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For the description of ground-state correlation phenomena an accurate mapping of many-body quantum
mechanics onto four particles is developed. The energy for a quantum system with no more than two-patrticle
interactions may be expressed in terms of a two-particle reduced density t2ai®M), but variational
optimization of the 2-RDM requires that it corresponds to Idsparticle wave function. We derive
N-representability conditions on the 2-RDM that guarantee the validity of the uncertainty relations for all
operators with two-particle interactions. One of these conditions is shown to be necessary and sufficient to
make the RDM solutions of the dispersion condition equivalent to those from the contractedliSgaro
equation(CSE [Mazziotti, Phys. Rev. A7, 4219(1998]. In general, the CSE is a stronggirepresentability
condition than the dispersion condition because the CSE implies the dispersion condition as well as additional
N-representability constraints from the Hellmann-Feynman theorem. Energy minimization subject to the rep-
resentability constraints is performed for a boson model with 10, 30, and 75 particles. Even when traditional
wave-function methods fail at large perturbations, the present method yields correlation energies within 2%.
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[. INTRODUCTION functionals of the 2-RDM7-24,4, and(ii) ensemble repre-
sentability in which the indeterminacy of the CSE is re-
In an after-dinner speech at the 1959 Boulder conferencgoved by applying ensemble-representability conditions
Charles Coulson proposed “banishing” the wave functionon the 4-RDM[13,24. Most research on the CSE has fo-
from quantum chemistry in favor of the two-particle reducedcused on functional reconstruction. However, Colmenero
density matrix(2-RDM) [1]. While prior work had consid- and Valdemoro’s o_riginal algorithm for functional recon-
ered this goa[2,3], Coulson’s speech—an epic moment in Struction includes simple adjustments to keep the diagonal
the history of the 2-RDM—brought scientific publicity to the €/éments of the 3- and 4-RDMs positif& 12}, and the most
idea of minimizing the electronic energy as a functional of/€cent work of Valdemoro, Tel, and Perez-Romg2a,22
the 2-RDM. Because the electrons are indistinguishable igonsiders in more detail the use of ensemble representability

the wave function and they interact pairwise in the Hamil-conditions within the framework of functional reconstruc-
; ; : . tion. In this paper we present a systematic collection of en-
tonian, the electronic energy may be written as a linear func- o »
tional of the 2-RDM[2]. The ground-state energy, however semble rgprese_ntab_ﬂﬂy condmon_s .for the 4'RDM and ex-
cannot be determined variationally without appl),/ing Condi’_plore their applicability to the original formulation of the

. h hat the 2 deri ; i N-representability problem, that is, the variational minimiza-
tions that ensure that the 2-RDM derives fromidparticle tion of the energy as a linear functional of the 2-RDM. A

wave function [3—6]. In 1963 John Coleman christened gynihesis of the CSE and direct minimization, the present
Coulson’s challenge thd-representabilityproblem and an- yasearch extends both the ensemble representability method
nounced the solution for the one-particle reduced densityf Mazziotti for solving the CSE subject to non-negativity of
matrix (1-RDM) [4]: any 1-RDM, normalized tdN, corre-  the 4-RDM[13,24] and the generalizeldwer-boundmethod
sponds to an ensemble bFparticle quantum states if and of Erdahl and Jif28,29, which variationally optimizes the
only if all of its occupation numbers lie between zero and 1.energy subject to positive semidefinite restrictions on the
Recent advancements in density-matrix theory include thg-RDM.
solution of the contracted Schtimger equatiofCSE for an Early research oiN-representability examined the uncer-
approximate 2-RDM without théN-particle wave function tainty relations for simple operators such as position and
[7—24.,4. As its name implies, the CSE is a contraction of momentum and even all operators without interactions be-
the N-particle Schrdinger equation onto the space of two tween particles [30-35. In this paper we present
particles. If the Hamiltonian contains two-particle interac- N-representability conditions on the 2-RDM that include the
tions, the CSE depends upon the 3- and 4-RDMs in additiomncertainty relationdor all operators with pairwise interac-
to the 2-RDM. Although originally derived in 197@5—27,  tions. Because the goal is to determine the correlation en-
the CSE was not successfully solved beyond Hartree-Fockrgy, the uncertainty relations for correlated operators are
theory until 1994 in the work of Colmenero and Valdemoroespecially significant a®\-representability constraints. We
[7—9]. Two approaches exist for solving the CSB:func-  show that the uncertainty relations from operators with pair-
tional reconstructiorin which the indeterminacy of the CSE wise interactions are fully satisfied by forcing a collection of
is removed by expressing the 3- and 4-RDMs as approximaténear functionals of the 4-RDM to be positive semidefinite.
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A matrix is positive semidefinité and only if all of its ei-  where 2K is the two-particle reduced Hamiltonian matrix

genvalues are non-negative. [40]. Taking the expectation value of the Hamiltonian yields
As a part of the synthesis between the CSE and the varian expression for the energy

tional approach, we examine in Sec. Il the connection be-

tween the CSE and the dispersion conditj@6]. The dis- E= D, ZKE??ZD?,E? 2

persion of an operatorO is the expectation value ofQ mn.p.q

—(¥|O|¥))? with respect to the wave functio. The in terms of the 2-RDM
dispersion of an operator vanishes for a given wave function e mn Apaga A
if and only if the wave function is an eigenstate of the op- Dpia=(¥]ananaqap|¥). 3)

erator. The vanishing of the dispersion for an operator'sy, minimize the energy as a functional of the 2-RDM, how-
eigenstates is known as thispersion conditionLike the  gyer we require restrictions on the 2-RDM which are both
CSE the dispersion condition for an operator with no MOrénecessary and sufficient for the 2-RDM to correspond to an
than two-particle interactions may be evaluated from only a\-particle wave function. These restrictions are known as
knowledge of the 4-RDM. Without complete N-representability conditions.
N-representability constraints the dispersion condition, like \yjit any set of operator€, we can generate froml’) a
the CSE, has spurious RDM solutions that do not correspondet of pasis functions
to wave-function solutions of the Schiinger equation. By
contrast, in the set of purid-representable density matrices (@] =(\If|(§i (4)
both the CSE and the dispersion condition are necessary and , ) ) .
sufficient for a 4-RDM to correspond to a solution of the fOF which the metric(or overlap matrix M with elements
Schralinger equatiorj27,13. However, recent progress on i _ A At
determining RDMs without the wave function has depended Mj=(®i| @) =(WICC/|¥) ®)
exclusively upon the CSE. Is this just a matter of choice, oimust be positive semidefinite. A positive semidefinite matrix
is there an important difference between these two equahas all non-negative eigenvalues. We indicate that a matrix
tions? We show that the CSE and the dispersion conditiomas this property by the notatiod=0. For a RDM that
are equivalent only when an important 4-RDM positivity corresponds to a wave function these vector-space restric-
condition is satisfied. Otherwise, the CSE is Stl’iCt'y Strongelﬁons are a|WayS satisfied. More genera”y, however, these
than the dispersion condition because it always implies th@onditions offer a systematic approach for imposing
dispersion condition as well as significant Hellmann-N-representability conditions on a RDM without using the
Feynman perturbations. wave function.

Using a system of interacting bosdré¥ -39, we employ If we choose for eackt; a second-quantized operataf
some of the 4-RDMN-representability conditions to mini- .\ o qteg o particle in theh orbital, we determine that the

mize the energy as a functional of the 2-RDMhere the R . . "
2-RDM is expressed in terms of the 4-RDM by contraction gg%%@ﬁﬁﬁ reduced density matrix must be positive

The present conditions on the 2-RDM vyield correlation en-
ergies that are several orders of magnitude more accurate Di=(w|ala|¥)=0 (6)
- . ; j i 9 '
than those from traditional techniques like many-body per-
turbation and coupled-cluster theories. Even for strong interand, if we choose for eadh; an operatog; that annihilates
actions where the conventional schemes fail, the currerd particle in theith orbital, we discover that the one-hole

method determines the correlation energy within a few perreduced density matrix must also be positive semidefinite,
cent. The results are orders of magnitude better than those

that can be achieved through functional reconstruction within 1Q|=(¥|aa/|¥)=0. 7

the CSE[13,23. In addition to achieving variational mini- )
mization without the wave function, we employ the repre- | N€ Sécond-quantized operators may be rearranged accord-

sentability conditions to solve the CSE and the dispersiod 0 the anticommutation relation for fermiois sign) or
condition. the commutation relation for bosons-(sign),

aalzala =4, ®

[l. UNCERTAINTY RELATIONS The relation in Eq.(8) provides a linear mapping between
ider th d funcii ; the matrices'D and *Q which depends on whether the par-
Let.uls consyler the grpﬁn ~state W?]ve “”.C‘l"‘f” oran ticies are bosons or fermions. For fermions theand Q
N—partlce_ Hami tonian with no more than pairwise Interac- o,gitions have sufficient strength to force the eigenvalues
tions. Using an orbital basis set in the notation of secondys p it 1p and 1Q to lie between 0 and 1. By adding the
quantization, we have condition that D traces to N, we obtain Coleman’s
N-representability conditions for the fermionic 1-RDM
[4,6,35. For bosons either thB or the Q condition is suffi-
A= 2 nglgé;éléqépi (1) cient. V\_It_a describe any 1-RDM satisfying both theand the
m,n,p,q ’ Q conditions asl-positive
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TABLE I. Positivity conditions for the 3-RDM. TABLE II. Positivity conditions for the 4-RDM.
*Dplar=(Vlafafaa,aqa,|v)=0 ‘Dylis=(V]alajajalasa,aqa,|v)=0
SELLK = (W]aTAT8 18,8, W) =0 SELKI — (W |afa 4,318,444, ¥)=0
*Flk =(¥|alajaalala,¥)=0 ‘Gl =(Talalaaalalazay v)=0
Qe =(v|aaaalalallw)=0 Fdl=(vlalaaaalalala) v)=0

ConsiderC to be a product of two fundamental second-
guantized operators. The resulting basis functions in(&q. examined numerically in the work of Erdahl and 28,29,
may be naturally grouped into three orthogonal vector spaceand the importance of théG condition in Table Il was
according to the number of creation operator€inRestrict- ~ récognized by Valdemoro, Tel, and Perez-Ronf@h23.
ing the metric matrixM for each of these spaces to be There are two interwoven perspectives for understanding
semidefinite yields three separate conditions. For the k-positivity conditions. By applying polynomials in cre-

~int , e i ation and/or annihilation operators of degieéo the wave
e{ajaj} we obtain the positivity constraint on the 2-RDM, nction, we generate a vector space in E4). Restricting

the metric of this vector space to be non-negative in (&j.

yields thek-positivity conditions. Any operatod of degree
k in the creation and/or annihilation operators may be gener-

ated through a linear combination of the opera®©rsn Eq.

®),

Dyl =(V¥|alalaqa,|¥)=0, (9)
and forC e{a;a;} we obtain the positivity constraint on the
two-hole RDM,
21—/l aa atat
Qyly=(¥|ajajaza,|V)=0. (10 R R
P s 0= ;. (12)
Note that the adjoint of a product of second-quantized opera- :
tors is the product of the individual adjoints in reverse order NP . .
The operatorOO" must have a non-negative expectation

. "T" . "T" . ]
for e>.<:.;1mple., the adjoint o "f‘i S aa. The final p.osmwty. value if it is evaluated with aiN-representable RDM. There-
condition arises from selecting to be single-particle exci- fore, for a givenk-RDM we haveN-representability condi-
tations or deexcitations, that ié;e{ai*aj ,aia;r}. If we just tions arising from the fact that the following expectation

consider the excitation; e {a/a;}, we obtain a form of the Valué must be non-negative:

G condition[5,31-35,4], At

(|60 w)=0 (13)

2GLl=(¥|ala;ala,|w)=0. 11 .

pa— (V12 3352, W) (D for all operatorsO of degreek. To understand the relation-
ship of these conditions t&-positivity, we insert Eq.(12)

The three matrice€D, 2G, and ?Q are linearly related by o Eq. (13 o obtain

the commutation relations. It has been shown that the metri
matrix fromC e {a;a} is positive semidefinite if and only if o
the G matrix is positive semidefinite. However, the matrix > el (¥|CCl|w)=0, (14
arising from the set of operatofa/a; ,a;a} may be slightly v
more general. We describe any 2-RDM satisfying all of thesavhich with the definition for the metric matrix in E@5) is
conditions a2-positive

The conditions that &-RDM be k-positive follow from E aiM}aJ-*BO. 15

writing the C; in Eq. (4) as products ok second-quantized 0
operators. As in the two-particle case the resulting basis

functions lie ink+1 orthogonal vector spaces according toHowever, Eq(15) is just the expectation value of the metric
the number of creation operators in the product. Each metrighatrix M with respect to the vectar whose components are
matrix from one of the&k+ 1 vector spaces must be positive @;. The minimum of the left side in Eq(15) is achieved
semidefinite. Furthermore, all of the metric matrices are conwhen we selectr to be the lowest eigenvector M. Equa-
nected with each other by the anticommutatifermiong or ~ tion (19 is thus valid if and only if the metric matri¥ is
commutation(bosons relation in Eq.(8). A k-RDM that  positive semidefinite. Therefore, ti¢representability con-

is k-positive contracts to a k(-1)-RDM that is ditions that arise from constraining the expectation value of
(k—1)-positive. Some conditions for 3-positivity and OO to be non-negative for all operatos of degreek are
4-positivity, given in Tables | and Il, respectively, will later equivalent to the metric conditions that we dalpositivity.

be explored numerically. We say that a 2-RDMkipositive  Equations(5) and (13) offer two complementary definitions

if it arises from thecontractionof a k-positivek-RDM. The  for k-positivity.

strength of these conditions on the 2-RDM increases rapidly We now demonstrate mathematically that a 4-positive
with increasingk. The conditions for 3-positivity have been RDM provides a four-quasiparticle model for many-body
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guantum mechanics in which the generalized uncertainty reity conditions serve as strong-representability conditions.
lation is completely satisfied faall pairs of operators with These arguments may be generalizedkipositive RDMs
no more than two-particle interactions. An arbitrary operatorand operators witk/2-particle interactions. An operator with
O may be expressed in terms of two Hermitian operators: K/2-particle interactions is defined as the productkadre-
ation or annihilation operators. Consequentfya k-RDM is
O=A+iB. (16)  k-positive, then the uncertainty relations hold for all Hermit-
ian operators with no more than/&-particle interactions
Consider the subset of operatcfbswith vanishing expecta-

tion values IIl. DISPERSION CONDITION

Oo(x,y)=x(A—(A)) +iy(B—(B)), (17 In second gquantization the contracted S'dimge_r equa-
tion may be derived by testing thé-particle Schrdinger
where the real variablesandy affect only the normalization equation with all two-particle excitations from the exact
of the operatord\ and B, respectively. For a succinct deri- wave function[13,20,
vation the wave function is omitted from the notation for the o N
expectation value. We restrict our attention to those opera- (PAHT)=E(D}|¥), (22

tors O, A, andB of degree 4 in the creation and/or annihi-

lation operators. This restriction allows us to evaluate thevhere

expectation value in Eq13) with only a knowledge of the . o

4-RDM. As defined earlier, the 4-RDM is said to be (DY =(¥|alajaay. (23
4-positive if and only if Eq(13) is valid for all operator£ , . : :
of degree 4 in the creation and/or annihilation operatorsUSing Eas(1) and(23), we can write the CSE " E¢22) in
Thus, if we assume that the 4-RDM is 4-positive, then for alltérms of the reduced HamiltoniafK and the *G matrix

operatorsOy(x,y) we have from Table I,

m,n,p,q

(Oo(x,y)O0(x,y))=0. (18) S 4Gk 2KMI=E2D). (24)
m,n,p,q

Rewriting Eq.(18) more explicitly, we have a function of

andy that must be non-negative: In the customary formulation of the CSE the second-
quantized operators iiG are rearranged to expre$§ in
terms of the 2-, 3-, and 4-RDM4.3,15,2(Q. By moving the

" oa i
<(A_<A>)2> a §<[A’B]> X energy into the sum on the left side of E84), we can also
(xy) P o (y) =0. (19  write the CSE as
- 5([AB]) (B—(B)»
2 “GilnpaKpg=0. (25)

This function will be non-negative for ak andy if and only
if the 2X 2 matrix is positive semidefinite, that is, both of its where the energy-shifted reduced Hamiltonﬁ(ﬁ'”
eigenvalues must be non-negative. It follows that the product d
of the eigenvalueg&he determinant of the’22 matrix) must

2mmn_ 2emn_ _
be non-negative: Kpa= “Kpig —E/[N(N=1)]55 (26)

o o 1 .. lies in the null space of G.
(A=(A))2X(B—(B))®)=— Z([A,B])z. (20 The dispersion condition for the Hamiltonian has the form
For the function in Eq(19) to be real, we must have that the (P|(H—E)?W)=0. (27)

([A,B]) is purely imaginary. Thus, Eq20) may be cast in

its more familiar form, If restricted to a set opure Nrepresentable RDMs, both the

CSE and the dispersion condition are equivalent, and their
A A o2 s s avand2 LA A RDM (or “G) sglutions correspond to wave-function solu-
(A=(ANHB=(BN*=5[([ABDI. (2D tions of the Schidinger equatiori13,27. As shown in pre-
vious work[13], if we multiply the CSE in Eq(25) by K}
This is theuncertainty relationfor two-particle operators. and sum over the indicdsj, k, andl, we obtain Eq(27) in
Note that the uncertainty relations, like the positivity condi-terms of the reduced Hamiltonian and th& matrix. This
tion in Eg. (18 from which they arise, are automatically proves that the CSE always implies the dispersion condition
satisfied when we evaluate the expectation values with reeven if “G is notN-representable. By deriving the CSE from
spect to anN-particle wave function. However, when the Eq. (27) through the Hellmann-Feynman theorga®]|, we
expectation value is evaluated via a 4-RDM, which may notnow consider whether the dispersion condition implies the
be N-representable, the uncertainty relations like the positiv-CSE without additionaN-representability conditions.
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Although previous derivations of the C§&E3] have em-
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above derivation of the CSE from E@8) we implicitly

ployed test functions as in Eq23), the CSE may also be employ an additionaN-representability condition when we
derived from the dispersion condition by applying the differentiate via theHellmann-Feynmatheorem. The differ-
Hellmann-Feynman theorem. The Hellmann-Feynman thecentiation of the dispersion condition with respect s is
rem states that the first derivative of the energy, independermquivalent to applying Hellmann-Feynman forces to the sys-
of the first derivatives of the wave function, depends only ontem along each element K. Therefore, the CSE is a
the expectation value of the first derivative of the Hamil- strongem-representability condition than E(28) because it
tonian[42]. Because the Hamiltonian is self-adjoint, the dis-correctly accounts for local perturbations about the disper-

persion relation in Eq(27) may also be written as

(¥|(H-E)(H—E)"|¥)=0. (28)

sion condition in accordance with the Hellmann-Feynman
theorem.

When the RDMs are kep¥l-representable, the solutions
of the CSE and the dispersion condition are equivalent, and

Through the Hellmann-Feynman theorem we differentiatqpey correspond to wave-function solutions of tarticle
Eq. (28) with respect to a parameter in the Hamiltonian to gcprgiinger equation. Are the CSE and the dispersion con-

produce

(W|(R"—E")(A-E)+(H—E)[(A")'—E"]|¥)=0.
(29

dition only the same when completé-representability is
applied, or is there an approximate setNsfepresentability
conditions which can make these two reduced formulations
of the problem equivalent? To answer this question, we con-

By using the facts that the derivative of the energy is a conSider theN-representability conditions that arise from forcing

stant and that the expectation value BH E) vanishes, we
may simplify Eq.(29) to obtain
(W|H'(H-E)+(H-E)(H")'|¥)=0. (30)

Any element of the reduced Hamiltoniz%i’(ik’fI may be writ-
ten in terms of a real pad, and an imaginary paw; ,

2Kl =€+ €. (3D)
If the Hamiltonian parameter is chosen to e then
IH  inin
19_Er =ajaj a3, (32
D aaiaa, @
and Eq.(30) becomes
(PIH=B)W)+(P[(H-E)loi})=0. (34
If the Hamiltonian parameter is chosen to §e then
T -daaa (39
a(a“;) _ alaad, 36
and Eq.(30) becomes
(®H(H=E)|¥)—(¥|[(H—E)|®})=0. (37
Addition of Eqgs.(34) and(37) yields the CSE
(@JI(A-E)w)=0. (38)

the metric matrix*G in Table Il to be positive semidefinite.
Keeping “G positive semidefinite means E(L3) will be

satisfied for any operatdd that is a linear combination of
operators from the sd&/alaa,}. Furthermore, thelisper-
sion associated with such an operafr that is, the expec-

tation value of O—(¥|O|¥))?, will be non-negative. Be-
causeV is an eigenstate of the Hamiltoni&h the dispersion
of H vanishes as in Eq28). Consider the dispersion associ-

ated with the perturbed Hamiltonidt, ,

A,=A—E+el, (39)
wherel is the two-particle excitation operator
I'=a/alaay. (40)
The dispersion relation fdH , is
(U|(A-E+el)(A-E+€THWw)=0. (41

Rearranging the equation into powers of the perturba¢ion
we have

(T|(H—E)?¥)+ (D)} | (H—E)|¥)+ e* (P|(H

—E)[®}}) +] A W|TTTw)=0. (42)
By Eg. (27) the first term in Eq(42) is zero. Furthermore,
the final term in Eq(42) is non-negative for any. We can
choosele| to be small enough to make this second-order
term negligible. If we choose to be real ande|<1, then
Eq. (42) becomes

(O |(H-E)[ W)+ (W|(H-E)|®}))=0. (43
Equation(43) can be valid for positive and negative values
of e if and only if the coefficient ofe vanishes, that is, the
“symmetric” CSE in Eq. (34) must be valid. Choosing

In the derivation of the dispersion condition from the CSEequal toiy wherey is real and e|<1, we can express Eq.
we employ only multiplication and summation, but in the (42) as
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TABLE lll. Accuracy of the correlation energy: 4-positivity vs the wave function.

System % of correlation energy
FCl . Wave-function methods RDM method
correlation
N Y, energy SDCI SDTQCI MP2 MP4 CCsD 4-Pos
10 0.8 —0.0384 85.5 98.85 92.57 99.703 101.07 100.000103
30 0.8 —0.0130 79.0 95.94 85.1 96.43 101.08 100.0000670
75 0.8 —0.00526 76.5 94.25 82.3 94.5 100.642 100.0000113
10 1.6 —0.186 59.9 88.9 76.6 100.224 no solution 100.0958
30 1.6 —0.128 27.9 47.5 35.2 53.9 no solution 101.90
75 1.6 -0.117 11.8 20.9 14.8 23.6 no solution 100.428

WD (A—E)| W) — w(¥|(A—E)|dL)=0. (44 used the fermionic version to investigate the contracted
’ ’ Schralinger equatiori13-15,23.

Equation(44) can be valid for positive and negative values A Set of N-representability conditions on the 2-RDM has
of y if and only if the coefficient ofy vanishes, that is, the been developed for minimizing the energy in Eg). To
“antisymmetric” CSE in Eq.(37) must be valid. Addition of illustrate the strength of 3- and 4-positivity, we employ the
Egs.(34) and(37) yields the CSE. conditions in Tables | and Il, respectively. As we mentioned
With the N-representability conditiofG=0 the disper- earlier, these conditions do not completely exhaust the metric
sion condition and the CSE have a common set of RDMconditions associated with 3- and 4-positivity. However,
solutions. Because Eq$34) and (37) are the Hellmann- even the application of these conditions is challenging, and
Feynman derivatives of the dispersion condition with respecthe authors are not aware of previous calculations using any
to real and imaginary components of the reduced Hamilof these conditions other than the positivity of the 4-RDM
tonian, respectively, we have also proved that the nonf13]. The energy in Eq(2) is evaluated by contracting the 3-
negativity condition *G=0 is sufficient to prove the and 4-RDMs to the 2-RDM. Through constrained optimiza-
Hellmann-Feynman theorem for the operatbr<E)2. The tion the energy is minimized while the lowest eigenvalues of
traditional proof of the Hellmann-Feynman theorgfi2] re-  the matrices in Table(3-positivity) or Table Il (4-positivity)
quires an application of thi-particle Schrdinger equation. are constrained to be non-negative. The algorithm employs
At an early conference on RDMs, Erdahl and Garfd8] sequential quadratic programming for the constrained opti-
employed the’G positivity condition to connect the disper- mization and computes the lowest eigenvalues through stan-
sion condition and a simplified CSE for noninteracting dard diagonalization.
N-particle Hamiltonians. Each of the present authors inde- The strength of 4-positivity for the 2-RDM is demon-
pendently extended this earlier result to the interacting CSEtrated through comparisons of the method with standard
and ‘G [29,44]: .The pos.i.tivity of “G provides precisely the wave-function and many-body perturbation techniques. We
N—representabll_lty cor_1d|t|0ns t_h_at are necessary to make thﬁresent data for moderate to large particle numbérs 0,
CSE and the dispersion condition equivalent. 30, and 75, and for moderate and strong interactiafs,
=0.8 and 1.6. Table Il gives the percentage of the correla-
IV. APPLICATION tion energy(CE) achieved(three significant figures are re-

To illustrate the strength of the representability condi-Ported for the deviation of the result from 100%nd Table

tions, we employ a many-body system of bosons. Congider IV gives the error in the 2-RDM as measured by thg infinity
bosons in the ground state of a two-level system where thBOrm (the column MF denotes results for the mean fiefer
energy levels are at 1 and+ 1. To this noninteracting sys- Moderate interactions minimization of the energy with
tem, we add a perturbation that acts to switch two boson4-Positivity conditions(4-Pog3 yields the CE within 0.0001%
from the ground state to the excited state. The mean-fielih Table Ill, which is four orders of magnitude more accurate
energy equals-1 for all N. Mazziotti and Herschbach have than the value obtained using single-double coupled-cluster
employed the model to explore reduced Hamiltonian inter{CCSD equations; for strong interactions V1.6)
polation [38,39. Additional details of the model may be 4-positivity yields the CE with less than 2% error while the
found in these works. The bosonic system may also be cof=CSD equations have no solution fge=1. The compari-
verted into a fermionic system through the introduction of asons of 4-positivity with fourth-order many-body perturba-
second quantum numbéoften called a “color” variabl¢  tion theory(MP4) are even more dramatic because for strong
which assumesl values(or “colors”) for each level+1 or  interactions MP4 captures less than half of the CE. We also
—1) so that each particle occupies a different, albeit degenreport results from configuration-interaction wave functions,
erate, state. The resulting quasispin system of fermions wasacluding single and double excitatiofSDCI) and single,
originally employed by Lipkin to investigate fermionic cor- double, triple, and quadruple excitatioiSDTQCI), and
relation phenomenf37], and, more recently, Mazziotti has second-order perturbation theotiP2). These traditional
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TABLE IV. Accuracy of the 2-RDM: 4-positivity vs the wave function.

System 2-RDM erroix 100

Wave-function methods RDM method
N \% MF SDCI SDTQCI MP2 MP4 CCSD 4-Pos
10 0.8 9.19 5.16 0.572 1.41 0.0660 0.554 0.0161
30 0.8 3.68 5.30 0.712 1.22 0.435 0.221 0.000669
75 0.8 1.62 5.83 0.791 0.654 0.302 0.0602 0.00344
10 1.6 35.2 22.7 10.3 13.0 4.31 no solution 0.334
30 1.6 46.5 35.9 32.4 39.3 29.0 no solution 0.321
75 1.6 49.5 39.6 39.7 46.7 42.1 no solution 0.223

approaches are less accurate than 4-positivity by many ordemsnnD4. Unlike the dispersion condition, the CSE is implic-
of magnitude. itly imposing a portion of the*G positivity restriction. By
The rate of convergence with the ordeof positivity is  contrast, solving the dispersion condition witG=0 gives
shown in Table V. The results for 2-, 3-, and 4-positivity highly accurate energies which are equivalent to those ob-
(columns headed 2-Pos, 3-Pos, and 4}Peseal a dramatic tained by solving the CSE withG=0. The importance of
change in accuracy when 2-positivity is replaced withihe G condition lies not only in that it makes the dispersion
3-positivity. In some cases the addition of 4-positivity yields ¢ongition and the CSE equivalent but also in that it enforces

only marginal improvements. In the worst case for theye yncertainty relations for particle-conserving operators
density-matrix method, whenN=30 and V=1.6, like the Hamiltonian.

3-positivity yields the CE within 3%, and 4-positivity im-
proves this result to 2%. In the columns marked, D3,
andD4, calculations are performed by constraining just the
2-RDM, 3-RDM, or 4-RDM to be positive semidefinitehe
D condition along Because these calculations overestimate The relationship between constraining the metric matrices
the CE by factors as large as 50, they emphasize the impote be positive semidefinite and enforcing the uncertainty re-
tance of the combined strength of various positivity condi-lations has been elucidated. Previous calculations, using the
tions for achieving an accurate modeling of correlation pheiwo-particleD, Q, andG conditions(2-positivity), imposed
nomena without the wave function. the uncertainty relations for only many-body operators with-
Correlation energies obtained by using the dispersion consut interaction$31,32,34. The conditions of 2-positivity are
dition and the CSE are compared in Table VI. We solve formecessary and sufficient for determining the energies of non-
the 4-RDM that satisfies the CSE or the dispersion conditiorinteracting N-particle Hamiltonians. The complete
subject to an N-representability condition, the positive 4-positivity conditions enforce the uncertainty relations for
semidefiniteness of eithéD or “G. Theoretically, we have all operators with two-particle interactions. Whether the
shown that the dispersion condition is weaker than the CSE-positivity conditions will allow us to compute the exact
if the matrix G is not positive semidefinite, but with tHs energies fromN-particle Hamiltonians with no more than
positivity the dispersion condition and the CSE have equivatwo-particle interactions is an open question. Unlike the op-
lent solutions. Results in Table VI demonstrate that the CSErators without interactions, the operators with pairwise in-
with D=0 (also computed in Ref19]) is much more ac- teractions can exhibit an extremely large degree of correla-
curate than the dispersion condition with=0. In fact, the  tion. The calculations in this work, employing an important
dispersion condition does not significantly improve thesubset(given in Table 1) of the 4-positivity restrictions, in-
4-RDM positivity results reported in Table V under the col- dicate that the 4-positivity restrictions are strong enough to

V. DISCUSSION AND CONCLUSIONS

TABLE V. Convergence of correlation energy wikkpositivity.

System ) % of correlation energy for RDM methods
PR — Correlation
N \% energy D2 D3 D4 2-Pos 3-Pos 4-Pos
10 0.8 —0.0384 731 376 264 731 100.0376 100.000103
30 0.8 —0.0130 2165 1114 783 2165 100.0103 100.0000670
75 0.8 —0.00526 5338 2746 1931 5238 100.00167 100.0000113
10 1.6 —0.186 478 255 195 478 101.85 100.0958
30 1.6 —-0.128 707 377 288 707 102.86 101.90
75 1.6 —-0.117 758 404 309 758 100.644 100.428
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TABLE VI. Accuracy of the correlation energy: Dispersion relation vs CSE.

System % of correlation energy
FCI ) Dispersion relation CSE
correlation

N Vv energy D4 G4 D4 G4

10 0.8 —0.0384 260 99.9856 116.5 99.9856
30 0.8 —0.0130 632 99.9860 149.8 99.9860
75 0.8 —0.00526 1357 99.9092 103.10 99.9092
10 1.6 —0.186 168.2 100.0336 123.3 100.0336
30 1.6 —0.128 234 100.486 125.8 100.486
75 1.6 -0.117 245 99.9657 115.2 99.9657

obtain accurate energies in systems with very high correlawave function, the present calculations indicate thatdire
tion. mulantreconstruction as a renormalized perturbation theory
The connections that exist among the dispersion condiis not capable of treating highly correlated quantum systems
tion, the CSE, and the metrid-representability conditions as accurately as energy minimization of the CSE with
are an important part of the synthesis of variational minimi-4-positivity [14,23. Further reduction in computational ef-
zation and the CSE. The dispersion condition and the CSkort may be possible by constraining only the most important
share an important property: either one is a necessary andparts of the metric matrices to be positive semidefinite; the
sufficient condition that @ure Nrepresentable RDM derives effectiveness of any reduction will depend upon the nature of
from a wave function which satisfies the Sotlirger equa- the quantum system and the strength of the correlation. Val-
tion (Nakatsuji's theorem With partial N-representability demoro, Tel, and Perez-Romero have recently proposed sev-
conditions (such as*D=0), however, the CSE is signifi- eral constraints upon the elements of the 2-RDM which are
cantly more powerful than the dispersion condition. Resultsmplied by the condition that théG matrix be non-negative
in Table VI show that the CSE witfD=0 is far more [21].
accurate than dispersion withD=0. The CSE enforces The quality of the energies from 4-positivity challenges us
Hellmann-Feynman perturbations of the dispersion conditiorio develop both existing and additional mathematical ma-
which are implicitly associated with the conditi#&=0. It  chinery to enforce these conditions efficiently. Effective FCI
is this feature rather than Nakatsuji's theorem that distin-algorithms have been under construction for many ye&k
guishes the CSE from the dispersion condition when onlywith important improvements occurring recenfi7], but
approximateN-representability conditions are imposed. Forthe application of the mathematical techniques to the mini-
this reason cumulant reconstruction for solving the CSE isnization of the energy subject to 4-positivity constraints is a
not easily extended to the dispersion condition even thougfrontier that requires both theoretical and computational ex-
both equations satisfy Nakatsuji's theorem. The conditiorploration. Recent techniques for positive semidefinite pro-
4G=0 containsall of the N-representability conditions that gramming, anticipated by earlier research in the RDM litera-
are necessary to make the CSE and the dispersion conditidare [34], may facilitate the development of improved
equivalent. Because the four-partickecondition implicitly  4-positivity algorithms that are capable of treating atoms and
conveys the most important information in the CSE, the parmolecules effectively48].
of the CSE that is independent of the dispersion condition, it Approaches to many-body correlation may generally be
allows us through the more general notion of 4-positivity toarranged in two categories, upper-bound variational approxi-
minimize the energy directlwithoutthe CSE. mations and perturbation techniques. The 4-positivity restric-
Many processes in chemistry and physics from ordinarytions on the 2-RDM offer an approach to many-particle cor-
bond stretching to superconductivity are not readily treatedelation with several distinguishing featuredi) the
by conventional implementations of many-body perturbationcalculation of a tight lower bound to tHé-body energy(ii)
theory or coupled-cluster theofy5]. Often these situations the use of nonperturbative positivity restrictions which pro-
require multireference treatments or even full configuratiorvide a robust method for accuracy at all perturbation
interaction (FCI). Since the storage for a FCI calculation strengths, andiii) the direct determination of the 2-RDM
scales exponentially with the number of electrons, its appliwithout the N-particle wave function. The nonperturbative
cation is restricted to small molecules. Energy minimizationnature of the density-matrix approach manifests itself in the
with 4-positivity, a nonperturbative approach to electronicdetermination of correlation energies in Table Il that are
structure, also has the ability to treat static correlation effecmore accurate than those from wave-function methods. The
tively where the scaling of either the 2-RDM or the 4-RDM last feature responds to Coulson’s after-dinner challenge to
(r?xr? andr*xr#, respectively where is the rank of the determine a useful description for the set of ensemble
one-particle basis seis much more reasonable than the scal-N-representable 2-RDMs. Earlier studief81-34 of
ing of the FCI wave function. Although the CSE with func- N-representability employed at most 2-positivity and overes-
tional reconstruction also determines the 2-RDM without thetimated the correlation energy by large factors. By constrain-
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ing the 2-RDM to obey the uncertainty relations for opera-such as bond stretching, molecular dissociation, transition-
tors with two-particle interactions, we have obtained formetal phenomena, weak intermolecular interactions, and su-
ground-state correlation phenomena an accurate mapping pérconductivity.

guantum mechanics onto four particles. We observe rapid
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