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Algebraic approach in the study of time-dependent nonlinear integrable systems:
Case of the singular oscillator
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The classical and the quantal problem of a particle interacting in one dimension with an external time-
dependent quadratic potential and a constant inverse square potential is studied from the Lie-algebraic point of
view. The integrability of this system is established by evaluating the exact invariant closely related to the
Lewis and Riesenfeld invariant for the time-dependent harmonic oscillator. We study extensively the special
and interesting case of a kicked-quadratic potential from which we derive a new integrable, nonlinear, area
preserving, two-dimensional map that may, for instance, be used in numerical algorithms that integrate the
Calogero-Sutherland-Moser Hamiltonian. The dynamics, both classical and quantal, is studied via the time-
evolution operator that we evaluate using a recent method of integrating the quantum Liouville-Bloch equa-
tions[A. R. P. Rau, Phys. Rev. Le®1, 4785(1990]. The results show the exact one-to-one correspondence
between the classical and the quantal dynamics. Our analysis also sheds light on the connection between
properties of the su(1,1) algebra and that of simple dynamical systems.
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[. INTRODUCTION stance, in molecular physics, quantum chemistry, quantum
optics and plasma physics. The Hamiltonian of this system is
The classical and quantum-mechanical study of timegiven by
dependent Hamiltonian systems are generic and important.
They span a wide spectrum of subjects ranging from inter-
action between atoms and radiati@)3], adiabatid 4,5] and
nonadiabati¢6,7] Berry phase, time-dependent harmonic os-
cillators [8—10], and quantum motion of a particle in a Paul Wherep andq are conjugate canonical variables. The adia-
trap[11,17], to time-dependent mean-field thedigranking batic invariant for this system was originally given at the first

model[13]) in particular and the time-dependent shell modelS0Ivay Congress in 1911 when the Hamiltonian of this sys-
[14] in general. tem was used as an approximate Hamiltonian for the slowly
- : : : lengthening pendulurfil7].

The question of the existence of invarialitenstants of The studv of this one-dimensional TDHO was areatly ad
motion) is one of central importance in the study of any study IS -d S| was g y ad-
dynamical system, be it classical or quantal. A basic theorer%lanced due to thg work of Leyv[ss,g] and LeW'.S anq Rie-

' ) senfeld[10]. Lewis [8] determined the exact invariant by

of classical mechanics asserts that if the number of indeper};{pplying Kruskal's asymptotic methdd8] and showed that

dent invariants, satisfying certain conditions, i_S equal to thea previously known adiabatic invariant was in fact an exact
number of degrees of freedom, then the mO.tIOI’] can be "Shvariant. Later Lewis and Riesenfe(R) [10] determined
duced to quadratures, or equivalently, an action-angle transpat same invariant by starting with the assumption of the
formation to a Hamiltonian dependent only on the actionssyjstence of an explicitly time-dependent, homogeneous and
can be found15]. Such systems are integrable. quadratic invariant of the form given by

The lack of sufficient number of invariants invariably
leads to a phase space that has a nonzero measchaatic 1 5 5
trajectorieg 16]. For time-independent Hamiltonian systems ()= 5[a(t)p™+ B(1)a"+2y()pq], 2
the Hamiltonian itself is an invariant. However, when the
Hamiltonian is an explicit function of time, it is no more an where the coefficientsa(t), B(t), and y(t) are time-
invariant, and this is of course a reflection of the nonconsergependent real functions ant) satisfies the condition
vation of energy. Various methods have been used to obtain
approximate solutions for time-dependent problems, e.g., the dl al
adiabatic approximation, the sudden approximation, time- mEE+{I,H(t)}=O. (3
dependent perturbation techniques, etc.

The most widely studied time-dependent Hamiltonian
system is the time-dependent harmonic oscilléf@HO). It
has long been a problem of considerable interest because
its varied applications in different areas of physics—for in-

1 1
H(t)ZEDZJF §w2(t)q2, (1)

Here{, } denotes the usual Poisson bracket. From the above
two equations and after some calculations they derived the
8act invariant as

1
(=5 p?p*+ @

<y 1 ) .
. . , p°+—|0a°=2pppq
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with p(t) satisfying the subsidiary condition grable? In fact, the singular oscillator with a centrifugal force
potential provides an important example whose kinematics is
1 still within the su(1,1) algebra. In the second section, we
b+ w’(t)p— _320, (5) have discussed such a nonlinear Hamiltonian and we have
also derived its invariant from our new Lie-algebraic inter-
pretation of the LR invariant. Using this Hamiltonian we
This more complicated, nonlinear, differential equation rep-have constructed an integrable, area preserving, nonlinear
resented an advance due to the reason dingtparticular ~map and derived its exact invariant with a knowledge of its
solution p(t) of the above equation would give the exact fixed points.
invariant! (t) for all initial conditions ofp andq. We have determined the classical time-evolutiBerron-

The above technique actually predates the work of Lewidrobeniug operator following a recent method elucidated by
and Riesenfeld in a slightly different context, and we brieflyRau [1]. This method was originally used for solving the
point this out. We note that the equation of motion of thequantum Liouville-Bloch equation, but we have applied this
TDHO is d?q/dt?+ w?(t)q=0. This is of the same form as in the classical case and have been able to show the one-to-
the time_independent, one-dimensional Sdm[ger equa- one correspondence between this nonlinear map and the lin-
tion, if we assume thatrepresents the spatial coordinate andeéar map (derived from the Hamiltonian of the one-

a, the wave-function. According to an ear|y work by Milne dimensional TDH@ In the third Section, we have studied
(1930 [19], it is possible to solve this Schiimger equation the quantum dynamics of the nonlinear map and again we
using the knowledge of any particular solution of E§), have used Rau’'s method to determine the quantum time-
after proper identifications. Therefore, any particular solutioreVvolution operator. This identical approach to classical and
of the subsidiary condition can also give the exact solutiorffluantum dynamics helps us to show, rather trivially, the ex-
for the TDHO. act one-to-one correspondence between the classical and the

Lewis[9] attempted to give an interpretationigt) as the ~ quantal. Our study also has the dimension of interpreting the
most general homogeneous quadratic invariant possible fdpathematics of the su(1,1) algebra from a dynamical sys-
the Hamiltonian of the one-dimensional TDHO. A more tem’s viewpoint. For instance, we derive powers of non-
natural and physical interpretation has been suggested Wpmmuting products of exponentials of the su(1,1) algebra.
Eliezer and Gray20] in terms of two-dimensional auxiliary This reveals when the powers can degenerate to the identity,
motion, i.e., in terms of a two-dimensional uncoupledsomething thatis immediately clear from the dynamics of the
TDHO. They showed that the above subsidiary condition Equnderlying system due to the presence of degenerate periodic
(5) is the radial equation of motion for this two-dimensional orbits.
system and the invariam(t) is proportional to the conserved
angular momentum of this auxiliary motion. @ther and  II. THE CLASSICAL KICKED SINGULAR OSCILLATOR
Leach[21] interpreted (t) in terms of canonical transforma-
tions and under their transformation the invaria(t) be-
came the Hamiltonian of the one-dimensional time-
independent harmonic oscillator of unit frequency.

Besides these previous interpretationd @, we can in-
terpret the form ofl (t) chosen by LR[10] from the Lie-
algebraic point of view. The Hamiltonian of the one

First, we will describe the general Hamiltonian of which
an important special case constitutes the rest of the paper.
For the existence of an invariant for the one-dimensional
TDHO, the subsidiary condition E@5) has to be integrated
with someinitial conditions, that is, we should be able to
_determine a particular solution. The subsidiary condition,

dimensional TDHO is formed by the dynamical variables_giv_en in Eq._(_5),_is ano_nlinear_, time-dependent, equation and
192 and 1g2. These two dynamical variables together with its |ntegrgpll|ty |s_not immediately obwqus. If we assume
p q are generators of the closed su(1,1) algebra under {h@S @ position varlaple, say then E_q.(5)_ IS the equation of
Poisson bracket operation ah@) was chosen if10] as the motion corresponding to the Hamiltonian given by
linear combination of these generators. Generalizing the LR-
invariant from the Lie-algebraic point of view, we expect H(t)= E
that if any time-dependent Hamiltonian be the combination 2
of the generators of any closed algebra, an invariant would
be a linear combination of the generators of that closed alwith k=1. This is a time-dependent Hamiltonian, and has
gebra with time-dependent coefficients. also been studied for long: it was studied in part by Lewis
The integrability of the one-dimensional TDHO is not and LeacH22], Camizet al. and Pedrosat al. [23] studied
surprising, because this is a linear system. We know, onethis Hamiltonian quantum mechanically. The new nonlinear
dimensional time-dependent Hamiltonians usually lead tdorce in the system is aentrifugal forceand it appears in
non-integrability, e.g., a simple pendulum whose length varmany integrable systems, including the celebrated Calogero-
ies in time. Except for the adiabatic or small oscillation ap-Sutherland-Mosef24—26 many-body Hamiltonian.
proximations, this was the problem posed by Lorentz at the The Hamiltonian in Eq(6) is formed by the dynamical
above mentioned Solvay congress and the solutions have tivariables 3 (p?>+k/q?) and 3g°. These two variables to-
possibility of displaying chaos. gether withpq, also form the su(1,1) closed algebra. Fol-
Now a natural question is if there exist one-dimensionallowing our algebraic interpretation d{t), we can assume
time-dependent nonlinear Hamiltonians which are also intethe invariant of this nonlinear Hamiltonian to be of the form

k 1
p?+ ? + sz(t)qz, (6)
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T T T T ] that destroy the basic properties of the system. Therefore, for
numerical studies of any integrable system, one has to find a
discrete integrable version of the system. The discrete map
T we discuss below, or extensions thereof, for instance, may be
e 1 used in the numerical studies of the Calogero-Sutherland-
' ., ] Moser model. Lastly, we can argue that the discrete systems
5, are more fundamental ones since they contain continuous
v ones as special limits.
T Studying the stroboscopic map of any time-periodic sys-
- tem is always possible, at least numerically. To get an ana-
i Iytical expression a much studied form of the time-
/ dependence isw?(t) = w?T2,8(t—nT). The standard map
S]] and its quantization as well as an experimental realization of
T the time-dependence through a periodically pulsed laser field
e ] [28] provides a well-known example of this kind. The map
corresponding to the TDHO is a linear map, which is very
e simple classically.
T Here we will study the map corresponding to the nonlin-
] ear system. The Hamiltonian of interest is

1 k 1
H(t)zz p2+ —2) +§w2Tq22 o(t—nT), (9)
FIG. 1. Stroboscopic picture of the time-dependent harmonic q "
oscillator with a singular perturbation; the integrable behavior is

evident. All quantities shown are dimensionless, and the corresponding Hamilton’s equations of motion are

.ok
1 k| 1 p=——0?TqX S(t—nT),
H(t) = a(t) p2+¥ + 5800 +2y(pg.  (7) q° n
Again, by the same substitutions and identical procedures we a=p. (10
get The equation of motion of the system is given by
1 k 1/. 1 .
-2l w2 S T2 a2 . k
H()=35p%| P+ e +to| Pt 2 q9°—pppg, (8 G+ 02T o(t-—nT)——=0. (11)
n q

with the same subsidiary condition as given in Eg). It is This equation is the same as that of the subsidiary condition

3'(:06”%%?]?2 |a6notr?iczge:rez;rzglfgfmtar':ilf[li’;]wigi\ivnefveurggSr glr_ne'given in Eq.(5), except for the constakt Integrating Hamil-
P ’ ’ ton’s equations of motion from just after tiih kick to just

gebraic method accomplishes this more elegantly. In thi%\fter the @+ 1)th kick and defining new scaled variables
case, the equation of motion and the subsidiary condition aré

the samenonlinear equation, but the fact that we need only p—k¥T-2p and q—k¥T?,

one particular solution of this equation to determine the in-

variant shows the power of the methodology and the integrathe phase space map of the system is

bility of the above Hamiltonian in Eq6). In Fig. 1 we show

a special case corresponding dd(t) =1+ cos(/2t) where 1
the existence of the invariant is reflected in the regular struc- One1i= pﬁ+ —2+q§+ 2pn0n,
tures. An

i i 1
A. The integrable discrete system pﬁ+ 4 Paln

Now we use the above to construct a nonlinear integrable _ an _02
map. Integrable discrete systems, or maps, have been in- Pn+1= On+1 On+1:
tensely studied for some time now and many interesting
methods and results have been found. Integrable maps avhereQ=wT.
important for the following reasons. First, studying the dy- Note that the scaling has removed thdependence, but
namics of a mapping is more simple than the dynamics of d@hat the scaling is singular &t=0 and in fact this limit leads
continuous system since it involves direct iteration. Secondto the removal of the #? term, as is discussed further be-
if one wants to study numerically any integrable continuoudow. If we plot this phase space map numerically, it clearly
system, it is absurd to use nonintegrable numerical schemehows its regular behavior, as illustrated in Fig. 2. This rather

(12
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i . most simple solution corresponds to the fixed point. There-
1F . (a) fore the problem of determining the invariant has been re-
[ oo duced to determining the fixed point of the nonlinear map-
ofF ping. The fixed point is at

Pn

A o= 2
. Ql/2[4(4_92)]1/4'

QS/Z

%n SRR
[4(4—02)

(15

(b) .
This is a particular solution gf andp. Note that unlike the
linear map whose fixed point at the origin is independent of

=]
o _ the system parameters, the fixed points here move with the
5 parameter and as the system approaches instabiy (
r —4), they approach infinity. Using these solutions, we get
10 F, | | | the invariant of the mapping within an arbitrary multiplica-
o 2 4 o tive constant as
An 1
_n2 2
FIG. 2. (a) Period-9 orbit of the nonlinear map for the case I =pp+ — +Q%(q5+ dnPn).- (16)
Q2?=2[1-cos(27/9)]~0.4679,(b) quasiperiodic orbit for the case Gn

02=2.43. All quantities shown are dimensionless. . . . . .
The lack of a time subscript dnindicates its constancy. This

complicated looking discrete map has a very simple behaynvariant is valid even when the motion is classically un-
ior, reflecting the fact that both this and a linear map, deriv-Stable.

able from a TDHO, have common algebraic antecedents.

This linear map is derived from the Hamiltonian in E§) B. The classical evolution operator

by simply discarding the @ term (the k=0 limit) and is

, We would like to study the nonlinear map from a point of
given by

view that simultaneously explains its dynamics as well as
Uri1=Pntq sets the stage for quantum mechanical work. Here we intro-
el En A duce the classical time-evolution operator for studying the
Prs1=Pn— Q200 1. (13) dynamics of the system. Fc_>r a given dy_namical variable, say
V, the corresponding Liouville operator is denotedLiyand
In fact the property of the linear map that exclusively quasi-it is defined ad.\,={V, }, where{, } denotes the usual Pois-
periodic or entirely periodic behavior exists for different val- son bracket.
ues of the parameter is also observed for the nonlinear map. We know the dynamical equation for any dynamical vari-
For 0<?<4 the motion is bounded and stable and for allable, sayf, is given by
other values the motion is unbounded and unstable, in both
the maps. The invariant in the case of the linear map de- ﬂ: —{H,fl=—Lf 17)
scribes either an ellipse or a hyperbola, now we determine dt ’ HE
the invariant of the nonlinear map using the method of LR.
Using Eq.(8) the invariant of this map would be of the where H is the Hamiltonian of the system arld, is the
form Liouville operator corresponding tél. Let us defineA
=1(p?+k/q?), B=1g? and{A,Bl=—pg=-2C, ie. C

1 : 1 . =—3pQq. The triad @,B,C) form the closed su(1,1) alge-
_ 2 2 2 2 2 L] 1 L]
I=p% pnt | | Pt ’? dn=2ppPrdn, (14 pra. Then we can write
n
wherep satisfies t2he sarr;e subsidiary condition as given in Ly=|Lat w?TLgY 8(t—nT)|, (18
Eq. (5), but noww(t)= w*TZ,5(t—nT). If we are able to n

determine any particular solution of the subsidiary condition,

then we can use that solution to get the invariant of the magvhereL, andLg are the Liouville operators corresponding
Eqg. (12). As we have already mentioned, the equation ofto A andB, respectively. These Liouville operators together
motion of this nonlinear kicked system is the same as that ofvith L, the Liouville operator corresponding 1, forms
the subsidiary condition fop, as shown in Eq(11), there- the same su(1,1) algebra as that Af8,C) but under the
fore if we are able to geany solution of the nonlinear map Lie bracket operation, i.e.[Ls,Lg]=—2Lc, [Lc,LAl

Eq. (12), that solution should also be the solution forThe =L, and[Lc,Lg]=—Lg.

042109-4
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From Eg.(17), the dynamical equation for the classical

time evolution of any arbitrary functiohon the phase space X=-X?~ “’ZTE o(t—nT),
would be "
df Y=2X, (24)
gi=Luf=- LA+w2TLB; stt—nT)|f. (19
Z=—-¢eY

Integrating the above equatidd9) in between the time
=0 to t=T, we get the classical time-evolution operator
from just after zero time to just after the first kick. We write
f(q(t=T),p(t=T))=Ff(q(t=0),p(t=0)) where

In Eqg. (23) we can choose the exponential operators in dif-
ferent orders, but we find that this leads to sets of differential
equations whose solutions may not even exist for such
kicked systems.

We now treat the case @function kicks. Integrating the
above equations in between two consecutive kicks and de-
This Perron-Frobenius operator can be regarded as the clepsr-"ng
sical Flouquet operator. To understand the dynamics for time
n, we have to determine the powEf. The one-parameter
Abelian group of the powers completely specifies the dy-
namics at all time. Howevel is itself a product of the
exponential of two noncommuting operators that do not eve
commute with their commutatdr-. We can writeF in a
single exponential form, following an earlier work of Truax

F=exp — o’TLg)exp(—LAT). (20

z
x=TX, y=Y, and Z= .

yve geta nonlinear mapping, a “coefficient” mapping for the
new dimensionless variableg,{,2):

[29], but that form is so involved that it becomes difficult to Xoi1= %n 02, (253
extract the essentially simple dynamics of the system. 1+x,
We apply a recent operator method, referred to edrligr

to derive the classical time-evolution operator at any time. Yn+1=Yn— IN[(1+x5)?], (25b)
The general procedure of this method is simple to describe.
If we have any general time-dependent Hamiltonian of the 1
form given by Zny1=2Zn+ E(xnﬂ—xn). (250

n

H(t)= 2, a;(t)H;, (21)  To be explicit thenth power of the operatdF is
i=1
F'=exd x,TLglexd ynaLclexd z,La/T]. (26)

where (a;(t),i=1, ... n) are a set of linearly independent

general complex function of time and the dynamical vari-From the initial conditionF°=1, we havex,=y,=2,=0.
ables #;,i=1,...n) are the generators of any The time development is now entirely buried in the scalar
n-dimensional closed Lie algebra. Corresponding Liouvillefunctionsx,, y,, andz,. _ o
operators (;.,i=1, ... n) would also form that same alge-  The most important of the recursion equations in €3)

bra. Then the classical time-evolution operafdt) can be is the first one. We note that this equation viewed as a trans-
exp'ressed in the product form: formation is a special case of the “bilinear” conformal

transformation in complex analysis or a special case of the
n projective group PSL(&). We solved this nonlinear map by
Fi)=]] exd bj(t)Ly 1. (22) constructing an auxiliaryvo-dimensionalinear map. This is
j=1 i not entirely surprising, as lurking behind the one-
dimensional nonlinear singular oscillator is a two-
Therefore, in the classical case we can start with the timedimensional linear one. This gives a new insight into the
evolution operator of the form: often stated close relationship between the harmonic oscilla-
tor and the singular oscillator.

Before we solve these equations explicitly we point out
the following interesting fact. Consider the Hamiltonian
whereX(t), Y(t), andZ(t) are real functions of time. From
the initial conditionF(0)=1, we haveX(0)=Y(0)=2Z(0)
=0. Now, substituting this product form &f(t) in Eq. (19),
and repeatedly applying the Campbell-Baker-Hausdorff for-

F(t)=exg X(t)Lglexd Y(t)Lclexd Z(t)La]l, (23

H(q,p,t>=qp2+92q§ s(t—n), (27)

mula we can cast it into a form such tHaft) is pushed to
the extreme right in the left-hand sideHS) of Eg. (19).

written in terms of dimensionless canonical variables. The
triad (qp?,q,qp) form the algebra so(2,1) under the Poisson

This yields a set of first-order differential equations for thebracket operation and this algebra is locally isomorphic to

introduced functions of time:

su(1,1)[30,31. Then the resulting map fay,, andp, is
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_ P2
pl”l+1_1+ pn Q ’ (2869
qn+1:qn(1+pn)2- (28b)

Thus if we identifyx,=p,, andy,=—In(q,) we get the first
two of the recursion relations in EqR5). We note that the
s0(2,1) algebra underlies the Morse oscillgt82]. There-

fore the coefficient map also has an algebraic basis and i

fact one that is practically identical to the original one.
We return now to solve Eq25). First we defines,=1
+X,, and in terms of,,, Eq. (253 becomes

1

Sh+1= 0

~ 29

where n=2- 02, and from the initial conditiorx,=0, we
havesy,=1. Construct the auxiliary linear map

:(717 _ol)

with initial conditionsayg=by=1. We identifys,=a,/b,.

an
b,

a
n+1 ’ (30)

bn+1

PHYSICAL REVIEW A 63042109

of (b)

10 20 30 40
n

FIG. 3. The coefficients of the time-evolution operator showing
the period-9 behavior for the sarfi¥ as in Fig. Za). Shown are the

To get the general form of,, we have to diagonalize the x (a) andy (b) coefficients. All quantities shown are dimensionless.

matrix M=((#n,—1),(1,0)). The eigenvalues dfl are
1
)\:Zz(ﬂi \/772_4)-

(31)

Whether\ - is real or complex is dependent an Therefore

just as for the linear map we have to study separately three

different regions for the parametey;, these are as follows.

Therefore for these particular values @f(or of the corre-
sponding value of}), the above three-dimensional map for
the coefficients isexactly periodic. To be explicit at these
values of the parameter

FN=1, (35)

2 ; 2 : : . : .
Case 1.7°<4, i.e., 0<Q°<4. In this case the eigenval- the Perron-Frobenius operator becomes unity at tim&he
ues ofM are complex-conjugate of each other, i.e., we caryyantum equivalence to be discussed below will be complete

write

N-=exp*io), where

2—91

o=cos Y(7n/2)=cos 1( 3

and the Flouquet unitary operator will become unity at the
same time. Figure 3 shows the coefficients for a periodic
case. Since the coefficieatis proportional tox, it would
follow the same behavior as This map in Eq.(12) would

also be periodic with the same period, and corresponds to the
phase space shown in Fig@2 For other values of), this

The dynamics is stable and bounded. After diagonalizing th&"ap is quasiperiodic. Equivalently, the phase space map Eq.

matrix M, we determinea,, andb, to finally get
) ag
xn=c05(r—smatar{(2n—1)§} -1. (32

In terms ofx we can obtain the solution forandz as

n—1
yn=—22 In| 1+ X/, (33
k=0
Xn
Zn:&- (34)

Wheno=2m7m/N, wheremandN are coprime integers, one

sees, after some algebra, that

Xn=XniNs  Yn=Ynin, and z,=z,.y.

(12) also displays the above behavior for corresponding val-
ues of(). This shows that our operator approach for studying
the classical map is in one-to-one correspondence with the
phase space dynamics. Figure 4 shows the coefficients for a
quasiperiodic case, corresponding to the phase space in Fig.
2(b). Again the behavior of is same ax.

Case 2.7°>4, i.e.,Q%>4 orQ)?<0. We can divide this
case into two parts. They are as follows.

(@ 7>2, i.e.,0%<0: In this part the eigenvalues o
are real and positive. Therefore we can take

N-=exp*o), where

o=cosh }(#/2)=cosh !

2—97

In this part the dynamics is unstable and unboundwsgber-
bolic). Again following procedures as outlined above, we get

042109-6



ALGEBRAIC APPROACH IN THE STUDY OF TIME. .. PHYSICAL REVIEW A 63 042109

Case 3.7°=4, i.e.,Q%?=0 or Q?=4. These cases corre-
spond to the marginal ones separating the stable and unstable
motions. We can divide this case also into two parts. They
are as follows.

(@ n=2, i.e., 0?=0. Here the eigenvalues ¥l are
equal, and\.=1. The kick is not operating on the system.
This implies that in the expression of the time-evolution op-
eratorF, x=y=0. Therefore~ contains only one exponen-
tial and hence the coefficieatwould increase linearly with
r time. This can also be seen as a limiting case; as from Eq.
6 (b) (258, (Xp+1—Xn)— — Q2 and Eq.(250 givesz,= —n.

- (b) p=-2, i.e.,Q%=4. Again, the eigenvalues ® are
equal, but nowA.=—1. We can get the solution for the
coefficients quite easily and these are given by

2n+1

M Xn= 2n—1_1’ (383
e yo=—2In]2n—1], (38b
0 50 100
n
Xn
FIG. 4. The coefficients of the time-evolution operator showing anﬁ- (380

the quasiperiodic behavior for the safié as in Fig. Zb). Shown
are thex (a) andy (b) coefficients. All quantities shown are dimen-

) For largen, the coefficientsx and z asymptotically reach
sionless.

constant values<2 and —1/2), while the magnitude of
increases logarithmically. Thus this marginal case straddling
o . .
%= coshor+ sinho tank (2n— 1) | — 1. (36) the stable and the reflective hyperbolic cases would have
2 power lawbehaviors in time for phase space variables.
In this case the solution fgrandz would also be the same as 1. QUANTUM DYNAMICS OF THE KICKED
that given in Eq(33). However, the basic propertiesxf vy, SINGULAR OSCILLATOR
and; would cha_mg_e du_e o the unstable and unbou_nded dy- Quantum mechanical studies of the time-dependent singu-
namics, and this is evident from the above equations. Folr

. ar oscillator have been carried out for some time now, for
large n, both x and z asymptotically reach a constant value . . : .
. instance in[23] where complete analytical solutions were
that depends on the magnitude (@f

given. We exploit our algebraic method to the special case of
5 the kicked oscillator to lay bare properties such as exact pe-
Xo=Ny =1, Z,=x,/0% riodicity and quasiperiodicity. In fact, except for a change of
terminology, the mathematics is already complete in the pre-
However,y would increase linearly witlm, whenn is large.  vious section.

(b) p<-—2, i.e.,,Q%>4: Here both the eigenvalues bf During our study of the classical nonlinear map, we had
are real and negative. Thus we can take introduced the classical time-evolution operator to show the
one-to-one correspondence between the nonlinear and the
A.=—exp+o) where linear map. While classically this is not the usual approach to
2- 07 dynamics in the case of quantum dynamics the most natural
o= cosit (| 5|/2) = cost ! | ) and popular way is to study.the quantum tlme—evo_lutlon op-
2 eratorU(t). Thus our classical approach generalizes most

easily to the quantum. Previous wofR3] that points out
In this part the dynamics is still unstable and unbounded; iexact quantum-classical correspondence in the case of the
corresponds, in the linear map, to hyperbolic fixed point withsu(1,1) algebra for the coefficients of the invariant is easily
reflections. On following the above procedures, we get understood in our approach.
We define the operators as in the classical case:

-1. (37

g
Xp= —cosho—sinho cotr{ (2n—1) >

A ! p2+
= — p -
2 q

The solutions fory and z still remain the same, and their )
behavior for large values aof are qualitatively same as that A BT L anl
of the previous part. and [A.B]=—5%(pq+qp)=2#C,
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where @,B,C) form the closed su(1,1) algebra that is given Sinqg thtesel two mapstare (ijdentic_al, their t5|3t51fbi|||ity pr_(t)pelrties
A BI_22A 1™ Al—# A ABT__ 2R are identical, i.e., quantum dynamics exactly follows its clas-
by [A,B]=2C,[C,A]=fA and [C,B]=~#B. Among sical counterpart. Thus when the classical Perron-Frobenius
operator becomes unity as in E85) the Flouquet operator
also becomes unity. The various cases discussed classically,
including the marginal and the reflective hyperbolic cases,
have exact quantum counterparts. Thus, as far as time evo-
H(t)=A+ w?TBD, 8(t—nT). (39) lution is concerned the quantal problem is already solved.
n Issues of eigenstates and spectrum can be tackled similarly,
as, for example, done ir84] for the case of the kicked har-
monic oscillator; however we do not pursue this further here.

these operator€ is anti-Hermitian and the other two are
Hermitian. In terms of these operators our Hamiltonian
would be

The time-evolution operatdﬁ(t) satisfies the equation

o dowy . .
i ——=H(t)U(1), (40

dt IV. SUMMARY

Ay N : We have studied, both classically and quantum mechani-
WhereU(AO)— 1 a”de(‘) IS unitary. The quqntgm .Flouquet cally, a time-dependent one-dimensional nonlinear integrable
operatorU (t=T), which we denote simply &, is given by system, namely, the kicked harmonic oscillator with a singu-
i lar potential. By applying our Lie-algebraic interpretation of
exp{ — —TA). (41  the LR-invariant, we have determined the exact invariant of
h that nonlinear system. One can apply this method to deter-
. mine the invariant of any time-dependent Hamiltonian,
- ’ Yormed by the generators of any closed algebra. We have
the powersU". Again we apply Rau'41] method for the 50 found, as far as we know, a new integrable nonlinear
derivation of the time-evolution operator at any arbltrarymapping_ Here we derived that map from the Hamiltonian
time. We start with the time-evolution operator of the form, {oymed of the generators of the su(1,1) algebra. We expect
i that we can determine integrable two-dimensional mappings
exp{—Z(t)A}, (42  from the Hamiltonians formed by the generators of other
h closed algebras.
. . We constructed the classical time-evolution operator, or
WherFX(t), Y(_t)’ a”?' Z(t) are real f_urlgnons OT _t'rAne’ SO the Perron-Frobenius operator for the nonlinear integrable
that U(t) remains unitary. From the initial conditiod(0)  system, taking advantage of a recent method of solving the
=1, we haveX(0)=Y(0)=2(0)=0. Substituting the above  time-dependent Schainger equation. This brings into relief
U(t) in Eq. (40), following identical procedures as given for the extreme quantum-classical correspondence in these sys-

N [ N
= —— 2
0] exp( ﬁwIB

l:J(t)zex;{;i—X(t)é exp[%v(t)é

the classical dynamics, we get tems that have algebraic structures underlying them.

We may speculate whether for time-dependent systems
X=—X?—w?T> 8(t—nT), with more than one degree of freedom, which are constructed
n from elements of some Lie algebra, the nonlinear equations

(whether difference or differentinthat are the analogue of

Y=2X, (43)  the coefficient mapping in Eq25) are integrable. Further, if
there is a connection between the integrability of these equa-

7=—g V. tions and that of the original system itself. Our study that

began as an attempt to study a nonlinear time-dependent in-
This set of equations for the quantum coefficientsléntical ~ tegrable system led us to one that is in many respects related
to the equations for the classical coefficients as given in Eqto the harmonic oscillator with time-dependent frequency.
(24). Therefore we would get an identical map for the quan-We may then ask if we can go beyond this limitation to a
tum coefficients as for the classical coefficients E2p). more “genuine” form of nonlinearity.
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