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Quantum remote control: Teleportation of unitary operations
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We consider the implementation of an arbitrary unitary operationU upon a distant quantum system. This
teleportation ofU can be viewed asquantum remote control. We investigate protocols that achieve this using
local operations, classical communication, and shared entanglement. Lower bounds on the necessary entangle-
ment and classical communication are determined using causality and the linearity of quantum mechanics. We
examine in particular detail the resources required if the remote control is to be implemented as a classical
black box. Under these circumstances, we prove that the required resources are, necessarily, those needed for
implementation by bidirectional state teleportation.
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Much of the current fascination with quantum informatio
processing derives from the properties of entanglement@1#.
On one hand, entanglement can give rise to nonlocal co
lations that defy explanation in terms of local, realistic the
ries @2#, but, on the other hand, it can also be used a
resource. In fact, entanglement is the key ingredient in qu
tum state teleportation, which allows one to transmit an
known quantum state despite the fact that it is impossible
determine this state. Quantum state teleportation@3# can be
linked directly to various interrelated principles of quantu
information processing, such as the impossibility of supe
minal communication, the nonincrease of entanglement
der local operations and classical communication@1#, and the
no-cloning theorem@4#. However, these theorems deal wi
quantum states, and it is an interesting question to st
instead quantum operations. In this paper, we therefore
amine the issue of teleportation, not of an unknown quan
state, but rather of an unknown quantum operation on a
bit. Such a procedure would function in a manner similar
that of a remote control apparatus, and so we shall also r
to it asquantum remote control.

The most general scenario for the teleportation of an
bitrary unitary operation is depicted in Fig. 1. One par
Alice, possesses a physical systemC, which we shall refer to
as thecontrol. The control contains information describing
unitary operationU upon the state of a qubit, and is itself
quantum system. The control state corresponding to the
tary operationU will be denoted byuU&C . Her colleague
Bob has a qubitb prepared in the stateuc&b . The aim is to
devise a physical procedure that effects the transforma
uc&b°Uuc&b for every initial stateuc&b and every unitary
operationU. The most general such procedure can be rep
sented by a completely positive, linear, trace preserving m
on the set of density operators for the combinedCb system.
Any such map has a unitary representationT involving an-
cillary systems. We shall denote the state of the ancilla
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Alice’s and Bob’s laboratories byux&AB and we furthermore
assume that the unitary operationU is applied only once.
Then the teleportation operation has the general form

T @ ux&AB^ uU&C^ uc&b] 5uF~U,x!&ABC^ ~Uuc&b). ~1!

In the following we investigate some of the properties ofT.
In particular, we derive lower bounds on the amount of no
local resources that are needed to implementT using only
local operations and classical communication. The unit
teleportation operatorT is independent of bothU and uc&b .
The final state of the ancilla1 control, uF(U,x)&ABC , must
be independent ofuc&b . To see why@5#, let us suppose tha
it is not, in which case there will be at least oneU and two
states uc&b and uc8&b for which uF(U,x,c)&ABC
ÞuF(U,x,c8)&ABC . We imagine thatU is successfully tele-
ported for the statesuc&b and uc8&b . Suppose now tha

FIG. 1. Initial setup involved in the teleportation of an arbitra
unitary operation. The control systemC in Alice’s laboratory is
initially prepared in the stateuU&C , corresponding to the unitary
operationU. This operation is to be remotely carried out on Bob
qubit b, which is initially prepared in an arbitrary pure stateuc&b .
This will be achieved by local operations in the individual labor
tories, involving a collective ancilla initially prepared in the sta
ux&AB , supplemented by the exchange of classical communicat
represented in the diagram by the arrow lines.
©2001 The American Physical Society03-1
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Bob’s qubit is prepared in a superposition of these sta
(c1uc&1c2uc8&)b . The linearity ofT implies that the final
total state will be

~1ABC^ Ub!@c1uF~U,x,c!&ABC

^ uc&b1c2uF~U,x,c8!&ABC^ uc8&b]. ~2!

The requirement that Bob’s qubit undergoes a unitary evo
tion implies that it remains in some pure state and there
that it cannot be entangled with the remaining systems. H
ever, one can see that it is entangled withABC whenever
c1c2Þ0. Thus, the final state ofABC must be independen
of uc&b .

The set of all unitary operationsU is infinite. This implies
that, if the dimension of the control system is to be fini
then the control statesuU&C must, in general, be nonorthogo
nal. However, Nielsen and Chuang showed, in a slightly d
ferent context, that this cannot be the case@5#. The problem
investigated by these authors was whether or not one c
devise a universal programmable quantum gate array
could be used to store and execute any program upon a q
tum register. They showed that no such finite array can
constructed. Their method of proof can readily be transfer
to this context, making use of the correspondences betw
programmable gate array/control and register/Bob’s qu
Following their reasoning, we note that Eq.~1! and the uni-
tarity of T imply that, for any two different unitary transfor
mationsU andU8,

C^U8uU&C

ABC^F~U8,x!uF~U,x!&ABC

5 b^cuU8†Uuc&b . ~3!

The left hand side is independent ofuc&b , and this equality
is true for all uc&b . It follows that U8†U5g1, for some
constantg, leading to the conclusion thatU andU8 are iden-
tical up to a multiplicative constant. This conclusion, ho
ever, is valid only when the denominator on the left ha
side is nonzero. If it is zero, thenC^U8uU&C50, by the
unitarity of T. Control states corresponding to different un
tary transformations are orthogonal, so that no fini
dimensional control system can be used to teleport an a
trary unitary operation. For the remainder of this paper, wh
we speak of an arbitrary unitary operation, we will mean o
that belongs to some arbitrarily large, but finite, set. We w
also assume that this set contains the identitys051 and the
three Pauli operatorss i . Note that the orthogonality of the
control states opens the possibility that different operati
can, at least in principle, be distinguished and identified
Alice if she chooses to perform measurements on the a
ratus. While this may lead to interesting tradeoffs betwe
the resources of entanglement and classical communica
it is rather unrealistic from a practical point of view. Ther
fore, we exclude the possibility that Alice identifies the u
known unitary operation in this article just as we rule out th
Alice obtains knowledge of the state in the course of st
dard quantum state teleportation.

The teleportation ofU is a collective operation on spa
tially separated systems, which we wish to carry out us
04230
s,

-
re
-

,

-

ld
at
an-
e
d
en
it.

d

-
i-
n
e
l

s
y
a-
n
n,

-
t
-

g

shared entanglement and classical communication. In
derivation of lower bounds on the amount of nonlocal
sources that are required to implement the teleportation oU
locally, two guiding principles will be very useful@1#.

~i! The amount of classical information able to be co
municated by an operation in a given direction across so
partition between subsystems cannot exceed the amou
information that must be sent in this direction across
same partition to complete the operation.

~ii ! The amount of bipartite entanglement that an ope
tion can establish across some partition between subsys
cannot exceed the amount of prior entanglement across
partition that must be consumed in order to complete
operation.

We now use principle~i! to establish the fact that at lea
two classical bits must be sent from Alice to Bob to comple
the teleportation of an arbitraryU. Suppose that, rather tha
being prepared in a pure state, Bob’s qubit is initially ma
mally entangled with some other qubitb8 which is also in
Bob’s laboratory. Let us denote the four Bell states for a p
of qubits by uBm&, wherem50, . . . ,3.Using the technique
of superdense coding@6#, any of the four Bell states can b
transformed into any other by application of one of the Pa
operatorss i on one of the qubits. We take this qubit to beb,
and notice that theuBm& can be ordered in such a way th
(sb

m
^ 1b8)uB

0&bb85uBm&bb8 . Alice can easily transmit two
bits of information to Bob if he prepares thebb8 system in
the stateuB0&bb8 . She chooses the control system to be
one of the statesusm&C . Following the action ofT, Bob will
be in possession of the corresponding Bell stateuBm&bb8 . If
he subsequently performs a Bell measurement onbb8, then
he will be able to determine the value ofm, and hence the
control state that Alice prepared, revealing two bits of cla
sical information.

We now show that, by teleporting an arbitraryU accord-
ing to the general prescription in Eq.~1!, Alice and Bob can
establish two ebits of shared entanglement. Imagine tha
addition to the systems we have already introduced, A
has a further four-dimensional ancilla, which we shall lab
R. Suppose now that Alice initially preparesR and the con-
trol C in a maximally entangled state. Using the Schm
decomposition, we can always write this state in the fo
(1/2)(mum&R^ usm&C where the statesum&R are an orthonor-
mal basis forR. Bob once more prepares the Bell sta
uB0&bb8 . The teleportation operationT is then carried out
according to Eq.~1!. It is more convenient here, however,
work with a form of this equation that represents, explicit
any local measurements made by Alice and Bob and
classical communication between them. In this caseT in Eq.
~1! is replaced by a pair of classically correlated localCP
maps, one in each laboratory. Classical information is
vealed by measurements, and we let the indexi denote each
measurement outcome. The final state corresponding to
i th outcome is

ucF& i5
1

2 (
m

um&R^ uF i~sm,x!&ABC^ uBm&bb8 . ~4!

We now calculate the entanglement shared by Alice a
3-2
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Bob. Alice is in possession of the compound systemRAC,
while Bob has the systemBbb8. For each outcome, thes
subsystems have respective density operatorsrRAC

i and
rBbb8

i . Since ucF& i is a pure state, it follows that the en
tanglement shared by Alice and Bob is simply the~base 2!
von Neumann entropy of either of these density operat
Fortunately, we can calculate this explicitly. To do so, w
notice that the statesuF i(s

m,x)&ABC will generally contain
entanglement betweenB and AC. Let us write rB

im

5TrAC@ uF i(s
m,x)&^F i(s

m,x)u#. We find that@7#

rBbb85
1

4 (
m

~ uBm&^Bmu!bb8^ rB
im . ~5!

Making use of the orthogonality of theuBm&, we find that the
amount of entanglement shared by Alice and Bob is sim

E~ ucF&)5S~rBbb8!521
1

4 (
m

S~rB
im!,>2. ~6!

It follows from principle ~ii ! that at least two ebits of en
tanglement need to be consumed to implementT locally, i.e.,
to teleport an arbitrary unitary operation.

We can summarize the results obtained so far as follo
The resources required to perform quantum remote con
can be classified into shared entanglement and classica
formation transmission from Alice to Bob and from Bob
Alice. We have established absolute lower bounds on
first two of these resources. Alice and Bob have to shar
least two ebits and Alice needs to transmit to Bob at le
two bits of classical information.

These bounds can be attained by a procedure in w
Bob teleports the state of his particle to Alice who, af
applying the unitary transformation, teleports it back to hi
We will call this the ‘‘bidirectional state teleportation’
scheme. The scheme requires sending two classical bi
each direction, and using two ebits of shared entanglemen
would also be conceivable to adopt a different strateg
teleporting the state of the control system from Alice to B
who would then implement the control directly ontob. We
call this the ‘‘control state teleportation’’ scheme.

Control state teleportation is a unidirectional communi
tion scheme from Alice to Bob, so the absolute lower bou
for the communication exchange from Bob to Alice is ze
Obviously, the overall resources will depend on the dim
sionality of the control systemC and in general a large
amount of entanglement and classical communication fr
Alice to Bob will be required if we want to teleport th
control system. Given this situation we can trade in the
sources of entanglement and classical communication
changing our scheme of choice from unidirectional comm
nication to a bidirectional protocol. This observation may
interesting from a theoretical point of view; however, from
practical point of view one would, at least at present, favo
scheme that minimizes the entanglement consumption.

Bidirectional state teleportation saturates the low
bounds for the amount of shared ebits and classical
transmitted from Alice to Bob and additionally uses two b
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of classical communication from Bob to Alice. This schem
allows the faithful implementation ofU independently of the
dimension of the control system. To be more efficient ov
all, any other scheme would need fewer resources than b
rectional state teleportation. This establishes an upper bo
in the overall amount of resources required for the effici
remote implementation of an arbitraryU as four classical bits
and two ebits.

We now consider an experimental scenario where
black box implementing an arbitrary transformationU is a
macroscopic object, involving a~very! large number of de-
grees of freedom. The option of teleporting the control a
paratus is then unfeasible, given that it would consume
infinite amount of entanglement and classical communi
tion resources. However, the question remains whether t
exists a more economical protocol than bidirectional st
teleportation. We will prove in the following that this is no
possible and bidirectional state teleportation is an uncon
tionally optimal way to remotely implement an arbitraryU.

Discarding the possibility of control state teleportation
lows us to replace the transformation given by Eq.~1! with

G2UG1~ ux&aAB^ uc&b)5uF~U,x!&aAB^ Uuc&b , ~7!

where certain fixed operationsG1 and G2 are performed,
respectively, prior to and following the action of the arbitra
U on a qubita on Alice’s side. We assume that Alice an
Bob share initially some entanglement, represented by
stateux&aAB . As before, the purpose of the transformation
to perform the operationU on Bob’s qubitb. We continue to
use a nonlocal unitary representation of the transforma
whereG1 andG2 are unitary operators acting on possibly a
subsystems. A pictorial scheme of the situation using a qu
tum circuit is given in Fig. 2. The two upper wires refer
Alice’s subsystems and the two lower ones to Bob’s. N
that operationsGi are represented by nonlocal gates wh
the action ofU takes place locally on Alice’s side.

We prove in the following that the only way that Eq.~7!
can be implemented~locally! is by teleporting the stateuc&b
from Bob to Alice, and then teleporting back the transform
stateUuc&b from Alice to Bob.

We begin by noting that linearity forces the transform
state of systemsaAB to be independent of the particula
input stateuc&b . In addition, linearity imposes the conditio
that the stateuF(U,x)&aAB has to be independent ofU itself.
To see this, consider the case where the transformationU is

FIG. 2. Quantum circuit representation of the process of te
porting an arbitrary one-qubit transformation. The two upper wi
belong to Alice and the lower ones to Bob. Initially Alice and Bo
share some entanglement, represented by the joint stateux&aAB .
OperationsG1 and G2 are modeled in terms of nonlocal unitar
transformations.
3-3
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one of the four Pauli operatorssm and assume that the glob
state ofaAB after completing the protocol may depend
the choice ofU. According to Eq.~7!, the combined action
of the operationsGi has to be such that

G2smG1~ ux&aAB^ uc&b)5uF~sm,x!&aAB^ ~smuc&b).
~8!

On the other hand, an arbitrary one-qubit unitary transform
tion U can always be decomposed in terms of the Pauli
erators,U5(m50

4 amsm, and it must hold that

G2UG1~ ux&aAB^ uc&b)5(
m

amuF~sm,x!&aAB^ ~smuc&b).

~9!

For the right-hand side~RHS! to be a product state, as
required by Eq. ~7!, we must have uF(sm,x)&aAB
5uF(x)&aAB , independent of the operatorsm. This is true
for any basis set of operators, and so the final state of
ancillasaAB on the RHS of Eq.~7! is independent ofU.

We can now show that the operationG1 necessarily has to
be nontrivial. We do this by first assuming the contrary, t
G151, and considering two input statesuc&b anduc8&b such
that b^c8uc&b50, and two unitary transformationsU and
U8 which bring these two states to the same stateug&b .
Using Eq.~7!, this implies that

G2~Uux&aABuc&b)5uF~x!&aAB^ ug&b ,

G2~U8ux&aABuc8&b)5uF~x!&aAB^ ug&b . ~10!

No universal unitary actionG2 can be found to satisfy Eq
~10!, as this would require the mapping of orthogonal sta
onto the same state. This shows that no universal opera
G2 that satisfies Eq.~10! can exist and therefore, for theU
teleportation to succeed,G1 has to be nontrivial.

The final step in our proof is to rewrite Eq.~7! as

UG1~ ux&aAB^ uc&b)5G2
†~ uF~x!&aAB^ Uuc&b). ~11!

SinceG1 andG2 are universal gates, we may chooseU and
uc&b freely. For eachuc&b let the operatorUc be such that
Ucuc&5u0& whereszu0&5u0&. If U5szUc , then

~szUc!G1~ ux&aAB^ uc&b)5G2
†~ uF~x!&aAB^ szUcuc&b)

5G2
†~ uF~x!&aAB^ u0&b).
ics

04230
-
-

e

t

s
on

The RHS is simply (Uc)G1(ux&aAB^ uc&b) and so, neces-
sarily, (Uc)G1(ux&aAB^ uc&b) is the eigenstate u0&a
^ uf&ABb of (sz)a ^ 1ABb . Equivalently,

G1~ ux&aAB^ uc&b)5~Uc
† u0&a) ^ uf&ABb

5uc&a ^ uf&ABb . ~12!

In other words, the operationG1 necessarily transfers Bob’
stateuc& to Alice’s qubita. Substituting Eq.~12! into Eq.~7!
then shows thatG2 necessarily transfersUuc& back to Bob’s
qubit b. In other words, the state of Bob’s qubit must b
brought to Alice for it to be acted on by the local operatorU.
This constitutes a no-go theorem:a local unitary operation
U cannot act remotely.From these results and the fact th
quantum state teleportation is an optimal procedure for lo
state transfer, we conclude that the optimal procedure
implementing locally a universalU teleportation scheme is
by means of bidirectional state teleportation.

In this paper we have investigated the potential use
local operations, classical communication, and shared
tanglement~LOCCSE! for the remote control of a quantum
system. We have determined requirements that must be
isfied by any method that implements this task by LOCC
means. In particular, we have shown that, if Alice can te
port an arbitrary unitary operation to a qubit in her colleag
Bob’s laboratory, then she must communicate at least
bits of classical information to him, and they must share
least two ebits of entanglement. If the unitary operation
remotely implemented by a classical apparatus, then to ef
the teleportation at least two classical bits must also be tra
mitted from Bob to Alice. These resources can be used
perform the teleportation ofU using bidirectional state tele
portation. Remarkably, no protocol employing a smal
amount of resources is possible.

Further research should be able to shed light on poss
tradeoffs between entanglement and classical communica
as well as lead to ways in which LOCCSE can be used
control remotely the properties of other quantum syste
with potential applications ranging from remotely synchr
nized time evolutions to distributed quantum computing.
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