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Peres criterion for separability through nonextensive entropy
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A bipartite spin-1/2 system having the probabilities+(3x)/4 of being in the Einstein-Podolsky-Rosen
(EPR entangled stat¢¥ ~)=(1/\2)(|1)al1)s—|1)al1)s) and 3(1—x)/4 of being orthogonal is known to
admit a local realistic description if and onlyt 1/3 (Peres criterion We consider here a more general case
where the probabilities of being in the entangled std®s)=(1/y2)(|1)al1)s*|1)all)s) and |¥*)
=(1N2)(I1)al s 11)al1)e) (Bell basig are given, respectively, by (Ax)/4, (1—y)/4, (1—2)/4, and (1
+Xx+y+2)/4. Following Abe and Rajagopal, we use the nonextensive entropic $gea(1—Trp%)/(q—1)
(geR;S;=—Trp In p) which has enabled a current generalization of Boltzmann-Gibbs statistical mechanics,
and determine the entire region in they(,z) space where the system is separable. For instance, in the vicinity
of the EPR state, separability occurs if and onlkif y+z<1, which recovers Peres’ criterion whes-y
=2z. In the vicinity of the other three states of the Bell basis, the situation is identical. These results illustrate
the computational power of this nonextensive-quantum-information procedure. In addition to this, a critical-
phenomenon-like scenario emerges which enrichens the discussion.
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Quantum entanglement is a manifestation of the essentiafariables, which is sometimes referred td@sal realisn) if
nonlocality of the quantum world, and a most intriguing and only if the corresponding density operator can be written
physical phenomenon. It was first discussed as early as 193fs
by Einstein, Podolsky, and Ros€BPR [1] and by Schre
dinger[2], and has regained intensive interest in recent years

due to its remarkable applications in quantum computation, W _ _ i
teleportation, and cryptograpti$—7], among others, as well pA+B=E pipi) @ pf) ( p;i=0Vi 2 pi= 1). (3
as its connections to quantum chd8s i=1 =1

Two systemsA andB are said to baincorrelatedif and

only if the density operatop,, g can be written as
Otherwise,A and B are said to besntangled(or nonsepa-

rable). Clearly, if A andB are uncorrelated, they are unen-
(1) tangled; the opposite is not true. The definition of entangle-
ment is not necessarily simple to implement, since it might
be relatively easy in a specific case to exhibit the form of Eq.
(3), but it can be nontrivial to prove that it cannot be pre-
sented in that form. Consequently, through the years appre-
Pa+8=(Trapa+e) @ (Trepaip)- (2)  ciable effort has been dedicated to the establishment of gen-
eral operational criteria, preferentially in the form of
Otherwise A andB are said to beorrelated The concept of necessary and sufficient conditions whenever possible. The
correlation is not distinctively classical or quantum. There isParticular case wher& andB are just two simple spins 1/2 is
another concept, more subtle, that can exist only in quantur@@radigmatic, and illustrates well the relevant points.
systems, and that {§uantum) entanglemenfwo systemsA The simplest basis for describing such systems is
and B are said to bgquantum) unentangletbr separable  [T)alT)e, [1)all)es [L)alT)s, and [[)all)s. All these
and possibly admitting docal description with “hidden”  states clearly are unentangled. Another popular basis
(the Bell basiy convenient for a variety of experimen-
tal situations, is the singlet |W~)=(1/y2)(|1)all)s

pa+e=Pa®pg  (Trarepare=Trapa=Trgpg=1),

i.e., if and only if

*Email address: tsallis@cbpf.br —[1)alT)s)  and |q’+>5(1/\/§)(|T>A|l>B+|i>A|T>B),
"Email address: slloyd@mit.edu |O=)Y=(12)(11)al D) ex|1)al1)s) and |¥*). Each state
*Email address: baranger@ctp.mit.edu of this basis is fully entangled. The states satisfy
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|PFWDT|+ [P WD |+ | TN T +| P (P whereSy(A+B)=Sy(pa+p) andSy(A)=Sy(Trgpa+s). The
R L conditional entrop@(A|B) is defined in an analogous man-
=10, 5=1a®15 (4)  ner. Consequently, Eq9) implies
with Tri,, g=2Trl,=2Trig=4. Sq(A+B)=S4(A)+S4(B|A)+(1—)Sy(A)S¢(B|A)
We assume now that our bipartite system is in the so (10

called Werner-Popescu stdi& 10|, namely,
=S4(B)+Sy(A[B)+(1-q)Sy(B)Sy(A[B).  (11)

1-x
PA+B:T(|‘D+><<I’+|+|CI’ WO+ [P NPT]) These expressions generaliZd] Eq. (8), which is recov-
ered as the particular case wherg, g=pa® pg and hence
+[(1+3x)/4]| ¥~ ¥ | (5)  S4(A|B)=S4(A) andS,y(B|A)=S,(B). Also, forq=1, they
reproduce one of the Shannon-Khinchin axioms for obtain-
or equivalently ing the Boltzmann-Gibbs form for the entropy, i.8,;,. Fi-

nally, it can be showrj15] that, for all values ofg, these
expressions are consistent with the celebrated Bayes theo-
rem.

The entropiesS,(A+B), S4(A), andSy(B) are necessar-
where we have used E(f). Forx=1 andx=0 we have the ily non-negative. This is also true f&,(A|B) andS;(B|A)
fully entangled EPR state and the fully random one, respedf the system is classical, but not necessarily if it is quantum.
tively. The question arises: up to what valuexas the sys-  Therefore, this property can be used as a criterion for sepa-
tem separable? The use of the Bell inequality yields that théability (see also[25]). The conjecture(at least for some
threshold cannot exceed\@=0.71. The use of ther en-  classes of systemss that the system is separable if and only
tropic inequality [11] yields a more severe restriction, if both S(A[B) andSy(B|A) are non-negative for all values
namely, that it cannot exceed\B~=0.58. The strongest re- Of g. Let us stress that there is no general reason why
sult, i.e., the necessary and sufficient condition, was finallySq(A|B) andSy(B|A) should be equal, not even in the clas-
found (by imposing the non-negativeness of the partial transSical case. Although we have no general proof, it seems plau-
pose of the density matfisby Pereg12], and it isx,=1/3.  Sible that boti,(A[B) andSy(B|A) decrease monotonically
Peres’ criterion is known to be a necessary condition for allVith g. In that case, the conjecture becomes that the system
sytems, and has been shown to be also sufficient fop2 IS separable if and only if botS.(A|B) and S.(B|A) are
and 2x 3 systems, whereas it is known to be insufficient fornon-negative. As already stated, Abe and Rajagopal have
3% 3 and 2x 4 or more complex systenfi$3,14. In a recent a_lpplled this procedure to the Werner-Popescu state men-
paper, Abe and Rajagopil5] reobtained Perest.= 1/3 re- tioned above, and have successfully recovered Peres’ thresh-
sult in an extremely elegant way. Let us briefly recall it. ~ 0ld Xc=1/3[15]. S

Thermostatistically anomalous systems can, in some [N .order to illustrate the S|mpI|C|ty of use of the present
cases, be handled within a formalism that generalize§'iterion, we shall assume the following state for the bipartite
Boltzmann-Gibbs statistical mechanics. This formalism, in-SPiN-1/2 system:
troduced in 198416], has been used in many applications
[17] and has already received several verificatipt3—23.
It is based on the entropic form

1-x.
PA+B=T]-A+B+X|\I,7><\I,7| (0s=x=<1), (6

1-x 1-y a
PA+B:T|(I)+><(D+|+T|(D WP

1—Trpd -z 1+x+y+z _
Se= q_lp (qeR, Trp=18,=—Trplnp).  (7) g [N [ (|
(12
This quantity is non-negativev(q), concave(convey for q
>0 (g<0), and satisfies the property: or equivalently
S4(Pa® pe) =S4(pa) +Sy(pe) +(1—0)Sy(pa)Sy(ps)- 1. N
8 pA+B=Z]-A+B_Z|(D ><q) |_Z|(D ><<D |
Consequently, it isuperextensiyextensiveor subextensive 7
if g<1, q=1, org>1, respectively. Also, it is extremal at — Z|\P+>(\If+|+(x+y+z)|\If‘)(\If‘|, (13
equiprobability, i.e., Sq(i/\N)=(W1‘q—1)/(1—q) with
S(V/W)=InW. with x,y,z<1. Equations5) and (6) are reproduced in the

Referencg 15] defines the followingonditional entropy  y—y—7 case. The pure stated "), |® ), |[¥*), and| ¥ )
(EPR statg respectively, correspond to X.,(y,z)=
S, (B|A)= Sq(A+B)—S4(A) @ (-311),(1-31),(1,1-3),and (L,L1).
a 1+(1-q)S4(A) Let us now calculaté&,(A+B). Equation(12) implies
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hence

1—X
4

1
Sy(A+B)= g

7 (19

Let us now calculateS,(A|B). We need to knowpp
:TerA+B! i.e.,

1-x 1-y 3 3
PA:TTrB|q)+><(D+| +TTrB|¢ WP

1-z 1+x+y+z B 3
+——Z—JTBPP*>OP*|+————Z————Trgﬂ? N~ |;
(16)
hence
1.
PA— ElA ’ (17)

where we have used the fact that gfP") (P
=Trg|® ™) (@7 [=Trg|¥ ") (P [=Trg|¥ ") (¥ [=31a.
Equation(17) implies

1.
Pg\ZEJ-A; (18
hence
2t7a—1
Sy(A)= =g (19

Substituting expressior(¢5) and(19) into Eq.(9) we obtain
Sq(A| B) as an explicit function ofX,y,z;q) (see Figs. 1 and
2). Both Sy(A+B) and Sy(A|B) are invariant under the
transformations  X,y,z)—(X,z,y), (X,¥,2)—(—x—y
—z,x,y), and the analogous oneS,(A|B)=S,(B|A)=0
implies

e R

In the limit g—oe, this relation implies

1+x+y+z q_ 1
4 B 2q-1°
(20)

X+y+z=1. (21)
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FIG. 1. S4(B|A)=S,4(A|B) versus &,y,2z) for typical values of
g: (@ q=1/2 for the solid linesg=2 for the dashed lines, argl
=5 for the dotted lines, along the directions,@,0), (x,x,0), and
(x,x,x) from top to bottom;(b) for (x,y,z) along the edge joining
|®F) and| P ™) or, equivalently|®*) and|®~) (notice the sym-
metry with regard to the&=—1 axi9. In factSq(BlA) varies in the

In other words, if the present conjecture is correct, separabilsame way along the six edges of the big tetrahedron indicated in

ity is impossible in the neighborhood of tH& ~) (EPR

Fig. 3 below.
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1.0 |D+>
x+y+2=1 fl (3,1,
0.8 4 X+y+Z=-1
(0.0,0.0,0.0)
0.6 (0.9,0.0,0.0) | 1>
(1.0,0.0,0.0) (1.1.1)
flosod
0.4 - (1,-3,1)
11]
< 00 {0.,0.9,0.0)
U’ (1.0,0.9,0.0)
0.2 (1.0,1.0,0.0)
(1,1,-3)
0.4 . [T
(0.9,0.9 0_9)'*.__ h FIG. 3. The physical space of the mixed state considered in the
0.6 ( 0’0 9’0 9) present paper is the tetrahedron determined by the four big circles.
(1.0.1.0.0.9) . Every big circle and its three neighboring small circles determine a
-0.8 (1.0,1.0,1.0) region (small tetrahedronwhere no separability is possible. The
A four small tetrahedra delimit a central octahedron where the system
1.0 | | K ; ; is separable. Thex+y+z=1 plane (dashed generalizes thex.
1 0 1 2 3 4 5 =1/3 Peres criterion, and plays the role of a critical surface. The

entanglement “order parameterj=1/q, is zero inside the central

octahedron, and continuously increases when we approach the four
FIG. 2. Sy(B|A)=S,(AB) versusg, for typical values of Vertices of the big tetrahedron, whese=1.

(x,y,2). The curve that forg>0 is the uppermost is given by

(2'79-1)/(1—q). The lowest curve is given by (29" 1—1)/(q

—1). Notice that six interesting nonuniform convergences occur a

g=0, namely, whenri) the (x,0,0) curves approach, for—1, the

minus infinity. Consequently, this point is an intrinsic char-
pcteristic of the quantum entanglement between the sub-
systemsA and B. Moreover, for convenience we can define
(1,0,0) curve;(ii) the (x,x,0) curves approach, for—1, the the quantityp= 1/q, E,[O'l]' which p!aysarole analogous to .
(1,1,0) curve;(iii) the (x,x,x) curves approach, fok—1, the &n order parameter in standard critical phenomena. Indeed, in
(1,1,1) curve;(iv) the (1x,0) curves approach, fox—1, the the whole region &x+y+z<1 we haven=0 (“sepa-
(1,1,0) curve;(v) the (1x,x) curves approach, fox—1, the rable” phasg; the region kx+y+z<3 corresponds there-
(1,1,1) curve;(vi) the (1,1x) curves approach, fox—1, the fore to the “nonseparable” phase, the entanglement “order
(1,1,1) curve. Fog<0, all curves, excepting the (1,1,1) one, have parameter” » reaching unity at the (1,1,1) corner of the
positive values and curvatures. The (1,1,1) curve is everywhereube in Fig. 3. If we consider now the entire physical region
negative in both value and curvature. (Fig. 3), we see thaty vanishes inside the central octahedron
described above, and is different from zero inside the four
state if and only ifx+y+2z>1. If x=y=z we recoverx. tetrahedra neighboring, respectively, the four pure states of
=1/3 (Peres criterion If all the symmetries of the problem the Bell basis; for these states it is unity. At the present stage,
are used, we obtain Fig. 3. We see there that the physicahis critical-phenomenon-like scenario is but a suggestive
space is a tetrahedron included in & 4x4 cube. The ver- analogy. Indeedy (or any other convenient quantity related
tices of the tetrahedron correspond to the four states of thg ;) cannot be considered as an order parameter in the
Bell basis. Each of these vertices is also the outer vertex of thermodynamical sense unless several other properties are
smaller tetrahedron, inside which no separability is possibleglearly understood, such as the symmetry that is broken if
These four smaller tetrahedra delimit an octahedron surany, and the parameter thermodynamically conjugate to the
rounding the originx=y=z=0 (state of full randomne$s order parametefthe associated susceptibility would diverge
Separability is possible if and only ik(y,z) belongs to this at the critical surface, i.e., the faces of the central octahe-
octahedron. This geometry coincides with that obtained irdron). Further studies are needed for better understanding the
[26] from a quite different standpoint. implications and degree of generality of the present scheme.
Let us focus on the vicinity of the EPR state. If we ob- In particular, it is still early for dismissing the alternative
serve Fig. 2 carefully we can see that all the curves such thgdossibility that thes vs x curve plays a different role,
1<x+y+z<3 exhibit, as functions of, an inflection point, namely, that of a critical line; if this turns out to be the case,
hereafter referred to ag . The inflection point runs to infin- the order parameter remains to be appropriately defined.
ity when we approach the plame-y+z=1 from above(see Summarizing, we make the following points
Fig. 3, and runs to unity when we approach the pointy (i) We have used the zero of the Abe-Rajagopal condi-
=z=1, varying continuously in between. In all cases wheretional entropy{15] [i.e., the conditior§,(A+ B)=S,(A)] as
the inflection point exists, we notice that fqr-q, the con-  a criterion for separability in a bipartite spin-1/2 system in
ditional entropy Sy(A|B)=S,(B|A) bends quickly toward the quite general statd2), and have obtained E¢21). The
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calculation itself is in fact very simplg¢as simple as the of gabove(below) g, can be considered as stronglyeakly)
non-negativity of the partially transposed density matrixentangledlike, it is quite suggestive that, in the extremely
[12], which can also be showj27] to yield Eq.(21)]. Itis  entangled caseg.g.,x=y=2z=1), q,=1, i.e., the nonex-
known that Peres’ criterion constitutes for all systems a nectensivity effects penetrate all the way down to the
essary condition for separability. For<2 and 2<3 sys-  Boltzmann-Gibbs-Shannon entropy=1), whereas in the
tems, it also constitutes a sufficient condition. However, forseparaple phasée.g., 0<sx=y=z<1/3) those effects are
more complex systen{d 2,28, such as X3 and 2<4, itis  «gismissed” out toq—soe.

known to be not su_fficienE13,14|. The dis_cussi(_)n of other Generally speaking, the present work reinforces the now
systemg(e.g., generidM X N ones, harmonic oscillators, and o mmon understandinig.1,29—38 that the connections and

otherg and/or of more general 22 states would certainly analogies between quantum entanglement @mmhexten-
be enlightening. In particular, this would clarify the degreesive) thermodynamics are deep and fruitful.
of generality of the Abe-Rajagopal method for determining

necessary and sufficient conditions for separabj2§]. One of us(C.T.) acknowledges warm hospitality at MIT,

(i) We have exhibited that, through the inflection pointas well as enlightening remarks from S. Abe, A. K. Rajago-
g,, quantum separability presents some analogies with stamal, D. Prato, P. W. Lamberti, R. Horodecki, P. Horodecki,
dard critical phenomena (d/ vanishes in the separable re- and M. Horodecki. F. C. Alcaraz, who pointed out to us that
gion and is positive in the nonseparable region, achieving it®eres’ procedure also yields E@1), is acknowledged as
maximum value, namely unity, in the fully entangled stateswell. This work was supported in part by DARPA under the
such as the EPR opeSince entropie$,(B|A) with values  QUIC initiative.
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