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Separability properties of tripartite states with U‹U‹U symmetry

T. Eggeling* and R. F. Werner†
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We study separability properties in a five-dimensional set of states of quantum systems composed of three
subsystems of equal but arbitrary finite Hilbert space dimension. These are the states that can be written as
linear combinations of permutation operators, or equivalently, commute with unitaries of the formU ^ U
^ U. We compute explicitly the following subsets and their extreme points:~1! triseparable states, which are
convex combinations of triple tensor products,~2! biseparable states, which are separable for a twofold
partition of the system, and~3! states with positive partial transpose with respect to such a partition. Tripartite
entanglement is investigated in terms of the relative entropy of tripartite entanglement and of the trace norm.
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I. INTRODUCTION

One of the difficulties in the theory of entanglement
that state spaces are usually fairly high-dimensional con
sets. Therefore, to explore in detail the potential of entang
states, one often has to rely on lower-dimensional ‘‘labo
tories.’’ An example of this was the role played by a on
dimensional family of bipartite states@1#, which has come to
be known as ‘‘Werner states.’’ In this paper we presen
similar laboratory, designed for the study of entanglem
between three subsystems. The basic idea is rather simil
@1# and we believe that this set shares many of the virt
with its bipartite counterpart. First, the states have an exp
parametrization as linear combinations of permutation op
tors. This is helpful for explicit computations. Second
there is a ‘‘twirl’’ operation that brings an arbitrary tripartit
state to this special subset. This proved to be very helpful
the discussion of entanglement distillation of bipartite e
tanglement: the first useful distillation procedures worked
starting with Werner states, applying a suitable distillati
operation, and then the twirl projection to come back to
simple and well-understood subset, thus allowing iterat
@2,3#. Geometrically this means that the subset we inve
gate is both a section of the state space by a plane and
image of the state space under a projection. The basic t
nique for getting such subsets is averaging over a symm
group of the entire state space. Such an averaging projec
preserves separability if it is an average only over local~fac-
torizing! unitaries. Of course, special subgroups might tu
out to be useful. For example, in a recent paper@4# a class of
tripartite (n53) states was studied for dimensiond52,
which is invariant under unitaries of the group of order
generated by s1

^ 3 , s3^ 1^ s3 , 1^ s3^ s3, and
exp(ips3/3)^ 3.

The third useful property of the states we study is t
they can be defined for systems of arbitrary finite Hilb
space dimensiond, leading to the same five-dimension
convex set for every d. @This generalizes to an
(n! 21)-dimensional set forn-partite systems.# Surprisingly,
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it turns out that the separability sets we investigate are a
independent of dimension.

We now describe the natural entanglement~or separabil-
ity! properties we will chart for these special states. O
classification is similar to the one used in@4#, but differs in
that we do not artificially make the classes disjoint.

Of course, we can split the system into just two su
systems and apply the usual separability/entanglement
tinctions. A split 1u23 then corresponds to the grouping
the Hilbert spaceH1^ H2^ H3 into H1^ (H2^ H3). We call
a density operatorr on this Hilbert space 1u23-separable~or
just biseparableif the partition is clear from the context! if
we can write

r5(
a

la ra
(1)

^ ra
(23) , ~1!

with la>0 and density operatorsra
(23) on H2^ H3. We will

denote the set of suchr by B1. This set will be computed in
Sec. V. Furthermore, as it is a necessary condition
biseparability~cf. Peres@5#!, we are going to look at those
statesr having apositive partial transposewith regard to
such a split denoted byrPP1. Recall that the partial trans
poseA°AT1 of operators onH1^ H2 is defined by

S (
a

Aa ^ BaD T1

5(
a

Aa
T

^ Ba , ~2!

whereAT on the right-hand side is the ordinary transpositi
of matrices with respect to a fixed basis. It is clear th
B1,P1 holds, but as we will show in Sec. VI by computin
P1, this inclusion is strict except ford52.

As a genuinely ‘‘tripartite’’ notion of separability, we
consider states, calledtriseparable ~or ‘‘three-way classi-
cally correlated’’!, which can be decomposed as

r5(
a

la ra
(1)

^ ra
(2)

^ ra
(3) , ~3!

wherela>0 and thera
( i ) are density operators on the respe

tive Hilbert spaces. The set of such density operators will
denoted byT. Of course, we may also consider states that
biseparable for all three partitions. It is known@6# that this
©2001 The American Physical Society11-1
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T. EGGELING AND R. F. WERNER PHYSICAL REVIEW A63 042111
does not imply triseparability, i.e.,T'(B1ùB2ùB3). Fur-
ther examples will be found below.

Since in this paper we will only be interested in a fiv
dimensional setW of symmetric states~see the next section!,
we will from now on use the symbolsT, B1, andP1 only for
the corresponding subsets ofW.

II. DEFINITION AND MAIN RESULTS

A. U‹U‹U-invariant states: W
Throughout we consider states on a Hilbert space of

form H^ H^ H, whereH is a Hilbert space of finite dimen
sion d. The group of permutations on three elements acts
this space by unitary operatorsVp , defined by

Vp f1^ f2^ f35fp211^ fp212^ fp213 .

For the six permutationsp we use cycle notation so tha
V(12) is the permutation operator of the first two factors a
V(123) is the cyclic permutation taking 1 to 2. We denote
‘‘ dU’’ the normalized Haar measure on the unitary group
H and define on the space of operators the operator

Pr5E dU~U ^ U ^ U !r~U ^ U ^ U !* . ~4!

Clearly,P takes positive operators to positive operators~it is
even completely positive! and tr(Pr)5tr(r), i.e., P maps
density operators to density operators. We can now de
the set of states, which form the object of our investigati

Lemma 1. For an operatorr on H^ H^ H the following
conditions are equivalent:

(1) (U ^ U ^ U)r5r(U ^ U ^ U) for all unitary opera-
tors U onH.

(2) Pr5r.
(3) r5(pmpVp with coefficientsmpPC.

The set of density operators satisfying these conditi
will be denoted byW.

The equivalence of Eqs.~1! and ~2! is straightforward
from the invariance of the Haar measure. The implicat
(3)⇒(1) is trivial because the permutation operators clea
commute with operators of the form (U ^ U ^ U). The only
nontrivial part is thus (1)⇒(3), which is, however, a stan
dard result~@7#, Chap. IV! from representation theory. O
course, all these work for any number of tensor factors.

The above Lemma does not address the question ho
recognize density matrices in terms of the six coefficie
mp . Hermiticity requiresmp215m̄p , leaving effectively six
real parameters. One more is fixed by normalization so
W is embedded in a five-dimensional real vector space
terms of the parametersmp positivity is not easy to see. In
order to get a better criterion, it is best to study thealgebra
of operators that are linear combinations of the permutatio
The product of such operators can readily be computed
using only the multiplication law for permutations. The a
stract algebra of formal linear combinations of group e
ments~known as the group algebra! can be decomposed i
terms of the irreducible representations of the underly
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group, suggesting a basis that is much more handy for de
ing positivity. Again, this step works for any number of fa
tors, but we carry it out only in the casen53. We introduce
the following linear combinations of permutation operator

R15
1

6
~11V(12)1V(23)1V(31)1V(123)1V(321)!, ~5a!

R25
1

6
~12V(12)2V(23)2V(31)1V(123)1V(321)!, ~5b!

R05
1

3
~2•12V(123)2V(321)!, ~5c!

R15
1

3
~2V(23)2V(31)2V(12)!, ~5d!

R25
1

A3
~V(12)2V(31)!, ~5e!

R35
i

A3
~V(123)2V(321)!. ~5f!

ThenR1 , R2 , andR0 are orthogonal projections adding u
to 1 and commute with all permutations. This means th
they correspond to the irreducible representations of the
mutation group:R1 and R2 correspond to the two one
dimensional representations~trivial and alternating represen
tation, respectively!, and these operators are indeed just
orthogonal projections onto the symmetric and antisymm
ric subspaces ofH^ H^ H in the usual sense. Their comple
ment R0 corresponds to a two-dimensional representati
which is hence isomorphic to the 232-matrices. The opera
tors R1 , R2, andR3 act as the Pauli matrices of this repr
sentation. In other words, the six hermitian operatorsR1 ,
R2 , R0 , R1 , R2, andR3 are characterized by the commut
tion relationsRiR65R6Ri50, Ri

25R0, for i 50, 1, 2, and 3
andR1R25 iR3 with cyclic permutations.

Now every operatorr in the linear span of the permuta
tions can be decomposed into the orthogonal partsR1r,
R2r, andR0r and positivity ofr is equivalent to the posi-
tivity of all three operators. This leads to the followin
Lemma:

Lemma 2. For any operatorr on H^ H^ H, define the
six parameters rk(r)5tr(rRk), for kP$1,2,0,1,2,3%. Then
r k(Pr)5r k(r). Moreover, eachrPW is uniquely charac-
terized by the tuple(r 1 ,r 2 ,r 0 ,r 1 ,r 2 ,r 3)PR6 and such a
tuple belongs to a density matrixrPW if and only if

r 1 ,r 2 ,r 0>0, r 11r 21r 051,

r 1
21r 2

21r 3
2<r 0

2 . ~6!

Note that in this parametrization the setW does not de-
pend on the dimensiond with one exception: ford52 the
antisymmetric projectionR2 is simply zero, so for qubits we
get the additional constraintr 250. If one considers a given
1-2
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SEPARABILITY PROPERTIES OF TRIPARTITE . . . PHYSICAL REVIEW A63 042111
density operatorr as an operatorr8 in H8^ H8^ H8 for a
higher-dimensional spaceH8.H, by setting all ‘‘new’’ ma-
trix elements equal to zero, we will haver k(r)5r k(r8).

Taking r 0512r 12r 2 to be redundant, we get a simp
representation ofW as a convex set in five dimensions. U
fortunately, five-dimensional sets are still not very amena
to graphical representation. For visualizing the sets we
going to describe analytically, we will therefore use suita
two- and three-dimensional representations. Again, we h
the possibility of using sections or projections ofW and we
will emphasize sections that can also be understood as
jections.

The simplest example of this is to take the sub
W P,W of states, which also commute with all permut
tions. The corresponding projection is simply averaging w
respect to permutations. Clearly,W P consists of those op
erators inW, which are linear combinations ofR1 , R2 , and
R0 alone. Takingr 1 and r 2 as coordinates, we get the tr
angle in Fig. 1. Thus each point in this triangle represen
density operator inW P. On the other hand, it represents t
set of states inW projecting to it on permutation averaging
this will be all states with the given values ofr 1 and r 2 in
the 6-tuple, which therefore differ only in the values ofr 1 ,
r 2, and r 3. Thus, over every point of the triangle in Fig.
we should imagine a Bloch sphere of radiusr 0.

If more detail is required, we will also use thre
dimensional sections and/or projections of a similar natu
For example, if we average only over the permutatio
V(23) , we get the subsetW (23),W with r 25r 350 ~see the
dotted tetrahedron in Fig. 10!. Averaging only over cyclic
permutations, we get the subsetW cyc,W with r 15r 250
~which gives the same tetrahedron asW (23) with r 1 substi-
tuted byr 3).

We note for later use that the expectation valuesr k arenot
the coefficients in the sum

r5 (
k51,2,0,1,2,3

ckRk . ~7!

These are related to the parametersr k by the following

FIG. 1. Description ofW in terms of the triangleW P and the
corresponding Bloch sphere for each point inW P.
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dimension-dependent transformation@which is obtained by
observing that tr15d3, tr(V(12))5d2, and tr(V(123))5d#:

r 15
d

6
~d213d12!c1 , ~8a!

r 25
d

6
~d223d12!c2 , ~8b!

r i5
2d

3
~d221!ci for i 50,1,2,3. ~8c!

B. Overview of main results

An overview of the main results of this paper is given
Fig. 2. To keep the picture as simple as possible, we h
only depicted the setW P, i.e., the triangle in Fig. 1. Natu
rally, this reduction does not allow the representation of o
full results, i.e., the detailed structure of the five-dimensio
convex setsT, B1, andP1, which will be described in the
corresponding sections. However, we found this diagr
quite useful as a basic map for not losing our way in fi
dimensions, and hope it will similarly serve our readers.

The shading in Fig. 2 marks different separability prop
ties and the points labeled with capital letters arise by p
jecting pure states with special properties with the twirl p
jection ~4!. Some of these points (D,E,F) do not lie in the
plane W P, i.e., they have nonzero coordinates (r 1 ,r 2 ,r 3).
They are represented by white circles, in contrast to the bl
circles (A,B,C,G,H) representing permutation invarian
states in the planeW P.

FIG. 2. Subsets ofW P with different separability properties
Black triseparable; dark gray, biseparable; and light gray, image
biseparable states under permutation averaging. Special point
plained in the text.
1-3
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T. EGGELING AND R. F. WERNER PHYSICAL REVIEW A63 042111
The triseparablestates correspond to the black triang
n(ABC). It is easy to see that any triseparable state p
jected by permutation averaging toW P is again triseparable
i.e., the projection ofT onto W P coincides withT ùW P.
The extreme points of this set are

A:u123&→~1/6,1/6,0,0,0!,

B:u111&→~1,0,0,0,0!,

C:~ u111&2A3u112&1A3u121&23u122&)/4→~1/4,0,0,0,0!,

where the notationC→(r 1 ,r 2 ,r 1 ,r 2 ,r 3) indicates that the
pure stateuC&^Cu is projected to this point byP from Eq.
~4!. In other words,̂ CuRkC&5r k for k51,2,1,2,3. Note
that all three vectors given are product vectors, the one foC
being the product of three vectors in the ‘‘Mercedes sta
configuration in the plane, at an angle 120° from each ot

A quantitative description of the genuinely tripartite e
tanglement ofW is given in Sec. IV in terms of the relativ
entropy and the trace norm.

The biseparablesetB1 is not permutation invariant sinc
the partition 1u23 clearly is not. As a consequence, the p
mutation average projectingW onto W P does not mapB1
into itself, and we have to distinguish in our diagram b
tween points (r 1 ,r 2) such that (r 1 ,r 2,0,0,0) is biseparable
~i.e., theintersectionB1ùW P) and points (r 1 ,r 2) such that
for some suitable (r 1 ,r 2 ,r 3), the quintuple
(r 1 ,r 2 ,r 1 ,r 2 ,r 3) represents a point inB1, ~i.e., theprojec-
tion of B1 ontoW P). In Fig. 2 the intersection is the triangl
n(GAB), drawn in a darker shade of gray than the trian
n(EFB), which is the projection of the biseparable sub
B1. Note that the shading reflects the inclusion relations,
triseparable states are, in particular, biseparable, and the
tion of the biseparable set is contained in its projection.
course, the states inB1ùW P are also biseparable for th
other two partitions since they are permutation invaria
Similarly, the projections ofB2 and B3 onto W P are the
same.

Points of special interest for the biseparable set arise f
the following vectors:

D:u122&→~1/3,0,2/3,0,0!,

E:~ u112&2u121&)/A2→~0,0,21,0,0!,

F:~ u123&2u132&)/A2→~0,1/3,22/3,0,0!,

G:~ u112&2u121&2A3u122&)/A5→~1/5,0,0,0,0!.

Here the pointsB, D, E, andF are extreme points ofB1 and
span a tetrahedron, which is equal to the subsetB1ùW (23) of
states invariant under the exchange 2↔3. The pointG lies
on the line connectingE and D and is the unique extrem
point of B1ùW P which is not triseparable. In this sense
represents an extreme case demonstrating the inequalT
Þ(B1ùB2ùB3).

The setP1 of states withpositive partial transposewith
respect to the partition 1u23 containsB1 strictly but the dif-
04211
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ference cannot be seen in this diagram. In fact, we will sh
in Sec. VI that even the 23-invariant subsets ofP1 and B1
coincide, i.e.,P1ùW (23) is spanned by the same four e
treme pointsB, D, E, andF.

As will be seen in Sec. VI, there is a close connecti
between the problems of findingP1 and finding states invari-
ant under averaging over all unitaries of the formŪ ^ U
^ U. It turns out that the sets of triseparable and bisepara
states commuting with such unitaries can be obtained v
simple linear transformation from their counterpartsT ùW
and B1ùW computed in this paper. This mapping and
sketch of the results is given in the Appendix.

III. TRISEPARABLE STATES: T
If r is triseparable and hence has a decomposition of

form ~3!, we may also find a decomposition in which a
factorsra

( i ) are pure, simply by decomposing each of the
density operators into pure ones. Applying to such a deco
position the projectionP, we find thatrPT,W if and only
if r is a convex combination of states of the formP(uC&
3^Cu), whereC5c1^ c2^ c3 is a normalized product vec
tor. Let us denote byTpure,W the set of such states. Ou
strategy for determiningT will be to first getTpureand then to
obtainT as its convex hull. The resulting characterization
T is formulated in Theorem 1.

Given a product vectorC5c1^ c2^ c3, it is easy to
compute the projected stateP(uC&^Cu): By Lemma 2 one
just has to compute the expectations of the permutation
erators. For example,

^CuV(12)C&5^c1^ c2^ c3uc2^ c1^ c3&5 z^c1uc2& z2.

In this way it is easily seen that the expectations of all p
mutations are$1,a1 ,a2 ,a3 ,a41 ia5 ,a42 ia5%, where the five
real parameters are given by

a15 z^c2uc3& z2, ~9a!

a25 z^c3uc1& z2, ~9b!

a35 z^c1uc2!z2, ~9c!

a45Re~^c1uc2&^c2uc3&^c3uc1&!, ~9d!

a55Im~^c1uc2&^c2uc3&^c3uc1&!. ~9e!

Since a pure state ind dimensions~taken up to a factor! is
given by 2d22 real parameters, these five quantities ar
considerable reduction from the 6(d21) parameters deter
mining the three vectorsc i . However, they are still not in-
dependent due to the identity

f ~a1 ,a2 ,a3 ,a4 ,a5!ªa4
21a5

22a1a2a350. ~10!

Since we want to determineTpure exactly, we also have to
find the exact range of these parameters, as thec i vary over
all unit vectors. This is done in the following lemma.
1-4
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SEPARABILITY PROPERTIES OF TRIPARTITE . . . PHYSICAL REVIEW A63 042111
Lemma 3. A tuple (a1 ,a2 ,a3 ,a4 ,a5)PR5 arises viaEq.
~9! from three unit vectorsc1 ,c2 ,c3 in a d-dimensional
Hilbert space(d.3) if and only if Eq. ~10! is satisfied, 0
<ai<1 for i 51,2,3,and

12a12a22a312a4>0. ~11!

If d52 the Lemma holds with last inequality replaced
equality.

Proof. Necessity of Eq.~10! and 0<ai<1 is clear. In-
equality ~11! is just the condition that the expectation
antisymmetric projection should be positive. Since this p
jection vanishes ford52, it is also clear that equality mus
hold in this case.

Suppose now thata1 , . . . ,a5 satisfying these constraint
are given. We have to reconstructc1 , c2, andc3 satisfying
Eq. ~9!. These equations essentially determine
333-matrix Mi j 5^c i uc j& of scalar products. Of course, w
already know the absolute values of its entries~note Mii
51). The phases are irrelevant up to some extent: multip
ing any row with a phase and the corresponding column w
its complex conjugate will not changeai after Eq.~9! and
amounts to multiplying one of thec i with a phase. Hence we
may assume that the scalar products^c1uc2& and ^c2uc3&
are positive. The phase of the remaining scalar prod
^c3uc1& is then the same as the phase ofa41 ia5, henceM is
essentially uniquely determined by the parametersai .

Now M is a matrix of scalar products if and only if it i
positive definite: on one hand,( i j ūiujM i j 5i( iuic i i2>0
and on the other, we can construct a Hilbert space with s
scalar products as the space of formal linear combination
three vectors with scalar products of basis vectorsdefinedby
M. Positive definiteness ofM then ensures the positivity o
the norm in this new Hilbert space. The dimension of t
space is the rank ofM ~number of linearly independent rows
columns!. So in the present case the dimension will be 3~but
any larger space will also contain appropriate vectors! or <2
if M is a singular matrix.

Positive definiteness ofM is equivalent to the positivity
of all subdeterminants. The diagonal elements are
hence positive anyway. Positivity of the thre
232-subdeterminants is equivalent toai<1 for i 51,2,3.
Finally, the full determinant ofM, expressed in terms ofai
gives expression~11!. It must be positive, and ford52 it
must vanish sinceM is singular. j

FIG. 3. Section of the setTpure with W P and its convex hull.
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Lemma 3 describes the setTpure of projected pure produc
states as a compact subset of the hypersurface inR5 defined
by Eq. ~10!. Computing the convex hull of this set inR5 is
the same as computing the convex hull ofTpure because the
expectations of permutations or the operatorsRk from Eq.
~5! are affine functions ofai . Explicitly, the expectations
r k5^CuRkC&, k51,2,0,1,2,3, which we have used as o
standard coordinates inW are

r 15
1

6
$11~a11a21a3!12a4%,

r 25
1

6
$12~a11a21a3!12a4%,

r 05
2

3
~12a4!,

r 15
1

3
~2a12a22a3!,

r 25
1

A3
~a32a2!,

r 35
2

A3
a5 .

We begin by computing the projection ofTpure onto the
(r 1 ,r 2) plane by determining the possible range of the co
binationsm5(a11a21a3)/3 and a4. By choosing phases
for the scalar products we can makea4 vary in the range
ua4u<(a1a2a3)1/25g3/2, where m and g are the arithmetic
and the geometric means ofa1 , a2, and a3. As is well
known, g<m and equality holds ifa15a25a3. Hence the
projection of Tpure is contained between the parametriz
lines

r 1~m!5
1

6
~113m62m2/3!,

r 2~m!5
1

6
~123m62m2/3!.

Plotting these curves gives Fig. 3. It is clear that the shap
not convex and its convex hull is the triangleABC.

A similar plot of the setTpure including one more coordi-
nate,r 3, is given in Fig. 4.

Again, it is clear that no point on the surface can be
extreme point of the convex hull of the surface because
surface ‘‘curves the wrong way.’’ This is the intuition behin
the following lemma by which we will show that also in th
full five-dimensional case, the interior ofTpure contains no
extreme points.

Lemma 4. Let Nf5$xPRnu f (x)50% be the zero surface
of a function fPC 2(Rn,R) and K,Rn a compact convex set
Let U be an open ball around a point xhPNf such that
(UùNf),K, and suppose that xh is hyperbolic in the fol-
1-5
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T. EGGELING AND R. F. WERNER PHYSICAL REVIEW A63 042111
lowing sense: ¹ f (xh)Þ0 and the tangent plane through xh
contains two lines such that the second derivative of
strictly positive along one and strictly negative along t
other. Then xh is not an extreme point of K.

Proof. Supposexh is an extreme point ofK. Then there
must be a supporting hyperplane, i.e., a hyperplaneH
through xh such thatK lies entirely in one of the closed
subspaces bounded byH. We claim that this implies thatf,
restricted toH, has to be either non-negative or nonpositi
in a neighborhood ofxh .

Suppose on the contrary there are pointsx1 ,x2PHùU
such thatf (x1).0. f (x2). We may then connectx1 and
x2 by a continuous curve lying entirely inU and also in one
of the two open half spaces bounded byH. Sincef is con-
tinuous, any such curve must contain a pointy with f (y)
50, i.e.,yP(NfùU),K. Since we can choose either side
H for the connection, we find pointsyPK on both sides of
H, henceH cannot be a supporting hyperplane.

This argument shows, in the first instance, that the o
possible supporting hyperplane atxh is the tangent hyper
plane~look at the Taylor approximation off to first order!.
Applying the argument with the second-order Taylor a
proximation, we find that hyperbolic points cannot have s
porting hyperplanes, hence cannot be extremal. j

To apply this lemma to the functionf from Eq. ~10!, we
have to pick two appropriate tangent lines at any given po
aW 5(a1 ,a2 ,a3 ,a4 ,a5) on the surface. We parameterize su
lines asaW 1tbW , tPR so that f (aW 1tbW )5 f (aW )1Mt2. Two
choices with an opposite sign ofM are

bW 5~0,0,0,a5 ,2a4!, M5~a4
21a5

2!,

bW 5~2a1,2a2,2a3,3a4,3a5!, M523~a4
21a5

2!,

where we have used the equationf (aW )50 to evaluate the las
expression. Hence every point of the surfaceNf is hyper-
bolic.

By Lemma 4 we therefore only have to consider bound
points of the surface, i.e., points for which at least one of
inequalities in Lemma 3 is an equality.

Let us begin with the equalitiesai50, for at least onei
P$1,2,3%. Then we havea45a550 by Eq. ~10! and 0<aj
1ak<1 ( j Þk) by Eq. ~11!. As we are looking for extrema

FIG. 4. Plot of the same section as above making additional
of the coordinater 3.
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points, we are left with the casesaj5ak50 representing the

triorthogonal states@8# @i.e., point A5( 1
6 , 1

6 ,0,0,0) inr i ’s# or
aj1ak51. All such points satisfyr 250, hence they will be
in our general discussion of cases withr 250. The equalities
ai51 lead via Eq.~11! to the inequality 0<2a42(aj1ak)
and therefore, to

a4> 1
2 ~aj1ak!>Aajak5Aaiajak

5Aa4
21a5

2>Aa4
25ua4u>a4 .

From this we can see thata550, aj5ak , anda45aj5ak .
Once again this impliesr 250 so that this remains the onl
case to be checked.

For r 250, we can expressai by r 1 , r 1 , r 2, andr 3, and
solve Eq.~10! for r 3, obtaining a relation of the form

r 356h~r 1 ,r 1 ,r 2!, ~12!

whereh is the square root of a third-order polynomial. Equ
tion ~12! describes the surface of a convex set ifh is a con-
cave function. This can be checked by verifying that t
Hessian ofh is everywhere negative semidefinite. Hence
points inTpure with r 250 are extremal and are characteriz
by Eq. ~12!. This completes the determination of extrem
points of T, summarized in the following Theorem. It als
contains the dual description ofT in terms of inequalities.

Theorem 1. The subsetT,W of triseparable states has
the following extreme points, described here in terms of
expectations rk5tr(rRk), k51,2,1,2,3.

~1! 3r 3
21(123r 1)25(r 11r 1)(r 12A3r 222r 1)(r 1

1A3r 222r 1) and r 250,
~2! The point A5(1/6,1/6,0,0,0).

A staterPW is triseparable if and only if it correspond
to the point A or the following inequalities are satisfied:

~a! 0<r 2, 1
6 .

~b! 1
4 (122r 2)<r 1<125r 2 ,

~c! (3r 3
21@123r 123r 2#2)(126r 2)<(r 11r 12r 2)

3$(r 122@r 12r 2#)223r 2
2%.

These inequalities are obtained by projecting the given p
onto the hyperplaner 250 from point A and checking
whether the projected point satisfies the inequalityur 3u
<h(r 1 ,r 1 ,r 2) with h from Eq. ~12!. To get an idea of the
shape ofT we compute the section withr 150.27 andr 2

50.1 ~Fig. 5!.

IV. RELATIVE ENTROPY OF TRIPARTITE
ENTANGLEMENT

Quantitative measures of bipartite entanglement and t
properties are a very active area of research at the mom
In the tripartite case, the difficulties in quantifying entang
ment began already with the pure states, for which no
nonical form as simple as the Schmidt decomposition exi
One can, however, extend the standard definition of the
lation ‘‘more entangled than’’ to tripartite states. It is clear
to what local quantum operations should be in the multip
tite case, and we can describe classical communication

se
1-6
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SEPARABILITY PROPERTIES OF TRIPARTITE . . . PHYSICAL REVIEW A63 042111
tween many partners in much the same way as in the bi
tite case. Once we fix the rules of classical communicat
~e.g., ‘‘each partner may broadcast her results to all the
ers’’!, we will say thatr is more entangled thans, whenever
we can reachs from r by a sequence of local operations a
classical communication~LOCC!, in which case we will
write rss.

A full characterization of this partial-order relation is on
known in the case of bipartite pure states~Nielsen’s theorem
@9#!. Even in the mixed bipartite case there is no straig
forward way of deciding whether one of two given dens
operators is more entangled than the other. Hence we ca
hope to give such a characterization in the tripartite ca
Nevertheless, the entanglement ordering is one of the
tures one would like to explore and chart inW. There are
two ways of approaching this: on the one hand, we may s
from some staterPW, apply many LOCC operations to i
and see where we end up. We can always assume the o
tion to end up inW, because the twirl operation is itself
LOCC operation, which involves the random choice ofU by
any one of the partners, the broadcasting ofU to the other
two partners, and the unitary transformation byU at each of
the sites. For an initial survey, we may even study the re
tion in the permutation invariant triangleW P even though
the permutation of sites is definitelynot a local operation.
But if the initial state is permutation invariant andT is any
LOCC operation involving certain specified tasks for Alic
Bob, and Charly, the three may just throw dice to decide w
is to take which role. With this procedure they effectively g
the permutation average of the output state ofT. With such
studies, we get sufficient conditions forrss.

In order to get necessary conditions the only approac
to find functionals on the state space that are monotone
respect to entanglement ordering. Luckily, one of the id
for getting such monotones can be transferred from the

FIG. 5. Plotting the setT for the sectionr 150.27 andr 2

50.1 gives a heart-shaped surface with trigonal symmetry whic
contained in the respective Bloch sphere.
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partite case. Obviously, the triseparable subset is invar
under LOCC operations, so the distance toT is an entangle-
ment monotone provided the distance functional has ap
priate properties. One needs only one condition for a fu
tion D to define an appropriate ‘‘distance’’D(r,s) between
arbitrary states of the same tripartite system.

D~Tr,Ts!<D~r,s! for any LOCC operationT.
~13!

Then for the functional

ED~r!5 inf$D~r,s!usPT% ~14!

we get the inequalities

ED~Tr!< inf$D~Tr,s!us5Ts8; s8PT% ~15!

5 inf$D~Tr,Ts8!us8PT% ~16!

< inf$D~r,s8!us8PT%5ED~r!. ~17!

HenceED is indeed a decreasing functional with respect
the orderings. Note that the only property ofT needed to
show this is that it is mapped into itself under LOCC ope
tions. Any other set with this property~e.g.,B1 or P1) will
also lead to an entanglement monotone.

Two natural choices forD satisfy requirement~13! and
both of them satisfy it with respect to arbitrary operationsT
~not just LOCC operations!: first the trace norm distanc
D1(r,s)5ir2si1 and the relative entropyDS(r,s)
5S(r,s), leading to entanglement monotones that we
note byE1 andES , respectively. In both the cases, the actu
computation of the distance forr,sPW is greatly simplified
by the observation that we may consider bothr and s as
states~positive normalized linear functionals! on the algebra
generated by the permutation operators, and that both
trace norm and the relative entropy are naturally defined
such functionals@10#. Moreover, because the twirl~4! is a
conditional expectation, the relative entropy of states inW is
independent of the algebra over which it is computed~cf.
Theorem 1.13,@10#!. Now the six-dimensional algebra gen
erated by the permutations is independent of the dimensiod
so that if we parameterizer ands by the expectations ofRk
as before, we find that the entanglement monotonesED are
independent of dimension. The expression for the rela
entropy involves, apart from the abelian summands, the lo
rithm of a 232 matrix, which can also be written explicitly
in terms of the parametersr k for the two states involved. The
variational problem~14! can be then solved numerically fo
arbitrary states inW.

The contour lines overW P of the resulting entanglemen
monotones are plotted in Fig. 6 forE1 and in Fig. 7 for the
relative entropy of tripartite entanglementES . Note that the
two necessary conditions forrss expressed in these dia
grams complement each other. In order not to complic
these graphs we have not drawn the simplest sufficient c
dition for entanglement ordering: from any stater, any state
lying on a straight line segment ending inT is less entangled
thanr.

is
1-7
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As a second section of interest we chose the planer 2

505r 15r 2, which is relevant for qubit systems. Qualit
tively, it gives the same picture of level lines wrappin
around the tripartite set.

V. BISEPARABLE STATES: B1

In this section we are going to compute the set of bise
rable states with respect to the partition 1u23. The technique
is exactly the same as in the triseparable case: we first c
pute the setBpure of states of the formP(uC&^Cu) with
uC&^Cu biseparable, i.e.,C5c1^ c2,3. In the second step
we getB1 as the convex hull ofBpure.

We are free to apply to our vectorC a U ^ U ^ U rotation
without changing the projection. In this way we may choo
c15u1&. Now the rotated stateC8 is of the form C8
5( i , jc i j u1i j &. The expectations of permutations of such
vector, like

^C8uV(12)C8&5 (
i , j ,k,l

c̄ i j ckl^1i j uk1l &5(
j

uc1 j u2

FIG. 6. Contour lines overW P for E1 .

FIG. 7. Contour lines overW P for ES .
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then depend linearly on the following real parameters:

c05uc11u2, ~18a!

c15(
j .1

uc1 j u2, ~18b!

c25(
i .1

uc i1u2, ~18c!

c35 (
i , j .1

c̄ i j c j i , ~18d!

c41 ic55(
j .1

c̄1 jc j 1 . ~18e!

From this we obtain the followingr k :

r 15
1

6
~115c01c11c21c314c4!,

r 25
1

6
~12c02c12c22c3!,

r 05
2

3
~12c02c4!,

r 15
1

3
~2c12c212c314c4!,

r 25
c12c2

A3
,

r 35
2c5

A3
.

As in the tripartite case, we need to determine the ex
range of the parametersci . Let us assumed.2 for the mo-
ment. By the definitions ofc0 , c1, andc2 we have

c0 ,c1 ,c2>0. ~19!

These parameters fix the weights of the blocks (i 51,j 51),
( i 51,j .1), and (i .1,j 51) in the normalization sum
( i , j 51

d uc i j u251. c41 ic5 can be read as the scalar product
two (d21)-dimensional vectorsw15(c12, . . . ,c1d) and
w25(c21, . . . ,cd1) with norm squaresiw1i25c1 and
iw2i25c2. By the Cauchy-Schwarz inequality we have

c4
21c5

25 z^w1uw2& z2<uw1u2uw2u25c1c2 , ~20!

and any value ofc41 ic5 consistent with this can actuall
occur.

We arrange the remainingc i j ( i , j .1) into a
(d21)2-dimensional vector C̃5(c22, . . . ,c2d ,
c32, . . . ,cdd) with iC̃i2512c02c12c2. On this (d
21)2-dimensional vector space, letU denote the operato
1-8
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SEPARABILITY PROPERTIES OF TRIPARTITE . . . PHYSICAL REVIEW A63 042111
swappingc i j andc j i . Thenc35^C̃uUC̃& is the expectation
of an hermitian operator with eigenvalues61. Hence

uc3u<iC̃i2512c02c12c2 , ~21!

and allc3PR satisfying this inequality can occur.
Together with the obvious modifications in the cased

52, when there is only one indexi .1, we get the following
lemma:

Lemma 5. A tuple (c0 ,c1 ,c2 ,c3 ,c4 ,c5)PR6 arises via
Eqs.~18! from a unit vectorC in a d2-dimensional Hilbert
space, if and only ifEqs. ~19!, ~20!, and ~21! are satisfied
and in the case d52, equality holds in~20! and ~21!.

Let G denote the set of tuples (c0 ,c1 ,c2 ,c3 ,c4 ,c5) satis-
fying these constraints. The parametersr k depend linearly on
the ci although the mapping is not one to one. Neverthele
any extreme point ofB1 must be the image of an extrem
point of the convex hull ofG.

Hence we can proceed by first determining the extre
points ofG. Since the positive variablesc0 , uc3u and the sum
(c11c2) are only constrained by inequality~21!, every point
in G is a convex combination of tuples in which only one
these is equal to 1 and the other two vanish. This gives
extreme points ~1! c051⇔rW5(1,0,0,0,0)[B, ~2! c3

511⇔rW5( 1
3 ,0,23 ,0,0)[D, ~3! c3521⇔rW5(0,1

3 ,2 2
3 ,0,0)

[F, and furthermore some points with (c11c2)51, c0
5c350. Eliminating c2512c1, we can write inequality
~20! as c4

21c5
21(c12 1

2 )2< 1
4 . This is a ball with extreme

points parameterized by

c050, c15
11cos~q!

2
, c25

12cos~q!

2
,

c350, c45
sin~q!cos~w!

2
, c55

sin~q!sin~w!

2

with w,qP@0,2p#. By mapping this description ofG to the
r k-parameterization we come to the following theorem.

Theorem 2. The subsetB1,W of biseparable states with
respect to the partition1u23 has the following extreme
points, described here in terms of the expectationsk
5tr(rRk), k51,2,1,2,3:

~1! The sphere given by14 (3r 111)213r 2
213r 3

251 with

r 250 and r 15(r 111)/2 except for the point( 2
3 ,0,13 ,0,0),

which is decomposable as( 2
3 ,0,13 ,0,0)5 1

2 (B1D).

~2! The point F5(0,1
3 ,2 2

3 ,0,0).

~3! The pointD5( 1
3 ,0,23 ,0,0).

~4! The pointB5(1,0,0,0,0).

A staterPW is biseparable with respect to the partitio
1u23 if and only if it corresponds to the points F, B or D o
the following inequalities are satisfied:

~a! 0<r 2,
1

3
,

04211
s,

e

e
~b! 21,

11r 12r 222r 1

123r 2
,1,

~c! if 21,
11r 12r 222r 1

123r 2
<0 then

3r 2
213r 3

21~112r 11r 22r 1!2<~21r 124r 222r 1!2

~d! if 0<
11r 12r 222r 1

123r 2
,1 then

3r 2
213r 3

21~123r 223r 1!2<~r 112r 222r 1!2.

We omit here again the computation of these inequali
from the known extreme points. They can be obtained
projecting from the three pointsF, B, andD onto the sphere
of extremal points.

The projection of the setB1 onto W P comes to be equa
to the projection of the set of pureB1-states and was alread
shown in Fig. 2 together with the sectionB1ùW P. To com-
pareB1 with T, we plot again the section withr 150.27 and
r 250.1 ~Fig. 8!.

To make the inclusionT #(B1ùB2ùB3) mentioned in
the introduction more evident we can now compute the s
B2 and B3 to build their intersection withB1. Due to the
permutation symmetry of the three subsystems we can ro
B1 by 62p/3 in ther 1-r 2-plane instead. This leads to Fig. 9

VI. POSITIVE PARTIAL TRANSPOSES: P1

One of the interesting aspects in the theory of bipar
entanglement to emerge in recent years is the considera
of the partial transpose of the density matrix and, in parti
lar, the positivity of the partial transpose. First, this positiv
served as a necessary condition for separability, which
even sufficient in 2̂ 2 and 2̂ 3 dimensions~the Peres cri-

FIG. 8. Plot of the setB1 as for r 150.27 andr 250.1 embed-
ded in the respective Bloch sphere together withT.
1-9
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T. EGGELING AND R. F. WERNER PHYSICAL REVIEW A63 042111
terion @5#!. Moreover, it is a necessary condition for und
tillability, and here it comes much closer to sufficiency ev
in general situations. Both aspects play a role in the anal
of tripartite states. We will therefore describe in this sect
the subsetP1,W of states with positive 1-transpose.

Since the dimensions for this bipartite system ared^ d2,
positive partial transpose does not automatically im
biseparability, i.e., the inclusionB1,P1 may be strict. How-
ever, since we are considering a special class of states
also possible that in this class equality holds. This does h
pen, for example, for the bipartite Werner states@11#. In the
tripartite case we will see thatB15P1 for d52, but not for
higher dimensions, although the two sets come to be rem
ably close~see Fig. 11!. However, the exact description o
P1 is also important for distillation questions.

The partial transposeA°AT1 of operators onH1^ H2
was defined in Eq.~2!. In a tripartite system we take thi
operation to refer to the first of the three tensor factors
write rPP1 if rT1>0.

A. The algebra of partial transposes

Whenr is a linear combination of permutation operato
as in Lemma 1, the partial transpose

rT15(
p

mpVp
T1

is likewise a linear combination of the six operatorsVp
T1 , and

we have to decide for which coefficientsmp such an operato
is positive. Since partial transposition isnot a homomor-
phism, it would appear that the linear combinations of

FIG. 9. The intersectionB1ùB2ùB3 is shown as a mesh on
transparent surface allowing the setT to be seen. This plot is agai
computed for the sectionr 150.27 andr 250.1. The thick lines
indicate the intersection of two of the biseparable sets.
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Vp
T1 can be a fairly arbitrary space of operators, and decid

positivity could be quite difficult. However, it turns out tha
these linear combinations do form an algebra, so after
introduction of the right basis deciding positivity is just a
easy as determining the state space in Lemma 2.

The abstract reason for this ‘‘happy coincidence’’ is th
the operatorsVp

T1 span the set of fixed points of an averagi
operation in much the same way as the permutations span
set of fixed points ofP. The corresponding averaging oper
tor is

P̃r5E dU~Ū ^ U ^ U !r~Ū ^ U ^ U !* . ~22!

Its range consists of all operators commuting with all unit
ies of the formŪ ^ U ^ U, hence is an algebra. The followin
lemma describes the relation betweenP̃ andP.

Lemma 6: Let A be any Hermitian operator, then

~1! PA5A⇔P̃AT15AT1,
~2! (P̃A)T15P(AT1).
Proof. For any Hermitian operatorA one has

P̃A5A⇔@Ū ^ U ^ U,A#250

⇔@U ^ U ^ U,AT1#250

⇔PAT15AT1.

Furthermore, we can compute directly

PAT15E dU~U ^ U ^ U !AT1~U ^ U ^ U !*

5E dU@~Ū ^ U ^ U !A~Ū ^ U ^ U !* #T1

5~P̃A!T1.

j
For deciding positivity of partial transposes we need

concrete form of the algebra spanned by the partial tra
poses of the permutation operators. For example, we ge

V(12)
T1 5(

i jk
~ u i jk &^ j ik u!T1

5(
i jk

u j jk &^ i ik u

5~ uF&^Fu! ^ 1,

whereF5( i u i i & is a maximally entangled vector of normd.
The partial transposes of the other permutations are c
puted similarly. We can express all of them in terms of t
first two:

X5V(12)
T1 and V5V(23)

T1 5V(23) ~23!

as

1T151, V(13)
T1 5VXV, V(123)

T1 5XV, V(321)
T1 5VX.
1-10
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SEPARABILITY PROPERTIES OF TRIPARTITE . . . PHYSICAL REVIEW A63 042111
Then these operators satisfy the relationsX* 5X, V* 5V
and

X25dX, V251, XVX5X. ~24!

Due to these relations the set of linear combinations of
six operators$1,X,VXV,V,XV,VX% is closed under adjoints
and products. Positivity of such linear combinations, a
hence the positivity of all partial transposes of operators
W can therefore be decided by studying the abstract alg
generated by two hermitian elementsX andV satisfying Eq.
~24!. As a six-dimensional noncommutative C* algebra it
isomorphic to the algebra generated by the permutations,
a sum of two one-dimensional and a two-dimensional ma
algebra. But of course, the partial transpose operation m
ping one into the other is not a homomorphism.

From these considerations it is clear that all we have to
now is to find a basis of the algebra generated byX and V
analogous to the basis~5!. This sort of computation can b
quite painful, so we recommend the use of a symbolic al
bra package. The result is

S15
11V

2 S 12
2X

d11D 11V

2
, ~25a!

S25
12V

2 S 12
2X

d21D 12V

2
, ~25b!

S05
1

d221
@d~X1VXV!2~XV1VX!#, ~25c!

S15
1

d221
@d~XV1VX!2~X1VXV!#, ~25d!

S25
1

Ad221
@X2VXV#, ~25e!

S35
i

Ad221
~XV2VX!. ~25f!

These operators satisfy exactly the same relations asRk from
Eq. ~5! and we will denote the corresponding expectat
values bysk(r)ªtr(rSk). The two projectionsS6 corre-
spond to the two one-dimensional representations of the
gebra, i.e., to the two realizations of the relations byc num-
bers, namely,X50,V51 andX50,V521.

B. The V
„23…-invariant case

The simplest case is theV(23)-invariant subset ofW as it
is a three-dimensional object. In fact theV(23) invariance
implies the conditions tr(rV(23))51, tr(rV(12))5tr(rV(31)),
and tr(rV(123))5tr(rV(321)). Therefore, we haver 25r 350.
In the same way we obtain for aV(23)-invariant stater
PW T1 the conditionss250 and s350. Positivity of a
04211
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V(23)-invariant state inW requires nowr 1>0, r 2>0 and
ur 1u<r 0512r 12r 2 @cf. ~6!# giving rise to a tetrahedron
bounded by the hyperplanes

~h1!r 150, ~h2!r 250, ~h3!r 1512r 12r 2 ,

~h4!r 15r 11r 221

and having the extreme pointsP15(0,0,1), P25(0,0,21),
P35(0,1,0), andP45(1,0,0). The same computation can b
done on the partially transposed side leading to the tetra
dron confined by the hyperplanes

~h18!s150, ~h28!s250, ~h38!s1512s12s2 ,

~h48!s15s11s221.

Using Lemma 6 we can expresssk by r k of the correspond-
ing W state. Multiplying by positive constants one gets
easier description of these hyperplanes.

~h18!2~11r 12r 222r 1!1d~11r 12r 21r 1!50,

~h28!2~211r 112r 21r 1!1d~12r 11r 22r 1!50,

~h38!12r 125r 22r 150,

~h48!11r 12r 225r 150.

Its four extremal points are nowQ15„(21d)/3,0,(1

2d)/3…, Q25„0,(22d)/3,2(11d)/3…, Q35(0,1
3 ,2 2

3 ), and

Q45( 1
3 ,0,23 ). Of course, these points have no reason to c

respond to positive states, and indeed onlyQ3 and Q4 lie
inside the state space, whereQ1 andQ4 are outside the state
space for alld.

As we are looking for thoseV(23)-invariantW-states that
have positive partial transpose, i.e. that lie inPA , we now
have to look at the intersection of these two tetrahedra.
resulting object is again a tetrahedron as one can see in
10. This is due to the fact that the extremal pointsPi and
Qi( i 51,2,3,4) lie on just two straight lines, name
P1Q4P4Q1 andQ2P2Q3P3. The intersection of the two tet
rahedra is hence again a tetrahedron, spanned by the
tremal pointsP2 , P4 , Q3, andQ4 ~calledE, B, F, andD in
Secs. II B and V!, and is thus dimension independent. But
is easily verified from Theorem 2 that these four points
precisely the extreme points of theV(23)-invariant part ofB1.
SinceB1,P1, we have shown the following:

Lemma 7. A V(23)-invariant W state has a positive partia
transpose if and only if it is biseparable.

As we will see in the next subsection, the assumption
V(23) invariance is essential, i.e., the conclusion does
hold for generalW states.

In order to see howV(23) invariance helps, we conclud
this subsection with a direct proof of the above lemma
d52. If r is a V(23)-invariantW-state, then we can decom
pose it into the following sum:
1-11
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r5
1

4
~11V(23)!r~11V(23)!1

1

4
~12V(23)!r~12V(23)!

5:r11r2.

It is now clear thatr has a positive partial transpose if bo
r1 andr2 have a positive partial transpose.r1 denotes the
V(23)-symmetric part ofr and r2 the antisymmetric part
Thus we know thatr1 is a 233-density operator andr2 a
231. For these systems the Peres criterion holds stri
@12#, i.e., states have a positive partial transpose if they
separable or, in our case, biseparable over the 1u23 split.
Biseparability ofr1 andr2 is equivalent to the biseparabi
ity of r, which proves the lemma. j

C. The general case

The positivity conditions for arbitrary linear combination
of the operatorsSk give the following result.

Lemma 8. Let rPW be a density operator with expecta
tions rk5tr(rRk), k51,2,1,2,3.Then the partial transpose
of r with respect to the first tensor factor is positive, i.e., r
PP1 if and only if

0<r 2 , ~26a!

0<r 12r 12r 211, ~26b!

0<12r 125r 22r 1 , ~26c!

0<212r 11r 215r 1 , ~26d!

r 2
21r 3

2<R1 , ~26e!

r 2
21r 3

2<R2 , ~26f!

where

R1ª~12r 125r 22r 1!~212r 11r 215r 1!/3,

R2ª~12r 12r 22r 1!~11r 12r 22r 1!.

Proof. Recall that averaging with respect toV(23) projects
P1 to the section ofP1 with r 25r 3. Therefore, the inequali
ties describing the tetrahedron discussed in the last sub
tion are optimal. These are the first four inequalities. W
therefore only have to describe the admissible set of (r 2 ,r 3)
for given (r 1 ,r 2 ,r 1). There are two conditions to conside
one from the positivity ofr and the other from the positivity
of rT1. As shown in the first subsection, both these requ
ments have a very similar form, namely the positivity of
element in an abstract algebra with two one-dimensio
summands and one summand isomorphic to
232-matrices. Now, in both the cases, (r 1 ,r 2 ,r 1) are
readily seen to fix the weights of the one-dimensional pa
as well as the trace and the expectation of the first P
matrix for the 232-part. This leaves a condition of the form
r 2

21r 3
2<R in both cases. The two conditions are given in t

Lemma, whereR25(12r 12r 2)22r 1
2 expresses the re

quirementr>0. The condition~26e! is obtained fromrT1
04211
ly
re

ec-
e

-

al
e

ts
li

>0 by expressingrT1 in the basisSk and applying the same
criterion to the expectationssk . j

According to this lemma the setP1 can be visualized as
follows: first, one has to fix a point (r 1 ,r 2) in the
permutation-invariant triangle~Fig. 2!. The possible choices
of (r 1 ,r 2 ,r 3) can then be seen from Fig. 8. Apart from th
heart-shaped tripartite set in the center this figure conta
three quadratic surfaces: the Bloch sphere and the two
faces boundingB1. Comparing condition~d! of Theorem 2
and the expression forR1 given in the above lemma, we fin
that both constraints are given by the same hyperboloid,
one wrapped around the tripartite set in Fig. 8. Hence in
figure we can readily findP1 by extending this hyperboloid
all the way to the Bloch sphere and taking the intersecti
This is shown in Fig. 11, in the sectionr 350.

Figure 11 shows the generic situation withr 2Þ0. When
r 250, in particular, for systems of three qubits, the boun
ary ellipsoid ofB1, described by condition~c! of Theorem 2,
coalesces with the Bloch sphere. This leads to another
stance where the Peres-Horodecki criterion for separab
holds.

Corollary 1. The intersections ofB1 and P1 with the
plane r250 coincide. In particular, for3-qubit W states,
biseparability is equivalent to the positivity of the parti
transpose.

We conclude this section by the explicit determination
the extreme points ofP1. From Fig. 11 it might appear tha
all points on the quadratic surfaces boundingP1 might be
extremal. But this is misleading because we also have to
into account the possibility of decompositions with differe
values of (r 1 ,r 2). In fact, for the inequalities arising from

FIG. 10. The two positivity tetrahedra bounded byhi ~dotted!,
hi8 ~dashed!, and the intersection tetrahedron~solid lines! for d53.
1-12
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r>0, it is evident that generically such decompositions
possible: given any (r 1 ,r 2 ,r 1 ,r 2 ,r 3), which lies on the
Bloch sphere in Fig. 11, we can just change the weights
the three blocks in the block decomposition ofr according to
(l1r 1 ,l2r 2 ,l0r 1 ,l0r 2 ,l0r 3), as long asla’s are positive
and the normalizationl1r 11l2r 21l0(12r 12r 2)51 is
respected. This leaves a two-dimensional affine manif
through (r 1 ,r 2 ,r 1 ,r 2 ,r 3). Hence, unless other condition
constrainingP1 prevent the indicated decompositions,
such point will be extremal. Of course, the second constr
~26e! has the same structure because the algebra of pa
transposes is isomorphic to the algebra generated by
states. Hence in Fig. 11 only the points in the intersection
the hyperboloid and the Bloch sphere remain as candid
for extreme points. This is analogous to the extreme point
B1, which also consist of the intersection of two quadra
surfaces in Fig. 11. ForP1 we get the following.

Theorem 3. The subsetP1,W of W-states with positive
1-transpose has the following extreme points, described h
in terms of the expectations rk5tr(rRk), k51,2,1,2,3.

~1! The points P2 , Q3 , P4, and Q4, which also span the
V(23)-invariant part ofP1.

~2! The remaining extreme points ofB1, which form a
sphere in the r250 plane ~cf. Theorem 2!.

~3! The points for which(r 1 ,r 2 ,r 1,0,0) lie in the inte-
rior of the V(23)-invariant tetrahedron and for which in
equalities~26e! and ~26f! are both satisfied with equality.

Proof. Let us first discuss the periphery of the tetrahedr
Every face of the tetrahedron corresponds to a face ofP1,
namely, the face of points projecting to it upo
V(23)-averaging. In Lemma 8 this corresponds to the sub
for which one of the linear inequalities~26a!–~26d! is an
equality. We will show first that each of these faces is ac
ally contained inB1. Indeed, when~26b!, ~26c!, or ~26d! are
equalities, one of the factors inR1 or R2 vanishes, forcing

FIG. 11. Plot of the Bloch sphere,T, B1, and P1 for r 1

50.27, r 250.1, andr 350.
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r 25r 350 and reducing our claim to Lemma 7. When~26a!
is an equality, i.e.,r 250, the claim is contained in Corollary
1.

Now a point ofP1 contained in one of these faces ca
only have decompositions in the same face, hence inB1, for
such a point, extremality inP1 and extremality inB1 are
equivalent.

It remains to show item 3 of the theorem, i.e., to char
terize the extreme points ofP1 whoseV(23) averages fall in
the interior of the tetrahedron. From the arguments preced
the theorem, it is clear that the points for which only one
the inequalities~26e! and ~26f! is an equality cannot be ex
tremal since the surfaces defined by these inequalities
tain straight lines. Therefore, the condition stated in the th
rem is necessary for a point to be extremal. It remains
show that none of the points withR15R2 can be decom-
posed in a proper convex combination.

Let us denote byM1 (M2) the set of points in the interio
of the tetrahedron such thatR1<R2 (R2<R1). The intersec-
tion M* 5M1ùM2 of these sets is described by the con
tion R15R2, or explicitly

r 1
213r 21r 1r 222r 2

2 13r 12r 1r 128r 2r 122r 1
2 51.

~27!

This is a one-sheet hyperboloid generated by two set
straight lines shown in Fig. 12. Consider a line segment

u°~ r̂ 1 , r̂ 2 , r̂ 1!1u~ t1 ,t2 ,t1! ~28!

FIG. 12. Section of the intersecting tetrahedron with the se
rating one-leaf hyperboloid.
1-13
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through one of the pointsp̂5( r̂ 1 , r̂ 2 , r̂ 1)PM* of the hy-
perboloid. Also consider the radius functionsARi evaluated
as a function of the parameteru. If such a function is affine
~has vanishing second derivative! we can set„r 1(u),r 2(u)…
5(cosa,sina)ARi with arbitrary a to get a straight line in
the corresponding hypersurface in five dimensions. We t
call (t1 ,t2 ,t1) an affine directionfor Ri . Along other di-
rectionsRi is strictly concave, so no decomposition along t
segment~28! is possible. For both radius functions, the set
affine directions is a two-dimensional plane and thus b
described by its normal vector. That is,tW5(t1 ,t2 ,t1) is an
affine direction forRi if tW•AW i50, where

AW 15S 223r̂ 1212r̂ 2

2223r̂ 1112r̂ 1

2113r̂ 213r̂ 1

D , AW 25S 2 r̂ 1

2 r̂ 1

211 r̂ 21 r̂ 1

D .

~29!

Assuming that a convex decomposition along Eq.~28! is
possible, we thus arrive at a threefold case distinction.

~1! The line segment lies entirely inM1. Then it must be
tangent to the hyperboloidM* and also an affine direction
for R1. The vectortW is uniquely determined up to a factor b
these conditions. However, that does not mean that the
responding line segment lies inM1, and in fact, one can
show that itneverdoes. Hence this case is ruled out.

~2! The line segment lies entirely inM2. This is ruled out
analogously.

~3! The line segment crosses fromM1 into M2. Then tW
must be affine for both radius functions. Again, this det
04211
n

f
st

r-

-

mines tW to within a factor. But for a proper decompositio
we must also have that the slopes ofAR1 andAR2 match at
u50. One can show that this never happens inside the
rahedron we discuss, so this case is also ruled out.

We conclude that no point onM* allows a convex de-
composition insideP1, and the theorem is proved.
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APPENDIX ANALYSIS OF P̃

In this appendix we give a characterization of the sepa
bility classes (T̃, B̃1, andP̃1) of P̃ showing that they can be
deduced from those ofP without any computation.

The intimate relation between the two twirls emerged
ready in Lemma 6 where we stated the existence of an
morphism between the two algebras spanning the eig
paces ofP and P̃. This isomorphism establishes an affin
mappingi between the two eigenspaces that we used to c
puteP1. Due to the inclusionT B1 P1 it is clear that the
same mapping transports the setsT andB1 to their counter-
partsT̃ andB̃1. The mappingi can be computed by fixing the
ordering $1,X,V,VXV,XV,VX% for the second algebra an
concatenating the transformations~5! and ~25! getting

sW5irW

with
i5

¨

d21

d11
0

d12

2d12

d12

2d12
0 0

0
d11

d21

d22

2d22

22d

2d22
0 0

2

d11
2

2

d21

1

d221
2

d

d221
0 0

2

d11

2

d21
2

d

d221

1

d221
0 0

0 0 0 0
A3

Ad221
0

0 0 0 0 0
A3

Ad221

©
.
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With this mapping we can compute directly theP̃ projec-
tion of the statesA to G:

A:u123&→~1/2,1/2,0,0,0!

B:u111&→S d21

d11
,0,

2

d11
,0,0D

C:~ u111&2A3u112&1A3u121&23u122&)/4

→S 415d

818d
,
3d26

8d28
,

d12

424d2
,0,0D

D:u122&→~1,0,0,0,0!

FIG. 13. Sections and projections ofT̃ and B̃1 with/onto the

s1-s2 plane ford53. Black, section withT̃; dark gray, projection

of T̃; and light gray, section withB̃1.
.

04211
E:~ u112&2u121&)/A2→S 0,
d22

d21
,

1

12d
,0,0D

F:~ u123&2u132&)/A2→~0,1,0,0,0!

G:~ u112&2u121&2A3u122&)/A5→S 3

5
,
2d24

5d25
,

2

525d
,0,0D

Applying the transformation to the extremal points a
inequalities of Theorems 1, 2, and 3 yields then a charac
ization of T̃, B̃1, andP̃1.

We omit here the results of these transformations and g
Fig. 13, which corresponds to Fig. 2.

In contrast to what can be seen in Fig. 2, the projection
T̃ onto thes1-s2 plane differs from its section with it as on
can see in Fig. 14.

FIG. 14. Zoomed region of Fig. 11.
A
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