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A bipartite spin-1/2 system having the probabilities (113x)/4 of being in the Einstein-Podolsky-Rosen
~EPR! entangled stateuC2&[(1/A2)(u↑&Au↓&B2u↓&Au↑&B) and 3(12x)/4 of being orthogonal is known to
admit a local realistic description if and only ifx,1/3 ~Peres criterion!. We consider here a more general case
where the probabilities of being in the entangled statesuF6&[(1/A2)(u↑&Au↑&B6u↓&Au↓&B) and uC6&
[(1/A2)(u↑&Au↓&B6u↓&Au↑&B) ~Bell basis! are given, respectively, by (12x)/4, (12y)/4, (12z)/4, and (1
1x1y1z)/4. Following Abe and Rajagopal, we use the nonextensive entropic formSq[(12Trrq)/(q21)
(qPR;S152Trr ln r) which has enabled a current generalization of Boltzmann-Gibbs statistical mechanics,
and determine the entire region in the (x,y,z) space where the system is separable. For instance, in the vicinity
of the EPR state, separability occurs if and only ifx1y1z,1, which recovers Peres’ criterion whenx5y
5z. In the vicinity of the other three states of the Bell basis, the situation is identical. These results illustrate
the computational power of this nonextensive-quantum-information procedure. In addition to this, a critical-
phenomenon-like scenario emerges which enrichens the discussion.
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Quantum entanglement is a manifestation of the esse
nonlocality of the quantum world, and a most intriguin
physical phenomenon. It was first discussed as early as 1
by Einstein, Podolsky, and Rosen~EPR! @1# and by Schro¨-
dinger@2#, and has regained intensive interest in recent ye
due to its remarkable applications in quantum computat
teleportation, and cryptography@3–7#, among others, as we
as its connections to quantum chaos@8#.

Two systemsA andB are said to beuncorrelatedif and
only if the density operatorrA1B can be written as

rA1B5rA^ rB ~TrA1BrA1B5TrArA5TrBrB51!,
~1!

i.e., if and only if

rA1B5~TrArA1B! ^ ~TrBrA1B!. ~2!

Otherwise,A andB are said to becorrelated. The concept of
correlation is not distinctively classical or quantum. There
another concept, more subtle, that can exist only in quan
systems, and that is(quantum) entanglement. Two systemsA
and B are said to be(quantum) unentangled~or separable,
and possibly admitting alocal description with ‘‘hidden’’
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variables, which is sometimes referred to aslocal realism! if
and only if the corresponding density operator can be writ
as

rA1B5(
i 51

W

pirA
( i )

^ rB
( i ) S pi>0 ; i ,(

i 51

W

pi51D . ~3!

Otherwise,A and B are said to beentangled~or nonsepa-
rable!. Clearly, if A and B are uncorrelated, they are une
tangled; the opposite is not true. The definition of entang
ment is not necessarily simple to implement, since it mig
be relatively easy in a specific case to exhibit the form of E
~3!, but it can be nontrivial to prove that it cannot be pr
sented in that form. Consequently, through the years ap
ciable effort has been dedicated to the establishment of g
eral operational criteria, preferentially in the form o
necessary and sufficient conditions whenever possible.
particular case whereA andB are just two simple spins 1/2 i
paradigmatic, and illustrates well the relevant points.

The simplest basis for describing such systems
u↑&Au↑&B , u↑&Au↓&B , u↓&Au↑&B , and u↓&Au↓&B . All these
states clearly are unentangled. Another popular ba
~the Bell basis!, convenient for a variety of experimen
tal situations, is the singlet uC2&[(1/A2)(u↑&Au↓&B

2u↓&Au↑&B) and uC1&[(1/A2)(u↑&Au↓&B1u↓&Au↑&B),
uF6&[(1/A2)(u↑&Au↑&B6u↓&Au↓&B) and uC6&. Each state
of this basis is fully entangled. The states satisfy
©2001 The American Physical Society04-1



s

e

th

,
-
al
ns

a

fo

m
ze
in
ns

t

-

in-

heo-

-

m.
pa-

ly
s
hy

s-
lau-

tem

ave
en-
esh-

nt
tite
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uF1&^F1u1uF2&^F2u1uC1&^C1u1uC2&^C2u

51̂A1B[1̂A^ 1̂B ~4!

with Tr1̂A1B52Tr1̂A52Tr1̂B54.
We assume now that our bipartite system is in the

called Werner-Popescu state@9,10#, namely,

rA1B5
12x

4
~ uF1&^F1u1uF2&^F2u1uC1&^C1u!

1@~113x!/4#uC2&^C2u ~5!

or equivalently

rA1B5
12x

4
1̂A1B1xuC2&^C2u ~0<x<1!, ~6!

where we have used Eq.~4!. For x51 andx50 we have the
fully entangled EPR state and the fully random one, resp
tively. The question arises: up to what value ofx is the sys-
tem separable? The use of the Bell inequality yields that
threshold cannot exceed 1/A2.0.71. The use of thea en-
tropic inequality @11# yields a more severe restriction
namely, that it cannot exceed 1/A3.0.58. The strongest re
sult, i.e., the necessary and sufficient condition, was fin
found ~by imposing the non-negativeness of the partial tra
pose of the density matrix! by Peres@12#, and it isxc51/3.
Peres’ criterion is known to be a necessary condition for
sytems, and has been shown to be also sufficient for 232
and 233 systems, whereas it is known to be insufficient
333 and 234 or more complex systems@13,14#. In a recent
paper, Abe and Rajagopal@15# reobtained Peres’xc51/3 re-
sult in an extremely elegant way. Let us briefly recall it.

Thermostatistically anomalous systems can, in so
cases, be handled within a formalism that generali
Boltzmann-Gibbs statistical mechanics. This formalism,
troduced in 1988@16#, has been used in many applicatio
@17# and has already received several verifications@18–23#.
It is based on the entropic form

Sq5
12Trrq

q21
~qPR,Trr51,S152Trr ln r!. ~7!

This quantity is non-negative (;q), concave~convex! for q
.0 (q,0), and satisfies the property:

Sq~rA^ rB!5Sq~rA!1Sq~rB!1~12q!Sq~rA!Sq~rB!.
~8!

Consequently, it issuperextensive, extensive, or subextensive
if q,1, q51, or q.1, respectively. Also, it is extremal a
equiprobability, i.e., Sq(1̂/W)5(W12q21)/(12q) with
S1(1̂/W)5 ln W.

Reference@15# defines the followingconditional entropy:

Sq~BuA![
Sq~A1B!2Sq~A!

11~12q!Sq~A!
, ~9!
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whereSq(A1B)[Sq(rA1B) andSq(A)[Sq(TrBrA1B). The
conditional entropySq(AuB) is defined in an analogous man
ner. Consequently, Eq.~9! implies

Sq~A1B!5Sq~A!1Sq~BuA!1~12q!Sq~A!Sq~BuA!
~10!

5Sq~B!1Sq~AuB!1~12q!Sq~B!Sq~AuB!. ~11!

These expressions generalize@24# Eq. ~8!, which is recov-
ered as the particular case whererA1B5rA^ rB and hence
Sq(AuB)5Sq(A) andSq(BuA)5Sq(B). Also, for q51, they
reproduce one of the Shannon-Khinchin axioms for obta
ing the Boltzmann-Gibbs form for the entropy, i.e.,S1. Fi-
nally, it can be shown@15# that, for all values ofq, these
expressions are consistent with the celebrated Bayes t
rem.

The entropiesSq(A1B), Sq(A), andSq(B) are necessar
ily non-negative. This is also true forSq(AuB) andSq(BuA)
if the system is classical, but not necessarily if it is quantu
Therefore, this property can be used as a criterion for se
rability ~see also@25#!. The conjecture~at least for some
classes of systems! is that the system is separable if and on
if both Sq(AuB) andSq(BuA) are non-negative for all value
of q. Let us stress that there is no general reason w
Sq(AuB) andSq(BuA) should be equal, not even in the cla
sical case. Although we have no general proof, it seems p
sible that bothSq(AuB) andSq(BuA) decrease monotonically
with q. In that case, the conjecture becomes that the sys
is separable if and only if bothS`(AuB) and S`(BuA) are
non-negative. As already stated, Abe and Rajagopal h
applied this procedure to the Werner-Popescu state m
tioned above, and have successfully recovered Peres’ thr
old xc51/3 @15#.

In order to illustrate the simplicity of use of the prese
criterion, we shall assume the following state for the bipar
spin-1/2 system:

rA1B5
12x

4
uF1&^F1u1

12y

4
uF2&^F2u

1
12z

4
uC1&^C1u1

11x1y1z

4
uC2&^C2u

~12!

or equivalently

rA1B5
1

4
1̂A1B2

x

4
uF1&^F1u2

y

4
uF2&^F2u

2
z

4
uC1&^C1u1~x1y1z!uC2&^C2u, ~13!

with x,y,z<1. Equations~5! and ~6! are reproduced in the
x5y5z case. The pure statesuF1&, uF2&, uC1&, anduC2&
~EPR state!, respectively, correspond to (x,y,z)5
(23,1,1),(1,23,1),(1,1,23), and (1,1,1).

Let us now calculateSq(A1B). Equation~12! implies
4-2
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rA1B
q 5S 12x

4 D q

uF1&^F1u1S 12y

4 D q

uF2&^F2u

1S 12z

4 D q

uC1&^C1u1S 11x1y1z

4 D q

uC2&^C2u;

~14!

hence

Sq~A1B!5
1

12q F S 12x

4 D q

1S 12y

4 D q

1S 12z

4 D q

1S 11x1y1z

4 D q

21G . ~15!

Let us now calculateSq(AuB). We need to knowrA
5TrBrA1B , i.e.,

rA5
12x

4
TrBuF1&^F1u1

12y

4
TrBuF2&^F2u

1
12z

4
TrBuC1&^C1u1

11x1y1z

4
TrBuC2&^C2u;

~16!

hence

rA5
1

2
1̂A , ~17!

where we have used the fact that TrBuF1& ^F1u
5TrBuF2& ^F2u5TrBuC1& ^C1u5TrBuC2& ^C2u5 1

2 1̂A .
Equation~17! implies

rA
q5

1

2q
1̂A ; ~18!

hence

Sq~A!5
212q21

12q
. ~19!

Substituting expressions~15! and~19! into Eq.~9! we obtain
Sq(AuB) as an explicit function of (x,y,z;q) ~see Figs. 1 and
2!. Both Sq(A1B) and Sq(AuB) are invariant under the
transformations (x,y,z)→(x,z,y), (x,y,z)→(2x2y
2z,x,y), and the analogous ones.Sq(AuB)5Sq(BuA)50
implies

S 12x

4 D q

1S 12y

4 D q

1S 12z

4 D q

1S 11x1y1z

4 D q

5
1

2q21
.

~20!

In the limit q→`, this relation implies

x1y1z51. ~21!

In other words, if the present conjecture is correct, separa
ity is impossible in the neighborhood of theuC2& ~EPR!
04210
il-

FIG. 1. Sq(BuA)5Sq(AuB) versus (x,y,z) for typical values of
q: ~a! q51/2 for the solid lines,q52 for the dashed lines, andq
55 for the dotted lines, along the directions (x,0,0), (x,x,0), and
(x,x,x) from top to bottom;~b! for (x,y,z) along the edge joining
uF1& and uC2& or, equivalently,uF1& and uF2& ~notice the sym-
metry with regard to thex521 axis!. In factSq(BuA) varies in the
same way along the six edges of the big tetrahedron indicate
Fig. 3 below.
4-3
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CONSTANTINO TSALLIS, SETH LLOYD, AND MICHEL BARANGER PHYSICAL REVIEW A63 042104
state if and only ifx1y1z.1. If x5y5z we recoverxc
51/3 ~Peres criterion!. If all the symmetries of the problem
are used, we obtain Fig. 3. We see there that the phys
space is a tetrahedron included in a 43434 cube. The ver-
tices of the tetrahedron correspond to the four states of
Bell basis. Each of these vertices is also the outer vertex
smaller tetrahedron, inside which no separability is possi
These four smaller tetrahedra delimit an octahedron
rounding the originx5y5z50 ~state of full randomness!.
Separability is possible if and only if (x,y,z) belongs to this
octahedron. This geometry coincides with that obtained
@26# from a quite different standpoint.

Let us focus on the vicinity of the EPR state. If we o
serve Fig. 2 carefully we can see that all the curves such
1,x1y1z,3 exhibit, as functions ofq, an inflection point,
hereafter referred to asqI . The inflection point runs to infin-
ity when we approach the planex1y1z51 from above~see
Fig. 3!, and runs to unity when we approach the pointx5y
5z51, varying continuously in between. In all cases whe
the inflection point exists, we notice that forq.qI the con-
ditional entropySq(AuB)5Sq(BuA) bends quickly toward

FIG. 2. Sq(BuA)5Sq(AuB) versus q, for typical values of
(x,y,z). The curve that forq.0 is the uppermost is given b
(212q21)/(12q). The lowest curve is given by2(2q2121)/(q
21). Notice that six interesting nonuniform convergences occu
q50, namely, when~i! the (x,0,0) curves approach, forx→1, the
(1,0,0) curve; ~ii ! the (x,x,0) curves approach, forx→1, the
(1,1,0) curve;~iii ! the (x,x,x) curves approach, forx→1, the
(1,1,1) curve; ~iv! the (1,x,0) curves approach, forx→1, the
(1,1,0) curve; ~v! the (1,x,x) curves approach, forx→1, the
(1,1,1) curve; ~vi! the (1,1,x) curves approach, forx→1, the
(1,1,1) curve. Forq,0, all curves, excepting the (1,1,1) one, ha
positive values and curvatures. The (1,1,1) curve is everywh
negative in both value and curvature.
04210
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minus infinity. Consequently, this point is an intrinsic cha
acteristic of the quantum entanglement between the s
systemsA andB. Moreover, for convenience we can defin
the quantityh[1/qIP@0,1#, which plays a role analogous t
an order parameter in standard critical phenomena. Indee
the whole region 0<x1y1z<1 we haveh50 ~‘‘sepa-
rable’’ phase!; the region 1,x1y1z<3 corresponds there
fore to the ‘‘nonseparable’’ phase, the entanglement ‘‘ord
parameter’’h reaching unity at the (1,1,1) corner of th
cube in Fig. 3. If we consider now the entire physical regi
~Fig. 3!, we see thath vanishes inside the central octahedr
described above, and is different from zero inside the f
tetrahedra neighboring, respectively, the four pure state
the Bell basis; for these states it is unity. At the present sta
this critical-phenomenon-like scenario is but a sugges
analogy. Indeed,h ~or any other convenient quantity relate
to qI) cannot be considered as an order parameter in
thermodynamical sense unless several other properties
clearly understood, such as the symmetry that is broke
any, and the parameter thermodynamically conjugate to
order parameter~the associated susceptibility would diverg
at the critical surface, i.e., the faces of the central octa
dron!. Further studies are needed for better understanding
implications and degree of generality of the present sche
In particular, it is still early for dismissing the alternativ
possibility that theh vs x curve plays a different role
namely, that of a critical line; if this turns out to be the cas
the order parameter remains to be appropriately defined

Summarizing, we make the following points
~i! We have used the zero of the Abe-Rajagopal con

tional entropy@15# @i.e., the conditionSq(A1B)5Sq(A)# as
a criterion for separability in a bipartite spin-1/2 system
the quite general state~12!, and have obtained Eq.~21!. The

t

re

FIG. 3. The physical space of the mixed state considered in
present paper is the tetrahedron determined by the four big circ
Every big circle and its three neighboring small circles determin
region ~small tetrahedron! where no separability is possible. Th
four small tetrahedra delimit a central octahedron where the sys
is separable. Thex1y1z51 plane ~dashed! generalizes thexc

51/3 Peres criterion, and plays the role of a critical surface. T
entanglement ‘‘order parameter’’h[1/qI is zero inside the centra
octahedron, and continuously increases when we approach the
vertices of the big tetrahedron, whereh51.
4-4
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calculation itself is in fact very simple@as simple as the
non-negativity of the partially transposed density mat
@12#, which can also be shown@27# to yield Eq. ~21!#. It is
known that Peres’ criterion constitutes for all systems a n
essary condition for separability. For 232 and 233 sys-
tems, it also constitutes a sufficient condition. However,
more complex systems@12,28#, such as 333 and 234, it is
known to be not sufficient@13,14#. The discussion of othe
systems~e.g., genericM3N ones, harmonic oscillators, an
others! and/or of more general 232 states would certainly
be enlightening. In particular, this would clarify the degr
of generality of the Abe-Rajagopal method for determini
necessary and sufficient conditions for separability@29#.

~ii ! We have exhibited that, through the inflection po
qI , quantum separability presents some analogies with s
dard critical phenomena (1/qI vanishes in the separable r
gion and is positive in the nonseparable region, achieving
maximum value, namely unity, in the fully entangled stat
such as the EPR one!. Since entropiesSq(BuA) with values
, a

e

ev

A

o,

.b

o
is
l
-

.
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of q above~below! qI can be considered as strongly~weakly!
entangledlike, it is quite suggestive that, in the extrem
entangled cases~e.g., x5y5z51), qI51, i.e., the nonex-
tensivity effects penetrate all the way down to t
Boltzmann-Gibbs-Shannon entropy (q51), whereas in the
separable phase~e.g., 0<x5y5z,1/3) those effects are
‘‘dismissed’’ out toq→`.

Generally speaking, the present work reinforces the n
common understanding@11,29–36# that the connections an
analogies between quantum entanglement and~nonexten-
sive! thermodynamics are deep and fruitful.

One of us~C.T.! acknowledges warm hospitality at MIT
as well as enlightening remarks from S. Abe, A. K. Rajag
pal, D. Prato, P. W. Lamberti, R. Horodecki, P. Horodec
and M. Horodecki. F. C. Alcaraz, who pointed out to us th
Peres’ procedure also yields Eq.~21!, is acknowledged as
well. This work was supported in part by DARPA under th
QUIC initiative.
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