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Quantum remote control: Teleportation of unitary operations
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We consider the implementation of an arbitrary unitary operatiompon a distant quantum system. This
teleportation ofU can be viewed agquantum remote controlWe investigate protocols that achieve this using
local operations, classical communication, and shared entanglement. Lower bounds on the necessary entangle-
ment and classical communication are determined using causality and the linearity of quantum mechanics. We
examine in particular detail the resources required if the remote control is to be implemented as a classical
black box. Under these circumstances, we prove that the required resources are, necessarily, those needed for
implementation by bidirectional state teleportation.
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Much of the current fascination with quantum information Alice’s and Bob’s laboratories by ) g and we furthermore
processing derives from the properties of entanglerhEht assume that the unitary operatidhis applied only once.
On one hand, entanglement can give rise to nonlocal correFhen the teleportation operation has the general form
lations that defy explanation in terms of local, realistic theo-
ries [2], but, on the other hand, it can also be used as a
resource. In fact, entanglement is the key ingredient in quan-
tum state teleportation, which allows one to transmit an un-
known quantum state despite the fact that it is impossible ton the following we investigate some of the properties7of
determine this state. Quantum state teleportaf8jrcan be  In particular, we derive lower bounds on the amount of non-
linked directly to various interrelated principles of quantumiocal resources that are needed to implenEntsing only
information processing, such as the impossibility of superlujocal operations and classical communication. The unitary
minal communication, the nonincrease of entanglement unteleportation operatcf is independent of bott) and |} ;.
der local operations and classical communicafibjpand the  The final state of the ancilla: control,|®(U, x))agc, Mmust
no-cloning theoreni4]. However, these theorems deal with pe independent dfd;)B_ To see why[5], let us suppose that
quantum states, and it is an interesting question to study is not, in which case there will be at least odeand two
instead quantum operations. In this paper, we therefore extates |¢>B and |¢'>B for which |®(U,x,#))asc
amine the issue of teleportation, not of an unknown quantumg |®(U,x,¢"))asc. We imagine that! is successfully tele-

s;ate, but rather of an unknown ql_Jant_um operation'or} a qYsorted for the state$¢>3 and |¢'>ﬁ_ Suppose now that
bit. Such a procedure would function in a manner similar to

that of a remote control apparatus, and so we shall also refer

Tlx)ae®|U)c®|$) g =P (U, x))asc® (Ul$h) ). (1)

to it asquantum remote control Alice Bob
The most general scenario for the teleportation of an ar-
bitrary unitary operation is depicted in Fig. 1. One party, . U> |\|f>ﬁ ©) [3

Alice, possesses a physical syst€rwhich we shall refer to
as thecontrol. The control contains information describing a — :
unitary operatiorlJ upon the state of a qubit, and is itself a A @ |
guantum system. The control state corresponding to the uni-

' -
tary operationU will be denoted by|U)c. Her colleague \ \ - / — 7 /

Bob has a qubipB prepared in the staﬂqb)B. The aim is to
devise a physical procedure that effects the transformation e
|4} g—U| ) 5 for every initial state|), and every unitary X3s
operationU. The most general such procedure can be repre-
sented by a compI.eter positive, linear, tracg preserving maBnitary operation. The control syste@® in Alice’s laboratory is
on the set of density Ope,rators for the Comk_)'m jQ’yStem' initially prepared in the statfU)c, corresponding to the unitary
Any such map has a unitary representatibmvolving an-  ,herationu. This operation is to be remotely carried out on Bob's
cillary systems. We shall denote the state of the ancilla agypit g, which is initially prepared in an arbitrary pure Stae 5.
This will be achieved by local operations in the individual labora-
tories, involving a collective ancilla initially prepared in the state
*Permanent address: Departamento dsickl Universidad de |x)ag, supplemented by the exchange of classical communication,
Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain. represented in the diagram by the arrow lines.

FIG. 1. Initial setup involved in the teleportation of an arbitrary
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Bob’s qubit is prepared in a superposition of these stateshared entanglement and classical communication. In the
(c1|p)+c|9p')) g The linearity of 7 implies that the final ~ derivation of lower bounds on the amount of nonlocal re-

total state will be sources that are required to implement the teleportatids of
locally, two guiding principles will be very usefdlL].
(1ac®Up)[ca| P(U, x, %)) apc (i) The amount of classical information able to be com-
municated by an operation in a given direction across some
@) g+ Co| P(U, x, ")) apc® |4 ) gl (2 partition between subsystems cannot exceed the amount of

) ) ) information that must be sent in this direction across the
The requirement that Bob’s qubit undergoes a unitary evolusame partition to complete the operation.

tion ?mplies that it remains in some pure ;tate and therefore (i) The amount of bipartite entanglement that an opera-
that it cannot be entangled with the remaining systems. HoWjon can establish across some partition between subsystems
ever, one can see that it is entangled WKBC whenever  cannot exceed the amount of prior entanglement across the
€1¢,70. Thus, the final state 0kBC must be independent partition that must be consumed in order to complete the
of |¥)g- _ o o operation.

The set of all unitary operations is infinite. This implies We now use principléi) to establish the fact that at least
that, if the dimension of the control system is to be finite,yyo classical bits must be sent from Alice to Bob to complete
then the control statdt))c must, in general, be nonorthogo- the teleportation of an arbitraty. Suppose that, rather than
nal. However, Nielsen and Chuang showed, in a slightly dif-heing prepared in a pure state, Bob's qubit is initially maxi-
ferent context, that this cannot be the cB5k The problem  majly entangled with some other quigt which is also in
investigated by these authors was whether or not one couldop's Jaboratory. Let us denote the four Bell states for a pair
devise a universal programmable quantum gate array thgjf qubits by|B~), wherex=0, . .. ,3.Using the technique
could be used to store and execute any program upon a quagr superdense coding], any of the four Bell states can be
tum register. They showed that no such finite array can bgansformed into any other by application of one of the Pauli
constructed. Their method of proof can readily be transferreq,peratorsfi on one of the qubits. We take this qubit to Be
to this context, making use of the correspondences betweefhq notice that théB*) can be ordered in such a way that
programmablg gate a.rray/control and register/Bob’s QUbit(agc@lﬁ/)lBO)Bﬁr:|B“>B5/. Alice can easily transmit two
Following their reasoning, we note that @) and the uni-  pud ot information to Bob if he prepares thg3’ system in
tarlty of Timply t’hat, for any two different unitary transfor- state| Bo>ﬁﬁ’- She chooses the control system to be in
mationsU andU’, one of the stategr*). . Following the action of7, Bob will
be in possession of the corresponding Bell st&®) ;5 . If
c(U'V)c he sub ly perf I i th

_ <¢|U/TU|¢>B_ 3) esu sequently per orms a Bell measuremenBgh, then
As{ P(U", )| P (U, x))asc b he will be able to determine the value gf and hence the

control state that Alice prepared, revealing two bits of clas-

The left hand side is independent af) ;, and this equality ~ sical information.
is true for all |4). It follows that U'TU= 1, for some We now show that, by teleporting an arbitradyaccord-
constanty, leading to the conclusion thekandU’ are iden-  ing to the general prescription in E(L), Alice and Bob can
tical up to a multiplicative constant. This conclusion, how- establish two ebits of shared entanglement. Imagine that, in
ever, is valid only when the denominator on the left handaddition to the systems we have already introduced, Alice
side is nonzero. If it is zero, thep(U’|U)c=0, by the has a further four-dimensional ancilla, which we shall label
unitarity of 7. Control states corresponding to different uni- R. Suppose now that Alice initially prepar&and the con-
tary transformations are orthogonal, so that no finitetrol C in a maximally entangled state. Using the Schmidt
dimensional control system can be used to teleport an arbtlecomposition, we can always write this state in the form
trary unitary operation. For the remainder of this paper, whe{1/2)2 | u)r®|0*)c where the statelu)r are an orthonor-
we speak of an arbitrary unitary operation, we will mean ongmnal basis forR. Bob once more prepares the Bell state
that belongs to some arbitrarily large, but finite, set. We wiII|B°>BB,. The teleportation operatioff is then carried out
also assume that this set contains the identfty-1 and the  according to Eq(1). It is more convenient here, however, to
three Pauli operators’. Note that the orthogonality of the work with a form of this equation that represents, explicitly,
control states opens the possibility that different operationgny local measurements made by Alice and Bob and any
can, at least in principle, be distinguished and identified byclassical communication between them. In this case Eq.
Alice if she chooses to perform measurements on the appal) is replaced by a pair of classically correlated lo€#p
ratus. While this may lead to interesting tradeoffs betweenmaps, one in each laboratory. Classical information is re-
the resources of entanglement and classical communicatiomgaled by measurements, and we let the indégnote each
it is rather unrealistic from a practical point of view. There- measurement outcome. The final state corresponding to the
fore, we exclude the possibility that Alice identifies the un-ith outcome is
known unitary operation in this article just as we rule out that
Alice obtains knowledge of the state in the course of stan-
dard quantum state teleportation.

The teleportation olU is a collective operation on spa-
tially separated systems, which we wish to carry out usingVe now calculate the entanglement shared by Alice and

1
|l/fF>i:§ 2,:‘ |w)r®|Pi(0*, X)) aBc® B ) gpr . (4)
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Bob. Alice is in possession of the compound syste#C, o - L

while Bob has the systerBBB’. For each outcome, these A | -
subsystems have respective density operajsgc and X0, § G G 1D
p'BﬁB,. Since|y¢); is a pure state, it follows that the en- B! - e e
tanglement shared by Alice and Bob is simply thase 2 W, B I —ulw,

von Neumann entropy of either of these density operators.

For_tunately, we can Calc‘ﬂate this E?(p|ICIt|y. To do SO, W&  F1G. 2. Quantum circuit representation of the process of tele-
notice that the statejsb;(c*, x))agc Will generally _Cont?m porting an arbitrary one-qubit transformation. The two upper wires
entanglement betweerB and AC. Let us write pg"  belong to Alice and the lower ones to Bob. Initially Alice and Bob

=Trad|®i(o* x) ) Pi(a*,x)|]. We find that[7] share some entanglement, represented by the joint SEigg .
OperationsG; and G, are modeled in terms of nonlocal unitary
1 N » transformations.
pBﬂB’:Z% ([B#)(BX|) ggr @ pg* - ©)

of classical communication from Bob to Alice. This scheme

. . u ' allows the faithful implementation dff independently of the
Making use of the orthogonality of t{&*), we find that the dimension of the control system. To be more efficient over-

amount of entanglement shared by Alice and Bob is S|mplya”, any other scheme would need fewer resources than bidi-

1 rectional state teleportation. This establishes an upper bound
E(|¥e))=S(pgpp) =2+~ > S(piH),=2. (6)  in the overall amount of resources required for the efficient
4 remote implementation of an arbitradyas four classical bits

and two ebits.
It follows from principle (ii) that at least two ebits of en- We now consider an experimental scenario where the
tanglement need to be consumed to implen®idcally, i.e.,  black box implementing an arbitrary transformatibnis a
to teleport an arbitrary unitary operation. macroscopic object, involving every) large number of de-

We can summarize the results obtained so far as followsyrees of freedom. The option of teleporting the control ap-
The resources required to perform quantum remote contr@daratus is then unfeasible, given that it would consume an
can be classified into shared entanglement and classical iinfinite amount of entanglement and classical communica-
formation transmission from Alice to Bob and from Bob to tion resources. However, the question remains whether there
Alice. We have established absolute lower bounds on thexists a more economical protocol than bidirectional state
first two of these resources. Alice and Bob have to share atleportation. We will prove in the following that this is not
least two ebits and Alice needs to transmit to Bob at leaspossible and bidirectional state teleportation is an uncondi-
two bits of classical information. tionally optimal way to remotely implement an arbitrddy

These bounds can be attained by a procedure in which Discarding the possibility of control state teleportation al-
Bob teleports the state of his particle to Alice who, afterlows us to replace the transformation given by EL).with
applying the unitary transformation, teleports it back to him.

We will call this the “bidirectional state teleportation” GoUG1(|x)ane®|4)g) =P (U, X)) 0ns® Ul ) g, (7)
scheme. The scheme requires sending two classical bits in o .

each direction, and using two ebits of shared entanglement. here certain fixed operations, and G, are performed,
would also be conceivable to adopt a different Stra»[egy_respectlveIy_, prior to gnd foI_Iowmg the action of the qrbltrary
teleporting the state of the control system from Alice to BobY On @ qubita on Alice’s side. We assume that Alice and
who would then implement the control directly ongo We Bob share initially some entanglement, represented 'by Fhe
call this the “control state teleportation” scheme. state| x) .ag - As before, the purpose of the transformation is

Control state teleportation is a unidirectional communica-t0 perform the operatio on Bob's qubit3. We continue to
tion scheme from Alice to Bob, so the absolute lower bound/S€ @ nonlocal unitary representation of the transformation
for the communication exchange from Bob to Alice is zero.whereG, andG are unitary operators acting on possibly all
Obviously, the overall resources will depend on the dimenSubsystems. A pictorial scheme of the situation using a quan-
sionality of the control systen€ and in general a large tum circuit is given in Fig. 2. The two upper wires refer to
amount of entanglement and classical communication fronf\lice’s subsystems and the two lower ones to Bob's. Note
Alice to Bob will be required if we want to teleport the that operationss; are represented by nonlocal gates while
control system. Given this situation we can trade in the rethe action ofU takes place locally on Alice’s side.
sources of entanglement and classical communication by We prove in the following that the only way that Eq)
changing our scheme of choice from unidirectional commu-<€an be implementedlocally) is by teleporting the states) 5
nication to a bidirectional protocol. This observation may befrom Bob to Alice, and then teleporting back the transformed
interesting from a theoretical point of view; however, from astateU|y) ; from Alice to Bob.
practical point of view one would, at least at present, favor a We begin by noting that linearity forces the transformed
scheme that minimizes the entanglement consumption. ~ sState of systemstAB to be independent of the particular

Bidirectional state teleportation saturates the lowernput statey) . In addition, linearity imposes the condition
bounds for the amount of shared ebits and classical bitthat the statéd (U, x)).ag has to be independent bfitself.
transmitted from Alice to Bob and additionally uses two bits To see this, consider the case where the transformétiem
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one of the four Pauli operatots* and assume that the global The RHS is simply U ,)G1(|x).as®|#)z) and so, neces-
state ofAB after completing the protocol may depend onsarily, (U,)G1(|x).as®|#)) is the eigenstate|0),
the choice ofU. According to Eq.(7), the combined action ®|¢)ags Of (0,),®1aps. Equivalently,

of the operationss; has to be such that Gylly) AB®|¢)g)=(U;|0> )®|¢>ABB
GZUMG1(|X>aAB®|¢>,B):|q)(0"uaX)>aAB®(0-#|‘//>B)-(8) =14)a®| b)aps- (12)

. L In other words, the operatioB; necessarily transfers Bob'’s
(_)n the other hand, an arbitrary one—_qub|t unitary transfo_rmaétate| ¥) to Alice’s qubita. Substituting Eq(12) into Eq.(7)
tion U can al\ivays be decomposed in terms of the Pauli 0pshan shows tha, necessarily transfets| ) back to Bob’s
eratorsU=2, _qa,0*, and it must hold that qubit B. In other words, the state of Bob’s qubit must be
brought to Alice for it to be acted on by the local operdtr
- © © This constitutes a no-go theorem:local unitary operation
G2UG(X)ane® 1)) % @l (0%, %) )ane® (7] 1) ). U cannot act remotely?.:rom these results angthz fact that
(9) quantum state teleportation is an optimal procedure for local
) ) _ state transfer, we conclude that the optimal procedure for
For the right-hand sideéRHS) to be a product state, as is jmplementing locally a universdll teleportation scheme is
required by Eq. (7), we must have |®(d*,x))sas by means of bidirectional state teleportation.

=|®(x)).ap. independent of the operator“. This is true In this paper we have investigated the potential use of
for any basis set of operators, and so the final state of thiycal operations, classical communication, and shared en-
ancillasaAB on the RHS of Eq(7) is independent ob. tanglement{LOCCSB for the remote control of a quantum

We can now show that the operati@y necessarily has to system. We have determined requirements that must be sat-
be nontrivial. We do this by first assuming the contrary, thatisfied by any method that implements this task by LOCCSE
G, =1, and considering two input statbﬁ>ﬁ and|z//’)ﬁ such means. In particula_r, we have_shown that,_ if Alice can tele-
that B(,M@ﬁ:o, and two unitary transformationd and ~ portan arbitrary unitary operation to a qublp in her colleague
U’ which bring these two states to the same statg;. Bob’s laboratory, then she must communicate at least two

Using Eq.(7), this implies that bits of classi_cal information to him, and th_ey must share gt
least two ebits of entanglement. If the unitary operation is
Go(U|X) ansl ) p)= |P(X))ans®] Vg, remotely implemented by a classical apparatus, then to effect
the teleportation at least two classical bits must also be trans-
Go(U'|X) ansl ¢'>B):|@(X)>QAB®|7>ﬁ_ (10 mitted from Bob to Alice. These resources can be used to

perform the teleportation dff using bidirectional state tele-
No universal unitary actiois, can be found to satisfy Eq. portation. Remarkably, no protocol employing a smaller
(10), as this would require the mapping of orthogonal statestmount of resources is possible.
onto the same state. This shows that no universal operation Further research should be able to shed light on possible
G, that satisfies Eq(10) can exist and therefore, for thé tradeoffs between entanglement and classical communication
teleportation to succee@, has to be nontrivial. as well as lead to ways in which LOCCSE can be used to
The final step in our proof is to rewrite E(f7) as control remotely the properties of other quantum system,
with potential applications ranging from remotely synchro-
UG1(|X>¢1AB®|‘7[’>B):G;(|(D(X)>QAB®U|I//>IB)- (1)  nized time evolutions to distributed quantum computing.
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