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Bohm’s quantum-force time series: Stable distribution, flat power spectrum, and implication
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New insight into the nature of Bohm’s quantum force is presented. Based on our numerical study, we
conclude that, for the kicked pendulum, Bohm’s quantum-force time-series for nonstationary digtesaily
or genericallynon-Gaussian stable distributed with a flat power spectrum. For fixed system parameters and
initial wave function, the stable parameters and the constant value of the power spectrum are independent of
the initial Bohmian angle. We conjecture that these properties of the quantum-force time-series are also typical
or generic for other classically chaotic Hamiltonian dynamical systems since the kicked pendulum is a proto-
typical member of this class of systems. A new method of calculating the quantum probability density of a
particle’s position implied by these quantum-force properties is described.
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[. INTRODUCTION is determined by the amplitud®(x,t) of the quantum wave
function in Eq.(2).
According to Bohm’d 1] causal ontological interpretation Equations(1) and (4) are two equivalenfl1] versions of
of quantum theory, matter, independent of observers, has Bohm’s equation of motion provided that E@t) is subject
well-defined trajectory that is defined by the equafitr?] to the constrainp(t=0)=VS(x,t=0)|XO for the initial mo-

mentum. However, it easier to solve Ed.) to obtain the
dx(t) 1 position and momentum of the particle in practice. Largely
=—=VS(xt) , @ . o : . ) !
dt m (1) ignored since its inception, Bohm’s interpretation, which re-
produces[1] precisely all the predictions of the standard
wherex(t) is the position of the particlen is the mass, and Copenhagen interpretation, has recef®y6] gained a more

S(x,t) is the phase of the quantum wave function widespread interest and acceptance. , ,
Some features of the quantum potential have been dis-
P, =R(x,t)exdiS(x,t)/#] (2)  cussed by Bohrl] and also by Bohm and Hilej?]. In this

paper, we focus on the temporal behavior of Bohm’s quan-
that time evolves according to the time-dependent SchroduUm force experienced by the particle at the Bohmian posi-
inger's equation. In order to solve the first-order differentialtion:
equation Eq.(1) for the Bohmian positiorx(t), not only _
must the initial positiorx, be specified but also the initial Fo(H)=-VQ(x.llxy- ©)
wave functioni(x) because the time-dependent Schrod-n general F o(t) depends on the system parameters, the ini-
inger's equation has to be solved to obt&iix,t). Oncex(t)  tjal wave function, and initial Bohmian position. The explicit

termined using Eq(1) cases where analytical expressions can be obtained for the
amplitude [this determines the quantum potenti@(x,t),
P(t)=VS(X,0)|x) - () Eq. (5] and phasdthis determines the Bohmian position

o . ) x(t), Eg. (1)] of the time-dependent wave function. One
_ Now, substituting Eq(2) into the time-dependent Schro- gch case is a system with a time-independent poteviiel
dinger's equation leads to two equations, one from the reahat supports a set of real, bound-state energy eigenfunctions
part of the equation and the other from the imaginary part¢n(x) with corresponding energies, . If the initial wave

The former equation, with the use of EM), leads to an  fynction is any one of these eigenfunctions, then
equation that has the form of Newton’s second [dy2]

P(X 1) =@ (x)exp —iEt/h). )
dlmx(t)]
T=[—VV(X,t)—VQ(X,t)]|x<t>- (4)  For this stationary stafd], the Bohmian position at timeis
equal to its initial position
Equation(4) shows that, at each Bohmian positig(t), in x(1)=Xo, @)

addition to the usual classical foreeVV(x,t), the particle
also experiences what Bohm called a quantum forcend, the quantum force is time independent, equal in magni-
—VQ(x,t) where the quantum potentifl,2] tude but opposite in direction to the time-independent clas-

sical force. Thus Eq(6) gives
72 V2R(x,t)
Qx.H=~5- RO 5 Fo(t)=VV(X)|)=x,=cONSst. (9)
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Another case is the free particle: if the initial wave function x(t)=ut+xo[ 1+ f2(1)]¥2 (17
is an energy eigenfunctiofor momentum eigenfunction
di(x) =Ae* with energyE,=#%2k?/2m, then and the quantum force is given 9]
= i (Kx— #?
Pp(x,t)y=Aexdi(kx—E.t/h)]. (10 _vo- (x—ut), 18
4mo;

Since the amplitude of this stationary state is independent of
x, the quantum potential vanishes for all tin{@3, and thus  and therefore Eq(6) gives

Fo(t)=0. (12) 712,
. . . Fo()= 222\ (19
For the harmonic oscillatoj8] and free particlg9,10], ama?l 1+ )
the explicit dependence &f(t) on time is also known for 0 4m203

wave packets. For the harmonic oscillai8i, if the initial ] ]
wave function is a minimum-uncertainty Gaussian waveFrom Eq.(19) we see that ifx,=0, thenFq(t)=0; if Xo
packet with position standard deviatiafi/2mw, then the >0 (Xo<<0), thenFq(t) decreasedincreasep monotoni-

wave packet remains Gaussian without spreading in positiof@lly with time and approaches zerotaapproaches infinity.
and momentum: For the free particl¢10], if the initial wave function is

Mo 14 Mo P(x,0)=Ai(BX/H), (20
p(x,t)=|—| exp— 5+ (x—acoswt)?
wh 2h whereB is a constant and Ai is the Airy function, then
X exp{ - |§ wt+ % 2axsinwt Y(x,t) = Ail(BIA) (x— Bt?/4m?)|
X exf (iB3t/2m#A)(x—B3t2/6m?)].  (21)
1.,
- 532 sin Z‘Ut) ] (12 For this wave packet that propagates without spreading in
position[10]
For this Gaussian wave packet, initially centerec @t po- 3 3
sition and 0 in momentum, the Bohmian position is given by E (t)=B_ =B—=c0nst (22)
(8] @Y 2m 2m '
X(t)
X(t)=Xo+acoswt—a, (13 In the few cases above where the explicit dependence of

Fo(t) on time is knownF (1) is either independent of time
or monotonically decreasing or increasing with time. In this
paper, we show that a very different and interesting behavior

and the quantum force is given pg]

CVO=mw2(x—
VQ=mao(x—acosot), 19 of Fo(t) occurs in the periodically delta-kicked plane pen-
and therefore Eq(6) gives dulum system with Hamiltoniafil1]
Fo(t)=mw?(xo—a)=const. (15) ?

. (23

P t
H(,t)= W—mszg cos&jzw 5( -7
From Eq.(15), we see that iky=a, thenFq(t)=0.

For the free particl¢9], if the initial wave function is a whereT is the kicking periodwy=\/g/L is the small ampli-
minimum-uncertainty Gaussian wave packet, then the waveude frequency of the unperturbed pendulunis the accel-
packet remains Gaussian that spreads in position but not igration due to gravityl. andm are, respectively, the length
momentum: and mass of the pendulum. For this well-known prototypical
Hamiltonian dynamical system that exhibits classical chaos,

S = 1 )mexr{ —(x—ut)? both the time-dependent Sckiinger equation and Bohm’s
' 2170? 4<rtz equation of motion have to be integrated numerically in gen-
) eral to yield the wave function and Bohmian angle, respec-
><exp[i f()(x—up) ( B U_t) tively. Details of the numerical integrations are given in Sec.

4ot 2 Il. Just before each instantaneous gravitational kitk

=1,2 ..., thequantum force is determined from the wave
_ ltan* ()] ] (16) function and evaluated at the Bohmian angle to yield a quan-
2 ' tum force time-serief o(n— 1) with uniform time intervals.

The results of our analysis of these quantum-force time se-
whereu=7%k/m, f(t)=%t/2mo3, ando?=03[1+f3(t)]is ries are presented and discussed in Sec. Ill. In Sec. IV, we
the position variance at timé For this Gaussian wave conclude from our findings, offer a conjecture on which
packet, initially centered at O in position ahd in momen-  other systems would exhibit similar quantum-force time-
tum, the Bohmian position is given §@] series properties as the kicked pendulum, and finally describe

042105-2



BOHM'S QUANTUM-FORCE TIME SERIES: STABE . .. PHYSICAL REVIEW A 63 042105

a new alternative method of calculating the quantum prob- 5
ability density of a particle’s position implied by those
guantum-force properties.

N
63}
!

IIl. TIME-DEPENDENT SCHRO DINGER EQUATION
AND BOHM'S EQUATION OF MOTION

For the kicked pendulum, the time-dependent Sdimger
equation can be integrated analytically exactly to yield a& -2.5
mapping[12] of the wave function, from just before theth
kick to just before ther{+ 1)th kick, with two dimensionless

uantum force
(e}

parametersk=al/f and 7=b#%, where a=mLgT and b -5 ‘ ‘ ‘ ‘
=T/mL?. Substituting the wave function expansion in free- 0 5000 10000 15000 20000 25000
rotor energy eigenstates Kick
1 * _ FIG. 1. A guantum-force time series: the quantum fofte
PY(0,t)= — 2 A (t)e'k? (29 arbitrary uni} just before each kick is plotted against the kick num-
\/ﬂ k=—= ber.

into the wave function mapping .)/I.e|dS amapp[rlgz] of the where the time interval between successive values is the
wave function expansion coefficients from just before thekicking period T

nth kick to just before ther{+1)th kick, n=1,2, ... : A quantum-force time-serieBo(n— 1) is shown in Fig,
s = 1. In this case, the system parametersaranlLgT=0.005
Ak(n)zex;{—i—} > A(n=1)i*I3, (x), (25 and b=T/mL?=50 where the kicking periodr=1. We
2 |i%=x chose/=0.0001 to keep the number of expansion coeffi-
) ) o ) cients required for accurate wave-function representation
whereJ is a Bessel function of the first kind of integer order. computationally manageable. The initial wave-function ex-
Bohm'’s equation of motion pansion coefficients is Gaussian centereijat

do 1 oS(6,t) # 1 ag(6,1) 52\ 14

dat m2 a0 m2 "M wet a6 Ak(0)=<7°) exd — o3(k—ko)2lexp( —ik o).
_ bh 1 ag(6,t) (28)
T m[d/(&,t) 90 (26)

For 0y<<1, these expansion coefficients yield an initial wave
tfunction that is[12], to a very good approximation, a very
well localized, minimum-uncertainty Gaussian wave packet
in the angle interval0,277] with mean values

is integrated numerically to obtain the Bohmian angle jus
before the 6+ 1)th kick given the initial angle just before
the nth kick. Numerical integration of the first-order differ-
ential equation(26) is done using the adaptive-step-size,
fourth-fifth-order, Runge-Kutta-Fehlberg method, where the
wavefunction is calculated with ER4) using the expansion
coefficients from the mapping E5).

All numerical calculations were performed in double pre- 52
cision. To ensure that a sufficient number of wave-function 200) ~ 2 20~ ——

. .. . . . 09(0) 0o, UP(O) 2 (30)

expansion coefficients were time evolved using the mapping 4og
Eq. (25, the normalization of the wave function, i.e.,
> |A?=1, was monitored. For the results presented in thdor the angle and angular momentum respectively. For the
next section, the normalization is satisfied to at least 13 decitime series in Fig. 1, the initial wave-function parameters in
mal places. In the numerical integration of Bohm’s equationEg. (28) are 0(=0.01, §p=, and ko=3142. The initial
of motion Eq.(26), convergence was checked by changingBohmian angle is set t@,. All quantities with dimensions

(0(0))=6o, (P(0))~fiko (29

and variances

the relative and absolute error tolerances. are in arbitrary units.
The quantum-force time series in Fig. 1 exhibit several
IIl. RESULTS AND DISCUSSION striking qualitative features(i) the quantum force exhibits

cyclic but nonperiodic behavior;(ii) large positive and
Just before each instantaneous gravitational kitk negative values of the quantum force occur repeatedly, and
=1,2,..., thequantum force is determined from the wave (jii) these large values of the quantum force cluster together
function and evaluated at the Bohmian angle to yield an distinct bunches. These qualitative features of the
quantum-force time series quantum-force time series have been observed in financial
time series of stock-price chang¢$3,14 and currency-
Fo(n—=1)==VQ(8,n—1)|4n-1) (27)  exchange rate changE4].
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FIG. 2. Probability density function of the quantum-force data  FIG. 3. Modified PP(percent-percentplot for the quantum-
set in Fig. 1: smoothed data densisolid line) and fitted stable force data set in Fig. 1.
density(dotted ling. The fitted stable density is essentially symmet-

ric (8=0.0099) with a non-Gaussian characteristic exponent rig 4 s flat. Furthermore, the spectrum for different subsets
=1.28. of the data in Fig. 1 does not differ significantly from the one

. in.Fig. 4.
Stock-price changes and currency-exchange rate changgk . .
[15,16], and other empirical time series such as changes in We have a'%’o’ for _the kicked pendulum, _stud|_ed the
the time interval between sequential human heart Hdats quantum-force time ser|é‘§Q_(n—1) for an extensiveariety
and changes in the time interval between sequential wat f system parameters, initial wave functions, and initial
drops in a leaky fauceft18], were found to be stable, but ohmian angles. For the system parameters, we have used

_ _ 2 H H
non-Gaussian, distributed. The class of stable distribution alues ofa=mLgT andb=T/mL?, where the dimension-

[16,19 is characterized by four parameters: characteristic exCSS productab, which determines the degree of chaos in

ponenta e (0,2], skewnessg e[ — 1,1] (symmetric if3=0) classicalphase spacfl1], ranges from 10 to 1 (the tran-
Scaleae(OOé) ' and Iocation,ue(,—oo »). The Gaussiz’m sition from local or weak chaos to global or strong chaos

(a=2) is the only member of this class of distributions with occurs alab.%0.9716[11]). For the initial wave function, we
a finite variance; all other members have infinite varianc&ave(') varied the parameteisy, 6o, andk, of the expan-
and heavier density tails than the Gaussian. sion _cqefﬂuents n EQ(ZS?’ (if) used a S_?_t oN expansion
Motivated by the qualitative similarity between the CO€fficients of equal amplltude\iIN_,_ and(iii) used different
quantum-force time series in Fig. 1 and the time series ofnth free-rotor elgenstate_as the |n|t|a_l wave function, i.e.,
stock-price changes and currency-exchange rate changes, We(0)=dim- In all these diverse casédifferent system pa-
fitted the large quantum-force data §2%5001 valuesin Fig. rameters, |n|t|all wave functions, |r_1|t|al Bohmian anglés
1 with a stable distribution using NolansrABLE program yolvmg nonstationary states, we f|'nd that the quantum—force
[20]. The fit, which employs the maximum likelihood tl'me.serl'es has the' same qualltatlvg features as_the time se-
method[21] based on reliable computatiofid2] of stable €S in Fig. 1. And in each case, using the density plot and
densities, produced the following stable parameters irsthe Modified PP plot diagnostics, we find that the quantum-force
parametrization23]: a=1.28, 8=0.0099, =0.037, and time series is also non-Gaussian stable distrib@tedboth
w=0.000 28. A visual comparison of the smoothed data den-
sity with the fitted stable density in Fig. 2 shows that, quali- 5
tatively, the symmetric, non-Gaussian stable fit is good. In
addition, a quantitative goodness-of-fit test is provided by the § 4-
modified PP(percent-percenplot [24] in Fig. 3. The accep-
tance region, based on a goodness-of-fit statistic that is
analogous to the Kolmogorov-Smirnov statistic, can be
added to the PP plot by drawing two straight lines spaced a
uniform distance above and below the diagof#a]. How-
ever, this is not necessary since the PP plot in Fig. 3 is
essentially on the diagonal, and thus, to a high level of sig- 0 ‘
nificance, the quantum-force data set in Fig. 1 is non- 0 0.1 0.2 0.3 0.4 0.5

Power spectr
N w

-

Gaussian stable distributed. Furthermore, we found that dif- Frequency
ferent subsets of the full data set are identically distributed as
the full set. FIG. 4. Power spectrum, calculated using 20 poles, of the

In addition, we have calculated the power spectrum of thejuantum-force time series in Fig. 1 versus frequeioyarbitrary
guantum-force time series in Fig. 1 using the maximum enunit up to the Nyquist frequencdefined as 12A), whereA is
tropy (all poles method[25]. The power spectrum, shown in the sampling interval25]] of 0.5.
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first-order and second-order densitidnit with, generally, cle’s position can be calculated from the quantum time-
different parameters. We find that, however, for fixed systendependent wave function, i.d#(x,t)|?> (Method 1), or [1]
parameters and fixed initial wave function, the stable paramas the position probability density of an ensemble of Bohm-
eters remain the same for different initial Bohmian anglesian trajectories, where each member of the ensemble is time
And finally, in each case, we find that the power spectrum okvolved using Eqq1) or (4) (Method 2. These two methods
the quantum-force time series is flat whose value is, for fixedjive the same results for all times if the position probability
system parameters and fixed initial wave function, indepeneensity of the ensemble equdlg(x,0)|? initially [1]. In
dent of the initial Bohmian angle. Method 2, in order to time evolve each member of the en-
There is one exception, we know of, to our findings semble using Eqs(1) or (4), the time-dependent Sclhito
above. Forr=bs =44, it can be shown, using the wave- inger’'s equation also has to be solved to obtain the phase or
function expansion, Eq24), and expansion-coefficient map- amplitude of the wave function.
ping, Eq. (25), that the wave function just before kiak In the case where the quantum wave function is a nonsta-
=1,2... isgiven by[26] tionary state and the time serieskx(t)=—VQ(x,t) |y in
) Eq. (4) is, for each member of the ensemble, identically non-
p(0,n—1)=exdir(cosd)(n—1)]4(0,0). (3D  Gaussian stable distributed with a flat power spectrum, if
each member of the ensemble is instead time evolved using a

If the initial wave function is amrmth free-rotor eigenstate, stochasticdifferential equation

then

1 dlmx(t)] -
y(6,n—1)= ——exdi«(cosd)(n—1)]exgdima]. T:_VV(Xrt)|x(t)+ Fo(t) (33
T

V2m
(32

) ) ) o obtained from Eq(4), whereFq(t) is replaced by the ap-
Since the amplitude of this wave function is independent Otpropriate stationary non-Gaussian stable wiiftat power

ﬁlt)h:eoqfl:)?r::irq 2potent|aQ(0,n 1)=0 and thusFq(n spectrum randomforcelEQ(t), then the position probability
e density of the ensemble is equal to the density obtained in
Method 2 for all times, if they are equal initially. This
IV. CONCLUSION, CONJECTURE, AND IMPLICATION equivalence holds because in MethodF3(t) in Eq. (4) for

Based on our numerical study, we conclude that, for the¢ach member of the ensemble is a particular realization of
kicked pendulum, Bohm’s quantum-force time series forthe stationary non-Gaussian stable white random force
nonstationary states iypically or generically (i.e., excep- I~:Q(t). As a consequence of this equivalence and the equiva-
tions are very raenon-Gaussian stable distributed with a lence between Methods 1 and 2 above, the position probabil-
flat power spectrum. For fixed system parameters and initiaty density of an ensemble, where each member time evolves
wave function, the stable parameters and the constant val@ecording to Eq(33), is equal td ¢(x,t)|? for all times if the
of the power spectrum are independent of the initial Bohm-density is equal td(x,0)|? initially. Note that, in this third
ian angular position. method of calculating the quantum probability density of a

We conjecturghypothesizgthat the above properties of particle’s position, only one equation needs to be solved as in
the quantum-force time series are also typical or generic foMethod 1, but it is a stochastic differential equati@B)
other classically chaotic Hamiltonian dynamical systemsnstead of Schidinger’s partial differential equation. In con-
since the kicked pendulum is a prototypi¢all] member of trast, two equations, Schiimger’s equation and an ordinary
this class of systems. We do not expect the same to be trudifferential equation, Eqs(l) or (4), have to be solved in
for classically nonchaotic Hamiltonian dynamical systemsMethod 2.
since in two such systems: free particle and harmonic oscil- A direct proof, instead of the indirect proof in the previ-
lator, the quantum-force time series for nonstationary statesus paragraph, of the equivalence between the stochastic dif-
is neither non-Gaussian stable distributed nor does it have farential equatior33) and the time-dependent Schinger's
flat power spectrunisee Introduction equation, is planned for a future publication, together with

In general, the quantum probability density of the parti-numerical examples for the kicked pendulum.
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