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Quantum channel identification problem
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~Received 25 August 2000; published 16 March 2001!

This paper explores an application of quantum entanglement. The problem treated here is the quantum
channel identification problem: given a parametric family$Gu%u of quantum channels, find the best strategy of
estimating the true value of the parameteru. As a simple example, we study the estimation problem of the
isotropic depolarization parameteru for a two-level quantum systemH.C2. In the framework of noncom-
mutative statistics, it is shown that the optimal input state onH^ H to the channel exhibits a transitionlike
behavior according to the value of the parameteru.
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Let H be a Hilbert space that represents the physical s
tem of interest and letS~H! be the set of density operators o
H. It is well known @1# that a dynamical changeG:S(H)
→S(H) of the physical system, called aquantum channel, is
represented by a trace-preserving completely positive m
But how can we identify the quantum channel that we ha
in a laboratory? A general scheme may be as follows: inp
well-prepared states to the quantum channel and estima
the dynamical changes°G(s) by performing a certain
measurement on the output stateG~s!. It is then natural to
inquire what is the best strategy of estimating a quant
channel. The purpose of this paper is to study this prob
from a noncommutative statistical point of view. For mat
ematical simplicity, we restrict ourselves to the case in wh
the quantum channel to be identified lies in a smooth pa
metric family $Gu ;u5(u1 ,...,un)PQ% of quantum chan-
nels. WhenH is finite-dimensional, this is not an essent
restriction@2#.

Once an input states for the channel is fixed, we have
parametric family$Gu(s)%uPQ of output states, and as lon
as the parametrizationu°Gu(s) is nondegenerate, the prob
lem of estimating the quantum channel is reduced to a
rameter estimation problem for the noncommutative stat
cal model $Gu(s)%uPQ . As a consequence, the parame
estimation problem for a family$Gu%uPQ of quantum chan-
nels amounts to finding an optimal input states for the chan-
nel and an optimal estimator for the parametric fam
$Gu(s)%u of output states. One may imagine that this pro
lem does not exceed the realm of conventional quantum
timation theory@3,4#. But, in fact, it opens a new field o
research in noncommutative statistics.

Since each channelGu is completely positive, it can be
extended to the composite quantum systemH^ H. In view
of the statistical parameter estimation, there are two es
tially different extensions that have the same parametriza
u as Gu : one is Gu ^ I :S(H^ H)→S(H^ H), where I de-
notes the identity channel, and the other isGu ^ Gu :S(H
^ H)→S(H^ H). A question arises naturally: what happe
when we use an entangled state as an input to the exte
channel? In what follows, we demonstrate a somewhat n
trivial aspect of this problem.
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Let HªC2 and let the channelGu :S(H)→S(H) be de-
fined by

GuS 1

2 F 11z x2 iy

x1 iy 12z G D 5
1

2 F 11uz u~x2 iy !

u~x1 iy ! 12uz G .
The parameteru represents the magnitude of isotropic dep
larization. The channel can be uniquely extended on th
32 matrix algebraC232 as follows:

GuF1 0

0 0G5
1

2 F11u 0

0 12uG ,
GuF0 1

0 0G5
1

2 F0 2u

0 0 G ,
GuF0 0

1 0G5
1

2 F 0 0

2u 0G ,
GuF0 0

0 1G5
1

2 F12u 0

0 11uG .
To ensure thatGu is completely positive, the parameteru
must lie in the closed intervalQª@2 1

3 ,1#. ~See@2#.! We
thus have a one-parameter family$Gu ;uPQ% of quantum
channels, and our task is to estimate the true value ofu.

Before proceeding to the parameter estimation for$Gu%u ,
we give a brief account of the one-parameter quantum e
mation theory for density operators.~Consult @3# or @4# for
details.! Given a one-parameter family$ru%u of density op-
erators, an estimator for the parameteru is represented by a
Hermitian operatorT, normally with a requirement that th
estimator should be~locally! unbiased: that is, if the system
is in the stateru , then the expectationEu@T#ªTrruT of the
estimatorT should be identical tou. It is easy to show that
every~locally! unbiased estimatorT for the parameteru sat-
isfies the quantum Crame´r-Rao inequalityVu@T#>(Ju)21,
whereVu@T#ªTrru(T2u)2 is the variance of estimatorT,
and JuªJ(ru)ªTrru(Lu)2 is the quantum Fisher informa
©2001 The American Physical Society04-1
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tion with Lu the symmetric logarithmic derivative~SLD!,
i.e., the Hermitian operator that satisfies the equation

dru

du
5 1

2 ~Luru1ruLu!.

It is important to notice that the lower bound (Ju)21 in the
quantum Crame´r-Rao inequality is achievable~at least lo-
cally!. In other words, the inverse of the SLD Fisher info
mation gives the ultimate limit of estimation. As a cons
quence, the larger the SLD Fisher information is, the m
accurately we can estimate the parameteru.

Let us return to the parameter estimation problem for
one-parameter family$Gu%u of quantum channels. Takin
account of the above-mentioned one-parameter estima
theory for density operators, our task is reduced to finding
optimal input for the channel that maximizes the SLD Fish
information of the corresponding parametric family of outp
states.

We start with the maximization of the SLD Fisher info
mation of the family$Gu(s)%u with respect to the input stat
sPS(H). An important observation is that the maximum
attained by a pure state. To see this, it suffices to prove
convexity of the SLD Fisher information, i.e., ifru5lsu
1(12l)tu for a constantl between 0 and 1, thenJ(ru)
<lJ(su)1(12l)J(tu). Let us introduce the statesr̃u
ªlsu % (12l)tu on H% H. It is easy to show thatJ( r̃u)
5lJ(su)1(12l)J(tu). By identifying H% H with C2

^ H, we consider the partial trace TrC2:S(H% H)→S(H).
Since TrC2 is a stochastic~i.e., trace-preserving completel
positive! map, the monotonicity of the SLD Fisher informa
tion with respect to a stochastic map@5# shows thatJ( r̃u)
04230
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>J(TrC2r̃u)5J(ru). This completes the proof of the con
vexity of the SLD Fisher information. Now we are ready
specify an optimal input state. Since our channelGu is uni-
tarily invariant~i.e., isotropic in the Stokes parameter spac!,
we can take without loss of generality the optimal input to
s5ue&^eu, where^eu5(1,0). The corresponding output sta
ruªGu(s) is

ru5
1

2 F11u 0

0 12uG .
Since the stateru is isomorphic to the classical coin flippin
in which ‘‘heads’’ occur with probability (11u)/2, the SLD
Fisher information becomes

Ju5
1

12u2 .

We next study the extended channelGu ^ I :S(H^ H)
→S(H^ H). In this case, we can use a possibly entang
state as the input. For the same reason as above, we can
the input to be a pure state:ŝ5uc&^cu, wherecPH^ H.
By the Schmidt decomposition, the vectorc is represented as

uc&5Axue1&uf1&1A12xue2&uf2&, ~1!

wherex is a real number between 0 and 1, and$e1 ,e2% and
$f1 ,f2% are orthonormal bases ofH5C2. Since the channels
Gu andI are both unitarily invariant, we can assume witho
loss of generality that the optimal input takes the form~1!
with ^e1u5^f1u5(0,1) and^e2u5^f2u5(1,0). The constantx
remains to be determined. The corresponding output s
r̂uªGu ^ I (ŝ) becomes
r̂u5
1

2F ~12x!~11u! 0 0 2Ax~12x!u

0 x~12u! 0 0

0 0 ~12x!~12u! 0

2Ax~12x!u 0 0 x~11u!

G .

The SLD for the family$r̂u%u is given by

L̂u53
112u23u228ux

~12u2!~113u!
0 0

4Ax~12x!

~12u!~113u!

0 2
1

12u
0 0

0 0 2
1

12u
0

4Ax~12x!

~12u!~113u!
0 0

126u23u218ux

~12u2!~113u!

4 ,
4-2
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and the SLD Fisher information is

Ĵu5
113u18x~12x!

~12u2!~113u!
.

Whenx50 or 1, the above SLD Fisher informationĴu is
identical toJu . This is a matter of course: the input state
disentangled in this case and no information about the
rameteru is available via the independent channelI. When
xÞ0 andÞ1, the SLD Fisher informationĴu diverges atu
51 and21

3. This is because the complete positivity of th
channelGu breaks across these values. Now let us spe
the optimal input state. For everyu, the SLD Fisher infor-
mation Ĵu takes the maximum 3/(12u)(113u) at x5 1

2 .
Therefore, the optimal input for the channelGu ^ I is the
maximally entangled state. The implication of this result
profound: although we use the channelGu only once, extra
information about the channel is obtained via entanglem
of the input state. In particular, the use of entanglement
proves exceedingly the performance of estimation asu ap-
proaches21
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Let us proceed to the analysis of the other extended ch
nel Gu ^ Gu :S(H^ H)→S(H^ H). As before, we can take
the input to be a pure stateš5uc&^cu, wherec is given
byEq. ~1! with ^e1u5^f1u5(0,1) and^e2u5^f2u5(1,0). The
corresponding output stateřuªGu ^ Gu(š) becomes

FIG. 1. SLD Fisher informationJ̌u vs x for u50.7 ~dashed!,
1/) ~solid!, and 0.3~chained!.
řu5
1

4F x~12u!21~12x!~11u!2 0 0 4Ax~12x!u2

0 12u2 0 0

0 0 12u2 0

4Ax~12x!u2 0 0 x~11u!21~12x!~12u!2

G .
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Since the SLD for the family$řu%u is too complicated to
write down, we give the SLD Fisher information only,

J̌u5
4u415u221

2u2~12u4!
1

8u2x~12x!

12u4

1
12u2

2u2~11u2!@12u2116u2x~12x!#
.

When x50 or 1, the above SLD Fisher informationJ̌u
becomes 2/(12u2), which precisely doubles theJu . Again
this is a matter of course: the input state is disentangle
this case and the same amount of information about the
rameteru is obtained per independent use of the channelGu .
WhenxÞ0 andÞ1, the SLD Fisher informationJ̌u diverges
at u51 but not atu52 1

3 . This is because the requireme
of positivity for the channelGu ^ Gu is strictly weaker than
that for the channelGu ^ I ~i.e., the complete positivity for
Gu!. Now we examine a rather unexpected behavior of
optimal input state. For 1/)<u,1, the SLD Fisher infor-
mation J̌u takes the maximum 12u2/(12u2)(113u2) at x
5 1

2 , while for 2 1
3 <u<1/) it takes the maximum 2/(1

2u2) at x50 and 1.~See Fig. 1.! Namely, the optimal input
in
a-

e

state ‘‘jumps’’ from the maximally entangled state to a d
entangled state atu51/). It is surprising that the seemingl
homogeneous family$Gu%u of depolarization channels in
volves a transitionlike behavior.

Finally, we mention the possibility of extending the cha
nel Gu in the form Gu ^ G8, whereG8 is a channel that is
known to the observer and is independent ofu. Since the
channel Gu ^ G8 is decomposed into (I ^ G8)(Gu ^ I ), the
monotonicity argument for the SLD Fisher information wi
respect to a stochastic map allows us to deduce that the
choice of the channelG8 is the identity channel.

To conclude, among those we have considered on
second extensionH^ H of the quantum system, the be
strategy of estimating the isotropic depolarization parame
u is the following. For 1/)<u<1, useGu ^ Gu and input a
maximally entangled state onH^ H; for 1

3 <u<1/), use
Gu twice independently and input any pure state onH each
time; for 2 1

3 <u< 1
3 , useGu ^ I and input a maximally en-

tangled state onH^ H.
We have demonstrated a nontrivial aspect of a statist

estimation problem for a quantum channel. Other proble
such as the use of thenth extensionH^ n and its asymptotics,
or the multiparameter quantum channel estimation, will
presented elsewhere.
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