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Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics
onto four particles
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For the description of ground-state correlation phenomena an accurate mapping of many-body quantum
mechanics onto four particles is developed. The energy for a quantum system with no more than two-particle
interactions may be expressed in terms of a two-particle reduced density matrix~2-RDM!, but variational
optimization of the 2-RDM requires that it corresponds to anN-particle wave function. We derive
N-representability conditions on the 2-RDM that guarantee the validity of the uncertainty relations for all
operators with two-particle interactions. One of these conditions is shown to be necessary and sufficient to
make the RDM solutions of the dispersion condition equivalent to those from the contracted Schro¨dinger
equation~CSE! @Mazziotti, Phys. Rev. A57, 4219~1998!#. In general, the CSE is a strongerN-representability
condition than the dispersion condition because the CSE implies the dispersion condition as well as additional
N-representability constraints from the Hellmann-Feynman theorem. Energy minimization subject to the rep-
resentability constraints is performed for a boson model with 10, 30, and 75 particles. Even when traditional
wave-function methods fail at large perturbations, the present method yields correlation energies within 2%.
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I. INTRODUCTION

In an after-dinner speech at the 1959 Boulder confere
Charles Coulson proposed ‘‘banishing’’ the wave functi
from quantum chemistry in favor of the two-particle reduc
density matrix~2-RDM! @1#. While prior work had consid-
ered this goal@2,3#, Coulson’s speech—an epic moment
the history of the 2-RDM—brought scientific publicity to th
idea of minimizing the electronic energy as a functional
the 2-RDM. Because the electrons are indistinguishable
the wave function and they interact pairwise in the Ham
tonian, the electronic energy may be written as a linear fu
tional of the 2-RDM@2#. The ground-state energy, howeve
cannot be determined variationally without applying con
tions that ensure that the 2-RDM derives from anN-particle
wave function @3–6#. In 1963 John Coleman christene
Coulson’s challenge theN-representabilityproblem and an-
nounced the solution for the one-particle reduced den
matrix ~1-RDM! @4#: any 1-RDM, normalized toN, corre-
sponds to an ensemble ofN-particle quantum states if an
only if all of its occupation numbers lie between zero and

Recent advancements in density-matrix theory include
solution of the contracted Schro¨dinger equation~CSE! for an
approximate 2-RDM without theN-particle wave function
@7–24,6#. As its name implies, the CSE is a contraction
the N-particle Schro¨dinger equation onto the space of tw
particles. If the Hamiltonian contains two-particle intera
tions, the CSE depends upon the 3- and 4-RDMs in addi
to the 2-RDM. Although originally derived in 1976@25–27#,
the CSE was not successfully solved beyond Hartree-F
theory until 1994 in the work of Colmenero and Valdemo
@7–9#. Two approaches exist for solving the CSE:~i! func-
tional reconstructionin which the indeterminacy of the CS
is removed by expressing the 3- and 4-RDMs as approxim
1050-2947/2001/63~4!/042113~9!/$20.00 63 0421
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functionals of the 2-RDM@7–24,6#, and~ii ! ensemble repre-
sentability in which the indeterminacy of the CSE is re
moved by applying ensembleN-representability conditions
on the 4-RDM@13,24#. Most research on the CSE has f
cused on functional reconstruction. However, Colmen
and Valdemoro’s original algorithm for functional recon
struction includes simple adjustments to keep the diago
elements of the 3- and 4-RDMs positive@9,12#, and the most
recent work of Valdemoro, Tel, and Perez-Romero@21,22#
considers in more detail the use of ensemble representab
conditions within the framework of functional reconstru
tion. In this paper we present a systematic collection of
semble representability conditions for the 4-RDM and e
plore their applicability to the original formulation of th
N-representability problem, that is, the variational minimiz
tion of the energy as a linear functional of the 2-RDM.
synthesis of the CSE and direct minimization, the pres
research extends both the ensemble representability me
of Mazziotti for solving the CSE subject to non-negativity
the 4-RDM@13,24# and the generalizedlower-boundmethod
of Erdahl and Jin@28,29#, which variationally optimizes the
energy subject to positive semidefinite restrictions on
3-RDM.

Early research onN-representability examined the unce
tainty relations for simple operators such as position a
momentum and even all operators without interactions
tween particles @30–35#. In this paper we presen
N-representability conditions on the 2-RDM that include t
uncertainty relationsfor all operators with pairwise interac
tions. Because the goal is to determine the correlation
ergy, the uncertainty relations for correlated operators
especially significant asN-representability constraints. W
show that the uncertainty relations from operators with pa
wise interactions are fully satisfied by forcing a collection
linear functionals of the 4-RDM to be positive semidefinit
©2001 The American Physical Society13-1
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A matrix is positive semidefiniteif and only if all of its ei-
genvalues are non-negative.

As a part of the synthesis between the CSE and the va
tional approach, we examine in Sec. III the connection
tween the CSE and the dispersion condition@36#. The dis-

persion of an operatorÔ is the expectation value of (Ô

2^CuÔuC&)2 with respect to the wave functionC. The
dispersion of an operator vanishes for a given wave func
if and only if the wave function is an eigenstate of the o
erator. The vanishing of the dispersion for an operato
eigenstates is known as thedispersion condition. Like the
CSE the dispersion condition for an operator with no m
than two-particle interactions may be evaluated from onl
knowledge of the 4-RDM. Without complet
N-representability constraints the dispersion condition, l
the CSE, has spurious RDM solutions that do not corresp
to wave-function solutions of the Schro¨dinger equation. By
contrast, in the set of pureN-representable density matrice
both the CSE and the dispersion condition are necessary
sufficient for a 4-RDM to correspond to a solution of th
Schrödinger equation@27,13#. However, recent progress o
determining RDMs without the wave function has depend
exclusively upon the CSE. Is this just a matter of choice,
is there an important difference between these two eq
tions? We show that the CSE and the dispersion condi
are equivalent only when an important 4-RDM positivi
condition is satisfied. Otherwise, the CSE is strictly stron
than the dispersion condition because it always implies
dispersion condition as well as significant Hellman
Feynman perturbations.

Using a system of interacting bosons@37–39#, we employ
some of the 4-RDMN-representability conditions to mini
mize the energy as a functional of the 2-RDM~where the
2-RDM is expressed in terms of the 4-RDM by contractio!.
The present conditions on the 2-RDM yield correlation e
ergies that are several orders of magnitude more accu
than those from traditional techniques like many-body p
turbation and coupled-cluster theories. Even for strong in
actions where the conventional schemes fail, the cur
method determines the correlation energy within a few p
cent. The results are orders of magnitude better than th
that can be achieved through functional reconstruction wit
the CSE@13,23#. In addition to achieving variational mini
mization without the wave function, we employ the repr
sentability conditions to solve the CSE and the dispers
condition.

II. UNCERTAINTY RELATIONS

Let us consider the ground-state wave functionuC& of an
N-particle Hamiltonian with no more than pairwise intera
tions. Using an orbital basis set in the notation of seco
quantization, we have

Ĥ5 (
m,n,p,q

2Kp,q
m,nâm

† ân
†âqâp , ~1!
04211
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where 2K is the two-particle reduced Hamiltonian matr
@40#. Taking the expectation value of the Hamiltonian yiel
an expression for the energy

E5 (
m,n,p,q

2Kp,q
m,n 2Dp,q

m,n ~2!

in terms of the 2-RDM

2Dp,q
m,n5^Cuâm

† ân
†âqâpuC&. ~3!

To minimize the energy as a functional of the 2-RDM, ho
ever, we require restrictions on the 2-RDM which are bo
necessary and sufficient for the 2-RDM to correspond to
N-particle wave function. These restrictions are known
N-representability conditions.

With any set of operatorsĈi we can generate fromuC& a
set of basis functions

^F i u5^CuĈi ~4!

for which the metric~or overlap! matrix M with elements

M j
i 5^F i uF j&5^CuĈi Ĉj

†uC& ~5!

must be positive semidefinite. A positive semidefinite mat
has all non-negative eigenvalues. We indicate that a ma
has this property by the notationM>0. For a RDM that
corresponds to a wave function these vector-space res
tions are always satisfied. More generally, however, th
conditions offer a systematic approach for imposi
N-representability conditions on a RDM without using th
wave function.

If we choose for eachĈi a second-quantized operatorâi
†

that creates a particle in thei th orbital, we determine that the
one-particle reduced density matrix must be posit
semidefinite,

1D j
i 5^Cuâi

†â j uC&>0, ~6!

and, if we choose for eachĈi an operatorâi that annihilates
a particle in thei th orbital, we discover that the one-ho
reduced density matrix must also be positive semidefinite

1Qj
i 5^Cuâi â j

†uC&>0. ~7!

The second-quantized operators may be rearranged ac
ing to the anticommutation relation for fermions~1 sign! or
the commutation relation for bosons (2 sign!,

â j âi
†6âi

†â j5d j
i . ~8!

The relation in Eq.~8! provides a linear mapping betwee
the matrices1D and 1Q which depends on whether the pa
ticles are bosons or fermions. For fermions theD and Q
conditions have sufficient strength to force the eigenval
of both 1D and 1Q to lie between 0 and 1. By adding th
condition that 1D traces to N, we obtain Coleman’s
N-representability conditions for the fermionic 1-RDM
@4,6,35#. For bosons either theD or theQ condition is suffi-
cient. We describe any 1-RDM satisfying both theD and the
Q conditions as1-positive.
3-2
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ConsiderĈ to be a product of two fundamental secon
quantized operators. The resulting basis functions in Eq.~4!
may be naturally grouped into three orthogonal vector spa
according to the number of creation operators inĈ. Restrict-
ing the metric matrixM for each of these spaces to b
semidefinite yields three separate conditions. ForĈ

P$âi
†â j

†% we obtain the positivity constraint on the 2-RDM

2Dp,q
i , j 5^Cuâi

†â j
†âqâpuC&>0, ~9!

and forĈP$âi â j% we obtain the positivity constraint on th
two-hole RDM,

2Qp,q
i , j 5^Cuâi â j âq

†âp
†uC&>0. ~10!

Note that the adjoint of a product of second-quantized op
tors is the product of the individual adjoints in reverse ord
for example, the adjoint ofâi

†â j is â j
†âi . The final positivity

condition arises from selectingĈ to be single-particle exci-
tations or deexcitations, that is,ĈP$âi

†â j ,âi â j
†%. If we just

consider the excitations,ĈP$âi
†â j%, we obtain a form of the

G condition @5,31–35,41#,

2Gp,q
i , j 5^Cuâi

†â j âq
†âpuC&>0. ~11!

The three matrices2D, 2G, and 2Q are linearly related by
the commutation relations. It has been shown that the me
matrix from ĈP$âi â j

†% is positive semidefinite if and only i
the G matrix is positive semidefinite. However, the matr
arising from the set of operators$âi

†â j ,âi â j
†% may be slightly

more general. We describe any 2-RDM satisfying all of the
conditions as2-positive.

The conditions that ak-RDM be k-positive follow from
writing the Ĉi in Eq. ~4! as products ofk second-quantized
operators. As in the two-particle case the resulting ba
functions lie ink11 orthogonal vector spaces according
the number of creation operators in the product. Each me
matrix from one of thek11 vector spaces must be positiv
semidefinite. Furthermore, all of the metric matrices are c
nected with each other by the anticommutation~fermions! or
commutation~bosons! relation in Eq. ~8!. A k-RDM that
is k-positive contracts to a (k21)-RDM that is
(k21)-positive. Some conditions for 3-positivity an
4-positivity, given in Tables I and II, respectively, will late
be explored numerically. We say that a 2-RDM isk-positive
if it arises from thecontractionof a k-positivek-RDM. The
strength of these conditions on the 2-RDM increases rap
with increasingk. The conditions for 3-positivity have bee

TABLE I. Positivity conditions for the 3-RDM.

3Dp,q,r
i , j ,k 5^Cuâi

†â j
†âk

†âr âqâpuC&>0
3Ep,q,r

i , j ,k 5^Cuâi
†â j

†âkâr
†âqâpuC&>0

3Fp,q,r
i , j ,k 5^Cuâi

†â j âkâr
†âq

†âpuC&>0
3Qp,q,r

i , j ,k 5^Cuâi â j âkâr
†âq

†âp
†uC&>0
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examined numerically in the work of Erdahl and Jin@28,29#,
and the importance of the4G condition in Table II was
recognized by Valdemoro, Tel, and Perez-Romero@21,22#.

There are two interwoven perspectives for understand
the k-positivity conditions. By applying polynomials in cre
ation and/or annihilation operators of degreek to the wave
function, we generate a vector space in Eq.~4!. Restricting
the metric of this vector space to be non-negative in Eq.~5!

yields thek-positivity conditions. Any operatorÔ of degree
k in the creation and/or annihilation operators may be gen
ated through a linear combination of the operatorsĈi in Eq.
~5!,

Ô5(
i

a i Ĉi . ~12!

The operatorÔÔ† must have a non-negative expectati
value if it is evaluated with anN-representable RDM. There
fore, for a givenk-RDM we haveN-representability condi-
tions arising from the fact that the following expectatio
value must be non-negative:

^CuÔÔ†uC&>0 ~13!

for all operatorsÔ of degreek. To understand the relation
ship of these conditions tok-positivity, we insert Eq.~12!
into Eq. ~13! to obtain

(
i , j

a ia j* ^CuĈi Ĉj
†uC&>0, ~14!

which with the definition for the metric matrix in Eq.~5! is

(
i , j

a iM j
i a j* >0. ~15!

However, Eq.~15! is just the expectation value of the metr
matrix M with respect to the vectora whose components ar
a i . The minimum of the left side in Eq.~15! is achieved
when we selecta to be the lowest eigenvector ofM. Equa-
tion ~15! is thus valid if and only if the metric matrixM is
positive semidefinite. Therefore, theN-representability con-
ditions that arise from constraining the expectation value
ÔÔ† to be non-negative for all operatorsÔ of degreek are
equivalent to the metric conditions that we callk-positivity.
Equations~5! and ~13! offer two complementary definitions
for k-positivity.

We now demonstrate mathematically that a 4-posit
RDM provides a four-quasiparticle model for many-bo

TABLE II. Positivity conditions for the 4-RDM.

4Dp,q,r ,s
i , j ,k,l 5^Cuâi

†â j
†âk

†âl
†âsâr âqâpuC&>0

4Ep,q,r ,s
i , j ,k,l 5^Cuâi

†â j
†âk

†âl âs
†âr âqâpuC&>0

4Gp,q,r ,s
i , j ,k,l 5^Cuâi

†â j
†âkâl âs

†âr
†âqâpuC&>0

4Fp,q,r ,s
i , j ,k,l 5^Cuâi

†â j âkâl âs
†âr

†âq
†âpuC&>0

4Qp,q,r ,s
i , j ,k,l 5^Cuâi â j âkâl âs

†âr
†âq

†âp
†uC&>0
3-3
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quantum mechanics in which the generalized uncertainty
lation is completely satisfied forall pairs of operators with
no more than two-particle interactions. An arbitrary opera
Ô may be expressed in terms of two Hermitian operators

Ô5Â1 iB̂. ~16!

Consider the subset of operatorsÔ with vanishing expecta-
tion values

Ô0~x,y!5x~Â2^Â&!1 iy~B̂2^B̂&!, ~17!

where the real variablesx andy affect only the normalization
of the operatorsÂ and B̂, respectively. For a succinct der
vation the wave function is omitted from the notation for t
expectation value. We restrict our attention to those ope
tors Ô, Â, andB̂ of degree 4 in the creation and/or annih
lation operators. This restriction allows us to evaluate
expectation value in Eq.~13! with only a knowledge of the
4-RDM. As defined earlier, the 4-RDM is said to b
4-positive if and only if Eq.~13! is valid for all operatorsÔ
of degree 4 in the creation and/or annihilation operato
Thus, if we assume that the 4-RDM is 4-positive, then for
operatorsÔ0(x,y) we have

^Ô0~x,y!Ô0~x,y!†&>0. ~18!

Rewriting Eq.~18! more explicitly, we have a function ofx
andy that must be non-negative:

~x y!S ^~Â2^Â&!2& 2
i

2
^@Â,B̂#&

2
i

2
^@Â,B̂#& Š~B̂2^B̂&!2

‹
D S x

yD >0. ~19!

This function will be non-negative for allx andy if and only
if the 232 matrix is positive semidefinite, that is, both of i
eigenvalues must be non-negative. It follows that the prod
of the eigenvalues~the determinant of the 232 matrix! must
be non-negative:

Š~Â2^Â&!2
‹Š~B̂2^B̂&!2

‹>2
1

4
^@Â,B̂#&2. ~20!

For the function in Eq.~19! to be real, we must have that th

^@Â,B̂#& is purely imaginary. Thus, Eq.~20! may be cast in
its more familiar form,

Š~Â2^Â&!2
‹

1/2
Š~B̂2^B̂&!2

‹

1/2>
1

2
u^@Â,B̂#&u. ~21!

This is theuncertainty relationfor two-particle operators
Note that the uncertainty relations, like the positivity con
tion in Eq. ~18! from which they arise, are automatical
satisfied when we evaluate the expectation values with
spect to anN-particle wave function. However, when th
expectation value is evaluated via a 4-RDM, which may
beN-representable, the uncertainty relations like the posi
04211
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These arguments may be generalized tok-positive RDMs
and operators withk/2-particle interactions. An operator wit
k/2-particle interactions is defined as the product ofk cre-
ation or annihilation operators. Consequently:If a k-RDM is
k-positive, then the uncertainty relations hold for all Herm
ian operators with no more than k/2-particle interactions.

III. DISPERSION CONDITION

In second quantization the contracted Schro¨dinger equa-
tion may be derived by testing theN-particle Schro¨dinger
equation with all two-particle excitations from the exa
wave function@13,20#,

^Fk,l
i , j uĤC&5E^Fk,l

i , j uC&, ~22!

where

^Fk,l
i , j u5^Cuâi

†â j
†âl âk . ~23!

Using Eqs.~1! and~23!, we can write the CSE in Eq.~22! in
terms of the reduced Hamiltonian2K and the 4G matrix
from Table II,

(
m,n,p,q

4Gm,n,p,q
i , j ,k,l 2Kp,q

m,n5E 2Dk,l
i , j . ~24!

In the customary formulation of the CSE the secon
quantized operators in4G are rearranged to express4G in
terms of the 2-, 3-, and 4-RDMs@13,15,20#. By moving the
energy into the sum on the left side of Eq.~24!, we can also
write the CSE as

(
m,n,p,q

4Gm,n,p,q
i , j ,k,l 2K̃p,q

m,n50, ~25!

where the energy-shifted reduced Hamiltonian2K̃p,q
m,n

2K̃p,q
m,n5 2Kp,q

m,n2E/@N~N21!#d p
md q

n ~26!

lies in the null space of4G.
The dispersion condition for the Hamiltonian has the fo

^Cu~Ĥ2E!2uC&50. ~27!

If restricted to a set ofpure N-representable RDMs, both th
CSE and the dispersion condition are equivalent, and t
RDM ~or 4G) solutions correspond to wave-function sol
tions of the Schro¨dinger equation@13,27#. As shown in pre-
vious work@13#, if we multiply the CSE in Eq.~25! by 2Kk,l

i , j

and sum over the indicesi, j, k, andl, we obtain Eq.~27! in
terms of the reduced Hamiltonian and the4G matrix. This
proves that the CSE always implies the dispersion condi
even if 4G is notN-representable. By deriving the CSE fro
Eq. ~27! through the Hellmann-Feynman theorem@42#, we
now consider whether the dispersion condition implies
CSE without additionalN-representability conditions.
3-4
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Although previous derivations of the CSE@13# have em-
ployed test functions as in Eq.~23!, the CSE may also be
derived from the dispersion condition by applying t
Hellmann-Feynman theorem. The Hellmann-Feynman th
rem states that the first derivative of the energy, independ
of the first derivatives of the wave function, depends only
the expectation value of the first derivative of the Ham
tonian@42#. Because the Hamiltonian is self-adjoint, the d
persion relation in Eq.~27! may also be written as

^Cu~Ĥ2E!~Ĥ2E!†uC&50. ~28!

Through the Hellmann-Feynman theorem we differenti
Eq. ~28! with respect to a parameter in the Hamiltonian
produce

^Cu~Ĥ82E8!~Ĥ2E!1~Ĥ2E!@~Ĥ†!82E8#uC&50.
~29!

By using the facts that the derivative of the energy is a c
stant and that the expectation value of (Ĥ2E) vanishes, we
may simplify Eq.~29! to obtain

^CuĤ8~Ĥ2E!1~Ĥ2E!~Ĥ†!8uC&50. ~30!

Any element of the reduced Hamiltonian2Kk,l
i , j may be writ-

ten in terms of a real parte r and an imaginary parte i ,

2Kk,l
i , j 5e r1e i . ~31!

If the Hamiltonian parameter is chosen to bee r , then

]Ĥ

]e r
5âi

†â j
†âl âk , ~32!

]~Ĥ†!

]e r
5âk

†âl
†â j âi , ~33!

and Eq.~30! becomes

^Fk,l
i , j u~Ĥ2E!uC&1^Cu~Ĥ2E!uFk,l

i , j &50. ~34!

If the Hamiltonian parameter is chosen to bee i , then

]Ĥ

]e i
5âi

†â j
†âl âk , ~35!

]~Ĥ†!

]e i
52âk

†âl
†â j âi , ~36!

and Eq.~30! becomes

^Fk,l
i , j u~Ĥ2E!uC&2^Cu~Ĥ2E!uFk,l

i , j &50. ~37!

Addition of Eqs.~34! and ~37! yields the CSE

^Fk,l
i , j u~Ĥ2E!uC&50. ~38!

In the derivation of the dispersion condition from the CS
we employ only multiplication and summation, but in th
04211
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above derivation of the CSE from Eq.~28! we implicitly
employ an additionalN-representability condition when w
differentiate via theHellmann-Feynmantheorem. The differ-
entiation of the dispersion condition with respect to2K is
equivalent to applying Hellmann-Feynman forces to the s
tem along each element of2K. Therefore, the CSE is a
strongerN-representability condition than Eq.~28! because it
correctly accounts for local perturbations about the disp
sion condition in accordance with the Hellmann-Feynm
theorem.

When the RDMs are keptN-representable, the solution
of the CSE and the dispersion condition are equivalent,
they correspond to wave-function solutions of theN-particle
Schrödinger equation. Are the CSE and the dispersion c
dition only the same when completeN-representability is
applied, or is there an approximate set ofN-representability
conditions which can make these two reduced formulati
of the problem equivalent? To answer this question, we c
sider theN-representability conditions that arise from forcin
the metric matrix4G in Table II to be positive semidefinite
Keeping 4G positive semidefinite means Eq.~13! will be
satisfied for any operatorÔ that is a linear combination o
operators from the set$âi

†â j
†âl âk%. Furthermore, thedisper-

sion associated with such an operatorÔ, that is, the expec-
tation value of (Ô2^CuÔuC&)2, will be non-negative. Be-
causeC is an eigenstate of the HamiltonianH, the dispersion
of H vanishes as in Eq.~28!. Consider the dispersion assoc
ated with the perturbed HamiltonianĤp ,

Ĥp5Ĥ2E1eĜ, ~39!

whereĜ is the two-particle excitation operator

Ĝ5âi
†â j

†âl âk . ~40!

The dispersion relation forĤp is

^Cu~Ĥ2E1eĜ!~Ĥ2E1e†Ĝ†!uC&>0. ~41!

Rearranging the equation into powers of the perturbatione,
we have

^Cu~Ĥ2E!2uC&1e^Fk,l
i , j u~Ĥ2E!uC&1e* ^Cu~Ĥ

2E!uFk,l
i , j &1ueu2^CuĜĜ†uC&>0. ~42!

By Eq. ~27! the first term in Eq.~42! is zero. Furthermore
the final term in Eq.~42! is non-negative for anye. We can
chooseueu to be small enough to make this second-ord
term negligible. If we choosee to be real andueu!1, then
Eq. ~42! becomes

e^Fk,l
i , j u~Ĥ2E!uC&1e^Cu~Ĥ2E!uFk,l

i , j &>0. ~43!

Equation~43! can be valid for positive and negative valu
of e if and only if the coefficient ofe vanishes, that is, the
‘‘symmetric’’ CSE in Eq. ~34! must be valid. Choosinge
equal toig whereg is real andueu!1, we can express Eq
~42! as
3-5
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TABLE III. Accuracy of the correlation energy: 4-positivity vs the wave function.

System

FCI
correlation

energy

% of correlation energy

Wave-function methods RDM method

N V SDCI SDTQCI MP2 MP4 CCSD 4-Pos

10 0.8 20.0384 85.5 98.85 92.57 99.703 101.07 100.00010
30 0.8 20.0130 79.0 95.94 85.1 96.43 101.08 100.00006
75 0.8 20.00526 76.5 94.25 82.3 94.5 100.642 100.00001
10 1.6 20.186 59.9 88.9 76.6 100.224 no solution 100.0958
30 1.6 20.128 27.9 47.5 35.2 53.9 no solution 101.90
75 1.6 20.117 11.8 20.9 14.8 23.6 no solution 100.428
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g^Fk,l
i , j u~Ĥ2E!uC&2g^Cu~Ĥ2E!uFk,l

i , j &>0. ~44!

Equation~44! can be valid for positive and negative valu
of g if and only if the coefficient ofg vanishes, that is, the
‘‘antisymmetric’’ CSE in Eq.~37! must be valid. Addition of
Eqs.~34! and ~37! yields the CSE.

With the N-representability condition4G>0 the disper-
sion condition and the CSE have a common set of RD
solutions. Because Eqs.~34! and ~37! are the Hellmann-
Feynman derivatives of the dispersion condition with resp
to real and imaginary components of the reduced Ham
tonian, respectively, we have also proved that the n
negativity condition 4G>0 is sufficient to prove the
Hellmann-Feynman theorem for the operator (Ĥ2E)2. The
traditional proof of the Hellmann-Feynman theorem@42# re-
quires an application of theN-particle Schro¨dinger equation.
At an early conference on RDMs, Erdahl and Garrod@43#
employed the2G positivity condition to connect the dispe
sion condition and a simplified CSE for noninteracti
N-particle Hamiltonians. Each of the present authors in
pendently extended this earlier result to the interacting C
and 4G @29,44#. The positivity of 4G provides precisely the
N-representability conditions that are necessary to make
CSE and the dispersion condition equivalent.

IV. APPLICATION

To illustrate the strength of the representability con
tions, we employ a many-body system of bosons. ConsideN
bosons in the ground state of a two-level system where
energy levels are at21 and11. To this noninteracting sys
tem, we add a perturbation that acts to switch two bos
from the ground state to the excited state. The mean-fi
energy equals21 for all N. Mazziotti and Herschbach hav
employed the model to explore reduced Hamiltonian int
polation @38,39#. Additional details of the model may b
found in these works. The bosonic system may also be c
verted into a fermionic system through the introduction o
second quantum number~often called a ‘‘color’’ variable!
which assumesN values~or ‘‘colors’’ ! for each level~11 or
21) so that each particle occupies a different, albeit deg
erate, state. The resulting quasispin system of fermions
originally employed by Lipkin to investigate fermionic co
relation phenomena@37#, and, more recently, Mazziotti ha
04211
ct
l-
-

-
E

he

-

e

s
ld

-

n-

n-
as

used the fermionic version to investigate the contrac
Schrödinger equation@13–15,23#.

A set of N-representability conditions on the 2-RDM ha
been developed for minimizing the energy in Eq.~2!. To
illustrate the strength of 3- and 4-positivity, we employ t
conditions in Tables I and II, respectively. As we mention
earlier, these conditions do not completely exhaust the me
conditions associated with 3- and 4-positivity. Howev
even the application of these conditions is challenging, a
the authors are not aware of previous calculations using
of these conditions other than the positivity of the 4-RD
@13#. The energy in Eq.~2! is evaluated by contracting the 3
and 4-RDMs to the 2-RDM. Through constrained optimiz
tion the energy is minimized while the lowest eigenvalues
the matrices in Table I~3-positivity! or Table II~4-positivity!
are constrained to be non-negative. The algorithm empl
sequential quadratic programming for the constrained o
mization and computes the lowest eigenvalues through s
dard diagonalization.

The strength of 4-positivity for the 2-RDM is demon
strated through comparisons of the method with stand
wave-function and many-body perturbation techniques.
present data for moderate to large particle numbers,N510,
30, and 75, and for moderate and strong interactionsV
50.8 and 1.6. Table III gives the percentage of the corre
tion energy~CE! achieved~three significant figures are re
ported for the deviation of the result from 100%!, and Table
IV gives the error in the 2-RDM as measured by the infin
norm~the column MF denotes results for the mean field!. For
moderate interactions minimization of the energy w
4-positivity conditions~4-Pos! yields the CE within 0.0001%
in Table III, which is four orders of magnitude more accura
than the value obtained using single-double coupled-clu
~CCSD! equations; for strong interactions (V51.6)
4-positivity yields the CE with less than 2% error while th
CCSD equations have no solution forV>1. The compari-
sons of 4-positivity with fourth-order many-body perturb
tion theory~MP4! are even more dramatic because for stro
interactions MP4 captures less than half of the CE. We a
report results from configuration-interaction wave function
including single and double excitations~SDCI! and single,
double, triple, and quadruple excitations~SDTQCI!, and
second-order perturbation theory~MP2!. These traditional
3-6
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TABLE IV. Accuracy of the 2-RDM: 4-positivity vs the wave function.

System 2-RDM error3100

Wave-function methods RDM metho

N V MF SDCI SDTQCI MP2 MP4 CCSD 4-Pos

10 0.8 9.19 5.16 0.572 1.41 0.0660 0.554 0.0161
30 0.8 3.68 5.30 0.712 1.22 0.435 0.221 0.000669
75 0.8 1.62 5.83 0.791 0.654 0.302 0.0602 0.00344
10 1.6 35.2 22.7 10.3 13.0 4.31 no solution 0.334
30 1.6 46.5 35.9 32.4 39.3 29.0 no solution 0.321
75 1.6 49.5 39.6 39.7 46.7 42.1 no solution 0.223
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approaches are less accurate than 4-positivity by many or
of magnitude.

The rate of convergence with the orderk of positivity is
shown in Table V. The results for 2-, 3-, and 4-positivi
~columns headed 2-Pos, 3-Pos, and 4-Pos! reveal a dramatic
change in accuracy when 2-positivity is replaced w
3-positivity. In some cases the addition of 4-positivity yiel
only marginal improvements. In the worst case for t
density-matrix method, when N530 and V51.6,
3-positivity yields the CE within 3%, and 4-positivity im
proves this result to 2%. In the columns markedD2, D3,
andD4, calculations are performed by constraining just
2-RDM, 3-RDM, or 4-RDM to be positive semidefinite~the
D condition alone!. Because these calculations overestim
the CE by factors as large as 50, they emphasize the im
tance of the combined strength of various positivity con
tions for achieving an accurate modeling of correlation p
nomena without the wave function.

Correlation energies obtained by using the dispersion c
dition and the CSE are compared in Table VI. We solve
the 4-RDM that satisfies the CSE or the dispersion condi
subject to an N-representability condition, the positiv
semidefiniteness of either4D or 4G. Theoretically, we have
shown that the dispersion condition is weaker than the C
if the matrix 4G is not positive semidefinite, but with the4G
positivity the dispersion condition and the CSE have equi
lent solutions. Results in Table VI demonstrate that the C
with 4D>0 ~also computed in Ref.@19#! is much more ac-
curate than the dispersion condition with4D>0. In fact, the
dispersion condition does not significantly improve t
4-RDM positivity results reported in Table V under the co
04211
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umnD4. Unlike the dispersion condition, the CSE is impli
itly imposing a portion of the4G positivity restriction. By
contrast, solving the dispersion condition with4G>0 gives
highly accurate energies which are equivalent to those
tained by solving the CSE with4G>0. The importance of
the G condition lies not only in that it makes the dispersio
condition and the CSE equivalent but also in that it enfor
the uncertainty relations for particle-conserving operat
like the Hamiltonian.

V. DISCUSSION AND CONCLUSIONS

The relationship between constraining the metric matri
to be positive semidefinite and enforcing the uncertainty
lations has been elucidated. Previous calculations, using
two-particleD, Q, andG conditions~2-positivity!, imposed
the uncertainty relations for only many-body operators wi
out interactions@31,32,34#. The conditions of 2-positivity are
necessary and sufficient for determining the energies of n
interacting N-particle Hamiltonians. The complet
4-positivity conditions enforce the uncertainty relations f
all operators with two-particle interactions. Whether t
4-positivity conditions will allow us to compute the exa
energies fromN-particle Hamiltonians with no more tha
two-particle interactions is an open question. Unlike the o
erators without interactions, the operators with pairwise
teractions can exhibit an extremely large degree of corr
tion. The calculations in this work, employing an importa
subset~given in Table II! of the 4-positivity restrictions, in-
dicate that the 4-positivity restrictions are strong enough
3
70

113
TABLE V. Convergence of correlation energy withk-positivity.

System
Correlation

energy

% of correlation energy for RDM methods

N V D2 D3 D4 2-Pos 3-Pos 4-Pos

10 0.8 20.0384 731 376 264 731 100.0376 100.00010
30 0.8 20.0130 2165 1114 783 2165 100.0103 100.00006
75 0.8 20.00526 5338 2746 1931 5238 100.00167 100.0000
10 1.6 20.186 478 255 195 478 101.85 100.0958
30 1.6 20.128 707 377 288 707 102.86 101.90
75 1.6 20.117 758 404 309 758 100.644 100.428
3-7
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TABLE VI. Accuracy of the correlation energy: Dispersion relation vs CSE.

System

FCI
correlation

energy

% of correlation energy

Dispersion relation CSE

N V D4 G4 D4 G4

10 0.8 20.0384 260 99.9856 116.5 99.9856
30 0.8 20.0130 632 99.9860 149.8 99.9860
75 0.8 20.00526 1357 99.9092 103.10 99.9092
10 1.6 20.186 168.2 100.0336 123.3 100.0336
30 1.6 20.128 234 100.486 125.8 100.486
75 1.6 20.117 245 99.9657 115.2 99.9657
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tion.

The connections that exist among the dispersion co
tion, the CSE, and the metricN-representability conditions
are an important part of the synthesis of variational minim
zation and the CSE. The dispersion condition and the C
share an important property: either one is a necessary a
sufficient condition that apure N-representable RDM derive
from a wave function which satisfies the Schro¨dinger equa-
tion ~Nakatsuji’s theorem!. With partial N-representability
conditions ~such as4D>0), however, the CSE is signifi
cantly more powerful than the dispersion condition. Resu
in Table VI show that the CSE with4D>0 is far more
accurate than dispersion with4D>0. The CSE enforces
Hellmann-Feynman perturbations of the dispersion condi
which are implicitly associated with the condition4G>0. It
is this feature rather than Nakatsuji’s theorem that dis
guishes the CSE from the dispersion condition when o
approximateN-representability conditions are imposed. F
this reason cumulant reconstruction for solving the CSE
not easily extended to the dispersion condition even tho
both equations satisfy Nakatsuji’s theorem. The condit
4G>0 containsall of the N-representability conditions tha
are necessary to make the CSE and the dispersion cond
equivalent. Because the four-particleG condition implicitly
conveys the most important information in the CSE, the p
of the CSE that is independent of the dispersion condition
allows us through the more general notion of 4-positivity
minimize the energy directlywithout the CSE.

Many processes in chemistry and physics from ordin
bond stretching to superconductivity are not readily trea
by conventional implementations of many-body perturbat
theory or coupled-cluster theory@45#. Often these situations
require multireference treatments or even full configurat
interaction ~FCI!. Since the storage for a FCI calculatio
scales exponentially with the number of electrons, its ap
cation is restricted to small molecules. Energy minimizat
with 4-positivity, a nonperturbative approach to electron
structure, also has the ability to treat static correlation eff
tively where the scaling of either the 2-RDM or the 4-RD
(r 23r 2 and r 43r 4, respectively wherer is the rank of the
one-particle basis set! is much more reasonable than the sc
ing of the FCI wave function. Although the CSE with fun
tional reconstruction also determines the 2-RDM without
04211
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wave function, the present calculations indicate that thecu-
mulant reconstruction as a renormalized perturbation the
is not capable of treating highly correlated quantum syste
as accurately as energy minimization of the CSE w
4-positivity @14,23#. Further reduction in computational e
fort may be possible by constraining only the most import
parts of the metric matrices to be positive semidefinite;
effectiveness of any reduction will depend upon the nature
the quantum system and the strength of the correlation. V
demoro, Tel, and Perez-Romero have recently proposed
eral constraints upon the elements of the 2-RDM which
implied by the condition that the4G matrix be non-negative
@21#.

The quality of the energies from 4-positivity challenges
to develop both existing and additional mathematical m
chinery to enforce these conditions efficiently. Effective F
algorithms have been under construction for many years@46#
with important improvements occurring recently@47#, but
the application of the mathematical techniques to the m
mization of the energy subject to 4-positivity constraints is
frontier that requires both theoretical and computational
ploration. Recent techniques for positive semidefinite p
gramming, anticipated by earlier research in the RDM lite
ture @34#, may facilitate the development of improve
4-positivity algorithms that are capable of treating atoms a
molecules effectively@48#.

Approaches to many-body correlation may generally
arranged in two categories, upper-bound variational appr
mations and perturbation techniques. The 4-positivity rest
tions on the 2-RDM offer an approach to many-particle c
relation with several distinguishing features:~i! the
calculation of a tight lower bound to theN-body energy,~ii !
the use of nonperturbative positivity restrictions which pr
vide a robust method for accuracy at all perturbati
strengths, and~iii ! the direct determination of the 2-RDM
without the N-particle wave function. The nonperturbativ
nature of the density-matrix approach manifests itself in
determination of correlation energies in Table III that a
more accurate than those from wave-function methods.
last feature responds to Coulson’s after-dinner challeng
determine a useful description for the set of ensem
N-representable 2-RDMs. Earlier studies@31–34# of
N-representability employed at most 2-positivity and over
timated the correlation energy by large factors. By constra
3-8
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ing the 2-RDM to obey the uncertainty relations for ope
tors with two-particle interactions, we have obtained
ground-state correlation phenomena an accurate mappin
quantum mechanics onto four particles. We observe ra
convergence of the correlation energy with the order of po
tivity; specifically, there is a significant jump in accurac
between 2- and 3-positivity which we associate with the
set of correlated operators in the uncertainty relations.
though computationally challenging, the direct energy mi
mization with 3- or 4-positivity will eventually provide tool
for areas of chemistry and physics dominated by correla
:
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such as bond stretching, molecular dissociation, transit
metal phenomena, weak intermolecular interactions, and
perconductivity.
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