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Quantum channel identification problem
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This paper explores an application of quantum entanglement. The problem treated here is the quantum
channel identification problem: given a parametric fanilly;} , of quantum channels, find the best strategy of
estimating the true value of the parameterAs a simple example, we study the estimation problem of the
isotropic depolarization parametérfor a two-level quantum systerit=C?. In the framework of noncom-
mutative statistics, it is shown that the optimal input statelonH to the channel exhibits a transitionlike
behavior according to the value of the parameter
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Let H be a Hilbert space that represents the physical sys- Let H:=C? and let the channdl',:S(H)— S(H) be de-
tem of interest and le$(#) be the set of density operators on fined by

H. It is well known [1] that a dynamical changE:S(H)

—S(H) of the physical system, calledoguantum channels 1

represented by a trace-preserving completely positive map. ( ): -

But how can we identify the quantum channel that we have X+iy 1-z 2
in a laboratory? A general scheme may be as follows: input a
well-prepared stater to the quantum channel and estimate The parameted represents the magnitude of isotropic depo-
the dynamical change—TI(o) by performing a certain larization. The channel can be uniquely extended on the 2
measurement on the output stdtér). It is then natural to X2 matrix algebraC?*? as follows:
inquire what is the best strategy of estimating a quantum

channel. The purpose of this paper is to study this problem 1 0] 1[1+46 0
from a noncommutative statistical point of view. For math- ra{ }: = }
ematical simplicity, we restrict ourselves to the case in which 0 0 2/, 0 1-0

the quantum channel to be identified lies in a smooth para-
metric family {I',;6=(64,...,0,) € ®} of quantum chan- 0 1] 1[0 26]
nels. WhenH is finite-dimensional, this is not an essential r, = ,
restriction[2]. 10 0] 2[0 O]

Once an input state for the channel is fixed, we have a
parametric famil{I" (o)} 4. o Of Output states, and as long

as the parametrizatiofi—1I" 4(o) is nondegenerate, the prob- r, 00 - l 0 0 1
lem of estimating the quantum channel is reduced to a pa- 11 0] 2[26 O
rameter estimation problem for the noncommutative statisti-

cal model{I'y(0)}yco . As a consequence, the parameter 0 0] 1/1-6 o0
estimation problem for a familyI' ;} . ¢ Of quantum chan- { - _
nels amounts to finding an optimal input statéor the chan- 0 1/ 2[ 0 1+9¢

nel and an optimal estimator for the parametric family
{T" (o)}, of output states. One may imagine that this prob-To ensure thal’, is completely positive, the parameteér
lem does not exceed the realm of conventional quantum esnust lie in the closed interva® :=[ — ,1]. (See[2].) We
timation theory[3,4]. But, in fact, it opens a new field of thus have a one-parameter famill/ ,; 6 ®} of quantum
research in noncommutative statistics. channels, and our task is to estimate the true valué of
Since each channdl, is completely positive, it can be Before proceeding to the parameter estimation{fo},,
extended to the composite quantum systki®m 7. In view  we give a brief account of the one-parameter quantum esti-
of the statistical parameter estimation, there are two essetmration theory for density operator&€Consult[3] or [4] for
tially different extensions that have the same parametrizatiodetails) Given a one-parameter familfy,}, of density op-
0asl'y: one isT"y@1:S(H®H)—S(H®H), wherel de- erators, an estimator for the paramefes represented by a
notes the identity channel, and the otherlis®I',:S(H  Hermitian operatoiT, normally with a requirement that the
®H)—S(H®H). A question arises naturally: what happensestimator should béocally) unbiased: that is, if the system
when we use an entangled state as an input to the extendélin the statep,, then the expectatioB [ T]:=Trp,T of the
channel? In what follows, we demonstrate a somewhat norestimatorT should be identical t@. It is easy to show that
trivial aspect of this problem. every (locally) unbiased estimatdr for the parameted sat-
isfies the quantum Cramd&Rao inequalityV,[T]=(J,) 1,
whereV, [T]:=Trp,(T— 6)? is the variance of estimatdF,
*Email address: fujiwara@math.wani.osaka-u.ac.jp andJ,:=J(p,):=Trp,(L,)? is the quantum Fisher informa-
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tion with L, the symmetric logarithmic derivativéSLD),
i.e., the Hermitian operator that satisfies the equation

=J(Tre2pg) =J(py). This completes the proof of the con-
vexity of the SLD Fisher information. Now we are ready to
specify an optimal input state. Since our chanhiglis uni-
tarily invariant(i.e., isotropic in the Stokes parameter space
we can take without loss of generality the optimal input to be
o=|e){e, where(e|=(1,0). The corresponding output state

dpy
d_ezé(l-epe"'l)e'-a)-

It is important to notice that the lower boundj ~* in the poi=Ty(c) is

- . . . . 4 (4
guantum CrameRao inequality is achievabléat least lo- 11146 0O
cally). In other words, the inverse of the SLD Fisher infor- po== i
mation gives the ultimate limit of estimation. As a conse- 21 0 1-6

qguence, the larger the SLD Fisher information is, the more o ) ) o
accurately we can estimate the parameter Since the statp, is isomorphic to the classical coin flipping

Let us return to the parameter estimation problem for thdn Which “heads™ occur with probability (¥ 6)/2, the SLD
one-parameter familfT ;}, of quantum channels. Taking Fisher information becomes
account of the above-mentioned one-parameter estimation 1
theory for density operators, our task is reduced to finding an Jazm-
optimal input for the channel that maximizes the SLD Fisher
information of the corresponding parametric family of output  \we next study the extended chanré}®!:S(H®H)
states. _ o _ . —S(H®H). In this case, we can use a possibly entangled

We start with the maximization of the SLD Fisher infor- state as the input. For the same reason as above, we can take
mation of the family{I" (o)}, with respect to the input state he input to be a pure staté:=|y)(|, where e HOH.
o e S(H). An important observation is that the maximum is gy the Schmidt decomposition, the vecipis represented as
attained by a pure state. To see this, it suffices to prove the

)= Xlen)|f1) +V1-X|e)|f2), 1)

convexity of the SLD Fisher information, i.e., fy,=Aoy

+(1—\) 7, for a constantx between 0 and 1, thed(py)

<NJ(oy)+(1—-N\)JI(7y). Let us introduce the statép, wherexis a real number between 0 and 1, dmg,e,} and
=Noy®(1—N)7p on He&H. It is easy to show thal(py) {f,.f,} are orthonormal bases &f=C2. Since the channels
=\J(op)+(1—\)I(7,). By identifying H®H with C? I’y andl are both unitarily invariant, we can assume without
®H, we consider the partial trace BtS(H® H)— S(H). loss of generality that the optimal input takes the fofh
Since Tg:2 is a stochastidi.e., trace-preserving completely with (e;|=(f;|=(0,1) and(e,|={(f,|=(1,0). The constant
positive map, the monotonicity of the SLD Fisher informa- remains to be determined. The corresponding output state
tion with respect to a stochastic m@p| shows thatd(p,) po=I"y®1(0) becomes

(1-x)(1+6) 0 0 2x(1-x)80
1 0 X(1—6) 0 0
Po—3 0 0 (1-x)(1-0) 0
2X(1—x)6 0 0 X(1+0)
The SLD for the family{p,}, is given by
[1+260—36°—86x 0 4\x(1—x)
(1-6%)(1+36) (1-6)(1+36)
1
0 - 0 0
. 1-6
LG_ 1 b
0 0 - 0
1-6
4\x(1—-x) 0 0 1-660—36°+86x
(1-6)(1+30) (1-6°)(1+36) |
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and the SLD Fisher information is
1+360+8x(1—x)
(1-6%)(1+36) °
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Whenx=0 or 1, the above SLD Fisher informatiﬁr,; is
identical toJ,. This is a matter of course: the input state is
disentangled in this case and no information about the pa-
rameterd is available via the independent chanheWhen

x#0 and #1, the SLD Fisher informatioﬁa diverges atf
=1 and —3. This is because the complete positivity of the 0 02 04 06 08 7
channell’, breaks across these values. Now let us specify x

the optimal input state. For ever; the SLD Fisher infor-
mation J, takes the maximum 3/(26)(1+36) at x=43.
Therefore, the optimal input for the channé}®| is the
maximally entangled state. The implication of this result is
profound: although we use the chaniig) only once, extra Let us proceed to the analysis of the other extended chan-
information about the channel is obtained via entanglememel I' ;@1 ,:S(H® H) —S(H®H). As before, we can take

of the input state. In particular, the use of entanglement imthe input to be a pure stat@=|)(y|, where ¢ is given
proves exceedingly the performance of estimatiordap-  byEq. (1) with (g|=(f,|=(0,1) and(e,|={(f,|=(1,0). The
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FIG. 1. SLD Fisher informatiorf](, vs x for #=0.7 (dashedg],
1A3 (solid), and 0.3(chained.

proaches—3. corresponding output stafe;:=I",® 1" 4(o) becomes
|
X(1—60)%+(1-x)(1+ 6% 0 0 4\x(1—x) 62
o1 0 1-62 0 0
Po=g 0 0 1-6? 0
4\x(1—x)6? 0 0 x(1+6)%+(1—x)(1-6)?

Since the SLD for the family{p,}, is too complicated to state “jumps” from the maximally entangled state to a dis-

write down, we give the SLD Fisher information only, entangled state at=1//3. Itis surprising that the seemingly
homogeneous familfI',}, of depolarization channels in-
s A40'+56°-1 86°x(1-x) volves a transitionlike behavior.
Jo= 26%(1- 6% + 1— 64 Finally, we mention the possibility of extending the chan-
nel I'y in the formI'y® "', wherel'’ is a channel that is
1-67 known to the observer and is independentéofSince the
+ 26%(1+ 6A)[1— 62+ 166°x(1—x)] channell’ ,®I"" is decomposed intol&I'")(I'y®1), the

monotonicity argument for the SLD Fisher information with

Whenx=0 or 1, the above SLD Fisher informatiah, ~ '€Spect to a stochastic map allows us to deduce that the best

becomes 2/(+ 62), which precisely doubles th,. Again choice of the channdl’ is the identity channel._
this is a matter of course: the input state is disentangled in '© conclude, among those we have considered on the

this case and the same amount of information about the p%tegtjggy %);tggﬁigz_t(ifgﬁhzfigg)?rocg)lij?réltg{)gl ;%;;i’gh g]aerabn?;tter
rameterd is obtained per independent use of the chaiihel 8 is the following. For W3<g<1, usel',T, and input a

Whenx#0 and+1, the SLD Fisher informatiod, diverges maximally entangled state oH®H; for <#<1A3, use

_ _ 1 . . . 1 1
at 6=1 but not atg=—3. This is because the requirement 1 yice independently and input any pure state?éreach
of positivity for the channel’ ;T is strictly weaker than time; for —t<g<1%, usel',®! and input a maximally en-
that for the channel’',®1 (i.e., the complete positivity for tangled state ofi{® H.
I'y). Now we examine a rather unexpected behavior of the \ye have demonstrated a nontrivial aspect of a statistical
optimal input state. For ¥8<¢<1, the SLD Fisher infor-  estimation problem for a quantum channel. Other problems,
mation J, takes the maximum ¥2/(1—6%)(1+36%) atx  such as the use of theth extensior{®" and its asymptotics,
=3, while for —3<6@<1W3 it takes the maximum 2/(1 or the multiparameter quantum channel estimation, will be
— 6°) atx=0 and 1.(See Fig. 2. Namely, the optimal input presented elsewhere.
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