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Bohm’s quantum-force time series: Stable distribution, flat power spectrum, and implication
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New insight into the nature of Bohm’s quantum force is presented. Based on our numerical study, we
conclude that, for the kicked pendulum, Bohm’s quantum-force time-series for nonstationary states istypically
or genericallynon-Gaussian stable distributed with a flat power spectrum. For fixed system parameters and
initial wave function, the stable parameters and the constant value of the power spectrum are independent of
the initial Bohmian angle. We conjecture that these properties of the quantum-force time-series are also typical
or generic for other classically chaotic Hamiltonian dynamical systems since the kicked pendulum is a proto-
typical member of this class of systems. A new method of calculating the quantum probability density of a
particle’s position implied by these quantum-force properties is described.
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I. INTRODUCTION

According to Bohm’s@1# causal ontological interpretatio
of quantum theory, matter, independent of observers, h
well-defined trajectory that is defined by the equation@1,2#

dx~ t !

dt
5

1

m
“S~x,t !U

x~ t !

, ~1!

wherex(t) is the position of the particle,m is the mass, and
S(x,t) is the phase of the quantum wave function

c~x,t !5R~x,t !exp@ iS~x,t !/\# ~2!

that time evolves according to the time-dependent Sch
inger’s equation. In order to solve the first-order different
equation Eq.~1! for the Bohmian positionx(t), not only
must the initial positionx0 be specified but also the initia
wave functionc0(x) because the time-dependent Schro
inger’s equation has to be solved to obtainS(x,t). Oncex(t)
andS(x,t) are known, the momentum of the particle is d
termined using Eq.~1!

p~ t !5“S~x,t !ux~ t ! . ~3!

Now, substituting Eq.~2! into the time-dependent Schro
dinger’s equation leads to two equations, one from the
part of the equation and the other from the imaginary p
The former equation, with the use of Eq.~1!, leads to an
equation that has the form of Newton’s second law@1,2#

d@mẋ~ t !#

dt
5@2“V~x,t !2“Q~x,t !#ux~ t ! . ~4!

Equation~4! shows that, at each Bohmian positionx(t), in
addition to the usual classical force2“V(x,t), the particle
also experiences what Bohm called a quantum fo
2“Q(x,t) where the quantum potential@1,2#

Q~x,t !52
\2

2m

¹2R~x,t !

R~x,t !
~5!
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is determined by the amplitudeR(x,t) of the quantum wave
function in Eq.~2!.

Equations~1! and ~4! are two equivalent@1# versions of
Bohm’s equation of motion provided that Eq.~4! is subject
to the constraintp(t50)5“S(x,t50)ux0

for the initial mo-
mentum. However, it easier to solve Eq.~1! to obtain the
position and momentum of the particle in practice. Large
ignored since its inception, Bohm’s interpretation, which
produces@1# precisely all the predictions of the standa
Copenhagen interpretation, has recently@3–6# gained a more
widespread interest and acceptance.

Some features of the quantum potential have been
cussed by Bohm@1# and also by Bohm and Hiley@2#. In this
paper, we focus on the temporal behavior of Bohm’s qu
tum force experienced by the particle at the Bohmian po
tion:

FQ~ t ![2“Q~x,t !ux~ t ! . ~6!

In general,FQ(t) depends on the system parameters, the
tial wave function, and initial Bohmian position. The explic
dependence ofFQ(t) on time is known, so far, only in a few
cases where analytical expressions can be obtained for
amplitude @this determines the quantum potentialQ(x,t),
Eq. ~5!# and phase@this determines the Bohmian positio
x(t), Eq. ~1!# of the time-dependent wave function. On
such case is a system with a time-independent potentialV(x)
that supports a set of real, bound-state energy eigenfunct
fn(x) with corresponding energiesEn . If the initial wave
function is any one of these eigenfunctions, then

c~x,t !5wn~x!exp~2 iEnt/\!. ~7!

For this stationary state@1#, the Bohmian position at timet is
equal to its initial position

x~ t !5x0 , ~8!

and, the quantum force is time independent, equal in ma
tude but opposite in direction to the time-independent cl
sical force. Thus Eq.~6! gives

FQ~ t !5“V~x!ux~ t !5x0
5const. ~9!
©2001 The American Physical Society05-1
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Another case is the free particle: if the initial wave functi
is an energy eigenfunction~or momentum eigenfunction!
fk(x)5Aeikx with energyEk5\2k2/2m, then

c~x,t !5A exp@ i ~kx2Ekt/\!#. ~10!

Since the amplitude of this stationary state is independen
x, the quantum potential vanishes for all times@7#, and thus

FQ~ t !50. ~11!

For the harmonic oscillator@8# and free particle@9,10#,
the explicit dependence ofFQ(t) on time is also known for
wave packets. For the harmonic oscillator@8#, if the initial
wave function is a minimum-uncertainty Gaussian wa
packet with position standard deviationA\/2mv, then the
wave packet remains Gaussian without spreading in pos
and momentum:

c~x,t !5S mv

p\ D 1/4

expF2
mv

2\
~x2a cosvt !2G

3expH 2
i

2 Fvt1
mv

\ S 2ax sinvt

2
1

2
a2 sin 2vt D G J . ~12!

For this Gaussian wave packet, initially centered ata in po-
sition and 0 in momentum, the Bohmian position is given
@8#

x~ t !5x01a cosvt2a, ~13!

and the quantum force is given by@8#

2“Q5mv2~x2a cosvt !, ~14!

and therefore Eq.~6! gives

FQ~ t !5mv2~x02a!5const. ~15!

From Eq.~15!, we see that ifx05a, thenFQ(t)50.
For the free particle@9#, if the initial wave function is a

minimum-uncertainty Gaussian wave packet, then the w
packet remains Gaussian that spreads in position but no
momentum:

c~x,t !5S 1

2ps t
2D 1/4

expF2~x2ut!2

4s t
2 G

3expH i F f ~ t !~x2ut!2

4s t
2 1kS x2

ut

2 D
2

1

2
tan21@ f ~ t !#G J , ~16!

whereu5\k/m, f (t)5\t/2ms0
2, ands t

25s0
2@11 f 2(t)# is

the position variance at timet. For this Gaussian wave
packet, initially centered at 0 in position and\k in momen-
tum, the Bohmian position is given by@9#
04210
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x~ t !5ut1x0@11 f 2~ t !#1/2, ~17!

and the quantum force is given by@9#

2“Q5
\2

4ms t
4 ~x2ut!, ~18!

and therefore Eq.~6! gives

FQ~ t !5
\2x0

4ms0
4S 11

\2t2

4m2s0
4D 3/2. ~19!

From Eq. ~19! we see that ifx050, thenFQ(t)50; if x0
.0 (x0,0), then FQ(t) decreases~increases! monotoni-
cally with time and approaches zero ast approaches infinity.
For the free particle@10#, if the initial wave function is

c~x,0!5Ai ~Bx/\2/3!, ~20!

whereB is a constant and Ai is the Airy function, then

c~x,t !5Ai b~B/\2/3!~x2B3t2/4m2!c
3expb~ iB3t/2m\!~x2B3t2/6m2!c. ~21!

For this wave packet that propagates without spreading
position @10#

FQ~ t !5
B3

2mU
x~ t !

5
B3

2m
5const. ~22!

In the few cases above where the explicit dependenc
FQ(t) on time is known,FQ(t) is either independent of time
or monotonically decreasing or increasing with time. In th
paper, we show that a very different and interesting beha
of FQ(t) occurs in the periodically delta-kicked plane pe
dulum system with Hamiltonian@11#

H~u,t !5
P2

2mL22mL2v0
2 cosu (

j 52`

`

dS j 2
t

TD , ~23!

whereT is the kicking period,v05Ag/L is the small ampli-
tude frequency of the unperturbed pendulum,g is the accel-
eration due to gravity,L andm are, respectively, the lengt
and mass of the pendulum. For this well-known prototypi
Hamiltonian dynamical system that exhibits classical cha
both the time-dependent Schro¨dinger equation and Bohm’s
equation of motion have to be integrated numerically in g
eral to yield the wave function and Bohmian angle, resp
tively. Details of the numerical integrations are given in S
II. Just before each instantaneous gravitational kickn
51,2 . . . , thequantum force is determined from the wav
function and evaluated at the Bohmian angle to yield a qu
tum force time-seriesFQ(n21) with uniform time intervals.
The results of our analysis of these quantum-force time
ries are presented and discussed in Sec. III. In Sec. IV,
conclude from our findings, offer a conjecture on whi
other systems would exhibit similar quantum-force tim
series properties as the kicked pendulum, and finally desc
5-2
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a new alternative method of calculating the quantum pr
ability density of a particle’s position implied by thos
quantum-force properties.

II. TIME-DEPENDENT SCHRÖ DINGER EQUATION
AND BOHM’S EQUATION OF MOTION

For the kicked pendulum, the time-dependent Schro¨dinger
equation can be integrated analytically exactly to yield
mapping@12# of the wave function, from just before thenth
kick to just before the (n11)th kick, with two dimensionless
parametersk5a/\ and t5b\, where a5mLgT and b
5T/mL2. Substituting the wave function expansion in fre
rotor energy eigenstates

c~u,t !5
1

A2p
(

k52`

`

Ak~ t !eiku ~24!

into the wave function mapping yields a mapping@12# of the
wave function expansion coefficients from just before
nth kick to just before the (n11)th kick, n51,2, . . . :

Ak~n!5expF2 i
k2t

2 G (
j 52`

`

Aj~n21!i k2 j Jk2 j~k!, ~25!

whereJ is a Bessel function of the first kind of integer orde
Bohm’s equation of motion

du

dt
[

1

mL2

]S~u,t !

]u
5

\

mL2 ImF 1

c~u,t !

]c~u,t !

]u G
5

b\

T
ImF 1

c~u,t !

]c~u,t !

]u G ~26!

is integrated numerically to obtain the Bohmian angle j
before the (n11)th kick given the initial angle just befor
the nth kick. Numerical integration of the first-order differ
ential equation~26! is done using the adaptive-step-siz
fourth-fifth-order, Runge-Kutta-Fehlberg method, where
wavefunction is calculated with Eq.~24! using the expansion
coefficients from the mapping Eq.~25!.

All numerical calculations were performed in double pr
cision. To ensure that a sufficient number of wave-funct
expansion coefficients were time evolved using the mapp
Eq. ~25!, the normalization of the wave function, i.e
SuAku251, was monitored. For the results presented in
next section, the normalization is satisfied to at least 13 d
mal places. In the numerical integration of Bohm’s equat
of motion Eq.~26!, convergence was checked by changi
the relative and absolute error tolerances.

III. RESULTS AND DISCUSSION

Just before each instantaneous gravitational kickn
51,2, . . . , thequantum force is determined from the wa
function and evaluated at the Bohmian angle to yield
quantum-force time series

FQ~n21!52“Q~u,n21!uu~n21! ~27!
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where the time interval between successive values is
kicking periodT.

A quantum-force time-seriesFQ(n21) is shown in Fig.
1. In this case, the system parameters area5mLgT50.005
and b5T/mL2550 where the kicking periodT51. We
chose\50.0001 to keep the number of expansion coe
cients required for accurate wave-function representa
computationally manageable. The initial wave-function e
pansion coefficients is Gaussian centered atk0 :

Ak~0!5S 2s0
2

p D 1/4

exp@2s0
2~k2k0!2#exp~2 iku0!.

~28!

For s0!1, these expansion coefficients yield an initial wa
function that is@12#, to a very good approximation, a ver
well localized, minimum-uncertainty Gaussian wave pac
in the angle interval@0,2p# with mean values

^u~0!&'u0 , ^P~0!&'\k0 ~29!

and variances

su
2~0!'s0

2, sP
2 ~0!'

\2

4s0
2 ~30!

for the angle and angular momentum respectively. For
time series in Fig. 1, the initial wave-function parameters
Eq. ~28! are s050.01, u05p, and k053142. The initial
Bohmian angle is set tou0 . All quantities with dimensions
are in arbitrary units.

The quantum-force time series in Fig. 1 exhibit seve
striking qualitative features:~i! the quantum force exhibits
cyclic but non-periodic behavior;~ii ! large positive and
negative values of the quantum force occur repeatedly,
~iii ! these large values of the quantum force cluster toge
in distinct bunches. These qualitative features of
quantum-force time series have been observed in finan
time series of stock-price changes@13,14# and currency-
exchange rate changes@14#.

FIG. 1. A quantum-force time series: the quantum force~in
arbitrary unit! just before each kick is plotted against the kick num
ber.
5-3
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Stock-price changes and currency-exchange rate cha
@15,16#, and other empirical time series such as change
the time interval between sequential human heart beats@17#
and changes in the time interval between sequential w
drops in a leaky faucet@18#, were found to be stable, bu
non-Gaussian, distributed. The class of stable distributi
@16,19# is characterized by four parameters: characteristic
ponentaP(0,2#, skewnessbP@21,1# ~symmetric ifb50!,
scale sP(0,̀ ), and locationmP(2`,`). The Gaussian
(a52) is the only member of this class of distributions wi
a finite variance; all other members have infinite varian
and heavier density tails than the Gaussian.

Motivated by the qualitative similarity between th
quantum-force time series in Fig. 1 and the time series
stock-price changes and currency-exchange rate change
fitted the large quantum-force data set~25001 values! in Fig.
1 with a stable distribution using Nolan’sSTABLE program
@20#. The fit, which employs the maximum likelihoo
method@21# based on reliable computations@22# of stable
densities, produced the following stable parameters in theS0

parametrization@23#: a51.28, b50.0099, s50.037, and
m50.000 28. A visual comparison of the smoothed data d
sity with the fitted stable density in Fig. 2 shows that, qua
tatively, the symmetric, non-Gaussian stable fit is good.
addition, a quantitative goodness-of-fit test is provided by
modified PP~percent-percent! plot @24# in Fig. 3. The accep-
tance region, based on a goodness-of-fit statistic tha
analogous to the Kolmogorov-Smirnov statistic, can
added to the PP plot by drawing two straight lines space
uniform distance above and below the diagonal@24#. How-
ever, this is not necessary since the PP plot in Fig. 3
essentially on the diagonal, and thus, to a high level of s
nificance, the quantum-force data set in Fig. 1 is n
Gaussian stable distributed. Furthermore, we found that
ferent subsets of the full data set are identically distributed
the full set.

In addition, we have calculated the power spectrum of
quantum-force time series in Fig. 1 using the maximum
tropy ~all poles! method@25#. The power spectrum, shown i

FIG. 2. Probability density function of the quantum-force da
set in Fig. 1: smoothed data density~solid line! and fitted stable
density~dotted line!. The fitted stable density is essentially symm
ric (b50.0099) with a non-Gaussian characteristic exponena
51.28.
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Fig. 4, is flat. Furthermore, the spectrum for different subs
of the data in Fig. 1 does not differ significantly from the o
in Fig. 4.

We have also, for the kicked pendulum, studied t
quantum-force time seriesFQ(n21) for an extensivevariety
of system parameters, initial wave functions, and init
Bohmian angles. For the system parameters, we have
values ofa5mLgT and b5T/mL2, where the dimension-
less productab, which determines the degree of chaos
classicalphase space@11#, ranges from 1024 to 1 ~the tran-
sition from local or weak chaos to global or strong cha
occurs atab'0.9716@11#!. For the initial wave function, we
have~i! varied the parameterss0 , u0 , andk0 of the expan-
sion coefficients in Eq.~28!, ~ii ! used a set ofN expansion
coefficients of equal amplitude 1/AN, and~iii ! used different
mth free-rotor eigenstate as the initial wave function, i.
Ak(0)5dkm. In all these diverse cases~different system pa-
rameters, initial wave functions, initial Bohmian angles! in-
volving nonstationary states, we find that the quantum-fo
time series has the same qualitative features as the time
ries in Fig. 1. And in each case, using the density plot a
modified PP plot diagnostics, we find that the quantum-fo
time series is also non-Gaussian stable distributed~for both

FIG. 3. Modified PP~percent-percent! plot for the quantum-
force data set in Fig. 1.

FIG. 4. Power spectrum, calculated using 20 poles, of
quantum-force time series in Fig. 1 versus frequency~in arbitrary
units! up to the Nyquist frequency@defined as 1/~2D!, whereD is
the sampling interval@25## of 0.5.
5-4
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first-order and second-order densities! but with, generally,
different parameters. We find that, however, for fixed syst
parameters and fixed initial wave function, the stable para
eters remain the same for different initial Bohmian angl
And finally, in each case, we find that the power spectrum
the quantum-force time series is flat whose value is, for fix
system parameters and fixed initial wave function, indep
dent of the initial Bohmian angle.

There is one exception, we know of, to our findin
above. Fort5b\54p, it can be shown, using the wave
function expansion, Eq.~24!, and expansion-coefficient map
ping, Eq. ~25!, that the wave function just before kickn
51,2 . . . isgiven by @26#

c~u,n21!5exp@ ik~cosu!~n21!#c~u,0!. ~31!

If the initial wave function is anmth free-rotor eigenstate
then

c~u,n21!5
1

A2p
exp@ ik~cosu!~n21!#exp@ imu#.

~32!

Since the amplitude of this wave function is independen
u, the quantum potentialQ(u,n21)50 and thusFQ(n
21)50 for n51,2 . . . .

IV. CONCLUSION, CONJECTURE, AND IMPLICATION

Based on our numerical study, we conclude that, for
kicked pendulum, Bohm’s quantum-force time series
nonstationary states istypically or generically ~i.e., excep-
tions are very rare! non-Gaussian stable distributed with
flat power spectrum. For fixed system parameters and in
wave function, the stable parameters and the constant v
of the power spectrum are independent of the initial Boh
ian angular position.

We conjecture~hypothesize! that the above properties o
the quantum-force time series are also typical or generic
other classically chaotic Hamiltonian dynamical syste
since the kicked pendulum is a prototypical@11# member of
this class of systems. We do not expect the same to be
for classically nonchaotic Hamiltonian dynamical syste
since in two such systems: free particle and harmonic os
lator, the quantum-force time series for nonstationary sta
is neither non-Gaussian stable distributed nor does it ha
flat power spectrum~see Introduction!.

In general, the quantum probability density of the pa
y
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cle’s position can be calculated from the quantum tim
dependent wave function, i.e.,uc(x,t)u2 ~Method 1!, or @1#
as the position probability density of an ensemble of Boh
ian trajectories, where each member of the ensemble is
evolved using Eqs.~1! or ~4! ~Method 2!. These two methods
give the same results for all times if the position probabil
density of the ensemble equalsuc(x,0)u2 initially @1#. In
Method 2, in order to time evolve each member of the e
semble using Eqs.~1! or ~4!, the time-dependent Schro¨d-
inger’s equation also has to be solved to obtain the phas
amplitude of the wave function.

In the case where the quantum wave function is a non
tionary state and the time series ofFQ(t)[2¹Q(x,t)ux(t) in
Eq. ~4! is, for each member of the ensemble, identically no
Gaussian stable distributed with a flat power spectrum
each member of the ensemble is instead time evolved usi
stochasticdifferential equation

d@mẋ~ t !#

dt
52“V~x,t !ux~ t !1F̃Q~ t ! ~33!

obtained from Eq.~4!, whereFQ(t) is replaced by the ap
propriate stationary non-Gaussian stable white~flat power
spectrum! randomforce F̃Q(t), then the position probability
density of the ensemble is equal to the density obtained
Method 2 for all times, if they are equal initially. Thi
equivalence holds because in Method 2,FQ(t) in Eq. ~4! for
each member of the ensemble is a particular realization
the stationary non-Gaussian stable white random fo
F̃Q(t). As a consequence of this equivalence and the equ
lence between Methods 1 and 2 above, the position proba
ity density of an ensemble, where each member time evo
according to Eq.~33!, is equal touc(x,t)u2 for all times if the
density is equal touc(x,0)u2 initially. Note that, in this third
method of calculating the quantum probability density o
particle’s position, only one equation needs to be solved a
Method 1, but it is a stochastic differential equation~33!
instead of Schro¨dinger’s partial differential equation. In con
trast, two equations, Schro¨dinger’s equation and an ordinar
differential equation, Eqs.~1! or ~4!, have to be solved in
Method 2.

A direct proof, instead of the indirect proof in the prev
ous paragraph, of the equivalence between the stochastic
ferential equation~33! and the time-dependent Schro¨dinger’s
equation, is planned for a future publication, together w
numerical examples for the kicked pendulum.
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