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T. Eggeling and R. F. Wernér
Institut fr Mathematische Physik, TU Braunschweig, Mendelssohnstrasse 3, 38106 Braunschweig, Germany
(Received 30 October 2000; published 21 March 2001

We study separability properties in a five-dimensional set of states of quantum systems composed of three
subsystems of equal but arbitrary finite Hilbert space dimension. These are the states that can be written as
linear combinations of permutation operators, or equivalently, commute with unitaries of theUfarbh
®U. We compute explicitly the following subsets and their extreme polidjstriseparable states, which are
convex combinations of triple tensor product®) biseparable states, which are separable for a twofold
partition of the system, an@®) states with positive partial transpose with respect to such a partition. Tripartite
entanglement is investigated in terms of the relative entropy of tripartite entanglement and of the trace norm.
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I. INTRODUCTION it turns out that the separability sets we investigate are also
independent of dimension.

One of the difficulties in the theory of entanglement is We now describe the natural entangleme@nt separabil-
that state spaces are usually fairly high-dimensional conveity) properties we will chart for these special states. Our
sets. Therefore, to explore in detail the potential of entangledlassification is similar to the one used[#, but differs in
states, one often has to rely on lower-dimensional “laborathat we do not artificially make the classes disjoint.
tories.” An example of this was the role played by a one- Of course, we can split the system into just two sub-
dimensional family of bipartite stat¢4], which has come to systems and apply the usual separability/entanglement dis-
be known as “Werner states.” In this paper we present dinctions. A split 123 then corresponds to the grouping of
similar laboratory, designed for the study of entanglementhe Hilbert spacé{;® H,® H; into H,;® (H,® Hs). We call
between three subsystems. The basic idea is rather similar todensity operatags on this Hilbert space |23-separable(or
[1] and we believe that this set shares many of the virtuefust biseparableif the partition is clear from the contexif
with its bipartite counterpart. First, the states have an explicitve can write
parametrization as linear combinations of permutation opera-
tors. This is helpful for explicit computations. Secondly,
there is a “twirl” operation that brings an arbitrary tripartite
state to this special subset. This proved to be very helpful for
the discussion of entanglement distillation of bipartite en-with A ,=0 and density operatoys>> on H,® H;. We will
tanglement: the first useful distillation procedures worked bydenote the set of sughby B;. This set will be computed in
starting with Werner states, applying a suitable distillationSec. V. Furthermore, as it is a necessary condition for
operation, and then the twirl projection to come back to thebiseparability(cf. Pereg5]), we are going to look at those
simple and well-understood subset, thus allowing iteratiorstatesp having apositive partial transposavith regard to
[2,3]. Geometrically this means that the subset we investisuch a split denoted by e P,. Recall that the partial trans-
gate is both a section of the state space by a plane and thgseA— A1 of operators orf{,;® H, is defined by
image of the state space under a projection. The basic tech-
nigue for getting such subsets is averaging over a symmetry (E A ©B )Tl_E AToB
group of the entire state space. Such an averaging projection ~ DaZ Fa ] & Bla Fan
preserves separability if it is an average only over ldtat-
torizing) unitaries. Of course, special subgroups might turnwhereAT on the right-hand side is the ordinary transposition
out to be useful. For example, in a recent pd@gra class of  of matrices with respect to a fixed basis. It is clear that
tripartite (n=3) states was studied for dimensi@h=2, B,C7P; holds, but as we will show in Sec. VI by computing
which is invariant under unitaries of the group of order 24P, this inclusion is strict except fait=2.
generated by of’s, o3®1®0o3, I®03®0; and As a genuinely “tripartite” notion of separability, we
explmoy/3)®3. consider states, callettiseparable (or “three-way classi-

The third useful property of the states we study is thatcally correlated’), which can be decomposed as
they can be defined for systems of arbitrary finite Hilbert
space dimensiord, leading to the same five-dimensional _ (1) o (2) o (3)
convex set for everyd. [This generalizes to an p_g NaPa'@Pa’@Pa’s &)
(n!—1)-dimensional set fon-partite system$.Surprisingly,

p=2 Ao pPep?, 1)

@

where\ ,=0 and thepg) are density operators on the respec-

tive Hilbert spaces. The set of such density operators will be
*Electronic address: T.Eggeling@tu-bs.de denoted byZ. Of course, we may also consider states that are
TElectronic address: R.Werner@tu-bs.de biseparable for all three partitions. It is know@] that this
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does not imply triseparability, i.e7S (B,NB,NB;). Fur-  group, suggesting a basis that is much more handy for decid-
ther examples will be found below. ing positivity. Again, this step works for any number of fac-
Since in this paper we will only be interested in a five- tors, but we carry it out only in the case=3. We introduce
dimensional se¥V of symmetric stateésee the next sectipn  the following linear combinations of permutation operators:
we will from now on use the symbolf 5;, andP; only for 1
the corresponding subsets 1f. R+25(1+V(1z)+V(23)+V(31)+V(123)+ Vis21), (59

II. DEFINITION AND MAIN RESULTS

1
A. U®U@®U-invariant states: W R_ :g(l_V(lz)_V(23)_V(31)+ V(123)+ V(321)), (5b)
Throughout we consider states on a Hilbert space of the
form H® H® H, whereH is a Hilbert space of finite dimen- 1
siond. The group of permutations on three elements acts on Ro=§(2'1—V(123)— V(z21), (50

this space by unitary operatoys,, defined by

_ 1
Vi 019 020 3= 110 - 150 P13, R1=§(2V(23)—V(31)—V(12)), (5d)

For the six permutationsr we use cycle notation so that

V(12 is the permutation operator of the first two factors and 1

V(123 is the cyclic permutation taking 1 to 2. We denote by Ro=—=(V(12y~ V(31), (58
*“dU” the normalized Haar measure on the unitary group of \/§

‘H and define on the space of operators the operator

i
Ry=—=(V -V . 5f
Pp:de(U®U®U)p(U®U®U)*. (4) 3 ﬁ( (129~ Viazn) (59

. . . ThenR, , R_, andR, are orthogonal projections adding up
Clearly, P takes positive operators to positive operaiirss to 1 and commute with all permutations. This means that

g\éigitf/otr)?gregg)r/s agsggsg?f ;;(:fgtzrtsr(p\/)\;ellggnpnrgvipjefing]ey correspond to the irreducible representations of the per-
the set of states, which form the object of our investigation.mmatIon group:R, and R correspond to the two one-

. dimensional representatiofisivial and alternating represen-
Le.”.‘ma 1For an operatorp on H@H@H the following tation, respectively and these operators are indeed just the
conditions are equivalent

orthogonal projections onto the symmetric and antisymmet-
(1) (UeUeU)p=p(UaU®U) for all unitary opera- ric subspaces di® H®H in the usual sense. Their comple-

tors U onH. ment Ry corresponds to a two-dimensional representation,
(2) Pp=p. which is hence isomorphic to the<2-matrices. The opera-
(3) p== 1,V with coefficientsu ,  C. torsR;, R,, andR; act as the Pauli matrices of this repre-

) o ~sentation. In other words, the six hermitian operats,

_The set of density operators satisfying these condition R, R;, R,, andR; are characterized by the commuta-
will be denoted by/V. _ _ tion relationsR;R. =R.R;=0, R?=R,, fori=0, 1, 2, and 3

The equivalence of Eqgl) and (2) is straightforward 5.4 RyR,=iRs with cyclic permutations.
from the invariance of the Haar measure. The implication * nqw every operatop in the linear span of the permuta-
(3)=(1)is Frivial because the permutation operators clearlyions can be decomposed into the orthogonal pRi,
commute with operators of the formJ@U@U). The only g, andR,p and positivity ofp is equivalent to the posi-
nontrivial part is thus (13> (3), which is, however, a stan- ity of all three operators. This leads to the following
dard result([7], Chap. I\) from representation theory. Of | smimas

course, all these work for any number of tensor factors. Lemma 2 For any operatorp on H®H®H, define the
The above Lemma does not address the question how tg, parameters g(p) =tr(pRy), for ke {+,—,0,1,2,3. Then

recognize density matrices inierms of the six coefficientsrk(Pp):rk(p). Moreover, eachp e W is uniquely charac-

M. Hermiticity requiresu-1= u,., leaving effectively six  terized by the tupldr, ,r_,ro,r1,r,,r3) e R® and such a

real parameters. One more is fixed by normalization so thagple belongs to a density matrpxe W if and only if

W is embedded in a five-dimensional real vector space. In

terms of the parameteys,, positivity is not easy to see. In ro,r_,ro=0, ro+r_+rg=1,
order to get a better criterion, it is best to study tigebra
of operators that are linear combinations of the permutations. ri+ra+ri<ra. (6)

The product of such operators can readily be computed by

using only the multiplication law for permutations. The ab-  Note that in this parametrization the 38t does not de-
stract algebra of formal linear combinations of group ele-pend on the dimensiod with one exception: fod=2 the
ments(known as the group algebraan be decomposed in antisymmetric projectiolR_ is simply zero, so for qubits we
terms of the irreducible representations of the underlyingyet the additional constraimt.=0. If one considers a given
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FIG. 1. Description oV in terms of the triangle/V® and the
corresponding Bloch sphere for each pointAf.

density operatop as an operatop’ in H'®@H'®@H' for a
higher-dimensional spade’ DH, by setting all “new” ma-
trix elements equal to zero, we will have(p)=r.(p').

Takingro=1—-r_,—r_ to be redundant, we get a simple  FIG. 2. Subsets oiV" with different separability properties.
representation ofV as a convex set in five dimensions. Un- Black triseparable; dark gray, biseparable; and light gray, images of
fortunately, five-dimensional sets are still not very amenabléiseparable states under permutation averaging. Special points ex-
to graphical representation. For visualizing the sets we arglained in the text.
going to describe analytically, we will therefore use suitable
two- and three-dimensional representations. Again, we havedimension-dependent transformatipmhich is obtained by
the possibility of using sections or projections)dfand we  observing that tt=d?, tr(V(lz))zdz, and tr(V13) =d].
will emphasize sections that can also be understood as pro-
jections. d

The simplest example of this is to take the subset r+=€(d2+ 3d+2)c,, (8a)
WPCW of states, which also commute with all permuta-
tions. The corresponding projection is simply averaging with
respect to permutations. Clearlyy” consists of those op-
erators inW, which are linear combinations &, , R_, and
Ry alone. Takingr . andr_ as coordinates, we get the tri-
angle in Fig. 1. Thus each point in this triangle represents a 2d
density operator in/F. On the other hand, it represents the ri=—(d?-1)c; for i=0,1,2,3. (80)
set of states iV projecting to it on permutation averaging: 3
this will be all states with the given values of andr_ in
the 6-tuple, which therefore differ only in the valuesraqf B. Overview of main results

r,, andrs. Thus, over every point of the triangle in Fig. 1, . . . L .
we should imagine a Bloch sphere of radiys An overview of the main results of this paper is given in

If more detail is required, we will also use three- Fi9- 2. To keep the pi%ture as simple as possible, we have
dimensional sections and/or projections of a similar nature®nly depicted the sexV™, i.e., the triangle in Fig. 1. Natu-

For example, if we average only over the permutationsra"y’ this reduction does not allow the representation of our
V(23), We get the subsety @)W with r,=rs=0 (see the full results, i.e., the detailed structure of the five-dimensional

dotted tetrahedron in Fig. 10Averaging only over cyclic ~COnvex setsZ, By, and P, which will be described in the
permutations, we get the subSet®°C )V with r;=r,=0 co_rrespondmg sections. However, we _found this d_lagram
(which gives the same tetrahedron)a&? with r, substi- quite u_seful as a ba3|c_ map for_ not losing our way in five
tuted byr ). dlmen5|ons,_anc_l ho_pe it will S|m|_larly serve our r_eaders.
We note for later use that the expectation valygarenot . The shading n Fig. 2 mark; d|ﬁer§ant separabll]ty proper-
the coefficients in the sum ties and the points labeled with capital letters arise by pro-
jecting pure states with special properties with the twirl pro-
jection (4). Some of these point<D(E,F) do not lie in the
p= > ckRy. 7) plane WP, i.e., they have nonzero coordinates ,f,,r3).
k=+,-,0123 They are represented by white circles, in contrast to the black
circles (A,B,C,G,H) representing permutation invariant
These are related to the parametgysby the following — states in the plangV”.

1

d
r_=g(d2—3d+2)c_, (8h)
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The triseparable states correspond to the black triangle ference cannot be seen in this diagram. In fact, we will show
A(ABC). It is easy to see that any triseparable state proin Sec. VI that even the 23-invariant subsetsifand 5,
jected by permutation averaging ¥ is again triseparable, coincide, i.e.,P;,N W% is spanned by the same four ex-
i.e., the projection of7 onto WP coincides with7NnWP.  treme points8, D, E, andF.

The extreme points of this set are As will be seen in Sec. VI, there is a close connection
between the problems of findirg, and finding states invari-

ant under averaging over all unitaries of the foliw U

®U. It turns out that the sets of triseparable and biseparable
states commuting with such unitaries can be obtained via a
simple linear transformation from their counterpatis) WV

and B;NW computed in this paper. This mapping and a
sketch of the results is given in the Appendix.

A:|123—(1/6,1/6,0,0,0,
B:[111)—(1,0,0,0,0,
C:(|111) — \3|112) + \/3|121) — 3|122))/4—(1/4,0,0,0,0,

where the notatioW?—(r, ,r _,rq,r,,rs) indicates that the
pure statg W )(W¥| is projected to this point by from Eq.
(4). In other words{V|R¥)=r, for k=+,—,1,2,3. Note lll. TRISEPARABLE STATES: 7T

that all three vectors given are product vectors, the on€for If p is triseparable and hence has a decomposition of the

being the product of three vectors in the “Mercedes star”form (3), we may also find a decomposition in which all

configuration in the plane, at an angle 120° from each other, 0 : ;
A quantitative description of the genuinely tripartite en- factorsp,, are pure, simply by decomposing each of these

L . . . density operators into pure ones. Applying to such a decom-
tanglement oV is given in Sec. IV in terms of the relative ., L ! .
entropy and the trace norm. position the projectior®, we find thatp e ZC W if and only

. . - : : if p is a convex combination of states of the fofPf¥)
The biseparableset 3, is not permutation invariant since X (W), whereW = yn,® g, ® 5 is @ normalized product vec-
the partition 123 clearly is not. As a consequence, the per- ’ 172 s P

mutation average projecting/ onto WW" does not map3, tor. Let us denOte.b%Ufe;W the set of such states. Our

into itself, and we have to distinguish in our diagram be_strategy for determining will be to first getZp,eand then to

tween poi,nts( r_) such that ¢, ,r_,0,0,0) is biseparable obtain7 as its convex hull. The resulting characterization of
+ 90— + 2l =YYy

X ) X : Tis formulated in Theorem 1.
(i.e., theintersection3;NWP) and points (, ,r _) such that . - L
for some suitable 1G.rp,rs), the  quintuple Given a product vectolV = i, ® »® i3, it IS easy to

(F4 T F1.12.r3) represents a point iy, (i.e., theprojec- compute the projected stal|W¥)(¥|): By Lemma 2 one

tion of B; ontoWP). In Fig. 2 the intersection is the triangle just has to compute the expectations of the permutation op-

A(GAB), drawn in a darker shade of gray than the triangleerators' For example,

A(EFB), which is the projection of the biseparable subset
B;. Note that the shading reflects the inclusion relations, i.e.,
triseparable states are, in particular, biseparable, and the s
tion of the biseparable set is contained in its projection. O
course, the states i8;NWWF are also biseparable for the

other two partitions since they are permutation invariant.

(PIV W) =(1® 2@ Pa| h2® 1@ thz) = (e | o) P

fi this way it is easily seen that the expectations of all per-
mutations ar¢l,a,,a,,a3,a4+iag,a,—ias}, where the five
real parameters are given by

S;rrr;::eérly, the projections of3, and B; onto WP are the ay= (| )2, (9a)
thepf(())IIT(gtv ggssggglrlsr?terest for the biseparable set arise from a,= (sl o). (9b)
D:|122—(1/3,0,2/3,0,0, ag= (vl y2) %, (99)
E:(]112—|121))/2—(0,0,-1,0,0, aq= Re((4] o) (ol th3) (| ¥1)), (9d)
F:(/123-]132)/12-(0,1/3-2/3,00, as=IM({ya| o) (ol Y2}l 1)) (%)
G:(]112 —|121)— NE] 122})/\/§—>(1/5,0,0,0,(). Since a pure state id dimensions(taken up to a factoris

given by -2 real parameters, these five quantities are a
Here the point8, D, E, andF are extreme points df; and  considerable reduction from the &{ 1) parameters deter-
span a tetrahedron, which is equal to the suBsetW(?® of ~ mining the three vectorg; . However, they are still not in-
states invariant under the exchange:2. The pointG lies  dependent due to the identity
on the line connectinge and D and is the unique extreme

point of B;N WP which is not triseparable. In this sense it f(a,a5,a3,84,85) ==a§+ aé—alazagzo. (10
represents an extreme case demonstrating the inequality
# (BN B,NB3). Since we want to determiri,,. exactly, we also have to

The setP; of states withpositive partial transposevith  find the exact range of these parameters, asjtheary over
respect to the partition|23 contains3; strictly but the dif-  all unit vectors. This is done in the following lemma.
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Lemma 3 A tuple(a;,a,,a3,a4,as5) € R® arises viaEq. Lemma 3 describes the sg,,. of projected pure product
(9) from three unit vectorsf,,#,,¢5 in a d-dimensional states as a compact subset of the hypersurfade idefined
Hilbert space(d>3) if and only if Eqg. (10) is satisfied 0 by Eq. (10). Computing the convex hull of this set i’ is
<g;=<1 fori=1,2,3,and the same as computing the convex hullRf,. because the
expectations of permutations or the operatBfsfrom Eq.
(5) are affine functions of;. Explicitly, the expectations
r=(v|RY), k=+,-,0,1,2,3, which we have used as our
standard coordinates iV are
If d=2 the Lemma holds with last inequality replaced by
equality

Proof. Necessity of Eq(10) and O<a;<1 is clear. In-
equality (11) is just the condition that the expectation of

l-a,—a,—az+2a,=0. (11

1
r+=6{1+(al+ a,+ag)+2a.},

antisymmetric projection should be positive. Since this pro- 1
jection vanishes fod=2, it is also clear that equality must r-=gil—(a;taztag)+2as,
hold in this case.
Suppose now tha,, ... a5 satisfying these constraints 2
are given. We have to reconstrugt, ., andy; satisfying r0=§(1—a4),

Eq. (9). These equations essentially determine the
3X3-matrix M;; = (4| ¢;) of scalar products. Of course, we 1
already know the absolute values of its entrieste M;; r1=§(2a1—a2—a3),
=1). The phases are irrelevant up to some extent: multiply-

ing any row with a phase and the corresponding column with
its complex conjugate will not change after Eq.(9) and
amounts to multiplying one of thg; with a phase. Hence we

1
rzzﬁ(as—az),
may assume that the scalar products|,) and {i,|s)

are positive. The phase of the remaining scalar product 2
(3| 1) is then the same as the phasegf-ias, henceM is r;=—as.
essentially uniquely determined by the parameggrs V3

Ngw M |s.a.1 matrix of scalar prgjucts if and only2 if itis We begin by computing the projection @, onto the
positive definite: on one hand;;;u;u;M;;=|Z;u;¢;]|*=0 B

he oth i ith r . ,r_) plane by determining the possible range of the com-
and on the other, we can construct a Hilbert space with suc inationsm=(a,+a,+az)/3 anda,. By choosing phases

scalar products as the space of formal linear combinations %r the scalar products we can makg vary in the range
three vectors with scalar products of basis vectiaénedoy |lay|<(a,8,a5)¥2=g%2 wherem and g are the arithmetic

m Posmvg dtcra]flnltenes:_lgﬂ tthen ensEJrrhes (tjhe pos_|t|V|t3; (t)rfm and the geometric means af;, a,, and az. As is well
€ norm In this new Hiibert space. 1he dimension ot ISy oy g<m and equality holds il =a,=az. Hence the

space is the r_ankdﬂ (number oflmear_lymde;pend_ent rows/ projection of 7, is contained between the parametrized
columng. So in the present case the dimension will bgoGt lines

any larger space will also contain appropriate vegtorss 2
if M is a singular matrix. 1
Positive definiteness dfl is equivalent to the positivity r(m=g(1+3m* 2m?R),
of all subdeterminants. The diagonal elements are 1,
hence positive anyway. Positivity of the three 1
2Xx2-subdeterminants is equivalent égg<1 for i=1,2,3. r_(m)==(1-3m=2m?3).
Finally, the full determinant oM, expressed in terms af; 6
gives expressiorill). It must be positive, and fod=2 it

must vanish sincéd is singular. - Plotting these curves gives Fig. 3. It is clear that the shape is

not convex and its convex hull is the triangdé8 C.

A similar plot of the setZ,including one more coordi-
nate,rs, is given in Fig. 4.
0.2 7] 4 Again, it is clear that no point on the surface can be an
extreme point of the convex hull of the surface because the
surface “curves the wrong way.” This is the intuition behind
01 - the following lemma by which we will show that also in the
full five-dimensional case, the interior . contains no
extreme points.

r_

G Lemma 4 Let N;={xe R"|f(x)=0} be the zero surface

0.0 oo ” os Lo " of afunction fe C2(R",R) and KC R" a compact convex set.
’ Let &4 be an open ball around a pointx N¢ such that
FIG. 3. Section of the sef,, with WP and its convex hull. (UNN¢) CK, and suppose that,xis hyperbolic in the fol-
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points, we are left with the cases=a,=0 representing the

i triorthogonal statef8] [i.e., point A=(%,%,0,0,0) inr;’s] or
aj+a,=1. All such points satisfy - =0, hence they will be
in our general discussion of cases with=0. The equalities

r_ a;=1 lead via Eq(11) to the inequality 8<2a,— (a;+ay)

and therefore, to
a,=3(aj+ay) = Vaja= Vaajax
= JaZ+aZ=/a’=|a,|=a,.

From this we can see that=0, a;=a,, anda,=a;=ay.
Once again this implies_ =0 so that this remains the only
Case to be checked.

Forr_=0, we can expressg; byr., rq, r,, andr,, and
solve EQq.(10) for r5, obtaining a relation of the form

T3

0

FIG. 4. Plot of the same section as above making additional us
of the coordinate .

lowing senseVf(x;)#0 and the tangent plane through, x

contains two lines such that the second derivative of f is ra=+h(r, ,ry,ry), (12)
strictly positive along one and strictly negative along the
other. Then ¥ is not an extreme point of .K whereh is the square root of a third-order polynomial. Equa-

Proof. Supposex;, is an extreme point oK. Then there tion (12) describes the surface of a convex seh i a con-
must be a supporting hyperplane, i.e., a hyperpl&he cave function. This can be checked by verifying that the
through x;, such thatK lies entirely in one of the closed Hessian ot is everywhere negative semidefinite. Hence all
subspaces bounded b} We claim that this implies theft  points in7,,.with r _=0 are extremal and are characterized
restricted toH, has to be either non-negative or nonpositiveby Eq. (12). This completes the determination of extreme

in a neighborhood o%;, . points of 7, summarized in the following Theorem. It also
Suppose on the contrary there are pointsx_eHNU  contains the dual description Gfin terms of inequalities.
such thatf(x,)>0>f(x_). We may then connect, and Theorem 1. The subs&C W of triseparable states has

Xx_ by a continuous curve lying entirely id and also in one the following extreme points, described here in terms of the
of the two open half spaces bounded Hy Sincef is con-  expectations y=tr(pR), k=+,—,1,2,3.

tinuous, any such curve must contain a pomwith f(y) ) )

=0, i.e.,ye (N;NU) CK. Since we can choose either side of () 3ri+(1-3ry)2=(ra+ry)(ri—3ry—2r.)(r;

H for the connection, we find pointse K on both sides of +3r2—2r,) andr_=0,

H, henceH cannot be a supporting hyperplane. (2) The point A=(1/6,1/6,0,0,0).

This argument shows, in the first instance, that the only
possible supporting hyperplane.m IS the tangent hyper- to the point A or the following inequalities are satisfied
plane (look at the Taylor approximation dfto first ordey. (a) O<r_<1
Applying the argument with the second-order Taylor ap- (b) l(l—_2r6')sr <1-5¢
proximation, we find that hyperbolic points cannot have sup- 4 2, 11 N B v 4 _

) (© (3rg+[1-3r,—=3r_])(1—-6r_)<(ry+ry—r_)
porting hyperplanes, hence cannot be extremal. | % ol T)2— 32

To apply this lemma to the functiohfrom Eq. (10), we {(ra=2ry—r-1) 2}
have to pick two appropriate tangent lines at any given poinfrhese inequalities are obtained by projecting the given point
a=(a;,a,,a3,a4,as) on the surface. We parameterize suchonto the hyperplang _=0 from point A and checking

lines asa+tb, teR so thatf(a+tb)=f(a)+Mt2. Two Whether the projected point satisfies the inequality|

A statep e W is triseparable if and only if it corresponds

choices with an opposite sign M are <h(r, ,rq,r,) with h from Eq. (12). To get an idea of the
shape of7 we compute the section with, =0.27 andr _
b=(0,0,0a5,—a,), M=(a’+ad), =0.1(Fig. 9.
b=(2a,,2a,2a3,38,,385), M=—3(a2+a?) IV. RELATIVE ENTROPY OF TRIPARTITE
LR RS TR 4798k ENTANGLEMENT

where we have used the equatida) = 0 to evaluate the last Quantitative measures of bipartite entanglement and their
expression. Hence every point of the surfa¢eis hyper-  properties are a very active area of research at the moment.
bolic. In the tripartite case, the difficulties in quantifying entangle-
By Lemma 4 we therefore only have to consider boundaryment began already with the pure states, for which no ca-
points of the surface, i.e., points for which at least one of thenonical form as simple as the Schmidt decomposition exists.
inequalities in Lemma 3 is an equality. One can, however, extend the standard definition of the re-
Let us begin with the equalities;=0, for at least oné  Ilation “more entangled than” to tripartite states. It is clear as
€{1,2,3;. Then we havea,=as=0 by Eq.(10) and O<a, to what local quantum operations should be in the multipar-
+a,=<1 (j#k) by Eq.(11). As we are looking for extremal tite case, and we can describe classical communication be-
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partite case. Obviously, the triseparable subset is invariant
under LOCC operations, so the distance/tis an entangle-
ment monotone provided the distance functional has appro-
priate properties. One needs only one condition for a func-
tion A to define an appropriate “distanceX(p, o) between
arbitrary states of the same tripartite system.

A(Tp,To)<A(p,o) forany LOCC operationT.
(13

T3 Then for the functional
Ea(p)=inf{A(p,0)|oeT} (14

we get the inequalities
Ea(Tp)<inf{A(Tp,0)|o=To'; o'} (19

=inf{A(Tp,Ta')|o’ €T} (16)

| | <inf{A(p,o")|o' e T1=Es(p).  (17)
FIG. 5. Plotting the set7 for the sectionr, =0.27 andr _
=0.1 gives a heart-shaped surface with trigonal symmetry which iHenceE, is indeed a decreasing functional with respect to
contained in the respective Bloch sphere. the ordering>. Note that the only property of needed to
show this is that it is mapped into itself under LOCC opera-
tween many partners in much the same way as in the bipations. Any other set with this properte.g., 3, or P;) will
tite case. Once we fix the rules of classical communicatior@lso lead to an entanglement monotone.
(e.g., “each partner may broadcast her results to all the oth- Two natural choices foA satisfy requirement13) and
ers”), we will say thatp is more entangled tham, whenever both of them satisfy it with respect to arbitrary operatidns
we can reaclyr from p by a sequence of local operations and (not just LOCC operations first the trace norm distance
classical communicatiofLOCC), in which case we will Ai(p,o)=lp—ol; and the relative entropyAg(p,o)
write p>o. =S(p,0), leading to entanglement monotones that we de-
A full characterization of this partial-order relation is only note byE; andEg, respectively. In both the cases, the actual
known in the case of bipartite pure statdelsen’s theorem computation of the distance fpro e VW is greatly simplified
[9]). Even in the mixed bipartite case there is no straightby the observation that we may consider bptfand o as
forward way of deciding whether one of two given density states(positive normalized linear functionalen the algebra
operators is more entangled than the other. Hence we canngenerated by the permutation operators, and that both the
hope to give such a characterization in the tripartite casdrace norm and the relative entropy are naturally defined for
Nevertheless, the entanglement ordering is one of the fessuch functional§10]. Moreover, because the twif#) is a
tures one would like to explore and chart)iti. There are conditional expectation, the relative entropy of stateg\ims
two ways of approaching this: on the one hand, we may staiidependent of the algebra over which it is computed
from some state e W, apply many LOCC operations to it, Theorem 1.13[10]). Now the six-dimensional algebra gen-
and see where we end up. We can always assume the opegiated by the permutations is independent of the dimertsion
tion to end up iNW, because the twirl operation is itself a So that if we parameterize ando by the expectations d®y
LOCC operation, which involves the random choiceloby ~ as before, we find that the entanglement monotdaigsre
any one of the partners, the broadcastingJofo the other independent of dimension. The expression for the relative
two partners, and the unitary transformationUyat each of entropy involves, apart from the abelian summands, the loga-
the sites. For an initial survey, we may even study the relarithm of a 2x2 matrix, which can also be written explicitly
tion in the permutation invariant trianghd’® even though in terms of the parameters, for the two states involved. The
the permutation of sites is definitelyot a local operation. variational problen{14) can be then solved numerically for
But if the initial state is permutation invariant afdis any  arbitrary states inW.
LOCC operation involving certain specified tasks for Alice, The contour lines overV® of the resulting entanglement
Bob, and Charly, the three may just throw dice to decide whanonotones are plotted in Fig. 6 f&; and in Fig. 7 for the
is to take which role. With this procedure they effectively getrelative entropy of tripartite entanglemeag. Note that the
the permutation average of the output statelofWith such  two necessary conditions fgr> o expressed in these dia-
studies, we get sufficient conditions fpk- o grams complement each other. In order not to complicate
In order to get necessary conditions the only approach ithese graphs we have not drawn the simplest sufficient con-
to find functionals on the state space that are monotone witHition for entanglement ordering: from any stateany state
respect to entanglement ordering. Luckily, one of the idea$ying on a straight line segment ending7ris less entangled
for getting such monotones can be transferred from the bithanp.
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17°— then depend linearly on the following real parameters:
5 Co=|¢14l% (183
0.8
c1=2 [yl (180)
1>1
0.6
co=2, |4ial?, (189
i>1
0.4 -
C3= 2 ij¥iis (180
ij>1
0.2 ]
C4+iC5:_ ljl//jl (189
j>1
0.2 0.4 0.6 0.3 17+

From this we obtain the following, :
FIG. 6. Contour lines overV® for E; .

As a second section of interest we chose the plane ry=g(1+5Co+Cy+CytCatacy),
=0=r,=r,, which is relevant for qubit systems. Qualita-
tively, it gives the same picture of level lines wrapping 1
around the tripartite set. r,=g(1—co—cl—02—cg),

V. BISEPARABLE STATES: B5;

In this section we are going to compute the set of bisepa- ro=3(1=Co=Ca),
rable states with respect to the partitiof23. The technique
is exactly the same as in the triseparable case: we first com- 1
pute the setB,,. of states of the formP(|'W)(¥|) with r1=3(=C1=Cy+2cst4cy),
|W)(¥| biseparable, i.e W =1® 3. In the second step
we get3; as the convex hull of3,.

We are free to apply to our vectdr aU®U® U rotation rz_Cl—Cz ,
without changing the projection. In this way we may choose V3
#1=|1). Now the rotated stateV’ is of the form ¥’
=Ei,j¢ij|1ij ). The expectations of permutations of such a 2¢s
vector, like M3=——.
V3
(‘lf’|v(12)‘l"):'2 wij¢k|<1ij|kll>=2 |z,01j|2 As in the tripartite case, we need to determine the exact
Lkl J range of the parametecs. Let us assumd>2 for the mo-
r_ ment. By the definitions oy, ¢4, andc, we have
1
Cg,C1,C»=0. (19

These parameters fix the weights of the blocks 1,j=1),
(i=1j>1), and (>1,j=1) in the normalization sum
Eﬂj:1|¢ij|2= 1. c,+ics can be read as the scalar product of
two (d—1)-dimensional vectorsp,= (1o, .. . ,b1q) and
©2= (W1, ... bg1) With norm squaresle,ll?=c, and
ll@,ll2=c,. By the Cauchy-Schwarz inequality we have

citci=eilelP<|e1|? @al>=c1co, (20)

and any value ot,+ics consistent with this can actually

occur.
We arrange the remainingy;; (i,j>1) into a
d—1)2-dimensional vector W= e tbog s
0Z 04 06 08 17+ (d-1) s (W22, .. - o
Yao, - .. yhgq) With 1¥[“=1—cy—c;—cC,. On this @
FIG. 7. Contour lines oveW" for Eg. —1)%-dimensional vector space, l&t denote the operator
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swappingy;; andy;; . Thencs=(¥|UW) is the expectation
of an hermitian operator with eigenvalugsl. Hence

lcs|<ITI2=1—co—cy—Cy, (21)

and allc; e R satisfying this inequality can occur.

Together with the obvious modifications in the cake
=2, when there is only one indéx- 1, we get the following
lemma:

Lemma 5 A tuple (cq,C1,C5,C3,C4,Cs5) € R® arises via
Egs.(18) from a unit vectorV in a d>-dimensional Hilbert
space, if and only iEgs. (19), (20), and (21) are satisfied
and in the case & 2, equality holds in(20) and (21).

Let I denote the set of tupleg{,c;,C,,C3,C4,C5) Satis-
fying these constraints. The parametgrslepend linearly on
the ¢; although the mapping is not one to one. Nevertheless,
any extreme point of3; must be the image of an extreme
point of the convex hull of".

Hence we can proceed by first determining the extreme 0.5

points of". Since the positive variables, |c5| and the sum FIG. 8. Plot of the sef, as forr . —0.27 andr_ 0.1 embed-

(€1 +¢5) are only constrained by inequalit1), every point ded in the respective Bloch sphere together With
in I" is a convex combination of tuples in which only one of

these is equal to 1 and the other two vanish. This gives the

73

1+ry—r_—2r,

extreme points (1) Co=1er=(1,0,0,00EB, (2) cs (b) —l<——7—= 1,

=+1er=(%,02,0,0)=D, (3) cg3=—1er=(0,t,—2,0,0) -

=F, and furthermore some points withc,(+c,)=1, g ) 1+ry—r_—2r,

=c;=0. Eliminating c,=1—c;, we can write inequality (¢) if —l<———5——=0 then

(20) as c3+c2+(c,—3)?<%. This is a ball with extreme -

points parameterized by Bra+3r3+(1+2r+r_—r,)2<(2+r,—4r_—2r,)?
0 ¢ _1+cog ) c _1—cog ) _ 1+r,—r_—2r,
o=Y ¥ T/, (d) if 0= -3 1 then

sin(9)coq ¢) sin(9)sin( ) 3r2+3r3+(1—-3r_—3r )?<(r;+2r_—2r,)2
Ca=0, Ca=7— C= 5

We omit here again the computation of these inequalities
from the known extreme points. They can be obtained by
projecting from the three points, B, andD onto the sphere
of extremal points.

The projection of the seB; onto W comes to be equal
to the projection of the set of pui® -states and was already
shown in Fig. 2 together with the sectidhNWP. To com-
pare3; with 7, we plot again the section with, =0.27 and

(1) The sphere given by(3r;+1)2+3r2+3r2=1 with - -0-1(Fig. 8. _ _ _

P To make the inclusior? C (BN B,NB3) mentioned in

r-=0 andr. =(r,+1)/2 except for the poin(5,05.0,0), e introduction more evident we can now compute the sets
which is decomposable 4§,0,5,0,0)=3(B+D). B, and B; to build their intersection with3;. Due to the

(2) The point F=(0,%,—2,0,0). permutation symmetry of the three subsystems we can rotate

l§l . . . B
(3) The pointd=(%,02,0,0). By by =2x/3 in ther-r,-plane instead. This leads to Fig. 9.

(4) The pointB=(1,0,0,0,0).

with ¢, 9 €[0,27]. By mapping this description df to the
r-parameterization we come to the following theorem.

Theorem 2The subse3; C )WV of biseparable states with
respect to the partition1|23 has the following extreme
points, described here in terms of the expectatioRs r
=tr(pR,), k=+,—,1,2,3:

VI. POSITIVE PARTIAL TRANSPOSES: P,

A statepe W !s.blseparable with respect to the partiton  ope of the interesting aspects in the theory of bipartite
1/23f and only if it corresponds to the points F, B or D or entanglement to emerge in recent years is the consideration
the following inequalities are satisfied of the partial transpose of the density matrix and, in particu-
lar, the positivity of the partial transpose. First, this positivity
served as a necessary condition for separability, which is

1
<r_ <= > 7 . . )
(8) O<r- ’ even sufficient in 22 and 223 dimensiongthe Peres cri-

3
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V7TT1 can be a fairly arbitrary space of operators, and deciding
positivity could be quite difficult. However, it turns out that
these linear combinations do form an algebra, so after the
introduction of the right basis deciding positivity is just as
easy as determining the state space in Lemma 2.

The abstract reason for this “happy coincidence” is that
the operatory;l span the set of fixed points of an averaging
operation in much the same way as the permutations span the
set of fixed points oP. The corresponding averaging opera-
tor is

bp=de(U®U®U)p(U®U®U)*. (22)

Its range consists of all operators commuting with all unitar-
ies of the formU ® U® U, hence is an algebra. The following

lemma describes the relation betweemnd P.
Lemma 6 Let A be any Hermitian operator, then

(1) PA=ASPATI=ATY,
(2) (PA)T1=P(ATY).
Proof. For any Hermitian operatok one has

FIG. 9. The intersectiof8; N B,N 35 is shown as a mesh on a I~3A=A<:>[U®U®U A]_=0
transparent surface allowing the $€to be seen. This plot is again '
computed for the section,=0.27 andr_=0.1. The thick lines s[UgUsU,AT]_=0

indicate the intersection of two of the biseparable sets.
= PAT1=ATL,

terion[5]). Moreover, it is a necessary condition for undis-
tillability, and here it comes much closer to sufficiency evenFurthermore, we can compute directly
in general situations. Both aspects play a role in the analysis
of tripartite states. We will therefore describe in this section PAT1= f dU(UeUeU)AT(UUU)*
the subsef?; C WV of states with positive 1-transpose.

Since the dimensions for this bipartite system aeed?,

positive partial transpose does not automatically imply =J dU[(UsUeU)A(UgUeU)*|™
biseparability, i.e., the inclusioi; C P; may be strict. How-

ever, since we are considering a special class of states it is =(PA)T1.

also possible that in this class equality holds. This does hap-

pen, for example, for the bipartite Werner stdtes]. In the u
tripartite case we will see th#f; =P, for d=2, but not for For deciding positivity of partial transposes we need a

higher dimensions, although the two sets come to be remarleoncrete form of the algebra spanned by the partial trans-
ably close(see Fig. 11 However, the exact description of poses of the permutation operators. For example, we get
P, is also important for distillation questions.

The partial transposé—>AT1 of operators onH;®H, Vib= 2 (fifk)(jik])™
was defined in Eq(2). In a tripartite system we take this (12
operation to refer to the first of the three tensor factors and

write pe Py if p"1=0. = |jjk)]iik]|
ijk

A. The algebra of partial transposes — (|¢><¢|)®1

Whenp is a linear combination of permutation operators

as in Lemma 1, the partial transpose where® = ;i ) is a maximally entangled vector of nor

The partial transposes of the other permutations are com-
puted similarly. We can express all of them in terms of the
T1: 2 VTl H .
p MgV first two:
T T
X=V, 1 —and V=V 1L =V (23
is likewise a linear combination of the six operatbts , and 12 (237 729
we have to decide for which coefficiens, such an operator as
is positive. Since partial transposition ot a homomor- T T

-
phism, it would appear that the linear combinations of the =1, V(13)—VXV7 V(123): XV, V

(3121)2 VX.
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Then these operators satisfy the relatiois=X, V*=V Vv ,5-invariant state iV requires nowr . =0, r_=0 and
and [ri<ro=21-r,—r_ [cf. (6)] giving rise to a tetrahedron

bounded by the hyperplanes
X?=dX, V?=1, XVX=X. (24) Y YPErp

(h)ro=0, (hy)r_=0, (hy)r;=1-r.—-r_,

Due to these relations the set of linear combinations of the
six operatorg1,X,VXV,V,XV,VX} is closed under adjoints (hpri=r +r_—1
and products. Positivity of such linear combinations, and
hence the positivity of all partial transposes of operators imrand having the extreme poinB,=(0,0,1), P,=(0,0,—1),
W can therefore be decided by studying the abstract algebm,=(0,1,0), and®,=(1,0,0). The same computation can be
generated by two hermitian elemeitsaandV satisfying Eq.  done on the partially transposed side leading to the tetrahe-
(24). As a six-dimensional noncommutative C* algebra it isdron confined by the hyperplanes
isomorphic to the algebra generated by the permutations, i.e.,
a sum of two one-dimensional and a two-dimensional matrix (h})s.=0, (hy)s_=0, (h§)s;=1-s,—s_,
algebra. But of course, the partial transpose operation map-
ping one into the other is not a homomorphism. (h))s;=s, +s_—1.

From these considerations it is clear that all we have to do
now is to find a basis of the algebra generatedxbgnd V
analogous to the basi$§). This sort of computation can be
quite painful, so we recommend the use of a symbolic alge
bra package. The result is

Using Lemma 6 we can expresgby r of the correspond-
ing W state. Multiplying by positive constants one gets an
easier description of these hyperplanes.

(hpD2(1+ry—r_—=2r )+d(1+r,—r_+r,)=0,

s 1+V(11 2X \1+V (253
= - y
2 d+1/ 2 (hy)2(—1+r,+2r +r1,)+d(1—r,+r_—r,)=0,
1-V 2X \1-V
= — hy)1—r,—5r_—r,=0,
S.=— ( d—1) > (25b) (h3)1—ry +
(hy)l+r,—r_—5r,=0.
So=d2_1[d(X+VXV)—(XV+VX)], (259 Its four extremal points are nowQ;=((2+d)/3,0,(1
—d)/3), Q,=(0,(2—d)/3,— (1+d)/3), Q3=(0,3,— %), and
Q,=(3,05). Of course, these points have no reason to cor-
31=d2_1[d(XV+VX)—(X+VXV)], (25d  respond to positive states, and indeed o@ly and Q, lie

inside the state space, whe&dg andQ, are outside the state
space for alld.
As we are looking for thos¥ ,q-invariant W-states that
Szzﬁ[x_vxv]' (250 have positive partial transpose(, i?e. that lie7y, we now
have to look at the intersection of these two tetrahedra. The
] resulting object is again a tetrahedron as one can see in Fig.
| B 10. This is due to the fact that the extremal poiRtsand
S3= \/Ez_—l(xv VX). (25 Qi(i=1,2,3,4) lie on just two straight lines, namely
P,Q4P,Qq andQ,P,Q3P3. The intersection of the two tet-
These operators satisfy exactly the same relatiofig dom ~ rahedra is hence again a tetrahedron, spanned by the ex-
Eq. (5) and we will denote the corresponding expectationtremal pointsP,, P4, Qsz, andQ, (calledE, B, F, andD in
values bys(p):=tr(pS,). The two projectionsS, corre- Secs. IIB andV, and is thus dimension independent. But it
spond to the two one-dimensional representations of the ais €asily verified from Theorem 2 that these four points are
gebra, i.e., to the two realizations of the relationschyum-  precisely the extreme points of tNg,g)-invariant part of3;.
bers, namelyX=0V=1 andX=0V=—1. SinceB;CP;, we have shown the following:
Lemma 7A V y-invariant )V state has a positive partial
transpose if and only if it is biseparable
As we will see in the next subsection, the assumption of
The simplest case is thés-invariant subset oiV as it V.3 invariance is essential, i.e., the conclusion does not
is a three-dimensional object. In fact thg,3 invariance hold for generalV states.
implies the conditions tiV ,3)) =1, tr(pV(12) =tr(pV (a1, In order to see how 3 invariance helps, we conclude
and tr(pV 123) =tr(pV(s21) . Therefore, we have,=r;=0.  this subsection with a direct proof of the above lemma for
In the same way we obtain for ®,z-invariant statep d=2. If p is aV yg invariant)V-state, then we can decom-
e W™ the conditionss,=0 and s;=0. Positivity of a pose it into the following sum:

B. The V ,g-invariant case
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T+

r_ 1000

1 1
p=7 U+ V(23) p(1+V(23) + 217 Ves)p(1- V(23)

=:p++p7.

It is now clear thaip has a positive partial transpose if both
pt andp~ have a positive partial transpoge’. denotes the
V(23-Symmetric part ofp and p~ the antisymmetric part.
Thus we know thap™ is a 2x 3-density operator and™ a

2X 1. For these systems the Peres criterion holds strictly
[12], i.e., states have a positive partial transpose if they are
separable or, in our case, biseparable over t/28 Split.
Biseparability ofp* andp ™ is equivalent to the biseparabil-
ity of p, which proves the lemma. |

C. The general case

The positivity conditions for arbitrary linear combinations
of the operators, give the following result.

Lemma 8Let p e W be a density operator with expecta-
tions n,=tr(pRy), k=+,—,1,2,3.Then the partial transpose
of p with respect to the first tensor factor is positive, ,ig.

e P, if and only if

O=r_, (263 FIG. 10. The two positivity tetrahedra bounded lny(dotted,

h{ (dasheg, and the intersection tetrahedresolid lineg for d=3.
Oo<rq—r,—r_+1, (26b)

0<1l-r,—5r_—r,, (260 =0by expressing 't in the basisS, and applying the same
criterion to the expectations, . |
O<—1-rq+r_+5r, (260 According to this lemma the sé®; can be visualized as
. follows: first, one has to fix a pointr(,r_) in the
ro+trz=Ry, (260 permutation-invariant triangléFig. 2). The possible choices
y of (r1,r,,r3) can then be seen from Fig. 8. Apart from the
ro+r3<Ry, (26f)  heart-shaped tripartite set in the center this figure contains
three quadratic surfaces: the Bloch sphere and the two sur-
faces bounding3;. Comparing conditior{d) of Theorem 2
Ry=(1—r;=5r_—r )(—1—r;+r_+5r,)/3, and the expression fd&; given in the above lemma, we find
that both constraints are given by the same hyperboloid, the
Ro:=(1l—ry—r_—r )(1+r,—r_—r,). one wrapped around the tripartite set in Fig. 8. Hence in this
figure we can readily find; by extending this hyperboloid
Proof. Recall that averaging with respect¥g,3) projects  all the way to the Bloch sphere and taking the intersection.
P, to the section ofP; with r,=r3. Therefore, the inequali- This is shown in Fig. 11, in the sectian=0.
ties describing the tetrahedron discussed in the last subsec- Figure 11 shows the generic situation with#0. When
tion are Optlmal These are the first four inequalities. Wer7:0' in particu'ar’ for Systems of three qubits' the bound-
therefore only have to describe the admissible set ofr¢)  ary ellipsoid of3;, described by conditiofc) of Theorem 2,
for given (r ,r_,ry). There are two conditions to consider, coalesces with the Bloch sphere. This leads to another in-
one from the positivity op and the other from the positivity stance where the Peres-Horodecki criterion for separability
of p't. As shown in the first subsection, both these requireholds.
ments have a very similar form, namely the positivity of an  Corollary 1. The intersections of3; and P; with the
element in an abstract algebra with two one-dimensionapjane r_=0 coincide. In particular, for3-qubit W states,
summands and one summand isomorphic to thajseparability is equivalent to the positivity of the partial
2X2-matrices. Now, in both the cases; (r_,r;) are transpose
readily seen to fix the weights of the one-dimensional parts e conclude this section by the explicit determination of
as well as the trace and the expectation of the first Paulihe extreme points oP;. From Fig. 11 it might appear that
matrix for the 2x 2-part. This leaves a condition of the form all points on the quadratic surfaces boundiﬁg m|ght be
r3+ri<Rin both cases. The two conditions are given in theextremal. But this is misleading because we also have to take
Lemma, whereRzz(l—u—r,)z—ri expresses the re- into account the possibility of decompositions with different
quirementp=0. The condition(26¢ is obtained fromp™  values of ¢, ,r_). In fact, for the inequalities arising from

where

042111-12



SEPARABILITY PROPERTIES OF TRIPARTITE ... PHYSICAL REVIEW A3 042111

2/3
Bloch sphere

N
>

1/3

01 o0d L

FIG. 11. Plot of the Bloch sphere], By, and P, for r.
=0.27,r_=0.1, andr3=0.

p=0, it is evident that generically such decompositions are

possible: given anyr(. ,r_,rq,r,,r3), which lies on the

Bloch sphere in Fig. 11, we can just change the weights of

the three blocks in the block decompositiorpaéiccording to FIG. 12. Section of the intersecting tetrahedron with the sepa-

(N4 N_T_ Nol1,Nof2, ol 3), @s long a9\ ,,'s are positive ~ rating one-leaf hyperboloid.

and the normalizatioh . r , +N_r_+Ng(l—r,—r_)=11s

respected. This leaves a two-dimensional affine manifold,=r;=0 and reducing our claim to Lemma 7. Whé26a

through ¢, ,r_,rq,r,,r3). Hence, unless other conditions is an equality, i.e.; _=0, the claim is contained in Corollary

constraining’P; prevent the indicated decompositions, nol.

such point will be extremal. Of course, the second constraint Now a point of P, contained in one of these faces can

(268 has the same structure because the algebra of partiahly have decompositions in the same face, hendg, jrfor

transposes is isomorphic to the algebra generated by thmuch a point, extremality if?; and extremality inB; are

states. Hence in Fig. 11 only the points in the intersection ogquivalent.

the hyperboloid and the Bloch sphere remain as candidates It remains to show item 3 of the theorem, i.e., to charac-

for extreme points. This is analogous to the extreme points dferize the extreme points 6%, whoseV ,3, averages fall in

B, which also consist of the intersection of two quadraticthe interior of the tetrahedron. From the arguments preceding

surfaces in Fig. 11. FoP; we get the following. the theorem, it is clear that the points for which only one of
Theorem 3The subse; C W of W-states with positive the inequalitieg26e and (26f) is an equality cannot be ex-

1-transpose has the following extreme points, described hersemal since the surfaces defined by these inequalities con-

in terms of the expectationg+tr(pRy), k=+,—,1,2,3. tain straight lines. Therefore, the condition stated in the theo-

rem is necessary for a point to be extremal. It remains to

(1) The points B, Qs, P,, and Q,, which also span the show that none of the points witR;=R, can be decom-

V(ogrinvariant part of P;. posed in a proper convex combination.
(2) The remaining extreme points &, which form a Let us denote byv; (M) the set of points in the interior
sphere in the r =0 plane (cf. Theorem 2 of the tetrahedron such thBt <R, (R,<R;). The intersec-

(3) The points for whicH(r, ,r_,r;,0,0) lie in the inte-  tion M, =M;NM, of these sets is described by the condi-

rior of the Vpayinvariant tetrahedron and for which in- tion Ry=Rp, or explicitly
equalities(26e and (26f) are both satisfied with equality
P24+3r_+rr_—2r2+3r —ryr,—8r_r,—2r>=1.

Proof. Let us first discuss the periphery of the tetrahedron. (27
Every face of the tetrahedron corresponds to a fac®,of
namely, the face of points projecting to it upon
V(23-averaging. In Lemma 8 this corresponds to the subsetétr
for which one of the linear inequalitieR68—(26d is an
equality. We will show first that each of these faces is actu-
ally contained inB;. Indeed, wher{26b), (260), or (26d are o
equalities, one of the factors iR; or R, vanishes, forcing u—>(ro,ro,ry)+u(ty,to,ty) (28

This is a one-sheet hyperboloid generated by two sets of
aight lines shown in Fig. 12. Consider a line segment
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through one of the pointg=(r, ,r_,r;)e M, of the hy- minest to within a factor. But for a proper decomposition
perboloid. Also consider the radius functiof® evaluated we must also have that the slopes\d®; and R, match at

as a function of the parametar If such a function is affine  u=0. One can show that this never happens inside the tet-
(has vanishing second derivatjvee can sef(r(u),r,(u)) rahedron we discuss, so this case is also ruled out.

= (cosa,sina)R; with arbitrary a to get a straight line in We conclude that no point okl, allows a convex de-
the corresponding hypersurface in five dimensions. We thenomposition insideP;, and the theorem is proved.

call (t,,t_,t;) an affine directionfor R;. Along other di-

rectionsR,; is strictly concave, so no decomposition along the ACKNOWLEDGMENTS

segment28) is possible. For both radius functions, the set of ) ) ) )
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APPENDIX ANALYSIS OF P

2-3r,-12r_ —r In this appendix we give a characterization of the separa-
A=| —2-3r,+120, |, A,= —F, _ bility classes T, B;, and?l) of P showing that they can be
- - " . deduced from those d? without any computation.
—1+3r_+3r, —ltr_+ry The intimate relation between the two twirls emerged al-

(29 ready in Lemma 6 where we stated the existence of an iso-
Assuming that a convex decomposition along E2§) is morphism betwgen the two algebras spanning the eigens-
possible, we thus arrive at a threefold case distinction. ~ Paces ofP and P. This isomorphism establishes an affine
(1) The line segment lies entirely ibl,. Then it must be Mapping. between the two eigenspaces that we used to com-
tangent to the hyperboloit, and also an affine direction Pute;. Due to the inclusior7'¢. B,& P, it is clear that the
for R;. The vectort is uniquely determined up to a factor by same mapping transports the sgtand B, to their counter-

these conditions. However, that does not mean that the coRartsZ andB;. The mapping can be computed by fixing the
responding line segment lies iy, and in fact, one can ordering{L,X,V,VXV,XV,VX} for the second algebra and

show that itneverdoes. Hence this case is ruled out. concatenating the transformatiof® and(25) getting
(2) The line segment lies entirely i ,. This is ruled out
analogously. =

(3) The line segment crosses from; into M,. Thent
must be affine for both radius functions. Again, this deter-with

d—1 d+2 d+2 0 0
d+1 2d+2 2d+2
0 d+1 d-2 2—d 0 0
d—1 2d—-2 2d—-2
2 2 1 d
— — 0 0
d+1 d—1 ¢g2-1 d?-1
L= 2 2 d 1 0 0
d+1 d-1 _d2_1 d?-1
3
0 0 0 0 \/_ 0
d>-1
3
0 0 0 0 0 \/—
d—1
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SEPARABILITY PROPERTIES OF TRIPARTITE ...

S_
1~

0.50 4

0.25

S+
0.50 1

FIG. 13. Sections and projections Gfand 53; with/onto the
s.-s_ plane ford=3. Black, section withf: dark gray, projection
of 7: and light gray, section witi#; .

With this mapping we can compute directly tReprojec-
tion of the state®\ to G:

PHYSICAL REVIEW A3 042111

0.3 0.35

0.25 0.25

0.2 0.2

0.3 0.35

FIG. 14. Zoomed region of Fig. 11.

-2 1
—OO)

|112>—|121>)/¢2( Pt

F:(|123-]132)/1/2—(0,1,0,0,0

A:|123—(1/2,1/2,0,0,0 3 2d-4 2
G:(]112 —|121)— y3|122)/\5—| = = 5q-55-5g°0
B:11D)— d+1 d+1 .0 O) Applying the transformation to the extremal points and

inequalities of Theorems 1, 2, and 3 yields then a character-
ization of 7, B, andP;.

We omit here the results of these transformations and give
Fig. 13, which corresponds to Fig. 2.

In contrast to what can be seen in Fig. 2, the projection of

C:(|111)— V3|112) + V/3|121) - 3]|122)) /4

~|878d'8d—8" 1_292"°

4+5d 3d—6 d+2 )

D:|122—(1,0,0,0,0

Tonto thes, -s_ plane differs from its section with it as one

can see in Fig. 14.
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