanglement. If - I
their results differ, the procedure has failed, and the control p(Ns):f dw p(Ng|w)p(w). (49
qubits must also be discarded.

If the state of both target and control pairs is of fo{hd), Because the remaining states have been transformed accord-
the probability of success is ing to Eq.(45), we must also change to the new variahigs

So the new state is

where

Ps= Ps(W) = (W +Wg) 2+ (Wp+W3)2, (44)
| p= J dw’ p’(W')p(w') s, (50)
and the new state of the control pair after the measurement
h ightd4
as weightg4] where
Wy =2WoWs /s, D’ (W) dW' = p(W|Nq) dWw. (51)
Wy = (w§+w§)/ps, While this Bayesian procedure is very simple compared to
the hashing method, it is still a bit too complicated for simple
W= 2W, W, /Ps illustration. There is, however, an even simpler variant of

this technique that is easy to analyze. Suppose that, instead
of the general Bell-diagonal staté0), we have an initial

W= (Wi W)/ ps. 49 \Wermer state,
If initially w,>1/2, then this procedure converges towards 1-F
w,=1. The convergence is slow, however, and since more p(F)=F®,+ ——(_+W, +W¥_). (52)
than half of all the pairs is discarded each time, the yield is
generally low. We can carry out the recurrence procedure exactly as above,

Suppose that instead of a product state we have an exyith the probability of success
changeable state of the forfil), perhaps arising from a
Jaynes-type state assignment. We can carry out the proce- ps(F)=(8F2—4F +5)/9; (53

042309-8
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6 T T T T T T T
Uniform initial _ P(NgF)p(F)
9 P(FINg) oy (56)

where

N N N—N
P(NgF)= N, [Ps(F)IT1-ps(F)I" s, (57)
and
p(Na)= | dF pINF)P(F). (59
The new density operator for thé; remaining pairs is
p<Ns>=f dF’ p'(F")p(F")*Ms, (59
where the posterior distribution is expressed in terms of the

new variableF" given by Eq.(54). Working this out explic-
itly, we get

p’(F’)=(8F(F’)—2+ 3847 )p[F(F,”Nd

6F —4F'“—1/ 10-8F’
(60)
whereF(F') is the inverse of Eq(54):
(1-2F')+3\6F —4F'?—1
03 04 05 06 07 08 09 1 F(F')= - . (62
Fideli 10-8F
idelity F

FIG. 1. Plots of an initially uniform distribution for the gener- We can see how much information is gained by a single
alized Werner state for fidelities betwedh=1/4 (maximally  round of the recurrence method using this simplified version
mixed andF=1 (maximally entangledand updated distributions a5 an example. If the initial generating function is a uniform
after one round of the simplified recurrence method. Before th%istribution p(F)=4/3 for 1/4<F<1, then for largeN, the
’°”_”d there are I8 pairs; we assume the procedure succeeds inqsiarior distribution is highly peaked after one round. We
Ns=2N/3 cases '(’572/3).' T.he new distribution is p'°t.ted faw ee this in Fig. 1, where the prior and posterior distributions
=9,18,48,99. The new distribution is more and more highly peake re shown for different values &1 and a typical choice of
for biggerN, and the probability of unentangled states is more an .
more strongly suppressed. s- Note that states with 1#4F<'1/2 move towardsF

=1/4 under the procedure, producing a peak about the com-
pletely mixed state; for higiN and the value opg used in

here F denotes the fidelity of the state with., with F example, this peak is suppressed by the Bayesian updat-

>1/2 necessary for distillability. The recurrence procedureing States withF>1/2 move toward$ = 1. The procedure
does not in general lead to a new state of fa68), but by |~ points aE = 1/4, F=1/2 andE=1

twirling the state, can be put in this form, at the cost of some It should be noted that because of its extremely small

increase in entropy. The new state has a fidelity yield, the recurrence method should never be used if hashing
10F2—2F 41 is po_ssible. An initial state that cannot be distilled by the
= _ (54) hashing method, however, might, after one or more rounds
8F“—4F+5 of the recurrence method, satisfy the criteri@6) for some
value of Sy<<1. If that is so, then a combination of tomog-
Suppose that we haveN2entangled pairs, with partial raphy and hashing should be used thereafter, as described in
information sufficient to determine that they are all in a statethe last section.
of the form (52), but not to determine the exact fideliEy. Similarly, if p(p) has some support on distillable and
The joint state of the pairs is then some on undistillable states, a few rounds of the recurrence
method generally produces convergence on either a distill-
(2N) _ 22N able or undistillable state, without ambiguity. Under certain
p = | dF p(F)p(F)=. (59 circumstances, however, it might be beneficial to supplement
this with tomographic measurements on a number of pairs as
We then group the pairs into sets of two and carry out thevell. For example, the updating procedu@s) treats the
recurrence procedure on each set, Withsuccessful results. coefficientswy,w, and w,,w3; symmetrically. An initially
We can then deduce a revised generating function symmetric state thus has this symmetry preserved, and the

F/
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distributionp(w) might become double peaked. In this case known or partially known quantum states. For one-way hash-
measuring a small number of pairs would suffice to eliminatdnd, we have given the priori probabilities for the possible

one of the two peaks. asymptotic yields of maximally entangled pairs. Our results
can be used to decide which combination of quantum-state
V. CONCLUSION tomography, recurrence, and hashing to use to obtain the

) ) _highest expected yield, both asymptotically and in the case
In this paper, we have discussed the problems that arise igf a fixed number of initially given pairs. Although our dis-
navely applying the Jaynes maximum-entropy constructioneyssion is entirely in terms of pairs of qubits, the method is
to multiple copies of a system, about which only partial in-general and can be applied to any generalization of hashing

formation is available. Rather than simply assignigopies  or recurrence in Hilbert spaces of higher dimension.
of the single-system Jaynes statgto the N systems, one

should instead assign @axchangeablstate of the form(5).
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