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Exact wave functions from classical orbits: The isotropic harmonic oscillator
and semiclassical applications

Kenneth G. Kay
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900 Israel

~Received 6 November 2000; published 20 March 2001!

The wave function for a state of definite angular momentum of the three-dimensional isotropic harmonic
oscillator is expressed exactly in terms of the corresponding classical trajectories. In particular, the three-
dimensional wave function as well as the radial wave function and the spherical harmonics are obtained as
integrals over quantities determined entirely by the classical motion. The expression for the harmonic-oscillator
radial wave function is shown also to yield the exact radial wave function for the free particle. The expressions
are cast in forms suitable for use as uniform semiclassical approximations for wave functions of other systems.
Numerical examples confirm that such wave functions obey boundary conditions appropriate for spherical
coordinates and that they are free of caustic singularities. The wave functions obtained by this technique can be
quite accurate even for low-energy states where semiclassical approximations are expected to be poor.

DOI: 10.1103/PhysRevA.63.042110 PACS number~s!: 03.65.Sq, 03.65.Ge
um
b

th
ex
av
la
ry
cla
en
m
s
an

tin

p
ie
-

d
es
x
e
d

e
. I
n

e-

-
r
ate

La-

es
s
ts

es,
m-

ar-
I. INTRODUCTION
In this paper and subsequent work we show that quant

mechanical wave functions for a number of systems can
expressed exactly, analytically, and simply in terms of
corresponding classical trajectories. In addition to being
act for specific reference systems, these classical w
function expressions become uniformly accurate in the c
sical limit for other systems obeying similar bounda
conditions. Such expressions thus serve as uniform semi
sical approximations for the wave functions of a more g
eral class of systems. Apart from their application as se
classical approximations, the exact classical description
quantum wave functions should lead to a clearer underst
ing of the quantum-classical relationship.

The new expressions are generalizations of an exis
semiclassical approximation@1,2# for time-independent wave
functions. To understand the motivation for the present pa
and the context in which it arises, it is necessary to rev
that treatment. References@1# and @2# establish that the en
ergy eigenstates for an integrable system withf degrees of
freedom can be approximated semiclassically as

c~x8!5NE C ei (F1W)/\da. ~1.1!

The integral is over thef-dimensional Lagrangian manifol
@3,4# corresponding semiclassically to the state of inter
and a are variables parametrizing this manifold. For e
ample, in the case of a bound state with quantum numb
n5(n1 , . . . ,nf), the manifold is the quantized torus define
by the Einstein-Brillouin-Keller ~EBK! condition J5(n
1d)\, @5# where theJ and d are vectors containing th
actions and Maslov indices for the degrees of freedom
such a case, thea can be taken as the angle variables co
jugate to theJ. The quantityW appearing in Eq.~1.1! is
Hamilton’s characteristic function, satisfying the tim
independent Hamilton-Jacobi equation

H~¹W,x!5E, ~1.2!
1050-2947/2001/63~4!/042110~17!/$20.00 63 0421
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whereH(p,x) is the Hamiltonian for the system with mo
mentap and coordinatesx. E is the semiclassical energy fo
the state and is determined by EBK quantization if the st
is bound. The solution of Eq.~1.2! can be expressed as

W5Ex(a)

p•dx, ~1.3!

where the integration is performed over a path on the
grangian manifold. The lower integration limit is arbitrary~it
only affects the overall phase of the wave function!, while
the upper limit is the coordinatex(a) that depends on the
integration parametersa. The functionF in Eq. ~1.1! is
defined by

F5p•~x82x!1 i ~x82x!•G•~x82x!, ~1.4!

wherex5x(a), p5p(a), andG5G(a) is an f 3 f complex
symmetric matrix function ofa. This matrix can be chosen
almost arbitrarily, but the real parts of all of its eigenvalu
are required to be positive~apart from certain special case
where they may be zero! and, for bound states, its elemen
must be a 2p-periodic functions of the anglesa. The preex-
ponential factorC in Eq. ~1.1! is given by

C5@det~P22i GX!#1/2, ~1.5!

where

~P! i j 5
]pi

]a j
, ~X! i j 5

]xi

]a j
, i , j 51, . . . ,f . ~1.6!

Finally, N is a normalization constant.
Although expressed solely in terms of classical variabl

Eq. ~1.1! turns out to be an exact expression for the quantu
mechanical wave functions of the multidimensional h
monic oscillator, with potential-energy function

V~x!5
1

2 (
i 51

f

m iv i
2xi

2 ,
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provided that the matrixG is chosen so that (G) i j

5( 1
2 m iv i)d i j . In addition, Eq.~1.1! can be shown to yield

exact wave functions for free motion and~with G50) for
motion in a linear potential.

Equation~1.1! suggests an attractive classical picture
the wave-function’s formation. As the classical partic
moves over the Lagrangian manifold associated with
quantum state, it produces contributions to the wave func
at pointsx8. The Gaussian factor

G~x8,x!5e2(x82x)•G•(x82x)/\ ~1.7!

in the integrand localizes these contributions to valuesx8
near the particle’s positionx, while the complex factor
Cexpi@p•(x82x)1W#/\ further weights these contribution
and provides a phase so that their coherent superpos
producesc(x8).

When applied to the harmonic oscillator, linear potent
and free particle cases, Eq.~1.1! becomes identical to an
expression proposed earlier by Heller@6#. More generally,
however, Heller’s expression, differs from the present one
the form of the preexponential factorC. Heller showed that
his expression yields approximate wave functions for m
general anharmonic systems when the dynamical quant
x,p,W, etc., are replaced by those for the systems of inte
@7#. This approximation~known as the frozen Gaussian a
proximation! is, however, not semiclassical—it does not ge
erally become exact in the classical limit.

In contrast, the present form for the pre-exponential fac
makes Eq.~1.1! a true semiclassical approximation. One w
of establishing this property is to note that, if the integ
over a is evaluated by the lowest-order stationary pha
method, the expression for the wave function becomes id
tical to that obtained by the primitive semiclassical Wentz
Kramers-Brillouin ~WKB! treatment@1,2#. Since both the
stationary phase and the WKB treatments become exa
the classical limit for all values ofx8 except those along
caustics, where the WKB expression is singular, the se
classical nature of Eq.~1.1! is also established except, pe
haps, at caustics. However, it is possible to prove a stron
result: unlike the WKB expression, the approximation giv
in Eq. ~1.1! is free of caustic singularities and approaches
exact wave function uniformly for allx8 as\→0 @1,2#. Thus
Eq. ~1.1! is not only a semiclassical approximation, but
uniform semiclassical approximation. Calculations inde
confirm that this approximation is capable of high accura
and describes the phase and oscillations of the wave func
more faithfully than does the frozen Gaussian approxima
@1,2#.

One problem, however, with the semiclassical wave fu
tions obtained from this treatment is that they obey spec
boundary conditions only atxi→6`. Although such condi-
tions are appropriate for wave functions that are expresse
functions of Cartesian coordinates, they are not appropr
for wave functions described in terms of more gene
choices of coordinates, which must obey boundary con
tions at finite points in space. Thus, for example, wave fu
tions obtained from Eq.~1.1! can satisfy neither periodic
boundary conditions, as required for angular variables,
04211
f

e
n

on

l

n

e
es
st

-

r

l
e
n-
-

in

i-

er

e

d
y
on
n

-
c

as
te
l
i-
-

r

regular boundary conditions at the origin, as needed for
dial spherical variables. Some of the consequences that
when related semiclassical treatments fail to obey the cor
boundary conditions are illustrated in Ref.@8#.

The boundary condition restrictions limit the treatment
Eq. ~1.1! to systems described in terms of Cartesian coo
nates. This is unfortunate since introduction of more gene
coordinates allows one to exploit constants of motion a
often greatly simplifies quantum, classical, as well as cer
semiclassical treatments. Thus, the inapplicability of
present approach to wave functions described in terms
such variables is a serious limitation that can complicate b
the resulting theoretical analysis and computations. U
mately, this restriction also complicates application of t
treatment to determine quantities~such as scattering an
spectroscopic transition probabilities! that are semiclassically
expressed most naturally in terms of more general class
canonical variables~e.g., action-angle coordinates!. The ap-
plicability of other, more familiar, semiclassical metho
@5,9# to such variables is responsible for much of th
power.

These considerations motivate an attempt to genera
the semiclassical theory of Refs.@1# and @2# to wave func-
tions obeying arbitrary boundary conditions. To understa
how this may be accomplished, we note that the feature
termining the boundary behavior ofc in this approximation
is the specific structure of the integrand. In particular, it
the Gaussian formG(x8,x) @see Eq.~1.7!#, obtained from
exp(iF/\) in Eq. ~1.4!, that builds in the boundary condition
that are appropriate for Cartesian coordinates. However,
integrand need not be chosen in this specific way. In or
that the expression be a uniform semiclassical approxima
for c, it is sufficient that it have the more general form@2#

c~x8!5NE F eiW/\da, ~1.8!

whereF is a function obeying

lim
\→0

F5C eiF/\1D. ~1.9!

In this expression,F is redefined to obey the condition

F;p•~x82x!1O~ ux82xu2!, ~1.10!

that is far less restrictive than the one presented in Eq.~1.4!,
andD is a possible additional term that does not contribute
a lowest-order stationary phase treatment of the integral.C is
still defined as in Eq.~1.5!, but the matrixG needed for its
construction is now determined by

G i j 5
1

2i S ]2F

]xi8]xj8
D

x85x

. ~1.11!

This matrix must obey the same conditions as describe
connection with Eq.~1.4!.

The continued validity of Eq.~1.8! as auniformsemiclas-
sical approximation may be verified by examining the effe
of its substitution in the Schro¨dinger equation@2#. However,
0-2
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EXACT WAVE FUNCTIONS FROM CLASSICAL . . . PHYSICAL REVIEW A 63 042110
its validity as a~perhaps nonuniform! semiclassical approxi
mation is much easier to establish since, by constructio
lowest-order stationary phase treatment does not disting
between Eqs.~1.1! and ~1.8!. Thus, the revised expressio
for c still gives the correct primitive~WKB! semiclassical
result as\→0.

Equation~1.8! means that the integrand in the express
for c needs to have the form prescribed by Eq.~1.1! only in
the classical limit~if we neglectD) and that, even in this
limit, the functionF is required to have the form given b
Eq. ~1.4! only to orderux82xu2. The actual form of the in-
tegrand of Eq.~1.8! for nonvanishing\ and arbitraryux8
2xu need not be Gaussian at all. These considerations
vide the freedom to choose the integrand so that the resu
semiclassical wave functions obey desired boundary co
tions.

But the allowable form for the integrand is now so gene
that one suspects that the revised expression forc may be
capable of describing exact wave functions for systems
yond those for which Eq.~1.1! is exact. In other words, i
might be possible to obtain expressions for wave functio
described entirely in terms of the corresponding class
motion, that are exact for certainnew ‘‘reference’’ systems.
In analogy to the treatment of Ref.@1#, these could serve a
uniform semiclassical expressions when applied to ‘‘targ
systems for which they are not exact. If the wave functio
of the reference systems obeyed boundary conditions ap
priate for non-Cartesian coordinates, the semiclassical w
functions of the target systems would likewise obey th
conditions, and the desired extension of the semiclass
treatment of Ref.@1# to more general coordinate system
would thus be accomplished.

Though not strictly necessary for the semiclassical ap
cations, the property of being exact for particular referen
systems could have important advantages. We note that,
to its exactness for the harmonic oscillator, Eq.~1.1! yields
accurate wave functions for typical anharmonic bound s
tems even at low energies@1,2# where semiclassical trea
ments are usually inaccurate, but the motion is effectiv
harmonic. We should expect the new expressions to h
corresponding advantages of being especially accurate w
the target and reference systems are similar.

The direction of the present paper is exemplified by
recent paper@10# that describes exact expressions for t
wave functions of the Coulomb system in terms of the c
responding classical orbits. Here and in subsequent pub
tions @11# we rederive this result in detail and show how E
~1.1! can be further generalized to obtain exact classical
pressions for wave functions of several additional system

Our approach to deriving analytical, classical exact~CE!
wave functions for a variety of systems is first to general
Eq. ~1.1! to obtain CE wave functions for the three
dimensional isotropic harmonic oscillator~IHO! in terms of
spherical variables. This already serves as a reference
tem, allowing determination of semiclassical wave functio
in spherical coordinates for general single-particle syste
A mapping procedure@11# can then be applied to deriv
wave functions for several other systems~including the Cou-
lomb problem@10#! from the radial and angular functions o
04211
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the IHO. The present paper is devoted to the treatment of
IHO and some immediate consequences; the extensio
additional systems will be described elsewhere@11#. A re-
lated semiclassical treatment of quantum amplitudes^x2ux1&,
involving general classical variablesx2 and x1 @9#, is also
presented in a separate work@12# and an application of tha
treatment to scattering is likewise described elsewhere@13#.

The remainder of this paper is organized as follows:
Sec. II we derive the CE expression for the IHO. In Sec.
we present minor extensions of this result to obtain an al
native CE expression for the three-dimensional IHO wa
function and a CE expression for the free particle radial wa
function. In Sec. IV we present forms that are suitable
semiclassical approximations for the treatment of the ro
tional, orbital, and radial motion of more general systems
Sec. V we present some numerical examples that apply th
semiclassical approximations. Finally, in Sec. VI we summ
rize and discuss our results.

II. THE ISOTROPIC HARMONIC OSCILLATOR

A. Classical expression for the wave function

In this section we derive a CE expression for the sim
taneous energy and angular momentum eigenstates o
three-dimensional IHO. The system of interest is charac
ized by the classical Hamiltonian

H5
1

2m
~px

21py
21pz

2!1V~r !, ~2.1!

where

V~r !5 1
2 mv2r 2, ~2.2!

r 25x21y21z2, andm andv are, respectively, the mass an
frequency of the oscillator.

In the quantum treatment of this system it is well know
that a separation of variables is possible both in Cartes
and in spherical coordinates@14#. Thus, the energy eigen
states can be labeled by either the set of quantum num
(n1 ,n2 ,n3) or the set (n,l ,m). Wave functions
cn1n2n3

(x,y,z) are products of three one-dimension
harmonic-oscillator wave functions in the individual Cart
sian coordinatesx, y, andz, with quantum numbersn1 , n2,
andn3, respectively. These satisfy

n1 ,n2 ,n350,1,2, . . . ,

and specify the energy in each degree of freedom, so tha
energy eigenvalue associated withcn1n2n3

(x,y,z) is

E5~n11n21n31 3
2 !\v.

The functionscnlm(r ,u,f), on the other hand, are angula
momentum eigenstates and are products of radial and a
lar wave functions in the spherical coordinatesr, u, andf.
The angular momentum quantum numbersl andm satisfy the
familiar conditions

l 50,1,2, . . . , m52 l ,2 l 11, . . . ,l , ~2.3!
0-3
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KENNETH G. KAY PHYSICAL REVIEW A 63 042110
while the principle quantum numbern is constrained by

n5 l ,l 12,l 14, . . . , ~2.4!

and determines the energy of the state via

E5~n1 3
2 !\v. ~2.5!

Clearly, wave functionscnlm andcn1n2n3
with the same en-

ergy E are related by

cnlm5 (
n11n21n35n

An1n2n3
cn1n2n3

, ~2.6!

where theA are certain coefficients.
Since Eq.~1.1! yields CE wave functions for thecn1n2n3

,

we can use Eq.~2.6! to obtain a CE expression forcnlm as a
finite linear combination of functions of Cartesian coord
nates. However, since it is known thatcnlm can be expresse
directly and compactly as a function of the spherical coor
nates, we expect that it should also be possible to deriv
more compact CE expression forcnlm in terms of the spheri-
cal variables. Part of the structure of such an expression
be guessed from Eq.~2.6!. In view of the isotropic nature o
the system, we would expect that the matrixG of Eq. ~1.4!
should be replaced by a certain scalarg ~with Rg.0) that is
common to each term in Eq.~2.6!. In that case, the CE ex
pression for each such term would contain a factor exp(iF/\)
of the same form, where

F5p•~r 82r !1 igur 82r u2, ~2.7!

so that a similar factor should also appear in the CE exp
sion for cnlm in spherical coordinates. In the following, w
seek to verify this hypothesis.

Thus, by analogy to Eq.~1.1!, we consider the expressio

cnlm~r 8,u8,f8!5NE C ei (F1W)/\da, ~2.8!

where the integration is now over the Lagrangian manif
for the state with quantum numbers (n,l ,m) @which is dif-
ferent from that for the state with quantum numbe
(n1 ,n2 ,n3)] and a denotes the three angle variables para
etrizing this manifold.W is again Hamilton’s characteristi
function, andF is given by Eq.~2.7!. The preexponentia
factor C is determined from

r 2 sinu C25det~P22i GX!, ~2.9!

whereP, X, andG are 333 matrices defined as in Eqs.~1.6!
and~1.11!, with the understanding thatpi andxi now refer to
the spherical components of momentump and coordinater ,
and thatxi8 andxj8 refer to the spherical components ofr 8.

Note that the form ofC in Eq. ~2.9! differs from that
given in Eq.~1.5! by the factorr 21 sinu21/2. We choose the
present form because, in order to establish the semiclas
nature of Eq.~2.8! for cnlm , we require it to reduce to an
appropriate WKB expression when the integral is evalua
by the stationary phase method@as in the case of Eq.~1.1!#.
04211
i-
a

an

s-

d

-

cal

d

However, the WKB formula is strictly derived only for wav
functions obeying a ‘‘normal’’ Schro¨dinger equation having
no first-derivative terms@5#. Since the Schro¨dinger equation
in spherical coordinates contains first derivatives with
spect tor 8 andu8, the WKB treatment should not be applie
directly to the wave functioncnlm(r 8,u8,f8). Multiplying
cnlm by the factor (r 82 sinu8)1/2, however, effectively re-
moves these terms from the Schro¨dinger equation and pro
duces a function that can be properly treated by the W
method@5#. Our choice ofC is designed so that the integra
in Eq. ~2.8! reduces, upon stationary phase evaluation, to
WKB expression for the function (r 82 sinu8)1/2cnlm divided
by the factor (r 82 sinu8)1/2, to yield an approximation for
cnlm .

B. Transformation to spherical coordinates

Upon transformation from Cartesian to spherical va
ables, the functionF of Eq. ~2.7! can be conveniently ex
pressed as

F5pr~r 82r !1 ig~r 82r !21~r 8/r !~ f 1dg!, ~2.10!

where

f 52 iL $@cos~u82u!21#1sinu8sinu@cos~f82f!21#%

1pu$sin~u82u!1sinu8cosu@cos~f82f!21#%

1pf~sinu8/sinu!sin~f82f!, ~2.11!

g5@cos~u82u!21#1sinu8sinu@cos~f82f!21#,
~2.12!

and

d5prr 22igr 21 iL . ~2.13!

In these expressions, (r ,u,f), (r 8,u8,f8), and (pr ,pu ,pf)
are the spherical components ofr , r 8, andp, respectively,
andL is the magnitude of the angular momentum,

L5@pu
21pf

2 /sin2 u#1/2. ~2.14!

Equation~2.10! allows us to apply the definition ofG in Eq.
~1.11! to obtain

2i G5S 2ig pu /r pf /r

pu /r iL 2d pf cotu

pf /r pf cotu @~ iL 2d!sinu2pu cosu#sinu
D .

~2.15!

It can be shown that the real parts of the eigenvalues ofG are
indeed positive, as required, provided thatRg.0.

C. Transformation to action-angle variables

To perform the integrations in Eq.~2.8!, we need to ex-
press the integrand in terms of the action-angle variables
the IHO. The transformation from spherical coordinates a
momenta to action-angle variables and the explicit expr
sion for W are reviewed in Appendix A.
0-4
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It is convenient to focus here on transformations of qu
tities that depend on the angular coordinates and mome
leaving the transformations ofr andpr until later. Thus, we
substitute Eqs.~A36!–~A39! into Eqs. ~2.11! and ~2.12!,
yielding

f 5 iL 1e2 i (aL1j)$2 i ~L22M2!1/2cosu81@L sin~aM2f8!

1 iM cos~aM2f8!#sinu8% ~2.16!

and
h

es
th
r
hi
nt

04211
-
ta,

g5cos~aL1j!@~12M2/L2!1/2

3cosu82~M /L !sinu8 cos~aM2f8!#1sin~aL1j!

3sinu8sin~aM2f8!21, ~2.17!

whereM5pf is thez component of the angular momentum
In presenting this result, bothL and M are recognized as
action variables. Since the integration in Eq.~2.8! is taken
over the manifold corresponding to the state (n,l ,m), these
actions have the quantized valuesL5( l 11/2)\ and M
5m\, according to Eqs.~A21! and~A22!. The quantitiesaL
andaM appearing above are the angle variables conjugat
L andM, while j is defined in Eq.~A32!.

To evaluate the pre-exponential factorC, we substitute
Eqs.~A42!–~A48! into Eqs.~2.9! and ~2.15!. The result is
r 2 sinu C25S 1

mv DUpr~]pr /]r 22ig!2L2/r 3 2L/r 2M /r

22igpu ~d/L2 i !pu 2Mcotu

22igM ~d/L2 i !M 22iGff

U , ~2.18!
-

where

2iGff5@~ iL 2d!sinu2pu cosu#sinu. ~2.19!

To obtain Eq.~2.18!, we have eliminated derivatives wit
respect to the third angle variableaN , defined in Appendix
A, using the expressions

]r /]aN5pr /mv ~2.20!

and

]pr /]aN5~pr /mv!~]pr /]r ! ~2.21!

that follow from the relationship@5# aN5const.1vt be-
tween the angleaN and timet @also see Eqs.~A35!, ~A40!,
and ~A41!#. The determinant in Eq.~2.18! may now be ex-
panded, yielding

C252~L22M2!1/2
Lpr

mvr 2F L

r 2 1S i 2
d

L D S ]pr

]r
22ig D G

3@e2 i (aL1j)1~d/L !sin~aL1j!#. ~2.22!

These expressions, together with Eq.~A53! for W, can
now be substituted into Eq.~2.8! for c and the integrations
over aL andaM can be attempted. Unfortunately, this do
not generally yield an expression for the wave function in
form of a product of independent radial and angular facto
characteristic of the exact result. We find that, to obtain t
desired form, we must choose the as-yet unspecified qua
g to obey the particular condition

g5
L

2r 2 2 i
pr

2r
~2.23!
e
s,
s
ity

that causesd to vanish@see Eq.~2.13!#. Our expressions then
simplify to

F5pr~r 82r !1 ig~r 82r !21~r 8/r ! f

5pr~r 82r !1S i
L

2r 2 1
pr

2r D ~r 82r !21~r 8/r ! f

~2.24!

and

C5CrCu , ~2.25!

where

Cr5H pr

mvr 2 F2L

r 2 1 i S ]pr

]r
2

pr

r D G J 1/2

, ~2.26!

Cu5 i ~L22M2!1/4L1/2e2 i (aL1j)/2. ~2.27!

Substitution of these results into Eq.~2.8! and use of Eq.
~A6! to decomposeW into the sum of one-dimensional inte
grals Wr , Wu , and Wf @defined in Eqs.~A7!–~A9!# casts
our expression for the IHO wave function in the form

cnlm~r 8,u8,f8!5NE
0

2p

daN Cr

3exp$ i @pr~r 82r !1 ig~r 82r !21Wr #/\%

3T~u8,f8,r 8/r !, ~2.28!

where
0-5
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T~u8,f8,r!5E
0

2p

daLE
0

2p

daM Cu ei (r f 1Wu1Wf)/\.

~2.29!

D. Angular integrations

We now turn our attention to the evaluation ofT defined
in Eq. ~2.29!. Applying Eqs.~A50! and ~A49!, which estab-
lish that

Wu1Wf5L~aL1j!1MaM , ~2.30!

along with Eq.~2.16! for f, we obtain

T~u8,f8,r!5eimf8e2Lr/\E
0

2p

ds Cu

3exp~rAL22M2 cosu8e2 is/\1 iLs/\!

3E
0

2p

dt eimtexp$re2 is sinu8

3@~L2M !ei t2~L1M !e2 i t#/2\%, ~2.31!

wheres5aL1j, t5aM2f8, and we have used the per
odicity of the integrands to adjust the integration limits.
the second exponential in the integral overt is expanded in
a power series and the factor@(L2M )ei t2(L1M )e2 i t# j is
further expanded in powers of exp(it), the integration overt
is easily performed yielding a Kronecker delta. This redu
the double sum to a single sum that can be immedia
related to the power-series expansion for the Bessel func
of the first kindJm @15#. As a consequence, we obtain

T~u8,f8,r!52p~21!mS L1M

L2M D m/2

eimf8e2Lr/\

3E
0

2p

ds Cu ez cosu81 iLs/\Jm~z sinu8!,

~2.32!

where

z5rAL22M2e2 is/\. ~2.33!

Applying Eq. ~2.27! for Cu and the quantization conditio
for L5( l 11/2)\, this result can be expressed as

T~u8,f8,r!52p i ~21!mS L1M

L2M D m/2

3~L22M2!1/4L1/2eimf8e2Lr/\

3E
0

2p

ds eil sez cosu8Jm~z sinu8!.

~2.34!

Expanding the above integrand in terms of Legendre fu
tions via @16–18#
04211
s
ly
n

-

ez cosu8Jm~z sinu8!5(
j 50

`
zj 1m

j !
Pj 1m

2m ~cosu8!, ~2.35!

and integrating overs yields a contribution proportional to
d j ,l 2m from each term. Thus,

T~u8,f8,r!5am4p2i ~21!m~r/\! le2Lr/\L1/2

3
~L1M ! l /21m/211/4~L2M ! l /22m/211/4

~ l 1umu!!

3eimf8Pl
umu~cosu8!, ~2.36!

where the factoram , defined as 1 ifm,0 and as (21)m if
m.0, arises from the relation betweenPl

2m(x) andPl
1m(x)

for 21,x,1 @18,19#. Finally, applying a standard defini
tion of the spherical harmonicsYl

m @14#, we can express ou
result forT as

T~u8,f8,r!5Mlm r le2L(r21)/\Yl
m~u8,f8!, ~2.37!

where

Mlm5~21!m~2p!5/2i\

3F ~ l 1m1 1
2 !( l 1m11/2)~ l 2m1 1

2 !( l 2m11/2)

~ l 1m!! ~ l 2m!!
G1/2

e2L/\.

~2.38!

E. The radial factor

Returning to the three-dimensional wave functioncnlm ,
we substitute Eq.~2.37! into Eq. ~2.28!, to find that this
function is now in the expected separable form

cnlm~r 8,u8,f8!5Rnl~r 8!Yl
m~u8,f8!, ~2.39!

where the radial functionRnl is given by

Rnl~r 8!5NnlE
0

2p

daN Cr exp@ i ~F r1Wr !/\#, ~2.40!

with Nnl5NMlm and

F r52 i\ l ln~r 8/r !1 iL ~r 8/r 21!1pr~r 82r !1 ig~r 82r !2

~2.41!

52 i\ l ln~r 8/r !1
1

2
~prr 1 iL !S r 82

r 2
21D . ~2.42!

The integral in Eq.~2.40! is over the angle variableaN that
determines the radial coordinater @see Eq.~A34!# along an
orbit for which the action variableN, conjugate toaN , has
the quantized value (n13/2)\ @see Eq.~A25!# or, equiva-
lently, the energyE has the value (n13/2)\v @see Eq.
~A20!#.

To evaluate the radial function we need an explicit e
pression forCr in terms ofaN . Applying
0-6
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]pr

]r
5S ]pr

]aN
D S ]r

]aN
D 21

~2.43!

as well as Eqs.~A34!, ~A35!, ~A40!, ~A41!, and~A30! to Eq.
~2.26! yields

Cr5
m3/4vE0

1/2eip/4

~E2E0 cos 2aN!5/4
@~E1Lv!1/2e2 iaN

2~E2Lv!1/2eiaN#, ~2.44!

whereE0 is given in Eq.~A30!. If we define

a65e2 ip/4@~E1Lv!1/2eiaN7~E2Lv!1/2e2 iaN#, ~2.45!

we find that

E2E0 cos 2aN5 1
2 a1a1* , ~2.46!

so that we can write

Cr525/4m3/4vE0
1/2/~a1* a1

5 !1/4. ~2.47!

The definition in Eq.~2.45! also allows us to express othe
quantities appearing inRnl(r 8) in a compact way. The term
j in Eq. ~A52! for Wr can be written as

j52
i

2
lnS ia1

a1*
D , ~2.48!

and, applying Eq.~2.46! to Eq. ~A34!, r can be expressed a

r 5S a1a1*

2mv2D 1/2

. ~2.49!

In addition, from Eqs.~A34! and ~A35! we have

prr 5~E0 /v!sin 2aN5 i ~a1* a2/2v2L !. ~2.50!

Substituting these results into Eq.~2.42! and Eq.~A52! for
Wr , and Eq.~2.40!, yields the relatively simple expression

Rnl~r 8!5B1E
0

2p

daN

1

a1
l 13/2

3expF2
mvr 82

2\ S a2

a1
D GexpiEaN /\v,

~2.51!

where

B15N nl2
5/4m3/4vE0

1/2eL/2\e2 ipL/4\~2mvr 82! l /2.
~2.52!

To cast this integral in a standard form, we define

y5mvr 82/\, ~2.53!

b5S E1Lv

E2Lv D 1/2

, ~2.54!
04211
z52yb/~e22iaN2b!, ~2.55!

which allows us to establish that

a2 /a152z/y21, ~2.56!

a15F ~E2Lv!e2 ip/2by2

z~z2y! G1/2

, ~2.57!

daN52y dz/@2iz~z2y!#. ~2.58!

Substituting these relations into Eq.~2.51! then yields

Rnl~r 8!5B2EC

dz e2zzk1 l 11/2

~z2y!k11
, ~2.59!

where

B25B1

ieipL/4\ey/2

2yl 11/2b l 1k13/2~E2Lv! l /213/4
~2.60!

and

k5 1
2 ~E/\v2 l 23/2!5 1

2 ~n2 l !50,1,2, . . . ~2.61!

@see Eqs.~A19! and ~A20!#. The contourC twice encircles
z5y in the negative sense asaN varies from 0 to 2p and
excludes the pointz50. However, apart from the sense
motion and the number of circuits, the integral in Eq.~2.59!
is a representation of the Laguerre function,@20# so that we
can write

Rnl~r 8!524p iB2e2yyl 11/2Lk
( l 11/2)~y! ~2.62!

5N nl4p\2(1/4)~mv!3/4F @~n2 l 11!/2#n2 l 11

@~n1 l 12!/2#n1 l 12G 1/4

3el /211/4eip/4yl /2e2(y/2)L (n2 l )/2
( l 11/2)~y!. ~2.63!

When we compare this result with the normalized solut
of the radial Schro¨dinger equation for the IHO@21#, i.e.,

Rnl
qm~r 8!5S mv

\ D 3/4F2 G@~n2 l 12!/2#

G@~n1 l 13!/2# G1/2

3yl /2e2(y/2)L (n2 l )/2
( l 11/2)~y!, ~2.64!

we see that the two differ only by normalization. Thus, w
can make our expression forRnl(r 8) identical to the exact
result simply by choosing the constantNnl to have the value:

Nnl5
e2 ip/4

4p\1/2 F2 e2 l 21/2

3
G@~n2 l 12!/2#

G@~n1 l 13!/2#

@~n1 l 12!/2# (n1 l 12)/2

@~n2 l 11!/2# (n2 l 11)/2G 1/2

.

~2.65!
0-7
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This completes the proof that our classical expression
the IHO wave function, Eq.~2.8!, is exact. Additionally, the
normalization constantN appearing there is determined to b

N5NnlNlm , ~2.66!

where

Nlm51/Mlm ~2.67!

andMlm is given in Eq.~2.38!.

III. SOME EXTENSIONS

A. Spherical harmonics and an alternate CE expression

In view of Eqs.~2.29!, ~2.37!, and~2.67!, we can express
the spherical harmonics in the CE form

Yl
m~u8,f8!5NlmT~u8,f8,1! ~3.1!

5NlmE
0

2p

daLE
0

2p

daM Cu

3exp@ i ~ f 1Wu1Wf!/\#. ~3.2!

Since the three-dimensional wave function is a product o
spherical harmonic and a radial factor@see Eq.~2.39!#, we
may writec as a product of the above expression forYl

m and
Eq. ~2.40! for Rnl . Thus, applying Eqs.~2.25!, ~2.66!, and
~A6! we obtain

cnlm~r 8,u8,f8!5NE C exp@ i ~F r1 f 1W!/\#da. ~3.3!

This expression is clearly a CE formula for the IHO wa
function but it is not identical to our original expression, E
~2.8!, since F is not equal toF r1 f @compare with Eqs.
~2.24! and ~2.42!#. This illustrates that CE expressions f
the IHO wave function are not unique. In fact, Eqs.~2.8! and
~3.3! are but two examples of a more general class of IH
CE formulas that can be obtained from Eq.~2.37! with dif-
ferent choices for the quantityr. Nonuniqueness is a gener
property of CE expressions.

We can cast Eq.~3.2! in an interesting form if we note
from Eq. ~2.24!, that f is identical toF when r 85r . Since
Eq. ~2.11! shows thatf does not depend on these radial c
ordinates, we may choose them to have the value of un
Thus, we obtain

Yl
m~u8,f8!5NlmE Cu exp@ i ~F (2)1W(2)!/\#da(2), ~3.4!

where the two-dimensional integration is over (aL ,aM),

W(2)5Wu1Wf , ~3.5!

F (2)5 igu r̂ 82 r̂ u21p•~ r̂ 82 r̂ !, ~3.6!

and r̂ and r̂ 8 are unit vectors alongr and r 8, respectively.
Since f is independent ofpr , the radial component of the
04211
r

a

.

-
y.

momentum can be chosen to be zero in Eq.~3.4!, in which
case Eq.~2.23! shows that we must choose

g5L/2 ~3.7!

in Eq. ~3.6!. This form effectively shows how the radial var
ables can be eliminated from Eq.~2.8! for the three-
dimensional IHO wave function to obtain a CE express
for the spherical harmonics.

B. Radial wave function for the free particle

We recall that the original expression for the wave fun
tion in Cartesian coordinates, Eq.~1.1!, is a CE formula not
only for the harmonic oscillator but for the free particle to
Here we show that the same is true of our new express
Eq. ~2.8!, for the three-dimensional wave function in sphe
cal coordinates. In particular, we demonstrate that, with
pected adjustments, our expression for the radial func
R(r 8) is a CE formula for the free particle as well as for th
IHO.

As a first step in this direction, we consider transformi
the harmonic-oscillator system into that of a free particle
letting the frequencyv tend to zero whilen becomes infinite
so that the energy remains constant, i.e., we treat the ca

v→0, E'n\v→\k2/2m5const., l 5const., ~3.8!

wherek is a constant wave number. In this limit, it can b
shown that the unnormalized IHO radial functions inde
tend to the corresponding free particle functions@22#

yl /2e2y/2L (n2 l )/2
l 11/2 ~y!→~4/p!1/2~n/2!~ l 11!/2j l~kr 8!,

~3.9!

wherey is defined as in Eq.~2.53! and j l are spherical Besse
functions. We can now examine how the functionRnl of Eq.
~2.63! behaves in this limit. Using (11a/n)n→ea to sim-
plify the coefficient, we obtain

Rnl~r 8!→Nnl

4

\ S p

n D 1/2

~\k!3/2eip/4j l~kr 8!, ~3.10!

so that Eq.~2.40! implies that

j l~kr 8!5
\e2 ip/4

4p1/2~\k!3/2
lim
n→`

n1/2E
0

2p

daN Cr

3exp@ i ~F r1Wr !/\#. ~3.11!

Since the integrand in Eq.~3.11! is periodic, we can shift
the integration limits from (0,2p) to (2p/2,3p/2). Then,
since Eqs.~A34! and ~A35! show that the IHO undergoe
two cycles of radial motion over this interval ofaN , we can
replace the integral in Eq.~3.11! by twice the integral over
the range (2p/2,p/2). We identify the timet for motion
along the classical trajectory by means of the relation

aN5vt→ \k2

2m n
t, ~3.12!
0-8
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where we have used Eq.~3.8! to expressv in terms ofn. In
terms of this variable, the integration limits (2p/2,a
,p/2) correspond to (2`,t,`). Defining an
n-independent preexponential factorCr

(0) via

Cr
(0)5H pr

mr 2 F2L

r 2 1 i S ]pr

]r
2

pr

r D G J 1/2

~3.13!

5v1/2Cr5S \k2

2m nD 1/2

Cr , ~3.14!

Eq. ~3.11! becomes

j l~kr 8!5
e2 ip/4

~8pmk!1/2E2`

`

Cr
(0) exp@ i ~F r1Wr !/\#dt.

~3.15!

Equation~3.15!, which may be verified by explicit evalu
ation of the integral, expresses the exact radial wave func
for the free particle in terms of the radial motion of a cla
sical free particle with energyE5\2k2/2m. The form of this
result is identical to that of Eq.~2.40! for the IHO except for
the use of the timet instead of the angleaN as the integration
variable. Angle variables are, of course, undefined for
bounded motion, and the time variable is the proper way
parametrize the Lagrangian manifold in such cases. Eq
tions ~2.8! and~3.3! are thus shown to be CE expressions
both the IHO and the free particle.

IV. SEMICLASSICAL FORMS

We have pointed out that the CE expressions for the I
can serve as semiclassical approximations for various ta
systems with wave functions obeying boundary conditio
appropriate for spherical coordinates. However, for this p
pose, the expressions must be cast in forms that do not
on properties of the action-angle variables that are specifi
the IHO. Nevertheless, these expressions must still obey
conditions of Eqs.~1.8!–~1.11!, ensuring that the wave func
tion becomes uniformly exact in the classical limit. Thu
before our results can be used as semiclassical approx
tions for other systems, they must be generalized appro
ately. This is accomplished in the present section.

A. Three-dimensional motion

Equation~2.8! for the wave functionc(r 8,u8,f8) of the
IHO is already expressed in sufficiently general terms
serve as a semiclassical approximation for other regu
three-dimensional systems expressed in terms of sphe
coordinates. For such an application we just need to rep
the dynamical quantities in Eq.~2.8! with those of the targe
system. This means thatW should be evaluated using

W5E r (a)

p•dr , ~4.1!

while F @with g not necessarily constrained by Eq.~2.23!#
and C should be calculated using Eqs.~2.7! and ~2.9!, re-
04211
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spectively, at each pointa on the three-dimensional La
grangian manifold corresponding to the state of interest.
nally, the integration over this manifold must be carried o
Practical methods for determining the Lagrangian manif
associated with a quantized state of a multidimensional s
tem, and for performing the necessary integrations, are
dressed in Ref.@2#.

It is worth noting that, although the factoruexp(iF/\)u
appearing in the integrand of Eq.~2.8! is a Gaussian when
expressed as a function of the Cartesian coordinates@see Eq.
~2.7!#, it is clearly no longer a Gaussian in terms of th
individual spherical coordinates@see Eqs.~2.10!–~2.12!#.
The validity of Eq.~2.8! as a uniform semiclassical approx
mation for target systems is due to the satisfaction of
conditions discussed in connection with Eqs.~1.8!–~1.10!.
Thus, the present case illustrates how non-Gaussian inte
expressions can serve as semiclassical approximations.

B. Anisotropic rigid rotor

We now recast Eq.~3.4! for the spherical harmonics in
form suitable for a semiclassical treatment of regular, ani
tropic, rigid rotational motion. This should allow the ap
proximate calculation of wave functionsx(u8,f8) obeying
boundary conditions appropriate for angular variablesu8 and
f8.

The classical Hamiltonian for the target system is
sumed to be

H5
pu

2

2I
1

pf
2

2I sin2 u
1V~u,f!, ~4.2!

whereI is the moment of inertia. Basing our treatment up
the free rigid rotor (V50) as a reference system, we gene
alize Eq.~3.4! to express the semiclassical wave function

x~u8,f8!5NE Cu exp@ i ~F (2)1W(2)!/\#da(2),

~4.3!

where the integral is over the two-dimensional Lagrang
manifold corresponding to the rotational state of interest:

W(2)5E r̂ (a(2))
p̂•dr̂ , ~4.4!

wherer̂ andp̂ are, respectively, the two-dimensional vecto
(u,f) and (pu ,pf);

F (2)5 igu r̂ 82 r̂ u21p̂•~ r̂ 82 r̂ !522ig$@cos~u82u!21#

1sinu8sinu@cos~f82f!21#%1pu$sin~u82u!

1sinu8cosu@cos~f82f!21#% ~4.5!

1pf~sinu8/sinu!sin~f82f!, ~4.6!

with g not necessarily restricted by Eq.~3.7!;

sinu Cu
25det~P22i GX!232 , ~4.7!
0-9
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whereP andX are 232 matrices as defined in Eqs.~1.6! but

applied for variablesr̂ ,p̂ anda(2), and

2i G5S 2ig pf cotu

pf cotu ~2ig sinu2pu cosu!sinu D . ~4.8!

It is easy to verify that the above equations revert to the
expression for the spherical harmonics, Eq.~3.4!, when V
50.

C. Orbital motion

We specialize the result obtained in the previous sec
to the case where the potentialV5V(u) is axially symmetric
so that thef dependence of the wave function can be se
rated out. We will see how our CE expressions yield a se
classical treatment for the remaining orbital motion inu so
that the wave functions obey the appropriate boundary c
ditions at angles 0 andp.

Applying the results presented in Appendix B, Eq.~4.3!
for the wave function of the present system can be expre
as

x jm~u8,f8!5NjmE
0

2p

daJE
0

2p

daM Cu

3exp@ i ~F (2)1Wu1Wf!/\#, ~4.9!

whereJ5( j 11/2)\ and M5m\ are the two quantized ac
tions andaJ and aM are the corresponding angle variabl
for the system;Wu and Wf are defined in Eqs.~B6! and
~B7!; and F (2) may be expressed as in Eq.~4.6! with pf

5M .
To simplify Eq. ~4.7! for the preexponential factor, w

apply Eqs.~B21!–~B23! for the elements ofP andX to ob-
tain

Cu5F S ]pu

]aJ
22ig

]u

]aJ
D ~pu cosu22ig sinu!

2
M2 cos2 u

sin3 u

]u

]aJ
G 1/2

. ~4.10!

Using Eqs.~A45!, ~A46!, ~A36!, and~A37!, it is not hard to
show that, apart from a phase factor, this result reduce
Eq. ~2.27! whenV50 andg5L/2.

Substituting Eq.~B10! for Wf and Eq.~4.6! into Eq.~4.9!,
we obtain
04211
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x jm~u8,f8!5Njm~21!meimf8e22g/\

3E
0

2p

daJ Cu exp$ i @pu sin~u82u!

22ig cos~u82u!1Wu#/\%

3exp@2 i sinu8~pu cosu22ig sinu!/\#

3E
0

2p

dt eimtexp$ i sinu8@~pu cosu

22ig sinu!cost2M sint/sinu#/\%,

~4.11!

where we have applied Eq.~B22! to expressdaM5df,
changed variables tot5f2f8, and used the periodicity o
the integrand to adjust thet-integration limits. The integral
over t can be easily recast into a form similar to that in E
~2.31! and, repeating the treatment presented there, the re
can be expressed in terms of the Bessel functionJm . Spe-
cifically, we find

x jm~u8,f8!52p~2 i !me22g/\eimf8Sjm~u8!, ~4.12!

where

Sjm~u8!5NjmE
0

2p

daJ Cu

3exp$ i @Wu2cosu8~pu sinu12ig cosu!#/\%

3eim tan21(b/a)Jm~Aa21b2!, ~4.13!

and we have defined

a5~pu cosu22ig sinu!sinu8/\, ~4.14!

b52M sinu8/\ sinu. ~4.15!

Once again, in the isotropic case (V50) wheng is cho-
sen asL/2, it is not hard to show that the above resu
reduce to the expressions obtained in Sec. II D, namely,
~4.12! becomes equivalent to Eq.~2.34! and Sjm(u8) be-

comes proportional to the Legendre functionPl
umu(cosu8).

Thus, Eq.~4.13! is a CE expression when applied to fre
orbital motion.

However, it is more relevant here to examine the suita
ity of this expression as a semiclassical approximation
other systems. When\→0, the argument of the Bessel func
tion in Eq.~4.13! becomes large~except whenu8 is near 0 or
p). Application of an asymptotic expression for the Bes
function @23#, casts the integrand as a sum of form
Cu

(n)exp(iFu
(n)/\), n51,2, whereFu

(n) obeys the condition of
Eq. ~1.10! and the quantitiesG appearing inCu

(n) are consis-
tent with Eq. ~1.11!. This ensures that, despite its evide
nonGaussian form, Eq.~4.13! can indeed be applied as
semiclassical approximation for more general systems. F
0-10
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thermore, by substituting the expansion forJm with small
argument@15#, it is easy to confirm that

Sjm~u8!;const.3sinumuu8 ~4.16!

as u8→0,p. These are the correct boundary conditions
general orbital motion wave functions, as can be shown
noting that such functions can be expanded in terms of
Legendre functionsPl

umu(cosu8), all of which behave as de
scribed by Eq.~4.16!. Thus, Eq.~4.13! serves as a semiclas
sical approximation and yields wave functions obeying
proper boundary conditions for orbital motion atu850 and
p.

D. Radial motion

Equation~2.40! for R(r 8) is already in a sufficiently gen
eral form to serve as a semiclassical approximation for
radial wave functions of bound states for systems other t
the IHO, provided that the quantitiesWr , F r , and Cr are
evaluated for the target systems using Eqs.~A7!, ~2.41!, and
~2.26!, respectively. In fact, the treatment presented in S
III B suggests that Eq.~2.40! can also be used for unboun
states if the integration variable is taken as time and
integration limits are replaced by6`. As is apparent from
Eqs.~2.41! and~2.42!, the resulting approximate wave func
tions obey the proper boundary conditions for states that
regular at the origin, namely,

Rnl~r 8!;const.3r 8 l , ~4.17!

as r 8→0.
It is, nevertheless, worthwhile to further generalize o

approximation forRnl(r 8) a bit. We observe that the quantit
g, which was chosen to obey Eq.~2.23! in order to make the
three-dimensional wave function separate into angular
radial parts, need no longer be restricted in this man
Even if g is chosen to be an arbitrary function ofaN having
a positive real part, a stationary phase evaluation of the
tegral will still give the correct primitive semiclassical resu
and the integral expression forR(r 8) given in Eq.~2.40! will
remain a uniform semiclassical approximation, provided t
Cr is suitably redefined.

In a manner similar to Eqs.~1.5! and ~2.9!, the correct
generalized definition ofCr requires that

r 2Cr
25 i S ]pr

]aN
22iD

]r

]aN
D , ~4.18!

where the factori has been introduced for compatibility wit
Eq. ~2.26!, and

2iD5S ]2F r

]r 82 D
r 85r

, ~4.19!

in analogy with Eq.~1.11!. Substituting Eq.~2.41! in Eq.
~4.19! yields

D5L/2r 21g. ~4.20!
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Finally, use of Eqs.~2.20! and ~2.21! produces the desired
generalization

Cr5F pr

mvr 2 S L

r 2 12g1 i
]pr

]r D G1/2

, ~4.21!

which reduces to Eq.~2.26! when g obeys Eq.~2.23!. The
treatment given above assumes that the state of intere
bound. For an unbound state, the factorv21/2 in Eq. ~4.21!
should be eliminated.

V. NUMERICAL EXAMPLES

We now present two examples that illustrate how the
pressions presented in Sec. IV can be used as semiclas
approximations.

A. Perturbed orbital motion

We consider a one-dimensional system characterized

H5
L2

2I
1V~u!5

pu
2

2I
1Um~u!, ~5.1!

where

Um~u!5
m2\2

2I sin2 u
1V0 cosu. ~5.2!

The classical Hamiltonian of Eq.~5.1! determines the motion
along angleu in the cylindrically symmetrical potentia
V(u)5V0 cosu, under the condition that thez component of
the angular momentum is fixed atM5m\. We choose the
parameters inH to have the values\5I 5V051.

Semiclassical calculations of the wave functionsSjm(u8)
for states with quantum numbers (j ,m) are performed using
Eq. ~4.13! so that our treatment is based on free orbital m
tion as a reference system. The parameterg in the calcula-
tions is rather arbitrarily chosen as1

2 J5 1
2 ( j 1 1

2 )\, in anal-
ogy to Eq.~3.7!, and no attempt is made to optimize it. Th
semiclassical wave functions are numerically normalized
satisfy

E
0

p

uSjm~u8!u2 sinu8du851. ~5.3!

In Fig. 1 we present the semiclassical wave functions
states withj 50,1,2 and compare them with accurate qua
tum wave functions obtained by diagonalizing the Ham
tonian in a converged basis of Legendre functions. Th
numerical results confirm that the semiclassical wave fu
tions have no caustic singularities at the classical turn
points whereUm(u8)5E, as do the WKB wave functions
Furthermore, the semiclassical wave functions eviden
obey the proper boundary conditions atu850 and p de-
scribed by Eq.~4.16!, which imply that

Sjm~u8!;const.3u8m ~5.4!

asu8→0,
0-11
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Sjm~u8!;const.3~u82p!m ~5.5!

asu8→p and, in particular,

lim
u8→0,p

dSjm~u8!

du8
50 ~5.6!

for m50. As discussed above, this behavior is a con
quence of the specific form of the integrand in Eq.~4.13!.
Semiclassical wave functions obeying the correct bound
conditions for this system cannot be obtained using an i
gral expression containing a single Gaussian function, s
as Eq.~1.1!.

We note that the semiclassical results are very accur
even in classically forbidden regions@where Um(u8).E],
except for states (0,0) and (1,0). These, of course, are
highly quantum-mechanical cases. Indeed, for state (0
the classical motion is forbidden for most values ofu8.

Since we are dealing with states that are far from
classical limit, where semiclassical approximations are
propriate, it is likely that the accuracy obtained here is,
some extent, due to the similarity of the target and refere
systems. Yet, even for state (0,0), the semiclassical resu
closer to the quantum wave function for the perturbed sys

FIG. 1. Wave functionsSjm(u8) with j 50,1,2 for perturbed
orbital motion. In each subfigure the horizontal line gives the
ergy of the state, the heavy curve is the effective potential-ene
functionUm(u8) @see Eq.~5.2!#, the lighter, solid curve is the sem
classical wave function, and the dashed curve is the quant
mechanical wave function. The wave-function curves are unsc
but have been shifted vertically so that the value zero coinc
with the horizontal energy line. On the scale shown, it is difficult
distinguish between the semiclassical and quantum curves ex
for states (0,0) and (1,0).
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than to the wave function for the unperturbed system~which
would appear as a horizontal line in Fig. 1!. In addition, the
‘‘perturbation’’ V0 cosu8 is not ‘‘weak’’ in the usual sense
and the orbital motion of the target system is rather far fr
free, especially for lowj. This can be seen in the curves fo
the potential-energy functionUm(u8), which would be sym-
metric aboutp/2 for free motion~and identically zero for
m50), and in the wave functions, which would be eith
even or odd with respect to reflection aboutp/2 for free
motion. Evidently, the target and reference systems need
be very similar for the present semiclassical approximat
to achieve good accuracy, even for states that are far f
the classical limit.

B. The hydrogen atom

We next apply our approach to calculate semiclass
radial wave functionsRnl(r 8) of the hydrogen atom. Ou
calculations are performed using the semiclassical exp
sion, Eq. ~2.40!, so that we effectively use the IHO as
reference system in our treatment of hydrogen. The semic
sical functions are numerically normalized by requiring

E
0

`

uRnl~r 8!u2 r 82 dr851. ~5.7!

Figure 2 presents the semiclassical radial wave functi
for states with principle quantum numbern53 and com-
pares them to the exact quantum functions. Once again,
semiclassical results do not display caustic singularities
classical turning points. Furthermore, it is evident that th
functions obey the proper boundary conditions for regu
wave functions atr 850, as described by Eq.~4.17!. This
behavior is not to be taken for granted. If, instead of E
~2.42!, Rnl were calculated using a Gaussian form~e.g.,
based on a second-order expansion ofF r aboutr 85r ), the
semiclassical radial wave functions would diverge atr 8
50. The behavior at the origin obtained here is a dir
consequence of the specific, non-Gaussian, form of the i
grand in Eq.~2.40!.

-
y

-
ed
s

ept

FIG. 2. Radial wave functionsRnl(r ) for the hydrogen atom
with n53. Semiclassical functions~solid curves! and exact func-
tions ~broken curves! are shown forl 50,1,2.
0-12
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EXACT WAVE FUNCTIONS FROM CLASSICAL . . . PHYSICAL REVIEW A 63 042110
We emphasize that no attempt was made to optimize
parameterg in these calculations. This quantity was defin
as in Eq.~2.23! so that the expression forRnl would yield the
exact result for the IHO system. However, if we had adjus
g as suggested in Sec. IV D, not only could we have m
our semiclassical treatment of the hydrogen atom more
curate, we could have made itexact. This conclusion~which
can be verified numerically! follows from the property@10#
that the CE radial wave functions for the IHO presented h
become CE wave functions for the Coulomb problem wh
g is chosen to be 0. Further discussion of the relations
between the IHO and hydrogenic wave functions will be p
sented elsewhere@11#.

VI. DISCUSSION

In this paper, we have obtained an expression that
scribes the exact wave functions of the three-dimensio
isotropic harmonic oscillator in terms of the correspond
classical motion. In the process of this derivation, we ha
also obtained CE formulas for the radial and angular com
nents of this wave function, the latter being the spheri
harmonics. By examining a limiting case of the radial fact
we have also derived a CE expression for the radial w
function for the free particle. Furthermore, by simplifyin
the classical expression for the spherical harmonics~free
rigid rotor wave functions! we have effectively obtained
one-dimensional CE formula for the Legendre functio
@free orbital motion wave functions—see Eq.~4.13!#.

The above CE expressions have also been presente
forms suitable for use as uniform semiclassical approxim
tions for the calculation of wave functions of various targ
systems, when these are expressed in terms of spherica
ordinates. Such semiclassical forms include: Eq.~2.8! for 3D
wave functions, Eq.~4.3! for anisotropic rigid rotor wave
functions, Eq.~4.13! for orbital motion wave functions, and
Eq. ~2.40! for wave functions corresponding to eith
bounded or unbounded radial motion. Unlike Eq.~1.1!, the
new formulas involve integrands that are not Gaussian
the coordinates (r 8,u8,f8). However, it is precisely this
property that allows the resulting wave functions to obey
boundary conditions appropriate for spherical coordina
Since, despite their non-Gaussian forms, these express
obey the conditions of Eqs.~1.8!–~1.11!, they remain appli-
cable as semiclassical approximations.

We have illustrated the semiclassical applications of
expressions with two numerical examples. An additional
ample is presented in Ref.@12#. These demonstrate that th
resulting wave functions indeed obey the correct bound
conditions, are not affected by caustic singularities at turn
points, and are capable of rather good accuracy, even
states with low energies where semiclassical approximat
are not expected to be optimal. Although this accuracy
enhanced when the target system is similar to the refere
IHO system, it can still be high even when the two syste
are rather different.

The expressions obtained here serve as the starting p
for the derivation of analytical CE expressions for addition
systems. These include the Coulomb system@10#, the Morse
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oscillator, Rosen-Morse oscillator, and the Eckart barr
Derivations of such results will be presented in a subsequ
paper@11#.

There is little doubt that the treatment presented here
be applied to obtain analytical CE expressions for high
dimensional IHO’s. Such an extension of this paper wo
be very worthwhile since it would be expected to provi
reference systems for the treatment of wave functions
multiparticle systems that are expressed in terms of hyp
spherical coordinates. More importantly, such an extens
could yield CE expressions for angular momentum vec
coupling coefficients@5,9# and show how to generalize th
semiclassical method described here to multiparticle syst
characterized by fixed total angular momentum and itsz pro-
jection.

The present treatment for the IHO and that of Ref.@10#
for the Coulomb problem rely on the separability of the r
spective three-dimensional Hamiltonians in spherical coo
nates and~implicitly ! the exact solvability of the resulting
one-dimensional Schro¨dinger equations. However, since th
Laplace operator in three dimensions is separable in at l
11 coordinate systems@24#, the separability and solvability
conditions are clearly obeyed for a rather wide variety
additional choices of coordinates and potential-energy fu
tions. In principle, it should be possible to generalize o
treatments to such systems to derive nontrivial example
three-dimensional CE wave functions that are not eigenst
of the angular momentum operatorL̂2. Among other ben-
efits, such studies could yield useful reference CE exp
sions for semiclassical treatments of atoms in external fie
electronic states of diatomic molecules, and other interes
problems.

To place our paper in a somewhat broader context,
recall that wave functions for bound, integrable systems
be expressed semiclassically@9# as cn(q)5^quJ&, whereJ
are the action variables associated with the quantized stan.
It is, therefore, possible to regard the expressions deri
here for wave functions as particular examples of semic
sical integral expressions for more general ‘‘inner produc
^x2ux1&, where thexi denote classical generalized coordina
or momentum variables. Such inner products include pro
gators in various representations and differential scatte
cross sections. When bothx1 and x2 are action variables
they also include autocorrelation functions, matrix elemen
amplitudes for collisional transitions, and amplitudes f
spectroscopic transitions between energy eigenstates@9#. The
problems addressed in this paper, concerning the cor
form of the wave-function expressions for non-Cartes
variables, also arise in these more general cases. We s
elsewhere that the non-Gaussian integrands derived here
be used to obtain semiclassical approximations for s
more general quantitieŝx2ux1& in several important in-
stances@12#. Calculations demonstrate that the resulting a
proximations are of practical value since they are capable
high accuracy and numerical efficiency@12,13#.
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APPENDIX A: ACTION-ANGLE VARIABLES FOR THE
ISOTROPIC HARMONIC OSCILLATOR

Here we review the transformation from spherical coor
nates and momenta to action-angle variables for the th
dimensional IHO and present some relations needed for
derivation. Some of these results are similar to those foun
Refs.@5# and@25# for the cases of the hydrogen atom and t
two-dimensional IHO.

The generating function for the canonical transformat
between the variables of interest is Hamilton’s characteri
functionW, considered as a function of the spherical coor
nates and the action variables. This function can be obta
by solving the Hamilton-Jacobi equation, Eq.~1.2!, in
spherical coordinates. Since the classical Hamiltonian for
IHO is given by

H5
1

2m S pr
21

pu
2

r 2
1

pf
2

r 2 sin2 u
D 1

1

2
mv2r 2, ~A1!

the Hamilton-Jacobi equation has the form

1

2m F S ]W

]r D 2

1
1

r 2 S ]W

]u D 2

1
1

r 2 sin2 u S ]W

]f D 2G1
1

2
mv2r 25E.

~A2!

This may be solved by separation of variables. Thus, in
ducing separation constantsM and L, we can replace Eq
~A2! by the three equations:

pf5]W/]f5M , ~A3!

pu
21M2/sin2 u5~]W/]u!21M2/sin2 u5L2, ~A4!

and

1

2m S pr
21

L2

r 2 D1
1

2
mv2r 25

1

2m F S ]W

]r D 2

1
L2

r 2 G
1

1

2
mv2r 25E. ~A5!

It is clear that a solution to these equations can be writte

W5Wr1Wu1Wf , ~A6!

where

Wr5E
r 2

r

pr dr, ~A7!

Wu5E
u2

u

pu du, ~A8!

Wf5E
2p

f

pf df, ~A9!

and

pf5M , ~A10!
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pu~u!56~L22M2/sin2 u!1/2, ~A11!

pr~r !56@2mE2~L/r !22~mvr !2#1/2. ~A12!

The quantitiesu2 andr 2 in Eqs.~A7! and~A8! are, respec-
tively, the lower turning points for motion in theu and r
coordinates. These choices for lower integration limits
arbitrary but convenient.

We now define the three action variables

I f5
1

2p R pf df,

I u5
1

2p R pu du ,

I r5
1

2p R pr dr. ~A13!

Substituting Eqs.~A10!–~A12!, these integrals may be
evaluated@5# to obtain

I f5M ,

I u5L2uM u,

I r5E/2v2L/2. ~A14!

However, applying the appropriate quantization conditio
@5# to the actions also gives

I f5m\,

I u5~v11/2!\,

I r5~k11/2!\, ~A15!

where the quantum numbers can have the valuesm561,
62, . . . and v,k50,1,2, . . . . Thus, comparison of Eqs
~A14! and ~A15! implies that

M5m\, ~A16!

L5~v1umu11/2!\, ~A17!

E5~v1umu12k13/2!\v. ~A18!

We now introduce new quantum numbers defined by

l 5v1umu,

n5 l 12k, ~A19!

so that we can express Eqs.~A16!–~A18! as

E5~n13/2!\v, ~A20!

L5~ l 11/2!\, ~A21!

M5m\, ~A22!
0-14
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where l 50,1,2, . . . , n5 l ,l 12,l 14, . . . , andm52 l ,2 l
11, . . . ,l .

At this point we define

N52I r1L, ~A23!

so that

E5Nv ~A24!

and

N5~n13/2!\, ~A25!

and considerN, L, andM as new action variables. Accord
ingly, we regard Hamilton’s characteristic function as havi
the functional dependenceW5W(r ,u,f;N,L,M ). This al-
lows us to determine the angle variables (aN ,aL ,aM), con-
jugate to the new actions, by differentiatingW with respect
to the (N,L,M ). Thus, applying Eqs.~A6!–~A12!, we obtain

aN5
]W

]N
,

5E
r 2

r ]pr

]N
dr,

5mvE
r 2

r dr

pr
, ~A26!

aL5
]W

]L
,

5E
r 2

r ]pr

]L
dr1E

u2

u ]pu

]L
du,

52LE
r 2

r dr

r 2pr
dr1LE

u2

u du

~L22M2/sin2 u!1/2
,

~A27!

aM5
]W

]M
,

5E
u2

u ]pu

]M
du1E

2p

f ]pf

]M
df,

52ME
u2

u du

~sin2u!~L22M2/sin2 u!1/2
1f1p.

~A28!

These integrals can be evaluated@5# to yield

aN5
1

2
cos21S E2mv2r 2

E0
D , ~A29!

with
04211
E05~E22L2v2!1/2,

5~N22L2!1/2v; ~A30!

as well as

aL5cos21S L cosu

AL22M2D 2j~N,L !, ~A31!

with @5,26#

j~N,L !5LE
r 2

r dr

r 2pr
dr,

5
1

2
cos21S L22mEr2

mE0r 2 D ~A32!

and

aM5f1p2M tan21SAL2

M2 2
1

sin2 u
tanu D .

~A33!

Inverting these equations and applying Eqs.~A10!–~A12!,
we have

r 5S 1

mv2D 1/2

~E2E0 cos 2aN!1/2, ~A34!

pr5
m1/2E0 sin 2aN

~E2E0 cos 2aN!1/2
, ~A35!

u5cos21@~12M2/L2!1/2cos~aL1j!#, ~A36!

pu5
L~L22M2!1/2sin~aL1j!

@L2 sin2~aL1j!1M2 cos2~aL1j!#1/2
, ~A37!

f5aM2p1tan21@~L/M !tan~aL1j!#, ~A38!

pf5M . ~A39!

These results allow us to evaluate the following deriv
tives needed for the calculation ofP, X, andC:

]r

]aN
5

E0 sin 2aN

m1/2v~E2E0 cos 2aN!1/2
, ~A40!

]pr

]aN
52m1/2E0

E0~11cos22aN!22E cos 2aN

~E2E0 cos 2aN!3/2
,

~A41!

]u

]aN
5

pu

mvr 2
, ~A42!

]pu

]aN
5

M2 cosu

mvr 2 sin3 u
, ~A43!
0-15
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]f

]aN
5

M

mvr 2 sin2 u
, ~A44!

]u

]aL
5pu /L, ~A45!

]pu

]aL
5

M2 cosu

L sin3 u
, ~A46!

]f

]aL
5

M

L sin2 u
, ~A47!

]f

]aM
51. ~A48!

The remaining derivatives of momenta and coordinates w
respect to the angle variables are zero.

Finally, explicit expressions forW are needed as a func
tions of the angle variables. Substituting Eq.~A10! for pf
into Eq. ~A9! and using Eq.~A38! we immediately obtain

Wf5M ~f1p!,

5M $aM1tan21@~L/M !tan~aL1j!#%. ~A49!

Substituting Eqs.~A11! and ~A45! into Eq. ~A8!, we obtain

Wu5L~L22M2!1/2E
aL(u2)

aL

3
sin2~aL1j!

L2 sin2~aL1j!1M2 cos2~aL1j!
daL ,

5L~aL1j!2M tan21@~L/M !tan~aL1j!#, ~A50!

where we have used the tabulated expression for the inte
in the first line @27# and recognized that cosu25(1
2M2/L2)1/2 @5#. The quantityWr is most easily evaluated b
substituting Eq.~A12! into Eq. ~A7! and transforming to the
variablez5r 2. This integral is again tabulated@28# and, us-
ing r 25@(E2E0)/mv2#1/2 together with Eqs.~A34! and
~A35!, yields

Wr5
E

v
aN1

E0

2v
sin 2aN2

L

2
cos21S E cos 2aN2E0

E2E0 cos 2aN
D .

~A51!

In view of Eqs.~A32!, ~A30!, and ~A34!, this result can be
expressed more compactly as

Wr5
E

v
aN1

E0

2v
sin 2aN2Lj. ~A52!

Thus, combining Eqs.~A6!, ~A23!, ~A49!, and~A50!, we see
that

W5NaN1LaL1MaM1 1
2 ~N22L2!1/2sin 2aN .

~A53!
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APPENDIX B: ACTION-ANGLE VARIABLES FOR
ROTATION IN AN AXIALLY SYMMETRIC POTENTIAL

As in the previous case, the transformation from spher
to action-angle variables is again here generated by Ha
ton’s characteristic functionW, which may be obtained by
solving the Hamilton-Jacobi equation in spherical coor
nates. Since the classical Hamiltonian for the present sys
is given by

H5
pu

2

2I
1

pf
2

2I sin2 u
1V~u!, ~B1!

whereI is the moment of inertia, the Hamilton-Jacobi equ
tion is

S ]W

]u D 2

1
1

sin2u S ]W

]f D 2

12I @V~u!2E#50. ~B2!

Introducing the separation constantM, we can replace this
equation by two independent equations:

pf5]W/]f5M ~B3!

and

S ]W

]u D 2

52I @E2V~u!#2
M2

sin2u
. ~B4!

A solution can be found in the form

W5Wu1Wf , ~B5!

where

Wu5E
u2

u

pu du, ~B6!

Wf5E
2p

f

pf df, ~B7!

and

pf5M , ~B8!

pu~u!56@2I ~E2V!2M2/sin2u#1/2. ~B9!

Clearly,

Wf5M ~f1p!. ~B10!

The action variables may be chosen to be

1

2p R pf df5M , ~B11!

1

2p R pu du1uM u5J, ~B12!

and the usual semiclassical quantization rules yield@5#

M5m\, ~B13!
0-16
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J5~ j 1 1
2 !\, ~B14!

where j 50,1,2, . . . andm50,61,62, . . . ,6 j .
Treating the functional dependence ofW to be

W(J,M ;u,f), the angle variables are obtained as

aJ5
]W

]J
,

5E
u2

u ]pu

]J
du,

5E
u2

u ]pu

]E
V du,

5IVE
u2

u

du /pu ~B15!

and

aM5
]W

]M
,

5f1p1E
u2

u ]pu

]M
du,

5f1p2ME
u2

u

du/pu sin2u, ~B16!
li-

,

04211
where

V~J!5]E~J!/]J. ~B17!

These equations may be inverted to show that

u5u~aJ!, ~B18!

f5aM1z~aJ!, ~B19!

where

z~aJ!5ME
u2

u

du/pu sin2u2p. ~B20!

These allow us to establish the following relations that
needed to evaluate the preexponential factorCu :

]f

]aJ
5

M

pu sin2u

]u

]aJ
, ~B21!

]f

]aM
51, ~B22!

and

]u

]aM
5

]pu

]aM
5

]pf

]aJ
5

]pf

]aM
50. ~B23!
,

i,

s

@1# D. Zor and K. G. Kay, Phys. Rev. Lett.76, 1990~1996!.
@2# M. Madhusoodanan and K. G. Kay, J. Chem. Phys.109, 2644

~1998!.
@3# V. P. Maslov and M. V. Fedoriouk,Semi-Classical Approxi-

mation in Quantum Mechanics~Reidel, Boston, 1981!.
@4# J. B. Delos, Adv. Chem. Phys.65, 161 ~1986!.
@5# M. S. Child, Semiclassical Mechanics with Molecular App

cations~Clarendon, Oxford, 1991!.
@6# E. J. Heller, J. Chem. Phys.62, 1544~1975!; 65, 4794~1976!.
@7# E. J. Heller, J. Chem. Phys.75, 2923~1981!; M. J. Davis and

E. J. Heller,ibid. 75, 3916~1981!; N. DeLeon and E. J. Heller
ibid. 78, 4005~1983!; 81, 5957~1984!.

@8# G. van de Sand and J. M. Rost, Phys. Rev. A59, R1723
~1999!.

@9# W. H. Miller, Adv. Chem. Phys.25, 69 ~1974!.
@10# K. G. Kay, Phys. Rev. Lett.83, 5190~1999!.
@11# K. G. Kay ~unpublished!.
@12# K. G. Kay, J. Phys. Chem.~to be published!.
@13# Y. Elran and K. G. Kay, J. Chem. Phys.~to be published!.
@14# A. Messiah,Quantum Mechanics~Wiley, New York, 1966!.
@15# Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun~National Bureau of Standards
Washington, DC, 1996!, Eq. ~9.1.10!.

@16# Reference@15#, Eq. ~22.9.5!.
@17# A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricom

Higher Transcendental Functions~McGraw-Hill, New York,
1953!, Vol. 1, p. 175, Eq.~4!.

@18# Reference@17#, p. 143, Eq.~5!.
@19# Reference@17#, p. 140, Eq.~5!.
@20# Reference@15#, Eq. ~22.10.7!.
@21# See, e.g., A. S. Davydov,Quantum Mechanics~NEO, Ann

Arbor, 1966!, p. 135.
@22# Reference@15#, Eqs.~22.15.2! and ~10.1.1!.
@23# Reference@15#, Eq. ~9.2.1!.
@24# P. M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!, Part I, pp. 655–665.
@25# M. Born, The Mechanics of the Atom~Ungar, New York,

1960!.
@26# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals Series

and Products~Academic, New York, 1965!, Eq. ~2.266!.
@27# Reference@26#, Eq. ~2.559.3!.
@28# Reference@26#, Eq. ~2.267.1!.
0-17


