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Algebraic approach in the study of time-dependent nonlinear integrable systems:
Case of the singular oscillator
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The classical and the quantal problem of a particle interacting in one dimension with an external time-
dependent quadratic potential and a constant inverse square potential is studied from the Lie-algebraic point of
view. The integrability of this system is established by evaluating the exact invariant closely related to the
Lewis and Riesenfeld invariant for the time-dependent harmonic oscillator. We study extensively the special
and interesting case of a kicked-quadratic potential from which we derive a new integrable, nonlinear, area
preserving, two-dimensional map that may, for instance, be used in numerical algorithms that integrate the
Calogero-Sutherland-Moser Hamiltonian. The dynamics, both classical and quantal, is studied via the time-
evolution operator that we evaluate using a recent method of integrating the quantum Liouville-Bloch equa-
tions @A. R. P. Rau, Phys. Rev. Lett.81, 4785~1990!#. The results show the exact one-to-one correspondence
between the classical and the quantal dynamics. Our analysis also sheds light on the connection between
properties of the su(1,1) algebra and that of simple dynamical systems.
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I. INTRODUCTION

The classical and quantum-mechanical study of tim
dependent Hamiltonian systems are generic and impor
They span a wide spectrum of subjects ranging from in
action between atoms and radiation@2,3#, adiabatic@4,5# and
nonadiabatic@6,7# Berry phase, time-dependent harmonic o
cillators @8–10#, and quantum motion of a particle in a Pa
trap @11,12#, to time-dependent mean-field theory~cranking
model@13#! in particular and the time-dependent shell mod
@14# in general.

The question of the existence of invariants~constants of
motion! is one of central importance in the study of a
dynamical system, be it classical or quantal. A basic theo
of classical mechanics asserts that if the number of indep
dent invariants, satisfying certain conditions, is equal to
number of degrees of freedom, then the motion can be
duced to quadratures, or equivalently, an action-angle tr
formation to a Hamiltonian dependent only on the actio
can be found@15#. Such systems are integrable.

The lack of sufficient number of invariants invariab
leads to a phase space that has a nonzero measure ofchaotic
trajectories@16#. For time-independent Hamiltonian system
the Hamiltonian itself is an invariant. However, when t
Hamiltonian is an explicit function of time, it is no more a
invariant, and this is of course a reflection of the noncons
vation of energy. Various methods have been used to ob
approximate solutions for time-dependent problems, e.g.,
adiabatic approximation, the sudden approximation, tim
dependent perturbation techniques, etc.

The most widely studied time-dependent Hamiltoni
system is the time-dependent harmonic oscillator~TDHO!. It
has long been a problem of considerable interest becaus
its varied applications in different areas of physics—for
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stance, in molecular physics, quantum chemistry, quan
optics and plasma physics. The Hamiltonian of this system
given by

H~ t !5
1

2
p21

1

2
v2~ t !q2, ~1!

wherep and q are conjugate canonical variables. The ad
batic invariant for this system was originally given at the fi
Solvay Congress in 1911 when the Hamiltonian of this s
tem was used as an approximate Hamiltonian for the slo
lengthening pendulum@17#.

The study of this one-dimensional TDHO was greatly a
vanced due to the work of Lewis@8,9# and Lewis and Rie-
senfeld @10#. Lewis @8# determined the exact invariant b
applying Kruskal’s asymptotic method@18# and showed that
a previously known adiabatic invariant was in fact an ex
invariant. Later Lewis and Riesenfeld~LR! @10# determined
that same invariant by starting with the assumption of
existence of an explicitly time-dependent, homogeneous
quadratic invariant of the form given by

I ~ t !5
1

2
@a~ t !p21b~ t !q212g~ t !pq#, ~2!

where the coefficientsa(t), b(t), and g(t) are time-
dependent real functions andI (t) satisfies the condition

dI

dt
[

]I

]t
1$I ,H~ t !%50. ~3!

Here$ , % denotes the usual Poisson bracket. From the ab
two equations and after some calculations they derived
exact invariant as

I ~ t !5
1

2 Fr2p21S ṙ21
1

r2D q222rṙpqG , ~4!
©2001 The American Physical Society09-1
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with r(t) satisfying the subsidiary condition

r̈1v2~ t !r2
1

r3
50. ~5!

This more complicated, nonlinear, differential equation re
resented an advance due to the reason thatany particular
solution r(t) of the above equation would give the exa
invariant I (t) for all initial conditions ofp andq.

The above technique actually predates the work of Le
and Riesenfeld in a slightly different context, and we brie
point this out. We note that the equation of motion of t
TDHO is d2q/dt21v2(t)q50. This is of the same form a
the time-independent, one-dimensional Schro¨dinger equa-
tion, if we assume thatt represents the spatial coordinate a
q, the wave-function. According to an early work by Miln
~1930! @19#, it is possible to solve this Schro¨dinger equation
using the knowledge of any particular solution of Eq.~5!,
after proper identifications. Therefore, any particular solut
of the subsidiary condition can also give the exact solut
for the TDHO.

Lewis @9# attempted to give an interpretation ofI (t) as the
most general homogeneous quadratic invariant possible
the Hamiltonian of the one-dimensional TDHO. A mo
natural and physical interpretation has been suggested
Eliezer and Gray@20# in terms of two-dimensional auxiliary
motion, i.e., in terms of a two-dimensional uncoupl
TDHO. They showed that the above subsidiary condition
~5! is the radial equation of motion for this two-dimension
system and the invariantI (t) is proportional to the conserve
angular momentum of this auxiliary motion. Gu¨nther and
Leach@21# interpretedI (t) in terms of canonical transforma
tions and under their transformation the invariantI (t) be-
came the Hamiltonian of the one-dimensional tim
independent harmonic oscillator of unit frequency.

Besides these previous interpretations ofI (t), we can in-
terpret the form ofI (t) chosen by LR@10# from the Lie-
algebraic point of view. The Hamiltonian of the on
dimensional TDHO is formed by the dynamical variabl
1
2 p2 and 1

2 q2. These two dynamical variables together w
p q are generators of the closed su(1,1) algebra under
Poisson bracket operation andI (t) was chosen in@10# as the
linear combination of these generators. Generalizing the
invariant from the Lie-algebraic point of view, we expe
that if any time-dependent Hamiltonian be the combinat
of the generators of any closed algebra, an invariant wo
be a linear combination of the generators of that closed
gebra with time-dependent coefficients.

The integrability of the one-dimensional TDHO is n
surprising, because this is a linear system. We know, o
dimensional time-dependent Hamiltonians usually lead
non-integrability, e.g., a simple pendulum whose length v
ies in time. Except for the adiabatic or small oscillation a
proximations, this was the problem posed by Lorentz at
above mentioned Solvay congress and the solutions hav
possibility of displaying chaos.

Now a natural question is if there exist one-dimensio
time-dependent nonlinear Hamiltonians which are also in
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grable? In fact, the singular oscillator with a centrifugal for
potential provides an important example whose kinematic
still within the su(1,1) algebra. In the second section,
have discussed such a nonlinear Hamiltonian and we h
also derived its invariant from our new Lie-algebraic inte
pretation of the LR invariant. Using this Hamiltonian w
have constructed an integrable, area preserving, nonli
map and derived its exact invariant with a knowledge of
fixed points.

We have determined the classical time-evolution~Perron-
Frobenius! operator following a recent method elucidated
Rau @1#. This method was originally used for solving th
quantum Liouville-Bloch equation, but we have applied th
in the classical case and have been able to show the on
one correspondence between this nonlinear map and the
ear map ~derived from the Hamiltonian of the one
dimensional TDHO!. In the third section, we have studie
the quantum dynamics of the nonlinear map and again
have used Rau’s method to determine the quantum ti
evolution operator. This identical approach to classical a
quantum dynamics helps us to show, rather trivially, the
act one-to-one correspondence between the classical an
quantal. Our study also has the dimension of interpreting
mathematics of the su(1,1) algebra from a dynamical s
tem’s viewpoint. For instance, we derive powers of no
commuting products of exponentials of the su(1,1) algeb
This reveals when the powers can degenerate to the iden
something that is immediately clear from the dynamics of
underlying system due to the presence of degenerate per
orbits.

II. THE CLASSICAL KICKED SINGULAR OSCILLATOR

First, we will describe the general Hamiltonian of whic
an important special case constitutes the rest of the pa
For the existence of an invariant for the one-dimensio
TDHO, the subsidiary condition Eq.~5! has to be integrated
with someinitial conditions, that is, we should be able
determine a particular solution. The subsidiary conditio
given in Eq.~5!, is a nonlinear, time-dependent, equation a
its integrability is not immediately obvious. If we assumer
as a position variable, sayq, then Eq.~5! is the equation of
motion corresponding to the Hamiltonian given by

H~ t !5
1

2 S p21
k

q2D 1
1

2
v2~ t !q2, ~6!

with k51. This is a time-dependent Hamiltonian, and h
also been studied for long: it was studied in part by Lew
and Leach@22#, Camizet al. and Pedrosaet al. @23# studied
this Hamiltonian quantum mechanically. The new nonline
force in the system is acentrifugal forceand it appears in
many integrable systems, including the celebrated Calog
Sutherland-Moser@24–26# many-body Hamiltonian.

The Hamiltonian in Eq.~6! is formed by the dynamica
variables 1

2 (p21k/q2) and 1
2 q2. These two variables to

gether withpq, also form the su(1,1) closed algebra. Fo
lowing our algebraic interpretation ofI (t), we can assume
the invariant of this nonlinear Hamiltonian to be of the for
9-2
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ALGEBRAIC APPROACH IN THE STUDY OF TIME- . . . PHYSICAL REVIEW A 63 042109
I ~ t !5
1

2
a~ t !S p21

k

q2D 1
1

2
b~ t !q212g~ t !pq. ~7!

Again, by the same substitutions and identical procedures
get

I ~ t !5
1

2
r2S p21

k

q2D 1
1

2 S ṙ21
1

r2D q22rṙpq, ~8!

with the same subsidiary condition as given in Eq.~5!. It is
also possible to determine this invariant using tim
dependent canonical transformations@27#, however, our al-
gebraic method accomplishes this more elegantly. In
case, the equation of motion and the subsidiary condition
the samenonlinear equation, but the fact that we need o
one particular solution of this equation to determine the
variant shows the power of the methodology and the integ
bility of the above Hamiltonian in Eq.~6!. In Fig. 1 we show
a special case corresponding tov2(t)511cos(A2t) where
the existence of the invariant is reflected in the regular str
tures.

A. The integrable discrete system

Now we use the above to construct a nonlinear integra
map. Integrable discrete systems, or maps, have been
tensely studied for some time now and many interest
methods and results have been found. Integrable maps
important for the following reasons. First, studying the d
namics of a mapping is more simple than the dynamics o
continuous system since it involves direct iteration. Seco
if one wants to study numerically any integrable continuo
system, it is absurd to use nonintegrable numerical sche

FIG. 1. Stroboscopic picture of the time-dependent harmo
oscillator with a singular perturbation; the integrable behavior
evident. All quantities shown are dimensionless.
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that destroy the basic properties of the system. Therefore
numerical studies of any integrable system, one has to fin
discrete integrable version of the system. The discrete m
we discuss below, or extensions thereof, for instance, ma
used in the numerical studies of the Calogero-Sutherla
Moser model. Lastly, we can argue that the discrete syst
are more fundamental ones since they contain continu
ones as special limits.

Studying the stroboscopic map of any time-periodic s
tem is always possible, at least numerically. To get an a
lytical expression a much studied form of the tim
dependence is:v2(t)5v2T(nd(t2nT). The standard map
and its quantization as well as an experimental realization
the time-dependence through a periodically pulsed laser fi
@28# provides a well-known example of this kind. The ma
corresponding to the TDHO is a linear map, which is ve
simple classically.

Here we will study the map corresponding to the nonl
ear system. The Hamiltonian of interest is

H~ t !5
1

2 S p21
k

q2D 1
1

2
v2Tq2(

n
d~ t2nT!, ~9!

and the corresponding Hamilton’s equations of motion ar

ṗ5
k

q3
2v2Tq(

n
d~ t2nT!,

q̇5p. ~10!

The equation of motion of the system is given by

q̈1v2Tq(
n

d~ t2nT!2
k

q3
50. ~11!

This equation is the same as that of the subsidiary condi
given in Eq.~5!, except for the constantk. Integrating Hamil-
ton’s equations of motion from just after thenth kick to just
after the (n11)th kick and defining new scaled variables

p→k1/4T21/2p and q→k1/4T1/2q,

the phase space map of the system is

qn115Apn
21

1

qn
2

1qn
212pnqn,

pn115

pn
21

1

qn
2

1pnqn

qn11
2V2qn11 , ~12!

whereV5vT.
Note that the scaling has removed thek dependence, bu

that the scaling is singular atk50 and in fact this limit leads
to the removal of the 1/q2 term, as is discussed further be
low. If we plot this phase space map numerically, it clea
shows its regular behavior, as illustrated in Fig. 2. This rat

ic
s

9-3
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BANDYOPADHYAY, LAKSHMINARAYAN, AND SHEOREY PHYSICAL REVIEW A 63 042109
complicated looking discrete map has a very simple beh
ior, reflecting the fact that both this and a linear map, de
able from a TDHO, have common algebraic antecede
This linear map is derived from the Hamiltonian in Eq.~9!
by simply discarding the 1/q2 term ~the k50 limit! and is
given by

qn115pn1qn ,

pn115pn2V2qn11 . ~13!

In fact the property of the linear map that exclusively qua
periodic or entirely periodic behavior exists for different va
ues of the parameter is also observed for the nonlinear m
For 0,V2,4 the motion is bounded and stable and for
other values the motion is unbounded and unstable, in b
the maps. The invariant in the case of the linear map
scribes either an ellipse or a hyperbola, now we determ
the invariant of the nonlinear map using the method of L

Using Eq.~8! the invariant of this map would be of th
form

I 5r2S pn
21

1

qn
2D 1S ṙ21

1

r2D qn
222rṙpnqn , ~14!

wherer satisfies the same subsidiary condition as given
Eq. ~5!, but nowv2(t)5v2T(nd(t2nT). If we are able to
determine any particular solution of the subsidiary conditi
then we can use that solution to get the invariant of the m
Eq. ~12!. As we have already mentioned, the equation
motion of this nonlinear kicked system is the same as tha
the subsidiary condition forr, as shown in Eq.~11!, there-
fore if we are able to getany solution of the nonlinear map
Eq. ~12!, that solution should also be the solution forr. The

FIG. 2. ~a! Period-9 orbit of the nonlinear map for the ca
V252@12cos(2p/9)#'0.4679,~b! quasiperiodic orbit for the cas
V252.43. All quantities shown are dimensionless.
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most simple solution corresponds to the fixed point. The
fore the problem of determining the invariant has been
duced to determining the fixed point of the nonlinear ma
ping. The fixed point is at

q* 52
2

V1/2@4~42V2!#1/4
,

p* 5
V3/2

@4~42V2!#1/4
. ~15!

This is a particular solution ofr and ṙ. Note that unlike the
linear map whose fixed point at the origin is independent
the system parameters, the fixed points here move with
parameter and as the system approaches instabilityV2

→4), they approach infinity. Using these solutions, we g
the invariant of the mapping within an arbitrary multiplica
tive constant as

I 5pn
21

1

qn
2

1V2~qn
21qnpn!. ~16!

The lack of a time subscript onI indicates its constancy. Thi
invariant is valid even when the motion is classically u
stable.

B. The classical evolution operator

We would like to study the nonlinear map from a point
view that simultaneously explains its dynamics as well
sets the stage for quantum mechanical work. Here we in
duce the classical time-evolution operator for studying
dynamics of the system. For a given dynamical variable,
V, the corresponding Liouville operator is denoted byLV and
it is defined asLV[$V, %, where$ , % denotes the usual Pois
son bracket.

We know the dynamical equation for any dynamical va
able, say,f, is given by

d f

dt
52$H, f %[2LHf , ~17!

where H is the Hamiltonian of the system andLH is the
Liouville operator corresponding toH. Let us defineA
[ 1

2 (p21k/q2), B[ 1
2 q2, and $A,B%52pq[22C, i.e., C

52 1
2 pq. The triad (A,B,C) form the closed su(1,1) alge

bra. Then we can write

LH5FLA1v2TLB(
n

d~ t2nT!G , ~18!

whereLA and LB are the Liouville operators correspondin
to A andB, respectively. These Liouville operators togeth
with LC , the Liouville operator corresponding toC, forms
the same su(1,1) algebra as that of (A,B,C) but under the
Lie bracket operation, i.e.,@LA ,LB#522LC , @LC ,LA#
5LA and @LC ,LB#52LB .
9-4
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ALGEBRAIC APPROACH IN THE STUDY OF TIME- . . . PHYSICAL REVIEW A 63 042109
From Eq. ~17!, the dynamical equation for the classic
time evolution of any arbitrary functionf on the phase spac
would be

d f

dt
52LHf 52FLA1v2TLB(

n
d~ t2nT!G f . ~19!

Integrating the above equation~19! in between the timet
50 to t5T, we get the classical time-evolution operat
from just after zero time to just after the first kick. We wri
f „q(t5T),p(t5T)…5F f „q(t50),p(t50)… where

F5exp~2v2TLB!exp~2LAT!. ~20!

This Perron-Frobenius operator can be regarded as the
sical Flouquet operator. To understand the dynamics for t
n, we have to determine the powerFn. The one-paramete
Abelian group of the powers completely specifies the
namics at all time. However,F is itself a product of the
exponential of two noncommuting operators that do not e
commute with their commutatorLC . We can writeF in a
single exponential form, following an earlier work of Trua
@29#, but that form is so involved that it becomes difficult
extract the essentially simple dynamics of the system.

We apply a recent operator method, referred to earlier@1#,
to derive the classical time-evolution operator at any tim
The general procedure of this method is simple to descr
If we have any general time-dependent Hamiltonian of
form given by

H~ t !5(
i 51

n

ai~ t !Hi , ~21!

where „ai(t),i 51, . . . ,n… are a set of linearly independen
general complex function of time and the dynamical va
ables (Hi ,i 51, . . . ,n) are the generators of an
n-dimensional closed Lie algebra. Corresponding Liouv
operators (LHi

,i 51, . . . ,n) would also form that same alge

bra. Then the classical time-evolution operatorF(t) can be
expressed in the product form:

F~ t !5)
j 51

n

exp@bj~ t !LH j
#. ~22!

Therefore, in the classical case we can start with the tim
evolution operator of the form:

F~ t !5exp@X~ t !LB#exp@Y~ t !LC#exp@Z~ t !LA#, ~23!

whereX(t), Y(t), andZ(t) are real functions of time. From
the initial conditionF(0)51, we haveX(0)5Y(0)5Z(0)
50. Now, substituting this product form ofF(t) in Eq. ~19!,
and repeatedly applying the Campbell-Baker-Hausdorff f
mula we can cast it into a form such thatF(t) is pushed to
the extreme right in the left-hand side~LHS! of Eq. ~19!.
This yields a set of first-order differential equations for t
introduced functions of time:
04210
as-
e

-

n

.
e.
e

-

e-

-

Ẋ52X22v2T(
n

d~ t2nT!,

Ẏ52X, ~24!

Ż52e2Y.

In Eq. ~23! we can choose the exponential operators in d
ferent orders, but we find that this leads to sets of differen
equations whose solutions may not even exist for s
kicked systems.

We now treat the case ofd-function kicks. Integrating the
above equations in between two consecutive kicks and
fining

x5TX, y5Y, and z5
Z

T
,

we get a nonlinear mapping, a ‘‘coefficient’’ mapping for th
new dimensionless variables (x,y,z):

xn115
xn

11xn
2V2, ~25a!

yn115yn2 ln@~11xn!2#, ~25b!

zn115zn1
1

V2
~xn112xn!. ~25c!

To be explicit thenth power of the operatorF is

Fn5exp@xnTLB#exp@ynLC#exp@znLA /T#. ~26!

From the initial conditionF051, we havex05y05z050.
The time development is now entirely buried in the sca
functionsxn , yn , andzn .

The most important of the recursion equations in Eq.~25!
is the first one. We note that this equation viewed as a tra
formation is a special case of the ‘‘bilinear’’ conforma
transformation in complex analysis or a special case of
projective group PSL(2,R). We solved this nonlinear map b
constructing an auxiliarytwo-dimensionallinear map. This is
not entirely surprising, as lurking behind the on
dimensional nonlinear singular oscillator is a tw
dimensional linear one. This gives a new insight into t
often stated close relationship between the harmonic osc
tor and the singular oscillator.

Before we solve these equations explicitly we point o
the following interesting fact. Consider the Hamiltonian

H~q,p,t !5qp21V2q(
n

d~ t2n!, ~27!

written in terms of dimensionless canonical variables. T
triad (qp2,q,qp) form the algebra so(2,1) under the Poiss
bracket operation and this algebra is locally isomorphic
su(1,1) @30,31#. Then the resulting map forqn andpn is
9-5
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pn115
pn

11pn
2V2, ~28a!

qn115qn~11pn!2. ~28b!

Thus if we identifyxn[pn andyn[2 ln(qn) we get the first
two of the recursion relations in Eq.~25!. We note that the
so(2,1) algebra underlies the Morse oscillator@32#. There-
fore the coefficient map also has an algebraic basis an
fact one that is practically identical to the original one.

We return now to solve Eq.~25!. First we definesn[1
1xn , and in terms ofsn , Eq. ~25a! becomes

sn115h2
1

sn
, ~29!

whereh[22V2, and from the initial conditionx050, we
haves051. Construct the auxiliary linear map

S an11

bn11
D 5S h 21

1 0 D S an

bn
D , ~30!

with initial conditionsa05b051. We identifysn[an /bn .
To get the general form ofsn , we have to diagonalize th

matrix M[„(h,21),(1,0)…. The eigenvalues ofM are

l65
1

2
~h6Ah224!. ~31!

Whetherl6 is real or complex is dependent onh. Therefore
just as for the linear map we have to study separately th
different regions for the parameterh, these are as follows.

Case 1.h2,4, i.e., 0,V2,4. In this case the eigenva
ues ofM are complex-conjugate of each other, i.e., we c
write

l65exp~6 is!, where

s[cos21~h/2!5cos21S 22V2

2 D .

The dynamics is stable and bounded. After diagonalizing
matrix M, we determinean andbn to finally get

xn5coss2sins tanF ~2n21!
s

2G21. ~32!

In terms ofx we can obtain the solution fory andz as

yn522(
k50

n21

lnu11xku, ~33!

zn5
xn

V2
. ~34!

Whens52pm/N, wherem andN are coprime integers, on
sees, after some algebra, that

xn5xn1N , yn5yn1N , and zn5zn1N .
04210
in

e

n

e

Therefore for these particular values ofs ~or of the corre-
sponding value ofV), the above three-dimensional map f
the coefficients isexactly periodic. To be explicit at these
values of the parameter

FN51, ~35!

the Perron-Frobenius operator becomes unity at timeN. The
quantum equivalence to be discussed below will be comp
and the Flouquet unitary operator will become unity at t
same time. Figure 3 shows the coefficients for a perio
case. Since the coefficientz is proportional tox, it would
follow the same behavior asx. This map in Eq.~12! would
also be periodic with the same period, and corresponds to
phase space shown in Fig. 2~a!. For other values ofV, this
map is quasiperiodic. Equivalently, the phase space map
~12! also displays the above behavior for corresponding v
ues ofV. This shows that our operator approach for study
the classical map is in one-to-one correspondence with
phase space dynamics. Figure 4 shows the coefficients f
quasiperiodic case, corresponding to the phase space in
2~b!. Again the behavior ofz is same asx.

Case 2.h2.4, i.e.,V2.4 or V2,0. We can divide this
case into two parts. They are as follows.

~a! h.2, i.e., V2,0: In this part the eigenvalues ofM
are real and positive. Therefore we can take

l65exp~6s!, where

s[cosh21~h/2!5cosh21S 22V2

2 D .

In this part the dynamics is unstable and unbounded~hyper-
bolic!. Again following procedures as outlined above, we g

FIG. 3. The coefficients of the time-evolution operator showi
the period-9 behavior for the sameV2 as in Fig. 2~a!. Shown are the
x ~a! andy ~b! coefficients. All quantities shown are dimensionles
9-6
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xn5coshs1sinhs tanhF ~2n21!
s

2G21. ~36!

In this case the solution fory andz would also be the same a
that given in Eq.~33!. However, the basic properties ofx, y,
andz would change due to the unstable and unbounded
namics, and this is evident from the above equations.
large n, both x and z asymptotically reach a constant valu
that depends on the magnitude ofV.

x`5l121, z`5x` /V2.

However,y would increase linearly withn, whenn is large.
~b! h,22, i.e.,V2.4: Here both the eigenvalues ofM

are real and negative. Thus we can take

l652exp~6s! where

s[cosh21~ uhu/2!5cosh21S u22V2u
2 D .

In this part the dynamics is still unstable and unbounded
corresponds, in the linear map, to hyperbolic fixed point w
reflections. On following the above procedures, we get

xn52coshs2sinhs cothF ~2n21!
s

2G21. ~37!

The solutions fory and z still remain the same, and the
behavior for large values ofn are qualitatively same as tha
of the previous part.

FIG. 4. The coefficients of the time-evolution operator show
the quasiperiodic behavior for the sameV2 as in Fig. 2~b!. Shown
are thex ~a! andy ~b! coefficients. All quantities shown are dimen
sionless.
04210
y-
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Case 3.h254, i.e.,V250 or V254. These cases corre
spond to the marginal ones separating the stable and uns
motions. We can divide this case also into two parts. Th
are as follows.

~a! h52, i.e., V250. Here the eigenvalues ofM are
equal, andl651. The kick is not operating on the system
This implies that in the expression of the time-evolution o
eratorF, x5y50. ThereforeF contains only one exponen
tial and hence the coefficientz would increase linearly with
time. This can also be seen as a limiting case; as from
~25a!, (xn112xn)→2V2 and Eq.~25c! giveszn52n.

~b! h522, i.e.,V254. Again, the eigenvalues ofM are
equal, but nowl6521. We can get the solution for th
coefficients quite easily and these are given by

xn52
2n11

2n21
21, ~38a!

yn522 lnu2n21u, ~38b!

zn5
xn

V2
. ~38c!

For large n, the coefficientsx and z asymptotically reach
constant values (22 and21/2), while the magnitude ofy
increases logarithmically. Thus this marginal case stradd
the stable and the reflective hyperbolic cases would h
power lawbehaviors in time for phase space variables.

III. QUANTUM DYNAMICS OF THE KICKED
SINGULAR OSCILLATOR

Quantum mechanical studies of the time-dependent sin
lar oscillator have been carried out for some time now,
instance in@23# where complete analytical solutions we
given. We exploit our algebraic method to the special cas
the kicked oscillator to lay bare properties such as exact
riodicity and quasiperiodicity. In fact, except for a change
terminology, the mathematics is already complete in the p
vious section.

During our study of the classical nonlinear map, we h
introduced the classical time-evolution operator to show
one-to-one correspondence between the nonlinear and
linear map. While classically this is not the usual approach
dynamics in the case of quantum dynamics the most nat
and popular way is to study the quantum time-evolution o
erator Û(t). Thus our classical approach generalizes m
easily to the quantum. Previous work@33# that points out
exact quantum-classical correspondence in the case o
su(1,1) algebra for the coefficients of the invariant is eas
understood in our approach.

We define the operators as in the classical case:

Â[
1

2 S p̂21
1

q̂2D , B̂[
1

2
q̂2,

and @Â,B̂#52
i

2
\~ p̂q̂1q̂p̂![2\Ĉ,
9-7
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where (Â,B̂,Ĉ) form the closed su(1,1) algebra that is giv
by @Â,B̂#52\Ĉ,@Ĉ,Â#5\Â and @Ĉ,B̂#52\B̂. Among
these operatorsĈ is anti-Hermitian and the other two ar
Hermitian. In terms of these operators our Hamiltoni
would be

Ĥ~ t !5Â1v2TB̂(
n

d~ t2nT!. ~39!

The time-evolution operatorÛ(t) satisfies the equation

i\
dÛ~ t !

dt
5Ĥ~ t !Û~ t !, ~40!

whereÛ(0)51 and Û(t) is unitary. The quantum Flouque
operatorÛ(t5T), which we denote simply asÛ, is given by

Û5expS 2
i

\
v2TB̂DexpS 2

i

\
TÂD . ~41!

For the complete dynamics, as usual, we have to determ
the powersÛn. Again we apply Rau’s@1# method for the
derivation of the time-evolution operator at any arbitra
time. We start with the time-evolution operator of the for

Û~ t !5expF i

\
X~ t !B̂GexpF1

\
Y~ t !ĈGexpF i

\
Z~ t !ÂG , ~42!

where X(t), Y(t), and Z(t) are real functions of time, so
that Û(t) remains unitary. From the initial conditionÛ(0)
51, we haveX(0)5Y(0)5Z(0)50. Substituting the above
Û(t) in Eq. ~40!, following identical procedures as given fo
the classical dynamics, we get

Ẋ52X22v2T(
n

d~ t2nT!,

Ẏ52X, ~43!

Ż52e2Y.

This set of equations for the quantum coefficients isidentical
to the equations for the classical coefficients as given in
~24!. Therefore we would get an identical map for the qua
tum coefficients as for the classical coefficients Eq.~25!.
ue

.
5

04210
ne

,

q.
-

Since these two maps are identical, their stability proper
are identical, i.e., quantum dynamics exactly follows its cl
sical counterpart. Thus when the classical Perron-Frobe
operator becomes unity as in Eq.~35! the Flouquet operato
also becomes unity. The various cases discussed classic
including the marginal and the reflective hyperbolic cas
have exact quantum counterparts. Thus, as far as time
lution is concerned the quantal problem is already solv
Issues of eigenstates and spectrum can be tackled simil
as, for example, done in@34# for the case of the kicked har
monic oscillator; however we do not pursue this further he

IV. SUMMARY

We have studied, both classically and quantum mech
cally, a time-dependent one-dimensional nonlinear integra
system, namely, the kicked harmonic oscillator with a sing
lar potential. By applying our Lie-algebraic interpretation
the LR-invariant, we have determined the exact invariant
that nonlinear system. One can apply this method to de
mine the invariant of any time-dependent Hamiltonia
formed by the generators of any closed algebra. We h
also found, as far as we know, a new integrable nonlin
mapping. Here we derived that map from the Hamiltoni
formed of the generators of the su(1,1) algebra. We exp
that we can determine integrable two-dimensional mappi
from the Hamiltonians formed by the generators of oth
closed algebras.

We constructed the classical time-evolution operator,
the Perron-Frobenius operator for the nonlinear integra
system, taking advantage of a recent method of solving
time-dependent Schro¨dinger equation. This brings into relie
the extreme quantum-classical correspondence in these
tems that have algebraic structures underlying them.

We may speculate whether for time-dependent syste
with more than one degree of freedom, which are construc
from elements of some Lie algebra, the nonlinear equati
~whether difference or differential! that are the analogue o
the coefficient mapping in Eq.~25! are integrable. Further, i
there is a connection between the integrability of these eq
tions and that of the original system itself. Our study th
began as an attempt to study a nonlinear time-dependen
tegrable system led us to one that is in many respects rel
to the harmonic oscillator with time-dependent frequen
We may then ask if we can go beyond this limitation to
more ‘‘genuine’’ form of nonlinearity.
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