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Exact wave functions from classical orbits: The isotropic harmonic oscillator
and semiclassical applications
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The wave function for a state of definite angular momentum of the three-dimensional isotropic harmonic
oscillator is expressed exactly in terms of the corresponding classical trajectories. In particular, the three-
dimensional wave function as well as the radial wave function and the spherical harmonics are obtained as
integrals over quantities determined entirely by the classical motion. The expression for the harmonic-oscillator
radial wave function is shown also to yield the exact radial wave function for the free particle. The expressions
are cast in forms suitable for use as uniform semiclassical approximations for wave functions of other systems.
Numerical examples confirm that such wave functions obey boundary conditions appropriate for spherical
coordinates and that they are free of caustic singularities. The wave functions obtained by this technique can be
quite accurate even for low-energy states where semiclassical approximations are expected to be poor.
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[. INTRODUCTION whereH(p,x) is the Hamiltonian for the system with mo-

In this paper and subsequent work we show that quantunmmentap and coordinateg. E is the semiclassical energy for
mechanical wave functions for a number of systems can bthe state and is determined by EBK quantization if the state
expressed exactly, analytically, and simply in terms of thes bound. The solution of Eq1.2) can be expressed as
corresponding classical trajectories. In addition to being ex-
act for specific reference systems, these classical wave- W= X(a) d
function expressions become uniformly accurate in the clas- N p-ax,
sical limit for other systems obeying similar boundary
conditions. Such expressions thus serve as uniform semiclaghere the integration is performed over a path on the La-
sical approximations for the wave functions of a more gen-grangian manifold. The lower integration limit is arbitrdi
eral class of systems. Apart from their application as semionly affects the overall phase of the wave funcjiowhile
classical approximations, the exact classical descriptions ghe upper limit is the coordinate(«) that depends on the
quantum wave functions should lead to a clearer understandntegration parametera. The function® in Eq. (1.1 is

1.3

ing of the quantum-classical relationship. defined by
The new expressions are generalizations of an existing , . )
semiclassical approximatidqt, 2] for time-independent wave O=p- (X' =x)+i(x"=x)- I (X" =x), (1.4

functions. To understand the motivation for the present paper ,

and the context in which it arises, it is necessary to reviewVherex=x(a), p=p(e), andI'=I'(a) is anfxf complex

that treatment. Referencfs] and[2] establish that the en- Symmetric matrix function of. This matrix can be chosen

ergy eigenstates for an integrable system \itlegrees of almost arb|trarlly, but thg real parts of all qf its e|genvalues

freedom can be approximated semiclassically as are required to be positiveapart from certain spemal cases
where they may be zerand, for bound states, its elements

must be a Zr-periodic functions of the angles. The preex-
¢(X’)=J\/'f C &@+W)itig o (1.  ponential factorC in Eq. (1.1) is given by

C=[dei(P—2iI'X)]"? (1.5
The integral is over thé-dimensional Lagrangian manifold
[3,4] corresponding semiclassically to the state of interestvhere
and a are variables parametrizing this manifold. For ex-
ample, in the case of a bound state with quantum numbers (P); :ﬁ ) :ﬁ ij=1 f
n=(n,, ...,n;), the manifold is the quantized torus defined ey’ ST R
by the Einstein-Brillouin-Keller (EBK) condition J=(n
+&)%, [5] where theJ and & are vectors containing the Finally, A'is a normalization constant.
actions and Maslov indices for the degrees of freedom. In Although expressed solely in terms of classical variables,
such a case, the can be taken as the angle variables con-Ed.(1.1) turns out to be an exact expression for the quantum-
jugate to theJ. The quantityW appearing in Eq(1.1) is  mechanical wave functions of the multidimensional har-
Hamilton’s characteristic function, satisfying the time- monic oscillator, with potential-energy function
independent Hamilton-Jacobi equation

(1.6

= 1 f 2,2
H(YW,x)=E, (1.2 V=75 2, mioixf,
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provided that the matrixI' is chosen so that I)); regular boundary conditions at the origin, as needed for ra-
=(4p®;)8; . In addition, Eq.(1.1) can be shown to yield dial spherical variables. Some of the consequences that arise
exact wave functions for free motion arfdith T'=0) for when related sgmmlassmgl treatments fail to obey the correct
motion in a linear potential. boundary conditions are |IlustraFeq in R&]

Equation(1.1) suggests an attractive classical picture of The boundary Condltlon_ restrictions limit the treatment of
the wave-function’s formation. As the classical particle Ed- (1.1) to systems described in terms of Cartesian coordi-
moves over the Lagrangian manifold associated with thdates. This is unfortunate since introduction of more general

quantum state, it produces contributions to the wave functioffo°rdinates allows one to exploit constants of motion and
at pointsx’. The Gaussian factor often greatly simplifies quantum, classical, as well as certain

semiclassical treatments. Thus, the inapplicability of the
G(X/,X):e—(x’—x)-F-(x'—x)/h (1.7) present approach to wave functions described in terms of
such variables is a serious limitation that can complicate both

in the integrand localizes these contributions to valwes the resulting theoretical analysis and computations. Ulti-
near the particle’s positiorx, while the complex factor Mately, this restriction also complicates application of the
Cexq[p- (X’ —x)+W]/4 further weights these contributions treatment to determine quantitigsuch as scattering and
and provides a phase so that their coherent superpositiciP€ctroscopic transition probabilitiehat are semiclassically
producesy(x’). expressed most naturally in terms of more general classical
When applied to the harmonic oscillator, linear potentialc@nonical variablege.g., action-angle coordinaje§he ap-
and free particle cases, E¢l.1) becomes identical to an plicability of other, more familiar, §em|cIaSS|caI method;
expression proposed earlier by Hell&]. More generally, [5,9] to such variables is responsible for much of their
however, Heller's expression, differs from the present one irfPOWer. _ _ _ _
the form of the preexponential fact@. Heller showed that These considerations motivate an attempt to generalize
his expression yields approximate wave functions for mordhe semiclassical theory of Refsl] and[2] to wave func-
general anharmonic systems when the dynamical quantiti€ions obeying arbitrary boundary conditions. To understand
x,p,W, etc., are replaced by those for the systems of interedtoW this may be accomplished, we note that the feature de-
[7]. This approximationknown as the frozen Gaussian ap- termining the boundary behavior gfin this approximation
erally become exact in the classical limit. the Gaussian fornG(x’,x) [see Eq.(1.7)], obtained from
In contrast, the present form for the pre-exponential facto€XP(P/%) in Eq. (1.4), that builds in the boundary conditions
makes Eq(1.1) a true semiclassical approximation. One Wayfthat are appropriate for Cartesian coordinates. However, the
of establishing this property is to note that, if the integralintegrand need not be chosen in this specific way. In order
over a is eva'uated by the |owest_0rder stationary phaséhat the eXpreSSiOH be a Uniform SemiCIaSSical approximation
method, the expression for the wave function becomes iderfor #. it is sufficient that it have the more general fof@]
tical to that obtained by the primitive semiclassical Wentzel-
Kramers-Brillouin (WKB) treatment[1,2]. Since both the lﬂ(X,):Nf F eWhda, (1.8
stationary phase and the WKB treatments become exact in
the classical limit for all values ok’ except those along hereF is a functi bevi
caustics, where the WKB expression is singular, the semiv’ erer 1S a function obeying
classical nature of Eql.2) is_a_lso estqblished except, per- imE=C d®i+D. (1.9
haps, at caustics. However, it is possible to prove a stronger 50
result: unlike the WKB expression, the approximation given
in Eq.(1.1) is free of caustic singularities and approaches then this expressiond is redefined to obey the condition
exact wave function uniformly for ak’ as#—0 [1,2]. Thus
Eq. (1.1 is not only a semiclassical approximation, but a P~p- (X' =x)+O(]x' —x[?), (1.10
uniform semiclassical approximation. Calculations indeed ) o )
confirm that this approximation is capable of high accuracythat is far less restrictive than the one presented in(Eq),
and describes the phase and oscillations of the wave functicddD is a possible additional term that does not contribute to
more faithfully than does the frozen Gaussian approximatior® lowest-order stationary phase treatment of the inteGré.
[1,2]. still defined as in Eq(1.5), but the matrixI" needed for its
One problem, however, with the semiclassical wave funceonstruction is now determined by
tions obtained from this treatment is that they obey specific 5
boundary conditions only at— *. Although such condi- , :i( g )
. : . =5 | (111
tions are appropriate for wave functions that are expressed as 2i | 9x; 25
functions of Cartesian coordinates, they are not appropriate
for wave functions described in terms of more generalThis matrix must obey the same conditions as described in
choices of coordinates, which must obey boundary condieonnection with Eq(1.4).
tions at finite points in space. Thus, for example, wave func- The continued validity of Eq(1.8) as auniform semiclas-
tions obtained from Eq(1.1) can satisfy neither periodic sical approximation may be verified by examining the effect
boundary conditions, as required for angular variables, noof its substitution in the Schdinger equation2]. However,
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its validity as a(perhaps nonuniforinsemiclassical approxi- the IHO. The present paper is devoted to the treatment of the
mation is much easier to establish since, by construction, 81O and some immediate consequences; the extension to
lowest-order stationary phase treatment does not distinguishdditional systems will be described elsewhgté]. A re-
between Eqgs(1.1) and (1.8). Thus, the revised expression lated semiclassical treatment of quantum amplituotgpx, ),
for ¢ still gives the correct primitivé WKB) semiclassical involving general classical variables andx, [9], is also

result as —0. presented in a separate wdrk2] and an application of that
Equation(1.8) means that the integrand in the expressiontreatment to scattering is likewise described elsewhesé
for ¢ needs to have the form prescribed by E) only in The remainder of this paper is organized as follows: In

the classical limit(if we neglectD) and that, even in this Sec. Il we derive the CE expression for the IHO. In Sec. Ili

limit, the function® is required to have the form given by We present minor extensions of this result to obtain an alter-
Eq. (1.4 only to order|x’ —x|2. The actual form of the in- native CE expression for the three-dimensional IHO wave
tegrand of Eq.(1.8) for nonvanishing and arbitrary|x’ ~ function and a CE expression for the free particle radial wave

—x| need not be Gaussian at all. These considerations prdunction. In Sec. IV we present forms that are suitable as
vide the freedom to choose the integrand so that the resultingMiclassical approximations for the treatment of the rota-

semiclassical wave functions obey desired boundary condflonal, orbital, and radial motion of more general systems. In
tions. Sec. V we present some numerical examples that apply these

But the allowable form for the integrand is now so genera|s_emiclassi_cal approximations. Finally, in Sec. VI we summa-
that one suspects that the revised expressionsfonay be  f1Z€ and discuss our results.
capable of describing exact wave functions for systems be-
yond those for which Eq(1.1) is exact. In other words, it Il. THE ISOTROPIC HARMONIC OSCILLATOR
might be possible to obtain expressions for wave functions,
described entirely in terms of the corresponding classical . ] . ) .
motion, that are exact for certairew “reference” systems. In this section we derive a CE expression for the simul-
In analogy to the treatment of Réfl], these could serve as taneous energy and angular momentum eigenstates of the
uniform semiclassical expressions when applied to utargetnf[hree-dlmensmna] IHO. The system of interest is character-
systems for which they are not exact. If the wave functiondzed by the classical Hamiltonian
of the reference systems obeyed boundary conditions appro- 1
priate for non-Cartesian coordinates, the semiclassical wave H=o—(pi+py+ps)+V(r), 2.1
functions of the target systems would likewise obey these 2u
conditions, and the desired extension of the semiclassical
treatment of Ref[1] to more general coordinate systemsWhere
would thus be acgomplished. _ _ _ V(N =31uw?r?, 2.2

Though not strictly necessary for the semiclassical appli-
cations, the property of being exact for particular reference?=x2+y2+ 72 andu andw are, respectively, the mass and
systems could have important advantages. We note that, d#quency of the oscillator.
to its exactness for the harmonic oscillator, Ef.1) yields In the quantum treatment of this system it is well known
accurate wave functions for typical anharmonic bound systhat a separation of variables is possible both in Cartesian
tems even at low energidd,2] where semiclassical treat- and in spherical coordinatdd4]. Thus, the energy eigen-
ments are usually inaccurate, but the motion is effectivelystates can be labeled by either the set of quantum numbers
harmonic. We should expect the new expressions to havgn, n,,n;) or the set (,,m). Wave functions
corresponding advantages of being especially accurate Wh%‘nlnzng(X,y,Z) are products of three one-dimensional

the target and reference systems are similar. harmonic-oscillator wave functions in the individual Carte-

The direction of the present paper is exemplified by ago0 oordinates y, andz, with quantum numbera, , n,
recent papefl10] that describes exact expressions for theand Ny respectiv,elgl Thes’;e satisfy e

wave functions of the Coulomb system in terms of the cor-
responding classical orbits. Here and in subsequent publica- ni,N,,N3=0,1,2. ..,
tions[11] we rederive this result in detail and show how Eq.
(1.1 can be further generalized to obtain exact classical exand specify the energy in each degree of freedom, so that the
pressions for wave functions of several additional systems.energy eigenvalue associated Wipnlnzns(x,y,z) is
Our approach to deriving analytical, classical exdzE)
wave functions for a variety of systems is first to generalize E=(n;+n,+ns+ 3.
Eqg. (1.1) to obtain CE wave functions for the three-
dimensional isotropic harmonic oscillatdHO) in terms of  The functionsy,,,(r, 6, ), on the other hand, are angular
spherical variables. This already serves as a reference sygromentum eigenstates and are products of radial and angu-
tem, allowing determination of semiclassical wave functiongar wave functions in the spherical coordinates), and ¢.
in spherical coordinates for general single-particle systemsthe angular momentum quantum numbleasdm satisfy the
A mapping procedurgll] can then be applied to derive familiar conditions
wave functions for several other systefmluding the Cou-
lomb problem[10]) from the radial and angular functions of =0,1,2..., m=—I,—1+1,...], (2.3

A. Classical expression for the wave function
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while the principle quantum numberis constrained by However, the WKB formula is strictly derived only for wave
functions obeying a “normal” Schidinger equation having
n=L1+21+4,..., (2.4 no first-derivative term§5]. Since the Schidinger equation

in spherical coordinates contains first derivatives with re-
specttor’ and#’, the WKB treatment should not be applied
_ directly to the wave functionf,,,(r’,8",¢"). Multiplying
E=(n+3)io. 2. ) pim .
(n+32)he @9 Ynim DY the factor ¢'?sing’)"?, however, effectively re-
Clearly, wave functions/,;, and ¢, ... with the same en- Moves these terms from the Sctiger equation and pro-
eravE are related b 1727 duces a function that can be properly treated by the WKB
gy y method[5]. Our choice ofC is designed so that the integral
in Eq. (2.8) reduces, upon stationary phase evaluation, to the
Yom= Annona Wi nnes (2.6)  WKB expression for the functionr(? sin 8')"%,,,, divided
ni+tn,+ng=n 12is 12T 12 cin '\1/2 i i i
by the factor ('“sing’)*4, to yield an approximation for

and determines the energy of the state via

where theA are certain coefficients. Yaim-

Since Eq(1.1) yields CE wave functions for thé; n ., B. Transf ion to spherical dinat
we can use Eq2.6) to obtain a CE expression f@f,, as a - rans Ormé 10 10 SPrENce C_Oor nates _ _
finite linear combination of functions of Cartesian coordi- Upon transformation from Cartesian to spherical vari-
nates. However, since it is known that,, can be expressed ables, the functiond of Eq. (2.7) can be conveniently ex-
directly and compactly as a function of the spherical coordifPressed as
nates, we expect that it should also be possible to derive a _ , . 2 ,
more compact CE expression for,,, in terms of the spheri- O=p,(r'=r)+iy(r'=r)*+(r'/r)(f+4g9), (2.10
cal variables. Part of the structure of such an expression Ca8here
be guessed from E@2.6). In view of the isotropic nature of
the system, we would expect that the mathof Eq. (1.4) f=—iL{[cog 0’ —#)—1]+sinf'sinf[ cog ¢’ — ¢p)—1]}
should be replaced by a certain scajawith 22y>0) that is _ _
common to each term in E®.6). In that case, the CE ex- +po{sin(0’'— 6)+sind’coso[cog ¢’ — ¢)— 1]}
pression for each such term would contain a factor iexi() o T
of the same form, where TPy(sing’/sind)sin( 4’ = 4), (213

d=p-(r'—r)+iy|r' —r|?, 2.7 g=[cog 0’ —6)—1]+sinf’'sind[ cog ¢ —¢)—12,2 ”
so that a similar factor should also appear in the CE expresyq
sion for ¢, in spherical coordinates. In the following, we
seek to verify this hypothesis. S=p,r—2iyr2+iL. (2.13
Thus, by analogy to Eq1.1), we consider the expression
In these expressionst,@,¢), (r',60",¢'), and @, ,py.p4)
P oy i(©+W)/i are the spherical components ofr’, andp, respectively,
Unm(r',0",¢") Nf . da, 28 andL is the magnitude of the angular momentum,

where the integration is now over the Lagrangian manifold L=[pj+p3/sir? 6]"2 (2.19
for the state with quantum numbers,(,m) [which is dif-

ferent from that for the state with quantum numbersEquation(2.10 allows us to apply the definition df in Eq.
(n1,n,,n3)] and a denotes the three angle variables param<{1.11) to obtain

etrizing this manifold.W is again Hamilton’s characteristic

function, and® is given by Eq.(2.7). The preexponential 2iy - pelr Pyl
factor C is determined from 2iT=| pyl/r iL-=6 p, cotd
r2sin C2=deiP—2iT'X), (2.9 ps/r pgcotd [(iL—d)sind—p,cosd]sing

(2.15

It can be shown that the real parts of the eigenvaluds arfe
indeed positive, as required, provided tBy>0.

whereP, X, andI' are 3x 3 matrices defined as in Eq4..6)
and(1.12), with the understanding that andx; now refer to
the spherical components of momentpnand coordinate,
and thatx{ andx; refer to the spherical componentsdt _ _ )
Note that the form ofC in Eq. (2.9 differs from that C. Transformation to action-angle variables
given in Eq.(1.5) by the factor ~*sin# Y2 We choose the To perform the integrations in Eq2.8), we need to ex-
present form because, in order to establish the semiclassicatess the integrand in terms of the action-angle variables for
nature of Eq.(2.8) for #,m, We require it to reduce to an the IHO. The transformation from spherical coordinates and
appropriate WKB expression when the integral is evaluatednomenta to action-angle variables and the explicit expres-
by the stationary phase methfak in the case of Eq1.1)]. sion for W are reviewed in Appendix A.
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It is convenient to focus here on transformations of quan- g=coga, +£)[(1— M?2/LL2)1/2
tities that depend on the angular coordinates and momenta,

leaving the transformations ofandp, until later. Thus, we xcosd’ — (M/L)sing’ cog ay — ¢') ]+ sin(a +§)
substitute Eqs(A36)—(A39) into Egs. (2.11) and (2.12), Xsing’sin(ay—¢')—1, (2.17)
yielding

whereM = p is thez component of the angular momentum.
In presenting this result, both and M are recognized as
. _ . . action variables. Since the integration in EJ.8) is taken
_ (a +&)5 _ 2_ 2\1/2 2 g . .
f=iL +e 79 —i(L°=M*) " cosf'+[L siNau—9¢')  oyer the manifold corresponding to the statel (m), these
+iM —&')]sing’ 21 actions have_ the quantized valués=(l+1/2)h a_n_d M
M costay = ¢7)]sin 6’} (2.19 =mt, according to EqgA21) and(A22). The quantitiegsy,
anday, appearing above are the angle variables conjugate to
L andM, while ¢ is defined in Eq(A32).
To evaluate the pre-exponential factdr we substitute

and Eqgs.(A42)—(A48) into Egs.(2.9) and(2.15. The result is
|
p(ap, [ or —2iy)—L2/r3 —L/r —M/r
rzsin002:<—w) ~2iyp, (8IL-i)p, —Mcotd), (2.18
a —2iyM (SIL—DM  —2iT,,
|
where that cause$ to vanish[see Eq(2.13]. Our expressions then
simplify to

2iT 4 4=[(iL — 8)sind—p, cosH]sin 6. (2.19

. - - . D=p,(r'—r)+iy(r' =r)2+(r'/r)f
To obtain Eq.(2.18, we have eliminated derivatives with

respect to the third angle variabig,, defined in Appendix , o Loopr ) ,
A, using the expressions =p(r =0+l i5z+ 5| (=) (r/nf
orldan=p,lpw (2.20 (2.24
and and
apr/aaN:(pr/Mw)(ﬂpr/ar) (2.21 C:CrCa, (2.295

that follow from the relationshid5] ay=constd+wt be-  \where
tween the anglery and timet [also see Eq9A35), (A40),

and (A41)]. The determinant in Eq2.18 may now be ex- p [2L ap, p 12
panded, yielding C,= —rz —2+i(—r——r” , (2.2
por?|r a r
Lp, (L (. &\(dp )
C2:_(L2_M2)l/2MTrr2 r_2+(l_f>(c9_rr_2w” Cﬁzi(l_z_M2)1/4|_1lzefi(aL+§)/2_ (2.27
x[e et 4 (§/L)sin(ay + £)]. (2.22

Substitution of these results into E@.8) and use of Eq.
(A6) to decomposé&V into the sum of one-dimensional inte-

These expressions, together with E453) for W, can ralsW. . W ndW fined in Eas(A7)—(A t
now be substituted into E@2.8) for ¢ and the integrations gu? Sexprréssif)h Eflo:j thg) IES wz?/e fun(c];én i?] t(hegz‘gjr(r:ss S
over ¢ anday can be attempted. Unfortunately, this does
not generally yield an expression for the wave function in the o
form of a product of independent radial and angular factors¢n|m(r',9’,¢'):Nf day C,
characteristic of the exact result. We find that, to obtain this 0
desired form, we must choose the as-yet unspecified quantity . ;L Lo \2
v to obey the particular condition XeXiLpy(r' =) Fiy(r' =n)=+ W /A}

XT(0', " x'Ir), (2.28
L p

Y=o iy 223\ here
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2 2 .
T(e/,d)/'p):f daLf daM Cgel(pf+W9+W¢)/ﬁ.
0 0
(2.29

D. Angular integrations

We now turn our attention to the evaluation Ddefined
in Eq. (2.29. Applying Egs.(A50) and (A49), which estab-
lish that

along with Eq.(2.16 for f, we obtain
. , 2
T8, ,p)=€m e*“’”lf do Cy
0
X exp(pyL2—M?cosf’ e '’Ih+iLalh)
2 . i
><J dre'™exp{pe ' sinb’
0

X[(L=M)e' "= (L+M)e ""]/2k}, (2.3

PHYSICAL REVIEW A 63 042110

o

j+m

e? cosﬁ’Jm(z sing’)= jgo ]_I P;+mm(C030' ), (2.39

and integrating ovetr yields a contribution proportional to
dj,1—m from each term. Thus,

T(0',8',p) =andm?i(— 1)(p/h) et/
(L+ M )I/2+m/2+1/4(|__ M )I/27m/2+1/4
(I4+|m|)!

x eme'p|M(cosg’), (2.36)
where the facton,,, defined as 1 iim<0 and as ¢ 1)™ if
m>0, arises from the relation betwe®n ™(x) andP;"™(x)
for —1<x<1 [18,19. Finally, applying a standard defini-
tion of the spherical harmonicg™ [14], we can express our
result forT as

T(0',¢',p)=Mmp'e VY9 ¢"), (2.3D

where

whereo=ay +£, r=ay—¢', and we have used the peri- Mim=(—1)"(2m) %%

odicity of the integrands to adjust the integration limits. If

the second exponential in the integral oveis expanded in
a power series and the facfq. —M)e'"™—(L+M)e '] is
further expanded in powers of exp), the integration ovet

is easily performed yielding a Kronecker delta. This reduces

_ 1/2
(I+m+ %)(I+m+1/2)(| —m+ %)(I m+1/2)

T mi(—m! o

e

(2.38

the double sum to a single sum that can be immediately

related to the power-series expansion for the Bessel function

of the first kindJ,, [15]. As a consequence, we obtain

+M m/2 . )
T(9I,¢',p)=2w(—1)m(m) gime’ o= Lolh

2 ,
xf do Cyercost HiLalhy (7sing’),
0

(2.32

where
z=pJL2—=MZ2e" /1, (2.33
Applying Eq. (2.27 for C, and the quantization condition

for L=(1+1/2)%, this result can be expressed as

T(0',¢" . p)=2mi(-1)"

L—M

+M>m/2

X (L2_ M 2)1/4Ll/2eim¢'e— Lo/t

2 i , .
X [ doel7e?®s?] (zsing").
0

(2.39

E. The radial factor

Returning to the three-dimensional wave functigg,,
we substitute Eq(2.37) into Eq. (2.28), to find that this
function is now in the expected separable form

Paim(r',0",¢" ) =Ru(r')Y"(0',¢"), (2.39

where the radial functiolR,, is given by
2w
Rm(r’):/\/mJ danC,exdi(®,+W,)/A], (2.40
0

with Ny, =NM,,, and

O, =—ihlIn(r'/r)+il(r'/r=21)+p,(r'=r)+iy(r' —r)?
(2.4
r72
——=1].
r2

The integral in Eq(2.40 is over the angle variablay that
determines the radial coordinatdsee Eq.(A34)] along an
orbit for which the action variabl&l, conjugate toay, has
the quantized valuen(+ 3/2)% [see Eq.(A25)] or, equiva-
lently, the energyE has the value {+3/2)hw [see Eq.
(A20)].

=—inl In(r’/r)+%(prr+iL) (2.42

Expanding the above integrand in terms of Legendre func- To evaluate the radial function we need an explicit ex-

tions via[16-19

pression forC, in terms ofay . Applying
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ap, \[ or \ 7t
0-'C¥N a
as well as EqSA34), (A35), (A40), (A41), and(A30) to Eq.
(2.26 yields

IPr_
o

(2.43

m 3/4(0 Eé/ZGi wl4

 (E—Eqcos 2xy) %

[(E+Law)Y%e '™

r

—(E—Lw)Y%eN], (2.44
whereE, is given in Eq.(A30). If we define
a.=e "[(E+Lw)Y%e NF(E—Lw) e oN], (2.45
we find that
E—Eycos 2o =3a,a*, (2.46
so that we can write
C,= 25/4M3,/4wE(l)/zl(as:r ai)lm_ (2.47)

The definition in Eq(2.45 also allows us to express other
guantities appearing iR, (r’) in a compact way. The term
¢ in Eq. (A52) for W, can be written as

ia,
a* |’

+

(2.48

and, applying Eq(2.46 to Eq.(A34), r can be expressed as

a.a* 112
r=| ——t (2.49
2uw?
In addition, from Eqs(A34) and (A35) we have
p,r=(Eg/w)sin2ay=i(a%a_2w—L). (2.50

Substituting these results into E@.42 and Eq.(A52) for
W, , and Eq.(2.40), yields the relatively simple expression

R 27 1
ni(r')=By . day Fg/z
por'?a_ )
Xexp{— oh \a, expiEay/fiw,
(2.5

where

Bl=Nn|25/4/L3/4wEélzeL/2ﬁe_i”LMﬁ(Z,ua)r /2)|/2.

(2.52
To cast this integral in a standard form, we define
y=pwr'?h, (2.53
_[EtLe|® (254
E-Lw/ ’ '

PHYSICAL REVIEW A 63 042110

z=—ypl(e ?*N=p), (259
which allows us to establish that
a_la,=2zly—1, (2.56
(E— Lw)e_iqﬁzﬂyT 1/2
a,= , 2.5
day=-y dZ[2iz(z—-y)]. (2.58

Substituting these relations into E@.51) then yields

dz e 2Zk+1+12
Rn,(r’)=BZLW. (2.59
where
i @i mLI4n gyI2
B,=B, 2y F1RGITKHIZ(E | ()2+ 34 (2.60
and
k=3(E/lhwo—1-3/2=3(n—-1)=0,1,2... (2.6])

[see Egs(A19) and (A20)]. The contourC twice encircles
z=Yy in the negative sense ag, varies from 0 to 2r and
excludes the poing=0. However, apart from the sense of
motion and the number of circuits, the integral in E2.59

is a representation of the Laguerre functif®Q] so that we
can write

Rnl(r/):_477_iBze—yy|+1/2L(k|+l/2)(y) (262

[(n—|+1)/2]“—'+1r’4
[(n+1+2)/2]"F!+2

X glf2+ Udgimldy 126~ (y/z)LELJr_llﬁg(y) .

ZNn|477ﬁ(1/4)(,u,w)3/A[

(2.63

When we compare this result with the normalized solution
of the radial Schrdinger equation for the IHQ21], i.e.,

Mw)3’ 2T[(n—1+2)/2]]Y?
| | T[(n+1+3)/2]

<y VAL ),

RYr)=

(2.69

we see that the two differ only by normalization. Thus, we
can make our expression fét,(r’) identical to the exact
result simply by choosing the constakt, to have the value:

—inl4
e —1-1/2

Nn| 2e

:47Tﬁl/2

TL(n—1+2)/2] [(n+1+2)/2]n*1+2)/2] V2
><I‘[(n+|+3)/2] [(n—1+1)/2]"1+D)2

(2.69
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This completes the proof that our classical expression fomomentum can be chosen to be zero in £34), in which
the IHO wave function, Eq2.8), is exact. Additionally, the case Eq(2.23 shows that we must choose
normalization constant”appearing there is determined to be

vy=L/2 3.7
Nanley (2.66 . . . : ;
in Eq. (3.6). This form effectively shows how the radial vari-
where ables can be eliminated from Eq2.8) for the three-
dimensional IHO wave function to obtain a CE expression
Nim=1Mp, (2.67  for the spherical harmonics.

and My is given in Eq.(2.38. B. Radial wave function for the free particle

IIl. SOME EXTENSIONS We recall that the original expression for the wave func-
tion in Cartesian coordinates, Ed..1), is a CE formula not
A. Spherical harmonics and an alternate CE expression only for the harmonic oscillator but for the free particle too.
In view of Eqs(zzg’ (237), and(2_67), we can express Here we show that the same is true of our new eXpI’ESSion,
the spherical harmonics in the CE form Eq. (2.8), for the three-dimensional wave function in spheri-
cal coordinates. In particular, we demonstrate that, with ex-
Y0, ¢ )=NnT(6,¢",1) (3.1 pected adjustments, our expression for the radial function
R(r") is a CE formula for the free particle as well as for the
2m 2m IHO.
=Nim fo daLfo day Cy As a first step in this direction, we consider transforming
the harmonic-oscillator system into that of a free particle by
xXexgi(f+Wy+Wy)/fh]. (3.2 letting the frequencw tend to zero whilen becomes infinite

so that the energy remains constant, i.e., we treat the case
Since the three-dimensional wave function is a product of a
spherical harmonic and a radial facfmee Eq.(2.39], we w—0, E~nfio—7%ir?*/2u=const., | =const., (3.9
may write ¢ as a product of the above expressionYgtand ] o
Eq. (2.40 for R,,. Thus, applying Eqs(2.25, (2.6, and where k is a constant wave number. In this limit, it can be

(A6) we obtain shown that the unnormalized IHO radial functions indeed
tend to the corresponding free particle functi¢8g]
Yaim(r', 0", ¢ ) =N f Cexfi(®+f+W)/h]de. (33 yV2e YL (y)— (4lm) 2(ni2) D2 (kr ), .
3.9

This expression is clearly a CE formula for the IHO wave . , . . .
function but it is not identical to our original expression, Eq. wherey is defined as in E2.53 andj, are spherical Bessel

(2.8), since ® is not equal tod,+f [compare with Egs. functions. We can now examine how the functRRg of Eq.

(2.24 and (2.42)]. This illustrates that CE expressions for (2_'63 behave_s_ln this limit. _Usmg (ta/n)"—e? to sim-
the IHO wave function are not unique. In fact, E@8) and  Plify the coefficient, we obtain

(3.3) are but two examples of a more general class of IHO 4\ 12

CE formulas that can be obtained from Eg8.37) with dif- Rnl(f')—>Nn|—<—) (h k)% ™ (kr"), (3.10
ferent choices for the quantigy. Nonuniqueness is a general Aln

property of CE expressions.

We can cast Eq(3.2) in an interesting form if we note,
from Eq. (2.24), thatf is identical to® whenr’=r. Since Cimia
Eq. (2.11) shows that does not depend on these radial co- (Kt = he lim nl’zfzwda c
ordinates, we may choose them to have the value of unity. ! 47Y2(h k)32 0 N
Thus, we obtain

so that Eq.(2.40 implies that

X exf i (®,+W,)/4]. (3.12)

Since the integrand in E@3.11) is periodic, we can shift
the integration limits from (0,2) to (— #/2,3w/2). Then,

Y,m(e',¢')=/v.mf Coexdi(®@+W3)/a]dal?, (3.9

where the two-dimensional integration is over, (,ay), since Eqgs.(A34) and (A35) show that the IHO undergoes
X two cycles of radial motion over this interval efy, we can
WE=W,+W,, (3.5  replace the integral in Eq3.11) by twice the integral over
o o the range ¢ w/2,77/2). We identify the timet for motion
O@=jyr —r|?+p-(r'—r), (3.9 along the classical trajectory by means of the relation
andr andr’ are unit vectors along andr’, respectively. _ fi?
. . ; an= ot— t, (3.12
Sincef is independent op,, the radial component of the 2u n
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where we have used E(B.8) to expressw in terms ofn. In
terms of this variable, the integration limits—@@/2<a

<mw/2) correspond to {oo<t<w). Defining an
n-independent preexponential facl@ﬁo) via
1/2

pr|2L [Py Py

(0)— _r_
C, [,urz TZJF'((?r : } (3.13

B2 \ 12

:wl’zcr:<2M n) C,, (3.14

PHYSICAL REVIEW A 63 042110

spectively, at each pointx on the three-dimensional La-
grangian manifold corresponding to the state of interest. Fi-
nally, the integration over this manifold must be carried out.
Practical methods for determining the Lagrangian manifold
associated with a quantized state of a multidimensional sys-
tem, and for performing the necessary integrations, are ad-
dressed in Ref.2].

It is worth noting that, although the factdexp(®/4)|
appearing in the integrand of E(R.8) is a Gaussian when
expressed as a function of the Cartesian coordirjatss Eq.
(2.7], it is clearly no longer a Gaussian in terms of the

individual spherical coordinatefsee Egs.(2.10—(2.12].

The validity of Eq.(2.8) as a uniform semiclassical approxi-
mation for target systems is due to the satisfaction of the
conditions discussed in connection with E4$.8)—(1.10.
Thus, the present case illustrates how non-Gaussian integral
expressions can serve as semiclassical approximations.

Eq. (3.11) becomes

—iml4 .
j.(Kr')z—)ﬂJ COexfi(®,+W,)/A]dt.
K — 0

(8mu
(3.195

Equation(3.15, which may be verified by explicit evalu-
ation of the integral, expresses the exact radial wave function
for the free particle in terms of the radial motion of a clas-
sical free particle with energig=7%2«%/2u. The form of this

B. Anisotropic rigid rotor

We now recast Eq3.4) for the spherical harmonics in a
form suitable for a semiclassical treatment of regular, aniso-

result is identical to that of Eq2.40) for the IHO except for ~ tropic, rigid rotational motion. This should allow the ap-
the use of the timeinstead of the angley, as the integration Proximate calculation of wave functiong(6',¢") obeying
variable. Angle variables are, of course, undefined for unboundary conditions appropriate for angular variattlesnd
bounded motion, and the time variable is the proper way to?'-

parametrize the Lagrangian manifold in such cases. Equa- The classical Hamiltonian for the target system is as-
tions (2.8) and(3.3) are thus shown to be CE expressions forsumed to be
both the IHO and the free particle. 5 )
_ Py N Py
IV. SEMICLASSICAL FORMS 21 21sir? 0

We have pointed out that the CE expressions for the IHQyhere| is the moment of inertia. Basing our treatment upon
can serve as semiclassical approximations for various targ@fe free rigid rotor Y= 0) as a reference system, we gener-

systems with wave functions obeying boundary conditions;|ize £q.(3.4) to express the semiclassical wave function as
appropriate for spherical coordinates. However, for this pur-

pose, the expressions must be cast in forms that do not rely
on properties of the action-angle variables that are specific to
the IHO. Nevertheless, these expressions must still obey the
conditions of Eqs(1.8—(1.11), ensuring that the wave func-
tion becomes uniformly exact in the classical limit. Thus,where the integral is over the two-dimensional Lagrangian
before our results can be used as semiclassical approximezanifold corresponding to the rotational state of interest:
tions for other systems, they must be generalized appropri- R
w<2>=f““(2))|6.df,

H +V(0,¢), 4.2

X(a’,fﬁ'):NJ Cpexgi(®@+W®)/4]dal?),
4.3

ately. This is accomplished in the present section. 4.4
A. Three-dimensional motion R R
. . wherer andp are, respectively, the two-dimensional vectors
Equation(2.8) for the wave functiony(r’,0’,¢') of the P P y

IHO is already expressed in sufficiently general terms to(0’¢) and (,,py);
serve as a semiclassical approximation for other regular,
three-dimensional systems expressed in terms of spherical
coordinates. For such an application we just need to replace
the dynamical quantities in EQ2.8) with those of the target

DA =iy|r'—r|2+p-(r'—r)=—2iy{[cog 6’ — §)— 1]
+sin@’'sind[cog ¢’ — ) — 1]} + pyisin(6’ — 6)

system. This means thsl¥ should be evaluated using +sing'cosf[cog ¢’ — ¢)— 1]} (4.5
We fr(a)p‘dr, @ +py(sing’/sing)sin(¢’ — ), (4.6
with v not necessarily restricted by E@.7);
while ® [with y not necessarily constrained by Hg.23] . 5 _
and C should be calculated using Eq®.7) and (2.9), re- sind Cy=de(P—2iI'X) x>, 4.7
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whereP andX gre 2>f% matrices as defined in Eq4..6) but Xim(0',6") = Nigs(— 1)meim¢'e—27/ﬁ
applied for variables,p and o/, and

2
X da;Cyexpli[pysin(d’ — )
0

2iy p,coto —2iycog0' —0)+Wy]/h}

2iI'= S . . (4.8
! p,cotd (2iysind—p,cosd)sing 4.8

Xexd —ising’ (p,cosf—2iysind)/i]
2 im o
It is easy to verify that the above equations revert to the CE X 0 dre™expi sin®’[(p, cose

expression for the spherical harmonics, E8.4), whenV
=0. —2iysin#)cost—M sin7/sin6]/%},

(4.11

C. Orbital motion where we have applied EqB22) to expressday,=de,
o ] i . _ changed variables to=¢— ¢', and used the periodicity of
We specialize the result obtained in the previous sectiofhe integrand to adjust the-integration limits. The integral
to the case where the potentia=V(0) is axially symmetric  over 7 can be easily recast into a form similar to that in Eq.
so that the¢ dependence of the wave function can be sepa¢2.31) and, repeating the treatment presented there, the result
rated out. We will see how our CE expressions yield a semican be expressed in terms of the Bessel funcfign Spe-
classical treatment for the remaining orbital motiondirso  cifically, we find
that the wave functions obey the appropriate boundary con-
ditions at angles 0 and. Xim(0', ') =2m(—i)"e 2em'g (9"), (4.12
Applying the results presented in Appendix B, E4.3
for the wave function of the present system can be expressethere
as

2w
Sim( el)z-N’jm 0 de;Cy

2m 2
Xin 06 =Njn | day [ e, | -
0 0 X exp{i[Wy—cosf' (pysiné+2iycosh)|/h}

Xexgi (PP +W,+W,y)/h], (4.9 x eimtan {b/a)y (a7} p2), 4.13

and we have defined
whereJ=(j +1/2)A andM=m#~ are the two quantized ac-

tions anda; and «y, are the corresponding angle variables
for the systemW, and W, are defined in Eqs(B6) and
(B7); and ®® may be expressed as in E@.6) with p,,
=M.

To simplify Eqg. (4.7) for the preexponential factor, we
apply Egs.(B21)—(B23) for the elements oP and X to ob-
tain

a=(pycosf—2iysinh)sind’'/h, (4.19
b=—-Msin6'/% siné. (4.195

Once again, in the isotropic cas¥<0) whenvy is cho-
sen asL/2, it is not hard to show that the above results
reduce to the expressions obtained in Sec. Il D, namely, Eq.
(4.12 becomes equivalent to E¢2.34 and S;,(#") be-

comes proportional to the Legendre functi@rﬁ“‘(cosa’).

py . 98 o Thus, Eq.(4.13 is a CE expression when applied to free
Co= (5_27%)(%0059_2'75'” 0) orbital motion.
J J However, it is more relevant here to examine the suitabil-
M2co2 9 96 1M2 ity of this expression as a semiclassical approximation for
- _1 (4.10 other systems. Wheth— 0, the argument of the Bessel func-
sinfg  day tion in Eq.(4.13 becomes largéexcept wherd’ is near 0 or

). Application of an asymptotic expression for the Bessel

function [23], casts the integrand as a sum of forms
Using Eqgs.(A45), (A46), (A36), and(A37), itis not hard to  C{”exp(®{ /%), v=1,2, whered’ obeys the condition of
show that, apart from a phase factor, this result reduces tgq. (1.10 and the quantitie¥' appearing irC{ are consis-

Eq. (2.27 whenV=0 andy=L/2. tent with Eq.(1.12). This ensures that, despite its evident
Substituting Eq(B10) for W, and Eq.(4.6) into Eq(4.9), nonGaussian form, Eq4.13 can indeed be applied as a
we obtain semiclassical approximation for more general systems. Fur-
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thermore, by substituting the expansion fhy with small  Finally, use of Eqs(2.20 and (2.21) produces the desired

argumen{15], it is easy to confirm that generalization
S.(6')~constx sin™ g’ (4.16 pr (L _ap| |2
im = —
C, _Z,u,wr 2 +2y+i ar , (4.21

as #'—0,7. These are the correct boundary conditions for

general orbital motion wave functions, as can be shown byhich reduces to Eq2.26 when vy obeys Eq.(2.23. The
noting that such functions can be expanded in terms of theeatment given above assumes that the state of interest is
Legendre function:le|(cos:9’), all of which behave as de- bound. For an unbound state, the facior'/? in Eq. (4.21)
scribed by Eq(4.16. Thus, Eq.(4.13 serves as a semiclas- should be eliminated.

sical approximation and yields wave functions obeying the

proper boundary conditions for orbital motion @t=0 and V. NUMERICAL EXAMPLES

ar.
We now present two examples that illustrate how the ex-

D. Radial motion pressio_ns 5resented in Sec. IV can be used as semiclassical
approximations.

Equation(2.40 for R(r') is already in a sufficiently gen-
eral form to serve as a semiclassical approximation for the A. Perturbed orbital motion
radial wave functions of bound states for systems other than
the IHO, provided that the quantitie®,, ®,, andC, are
evaluated for the target systems using Eé9.), (2.41), and L2 02
(2.26), respectively. In fact, the treatment presented in Sec. H=—+V(6)= 0 Un(6), (5.
[ll B suggests that Eq(2.40 can also be used for unbound 2l 2l
states if the integration variable is taken as time and the
) Lo ; Where
integration limits are replaced by «. As is apparent from
Egs.(2.41) and(2.42, the resulting approximate wave func- m2f2
tions obey the proper boundary conditions for states that are Upn()= ———
regular at the origin, namely, 21 sir? 6

Ry(r ")~constxr'!, (4.1 The classical Hamiltonian of E¢5.1) determines the motion
along angled in the cylindrically symmetrical potential
asr’'—0. V(60) =V, cosh, under the condition that trecomponent of
It is, nevertheless, worthwhile to further generalize ourthe angular momentum is fixed M =m#A. We choose the
approximation folR,(r") a bit. We observe that the quantity parameters iH to have the values =1=V,=1.
¥, which was chosen to obey E@.23 in order to make the Semiclassical calculations of the wave functi@g(6")
three-dimensional wave function separate into angular angbr states with quantum numberp, 1) are performed using
radial parts, need no longer be restricted in this mannerikq. (4.13 so that our treatment is based on free orbital mo-
Even if y is chosen to be an arbitrary function @f, having  tion as a reference system. The parametén the calcula-
a positive real part, a stationary phase evaluation of the intions is rather arbitrarily chosen gd=3(j + 3)#, in anal-
tegral will still give the correct primitive semiclassical result, ogy to Eq.(3.7), and no attempt is made to optimize it. The
and the integral expression f&(r ") given in Eq.(2.40 will  semiclassical wave functions are numerically normalized to
remain a uniform semiclassical approximation, provided thakatisfy
C, is suitably redefined.

We consider a one-dimensional system characterized by

+V, cosé. (5.2

In a manner similar to Eq91.5 and (2.9), the correct g 12 i ar
generalized definition o€, requires that o |Sim(6")[*sin6"d 6" =1. (5.3
202—; IPr —2iAa—r 4.18 In Fig. 1 we present the semiclassical wave functions for
r day day)’ ' states withj=0,1,2 and compare them with accurate quan-

tum wave functions obtained by diagonalizing the Hamil-
where the factor has been introduced for compatibility with tonian in a converged basis of Legendre functions. These
Eq. (2.26, and numerical results confirm that the semiclassical wave func-
tions have no caustic singularities at the classical turning
points whereU ,(6')=E, as do the WKB wave functions.
, (4.19 Furthermore, the semiclassical wave functions evidently
r=r obey the proper boundary conditions &t=0 and 7 de-
scribed by Eq(4.16), which imply that

D,

2iA=
ar'?

in analogy with Eq.(1.11). Substituting Eq.(2.41) in Eq.
(4.19 yields Sjm(#')~constx '™ (5.4

A=L/2r%+ . (420 as#’ —0,
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FIG. 2. Radial wave function®,,(r) for the hydrogen atom
3 (1,1) 2,2) with n=3. Semiclassical functiongolid curve$ and exact func-
[\ ' T ] . I ' tions (broken curvesare shown fol =0,1,2.
[ N | _
£ L . E, . .
2 « \/ than to the wave function for the unperturbed systerich
2 — . TR e
ol |\/ T . | . would appear as a horizontal line in Fig. In addition, the
0 /2 T 0 /2 T “perturbation” Vgcosé' is not “weak” in the usual sense

and the orbital motion of the target system is rather far from
free, especially for low. This can be seen in the curves for
FIG. 1. Wave functionsS;,(#') with j=0,1,2 for perturbed the potential-energy functiod ,(¢'), which would be sym-
orbital motion. In each subfigure the horizontal line gives the en-metric abouts/2 for free motion(and identically zero for
ergy of the state, the heavy curve is the effective potential-energygn=0), and in the wave functions, which would be either
functionU,(0") [see Eq(5.2)], the lighter, solid curve is the semi- even or odd with respect to reflection abowt2 for free
classical wave function, and the dashed curve is the quantummotion. Evidently, the target and reference systems need not
mechanical wave function. The wave-function curves are unscalegle very similar for the present semiclassical approximation

but have been shifted vertically so that the value zero COinCide% achieve good accuracy, even for states that are far from
with the horizontal energy line. On the scale shown, it is difficult to the classical limit.
distinguish between the semiclassical and quantum curves except
for states (0,0) and (1,0).
B. The hydrogen atom

Sjm(#")~constx (" —m)™ (5.5 We next apply our approach to calculate semiclassical
) ) ) radial wave functionR,(r’) of the hydrogen atom. Our
as#'— and, in particular, calculations are performed using the semiclassical expres-

sion, Eqg.(2.40, so that we effectively use the IHO as a

i dSm(6") ~0 56 reference system in our treatment of hydrogen. The semiclas-
a,m; de’ 56 sical functions are numerically normalized by requiring
for m=0. As discussed above, this behavior is a conse- f ‘|Rn|(r’)|2r’2dr’=1. (5.7
0

qguence of the specific form of the integrand in E4.13.

Semiclassical wave functions obeying the correct boundary

conditions for this system cannot be obtained using an inte- Figure 2 presents the semiclassical radial wave functions
gral expression containing a single Gaussian function, sucfor states with principle quantum numbaer=3 and com-

as Eq.(1.2). pares them to the exact quantum functions. Once again, the
We note that the semiclassical results are very accurateemiclassical results do not display caustic singularities at
even in classically forbidden regiorfsvhere U,,(6')>E], classical turning points. Furthermore, it is evident that these

except for states (0,0) and (1,0). These, of course, are veffynctions obey the proper boundary conditions for regular
highly gquantum-mechanical cases. Indeed, for state (0,0)wave functions ar’=0, as described by Ed4.17). This
the classical motion is forbidden for most valuesgof behavior is not to be taken for granted. If, instead of Eq.
Since we are dealing with states that are far from thg2.42, R, were calculated using a Gaussian fofeg.,
classical limit, where semiclassical approximations are apbased on a second-order expansionbefaboutr’=r), the
propriate, it is likely that the accuracy obtained here is, tosemiclassical radial wave functions would diverge rat
some extent, due to the similarity of the target and reference=-0. The behavior at the origin obtained here is a direct
systems. Yet, even for state (0,0), the semiclassical result sonsequence of the specific, non-Gaussian, form of the inte-
closer to the quantum wave function for the perturbed systergrand in Eq.(2.40.
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We emphasize that no attempt was made to optimize thescillator, Rosen-Morse oscillator, and the Eckart barrier.
parametery in these calculations. This quantity was definedDerivations of such results will be presented in a subsequent
as in Eq.(2.23 so that the expression f&,, would yield the  paper[11].
exact result for the IHO system. However, if we had adjusted There is little doubt that the treatment presented here can
y as suggested in Sec. IV D, not only could we have mad®€ applied to obtain analytical CE expressions for higher-
our semiclassical treatment of the hydrogen atom more acdimensional IHO’s. Such an extension of this paper would
curate, we could have madesiact This conclusior(which be very worthwhile since it would be expected to p_rowde
can be verified numericallyfollows from the property10] refer_encg systems for the treatment of wave functions of
that the CE radial wave functions for the IHO presented her&ultiparticle systems that are expressed in terms of hyper-

become CE wave functions for the Coulomb problem wher?pheric".’lI coordinates. More importantly, such an extension
v is chosen to be 0. Further discussion of the relationshiCould yield CE expressions for angular momentum vector

. . : %oupling coefficient§5,9] and show how to generalize the
between the IHO and hydrogenic wave functions will be P€semiclassical method described here to multiparticle systems
sented elsewherfd 1].

characterized by fixed total angular momentum and fiso-
jection.
V1. DISCUSSION The present treatment for the IHO and that of Ré&f)]
for the Coulomb problem rely on the separability of the re-
In this paper, we have obtained an expression that despective three-dimensional Hamiltonians in spherical coordi-
scribes the exact wave functions of the three-dimensionatates andimplicitly) the exact solvability of the resulting
isotropic harmonic oscillator in terms of the correspondingone-dimensional Schdinger equations. However, since the
classical motion. In the process of this derivation, we havd-aplace operator in three dimensions is separable in at least
also obtained CE formulas for the radial and angular compol1 coordinate systerr{24], the separability and solvability
nents of this wave function, the latter being the sphericafonditions are clearly obeyed for a rather wide variety of
harmonics. By examining a limiting case of the radial factor,2dditional choices of coordinates and potential-energy func-
we have also derived a CE expression for the radial wavdonS- In principle, it should be possible to generalize our

function for the free paricle. Furthermore. by simpliying (2SN 2 Y B0m b Cor e B eenstates
the classical expression for the spherical harmorifose 9

rigid rotor wave functionswe have effectively obtained a ©f the angular momentum operatbf. Among other ben-
one-dimensional CE formula for the Legendre functions€fits, such studies could yield useful reference CE expres-
[free orbital motion wave functions—see Hd.13] sions for semiclassical treatments of atoms in external fields,

The above CE expressions have also been presented %ectronic states of diatomic molecules, and other interesting
problems.

forms suitable for use as uniform semiclassical approximar .
To place our paper in a somewhat broader context, we

tions for the calculation of wave functions of various '[argetr call that wave functions for bound. intearable svstems can
systems, when these are expressed in terms of spherical c§ d iclassi ’ _g ] yh J
ordinates. Such semiclassical forms include: @) for 3D € expressed semic assma[@]_ as "b”(.q)_<Q| ) where
wave functions, Eq(4.3) for anisotropic rigid rotor wave are the action varlabl_es associated with the quan_tlzedrxta_te
functions, Eq.(4.13 for orbital motion wave functions, and It is, therefore, pos.S|bIe to reggrd the expressions denved
Eq. (2.40 for wave functions corresponding to either h_ere for wave funcuqns as particular examf)_les of semlclaf,—
bounded or unbounded radial motion. Unlike E#.1), the sical integral expressions for more general inner prodycts
new formulas involve integrands that are not Gaussians ir<1x2|xl>’ where the_q denote clas_S|caI generallzed coordinate
or momentum variables. Such inner products include propa-

the coordinatesr(,0’,¢'). However, it is precisely this t . . tati d diff tial teri
property that allows the resulting wave functions to obey theJA10rs 1N various representations and difierential scattering
cross sections. When bothy, and x, are action variables,

boundary conditions appropriate for spherical coordinates;

Since, despite their non-Gaussian forms, these expressioH%ey also include autocorrelation functions, matrix elements,
obey {he conditions of Eq$1.8—(1.11) the'y remain appli- amplitudes for collisional transitions, and amplitudes for
cabie as semiclassical appn.)ximaiionys spectroscopic transitions between energy eigengtateshe

We have illustrated the semiclassical applications of owproblems addressed in this paper, concerning the correct

expressions with two numerical examples. An additional ex-form of the wave-function expressions for non-Cartesian

ample is presented in Refl2]. These demonstrate that the variables, also arise in these more general cases. We show
resulting wave functions indeed obey the correct boundar Isewhere that th? non-G_auss[an mtegrands dgnved here can
conditions, are not affected by caustic singularities at turnin e used to obtain semiclassical approximations for such

points, and are capable of rather good accuracy, even f tore gelréerfél ﬂu?ntt_'t'e@:j?lxﬁ mt stevi:alt tlrl;nportarrtt_ n-
states with low energies where semiclassical approximation§ anpes{. ]. Calcula lons demonstrate that the resuiing ap-
roximations are of practical value since they are capable of

are not expected to be optimal. Although this accuracy ig". h d ical effici 1
enhanced when the target system is similar to the referendd9" accuracy and numerical e icienfd2,13.

IHO system, it can still be high even when the two systems
are rather different.

The expressions obtained here serve as the starting point This research was supported by the Israel Science Foun-
for the derivation of analytical CE expressions for additionaldation administered by the Israel Academy of Sciences and
systems. These include the Coulomb sysféf], the Morse  Humanities.
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APPENDIX A: ACTION-ANGLE VARIABLES FOR THE py(0)==(L2—Msir? 6)2, (A11)
ISOTROPIC HARMONIC OSCILLATOR

— _ 2_ 271/2
Here we review the transformation from spherical coordi- Pr(r)==[20E—(L/1)"= (por)T]7% (Al2)

nates a_nd momenta to action-angle varl_ables for the three|=he quantitiey)_ andr _ in Egs.(A7) and(A8) are, respec-
dimensional IHO and present some relations needed for o [elv. the lower turning points for motion in thé and r
derivation. Some of these results are similar to those found icooryd’inates These chgicpes for lower intearation limits are
Refs.[5] and[25] for the cases of the hydrogen atom and the " X . 9
. . arbitrary but convenient.

two-dimensional IHO. We now define the three action variables

The generating function for the canonical transformation
between the variables of interest is Hamilton’s characteristic 1
function W, considered as a function of the spherical coordi- =5 #; pyde,
nates and the action variables. This function can be obtained 2m
by solving the Hamilton-Jacobi equation, E¢L.2), in

spherical coordinates. Since the classical Hamiltonian for the | :i 35 p,do
IHO is given by v 2w om
1 p; P 1 1 3g
_ 2 ¢ 2,2 S
= b += I, = dr. A13
H 21“’ r r2 rzsin29 2/.L(,U r 1 (Al) r 277, pr ( )
evaluated 5] to obtain
1 aw2+1 aw2+ 1 aw2+1 22_p
2z\or) T2\ Ge] Trsite\ae) |T2HeT TR l4=M,

ly=L—[M],
This may be solved by separation of variables. Thus, intro-
ducing separation constank$ and L, we can replace Eq. |, =E20—L/2. (A14)

(A2) by the three equations: ) ) L .
However, applying the appropriate quantization conditions

Py=0W/dp=M, (A3)  [5] to the actions also gives
p2+M2/sir? 6= (dW/90)%+MZsir? 6=12, (Ad) | p=mt,
and o= (v+1/2)h,
L2 1 1[({ow|\? L? l,=(k+1/2% A15
o pr2+_2 +—Mw2r2:_ - +_2 r ( ) ’ ( )
2u r 2 2|\ ar r
where the quantum numbers can have the valnes*1,
T ., *+2,... andv,k=0,1,2.... Thus, comparison of Egs.
+tSuoT =E. (AS)  (A14) and (A15) implies that
It is clear that a solution to these equations can be written as M=m#, (A16)
W=W, +W,+W,, (A6) L=(v+|m|+1/2)#, (A17)
where E=(v+|m|+2k+3/2%w. (A18)
; . i
Wr:f o, dr, (A7) We now introduce new quantum numbers defined by
" l=v+|m|,
4
W(,zf pedo, (A8) n=1+2k, (A19)
6_
so that we can express Eq#16)—(A18) as
¢
W= f_wl%d& (A9) E=(n+32to, (A20)
and L=(| +1/2)ﬁ, (A21)
Py=M, (A10) M=mr, (A22)
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where 1=0,1,2 ..., n=I,1+2|+4, ...
+1,...,l.

, andm=—1I,—| E0=(E2—L2w2)1/2,

At this point we define =(N?~L*)"%; (A30)
N=2I+L, (A23) aswellas
so that _4| Lcosé
o =C0s l(\/ﬁ) —&(N,L), (A31)
E=Now (A24)
with [5,26]
and
rodr
N=(n+3/2)#%, (A25) f(N,L)ZLJ r—der,
r_ r
and consideN, L, andM as new action variables. Accord- 1 L2_ ,Er2
ingly, we regard Hamilton’s characteristic function as having —Tcoslf =T (A32)
the functional dependend&/=W(r,8,$;N,L,M). This al- 2 wEor?
lows us to determine the angle variableg(«, ,ay), con-
jugate to the new actions, by differentiatifg with respect and
to the (N,L,M). Thus, applying Eq94A6)—(A12), we obtain 3 1
= — 1 _
IW ay=¢+m—Mtan M2 sin20tan0
aN=2 (A33)
) Inverting these equations and applying E¢510)—(A12),
=J ﬁdr we have
r_ &N ’
12
Cdr r:(7) (E—Eq cos 2xy)*?, (A34)
—po | —, (A26) g
r-Pr 12E o
M EO Sin 2aN
pr= =, (A35)
oW (E—Eqcos 2my)*
TR
6=cos [(1-M?/L?)Y2cod o +£)],  (A36)
(" 9Py 9 9pgy
‘fr Id”fg Fi L(LZ=M?)"2sin(a +£)
- - Po==—— > 7o (A37)
[L2sirP(a + &) +M2cof(a +§)]
rodr 6 de .,
:_LJr_rzprdr+LJe_(L2—M2/sin2 0)1/2, ¢=ay—m+tan [(L/M)tan(a +£)], (A38)
(A27) Ps=M. (A39)
_ W These results allow us to evaluate the following deriva-
IMT oM tives needed for the calculation Bf X, andC:
[Py Jaﬁ Py o Eo sin 2ay A40)
- J BTV vl Gan aa(E—Eqcos g
0 do apy g Eo(1+coS2ay)— 2E cos 2xy
o (o) Le—mZsie g2 O dan (E—Eqcos 2xy)?
(A28) (A41)
These integrals can be evaluaféd to yield a6 _ Py (A42)
da 2’
1 E- po’r? N pof
aN=§COS_1 g—) (A29)
0 ap, MZ?cosh
(A43)

with

day _,uwrzsirF 6’
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I M APPENDIX B: ACTION-ANGLE VARIABLES FOR
S = 2—n2’ (A44) ROTATION IN AN AXIALLY SYMMETRIC POTENTIAL
AN uwresir o
As in the previous case, the transformation from spherical

EY) to action-angle variables is again here generated by Hamil-
§7=p9/L, (A45) ton’s characteristic functioWV, which may be obtained by
L solving the Hamilton-Jacobi equation in spherical coordi-
) nates. Since the classical Hamiltonian for the present system
@:w is given by
— (A46)
dag  Lsin®6 ) )
Py Py
H=—+ +V(6), (B1)
a6 M o 2 arsite
daL  Lsirte’ . N . .
wherel is the moment of inertia, the Hamilton-Jacobi equa-
tion is
0% =1 A48)
daw ( M L M v(e)-E]=0. (B2
50 tsie| g TAIVIO-EIZ0- (B

The remaining derivatives of momenta and coordinates with

respect to the angle variables are zero. Introducing the separation constavif we can replace this
Finally, explicit expressions fow are needed as a func- equation by two independent equations:

tions of the angle variables. Substituting E&10) for p,

into Eq. (A9) and using Eq(A38) we immediately obtain Py=dW/Idp=M (B3)
W,=M(¢+ ), and
—M{ay+tan [(LIM)tan(a, + 6]}, (A49) M)Z_ g M?
M L 5| =2IE-V(O)]- 55 (B4)

Substituting Egqs(A11) and (A45) into Eq. (A8), we obtain
A solution can be found in the form

ap

W0: L(LZ_ MZ)IIZJ

a(0-) W=Wy+W,, (BS)
y sirP(ay +£) where
2 2 “L. 0
L2 sirP(a, + &)+ M2 cod(a +§) Wng 0,d6, (86)
=L (o +&)—M tan "[(L/M)tan e+ £)], (A50) -
where we have used the tabulated expression for the integral W,= fd) 0, db, EB7)
in the first line [27] and recognized that ces=(1 -7
—M?ZLAY2[5]. The quantityW, is most easily evaluated by
substituting Eq(A12) into Eq. (A7) and transforming to the and
variablez=r2. This integral is again tabulaté@8] and, us- Dy=M (B8)
ing r_=[(E—Ey)/ nw?]*? together with Eqs(A34) and e
(A35), yields Po(6)==[21(E—V)—M/sirP6]"2 (BY)
o E 0 . L -1 E CcOoSs ZLYN_ EO Clearly
Wr—aa’N'f' ZSIHZQN_ECOS (m .
(A51) W,=M(o+ 7). (B10)

In view of Egs.(A32), (A30), and(A34), this result can be The action variables may be chosen to be
expressed more compactly as

1
E Eo > fﬁ pgdp=M, (B11)
WrzzaNJr %sin 2an—LE. (A52) )
Thus, combining EqQSA6), (A23), (A49), and(A50), we see o fﬁ pedo+[M|=J, (B12)

that

and the usual semiclassical quantization rules jigld
W=Nay+La,+May+ 3(N?>—L?)Y2sin 2ay,.
(A53) M=m#, (B13)
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J=(j+2)h, (B14)

wherej=0,1,2 ... andm=0,£1,+2, ...
Treating the functional dependence oN to be

W(J,M; 6, ¢), the angle variables are obtained as

4+
y— -

_&W

(B15)

and

_ 0.9py
—¢+7T+f oM de,

0_

[
=¢+ w—Mf délp,sirt, (B16)
0_

PHYSICAL REVIEW A 63 042110

where
0 (J)=0E(I)/aJd. (B17)

These equations may be inverted to show that

0= 0(ay), (B18)
p=ay+t{(ay), (B19
where
0
§(a3)=|\/|f délp,sirto— . (B20)
6_

These allow us to establish the following relations that are
needed to evaluate the preexponential faGgr

do M a0 (B21)
day  p,sirte day’
Jd
—¢=1, (B22)
&aM
and
00 Jd J J
90 _ by _ 9Py _ Py _ (823
(9aM &aM é’aJ (9aM
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