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Threshold properties of attractive and repulsive 1Õr 2 potentials
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We study the near-threshold (E→0) behavior of quantum systems described by an attractive or repulsive
1/r 2 potential in conjunction with a shorter-ranged 1/r m (m.2) term in the potential tail. For an attractive 1/r 2

potential supporting an infinite dipole series of bound states, we derive an explicit expression for the threshold
value of the pre-exponential factor determining the absolute positions of the bound-state energies. For poten-
tials consisting entirely of the attractive 1/r 2 term and a repulsive 1/r m term, the exact expression for this
prefactor is given analytically. For a potential barrier formed by a repulsive 1/r 2 term ~e.g., the centrifugal
potential! and an attractive 1/r m term, we derive the leading near-threshold behavior of the transmission
probability through the barrier analytically. The conventional treatment based on the WKB formula for the
tunneling probability and the Langer modification of the potential yields the right energy dependence, but the
absolute values of the near-threshold transmission probabilities are overestimated by a factor which depends on
the strength of the 1/r 2 term ~i.e., on the angular momentum quantum numberl ) and on the powerm of the
shorter ranged 1/r m term. We derive a lower bound for this factor. It approaches unity for largel, but it can
become arbitrarily large for fixedl and large values ofm. For the realistic examplel 51 and m56, the
conventional WKB treatment overestimates the exact near-threshold transmission probabilities by at least 38%.

DOI: 10.1103/PhysRevA.63.042102 PACS number~s!: 03.65.Ge
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I. INTRODUCTION

Encouraged by the interest in cold atoms and their in
actions, there has recently been strong activity in the stud
atomic and molecular systems near the threshold which s
rates the bound-state regime from the continuum@1#. The
Schrödinger equation for a particle of massM in a potential
V(r ) is

c9~r !1
2M
\2

@E2V~r !#c~r !50, r .0, ~1!

and the behavior of its solutions near threshold depends
cially on the asymptotic~large-r ) behavior of the potential.

For long ranged potentials falling off slower than 1/r 2

~e.g., the Coulomb potential!, the thresholdE50 represents
the semiclassical limit@2#, and there are infinitely many
bound states if the potential tail is attractive. The behavio
the quasicontinuum of bound states just below threshold
the real continuum above threshold is well understood
least for the case of one Coulombic coordinate, on the b
of quantum defect theory.

For potentials tails falling off faster than 1/r 2, the thresh-
old E50 represents the anticlassical limit of the Schro¨dinger
equation, and the potential supports at most a finite num
of bound states. Near-threshold properties of bound and
tinuum states for deep potentials with attractive tails falli
off faster than 1/r 2 have been the subject of several rece
publications@3–11#.

This paper deals with potentials asymptotically prop
tional to 1/r 2 which represent the borderline separating
long-range tails from shorter-range tails. For a potential p
portional to 1/r 2, the energy dependence scales out of
Schrödinger equation~1!; the semiclassical limit is reache
neither forE→0 nor for uEu→`, but for large absolute val
1050-2947/2001/63~4!/042102~11!/$20.00 63 0421
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ues of the potential strength@2#. Repulsive 1/r 2 potentials
appear commonly as centrifugal potential in the radial Sch¨-
dinger equation. An attractive 1/r 2 potential can occur
through the interaction of a charged particle with a perm
nent electric dipole, as in the scattering of electrons by po
molecules@12# or by excited hydrogen atoms@13–15#. If
such an attractive 1/r 2 potential is sufficiently strong, it sup
ports an infinite ‘‘dipole series’’ of bound states@13–17#.
Moderately strong attractive 1/r 2 potentials have been see
as a probable mechanism for the generation of ‘‘quant
halo states’’@18#. If the strength of the~attractive! 1/r 2 term
is too weak, then the potential supports at most a finite nu
ber of bound states~see, e.g., Ref@19#!.

We study potentials behaving for larger as

V~r !5
\2

2M F g

r 2
6

bm22

r m G , m.2. ~2!

The dimensionless strength parameterg of the 1/r 2 term can
be positive or negative, and for the centrifugal potential
the radial part of the three-dimensional Schro¨dinger equation
with angular momentum quantum numberl we have
g5 l ( l 11). The strength of the 1/r m term is expressed in
terms of the ~non-negative! parameterb, which has the
physical dimension of a length.

For m54 the Schro¨dinger equation with potential~2!
posesses analytical solutions based on Mathieu funct
@20–22#. More general potentials like Eq.~2! have been stud-
ied extensively over the years@23–28#, mainly with the aim
of understanding scattering properties. In the present pa
we focus on two particular features of 1/r 2 potentials. In Sec.
II we study potentials with an attractive 1/r 2 term strong
enough to support an infinite dipole series of bound sta
and we calculate the threshold value of the factor determ
ing the absolute values of the energies in the series. In
©2001 The American Physical Society02-1
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III we study potential barriers consisting of a repulsive 1r 2

term and an attractive 1/r m term, and we derive the exac
expression for the near-threshold behavior of the transm
sion probability through the barrier. This enables us to giv
founded judgement on the accuracy of the conventional p
cedure for deriving transmission probabilities which is bas
on the WKB formula and the Langer modification of th
potential.

II. DIPOLE SERIES OF BOUND STATES

When the 1/r 2 term in the potential tail@Eq. ~2!# is attrac-

tive, we haveg
def

52g.0. If the strength parameterg is suf-

ficiently large, viz. g.1/4, then the potential supports a
infinite ‘‘dipole series’’ of bound states whose energies a
proach an exponential behavior near threshold@13–17#:

En 5
n→`

2F expS 2
2pn

Ag21/4
D . ~3!

The limiting value of the ratio of successive energies in
dipole series is fixed by the strength of the 1/r 2 term in the
potential tail, and is simply limn→`En /En11

5exp(2p/Ag21/4). However, the constant of proportiona
ity F in Eq. ~3! depends very sensitively on the potential
shorter distances, where it necessarily deviates from ther 2

behavior.
We first look at the case where the shorter ranged t

proportional to 1/r m is attractive. At threshold,E50, the
Schrödinger equation~1! with potential~2! is

F d2

dr2
1

g

r 2
1

bm22

r m GM ~r !50. ~4!

We introduce the abbreviations

t5
defAg2

1

4
, j5

def 2t

m22
5

2

m22
Ag2

1

4
. ~5!

Two linearly independent analytical solutions of Eq.~4! are

M1;2~r !5ArJ6 i j~r!, r5
def 2

m22 S b

r D (m22)/2

. ~6!

Here J6 i j stands for the ordinary Bessel function@29# of
order6 i j. The asymptotic (r→`) behavior of solutions~6!
is

M1;2~r !;
~m22!7 i j

G~16 i j!
Ar S b

r D 6 i tS 12
~b/r !m22

~m22!2~16 i j!
D .

~7!

For sufficiently larger, the shorter-ranged term in th
potential tail can be neglected, so the Schro¨dinger equation
for finite negative energy,E52\2k2/(2M), is
04210
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m

F d2

dr2
1

g

r 2
2k2GR50. ~8!

The solutions of Eq.~8! are functions ofkr only, and the
physically relevant solution is

R~kr !5 i expS 2
p

2
t DAkrH i t

(1)~ ikr !, ~9!

which behaves asymptocially (kr→`) as

R~kr !;A2

p
exp~2kr !. ~10!

The functionHi t
(1) in ~10! is the Hankel function of orderi t

as defined in Ref.@29#,

Hi t
(1)~z!5

exp~pt!Ji t~z!2J2 i t~z!

sinh~pt!
. ~11!

For sufficiently small values ofk, we may use the smal
argument expansion of the Bessel functions in Eq.~11! to
obtain

R~kr ! ;
kr→0A kr

pt sinh~pt!Fe2 iuS kr

2 D i t

1e1 iuS kr

2 D 2 i tG
3@11O„~kr !2

…#, ~12!

whereu
def

5 arg G( i t). Ther dependence of the leading term
in Eq. ~12! is the same as the large-r behavior@Eq. ~7!# of the
zero-energy wave functions@Eqs. ~6!# in the full potential
tail @Eq. ~2!#, so we can determine the near-threshold~real!
solution of the Schro¨dinger equation to order belowk2 by
taking the appropriate superposition of the solutions~6!,

R~kr !5LM1~r !1L* M2~r !5
def

Mk~r !. ~13!

The coefficientL is determined by the condition that th
leading asymptotic (r→`) terms derived for Eq.~13! from
Eq. ~7! agree with the corresponding leading terms in E
~12!:

L5A k

pt sinh~pt!
eiuG~11 i j!~m22! i jS kb

2 D 2 i t

.

~14!

Solutions~6! of the Schro¨dinger equation~4! at energy
zero are accurate as long as the energy termk2 is negligible
in comparison with the smaller of the two potential term
which is g/r 2 when the shorter-ranged term is domina
This implies

r !
Ag

k
. ~15!

The Schro¨dinger equation with the full potential tail can b
approximated by its asymptotic form@Eq. ~8!#, whenr is so
2-2
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large that the shorter ranged termbm22/r m is negligible
compared with the longer-ranged termg/r 2, implying

r @
b

g1/(m22)
. ~16!

We can match the superposition@Eq. ~13!# of zero-energy
solutions to solutions~9!,~12! of Eq. ~8! if there is a region of
r values, where conditions~16! and ~15! are satisfied simul-
taneously. This is the case when the right-hand side of
~15! is much larger than the right-hand side of Eq.~16!, i.e.,
when

kb!g(1/2)1[1/(m22)]. ~17!

In other words, matching is justified in the limitk→0, which
is sufficient to determine the leading near-threshold beha
of the energy eigenvalues. An estimate for the numer
accuracy of the near-threshold formulas derived below c
not, however, be given on the basis of the leading te
alone. For this we would require a knowledge of the next-
leading terms, for which we would have to include corre
tions of orderE in the wave functions.

As r decreases, the argumentr in solutions~6! becomes
large, and we approximate the near-threshold wave func
~13! via the large argument expansion of the Bessel functi
@29#, J6 i j(r);A2/(pr)cos@r7i(p/2)j21

4p#,

Mk~r ! }
r→0

r m/4 cosS r2
p

4
1d D , ~18!

whered is an angle defined by

tand5tanhS p

2
j D tanS u1x1

p

2
2t ln qD ,

q5
kb

2~m22!2/(m22)
; ~19!

in analogy tou5arg G( i t) @see Eq.~12!# we have intro-

duced the abbreviationx
def

5argG( i j).
The regular solutionc reg(r ) of the Schro¨dinger equation

also depends on the potential at smallr values, and vanishe
at r 50. Bound states exist for energies at which the regu
solution matches to the wave function@Eq. ~13!# in the re-
gion where the potential is already dominated by the t
power-law terms of the tail@Eq. ~2!#, so the condition of
quantization, quite generally, is

c reg8

c reg
5

Mk8

Mk
. ~20!

Semiclassical wave functions are defined with the help
the local classical momentum,

p~r !5A2M@E2V~r !#, ~21!
04210
q.

or
al
n-
s
-
-

n
s

r

o

f

and WKB wave functions,cWKB}p21/2exp@6(i/\)*pdr#, are
accurate solutions of the Schro¨dinger equation when the fol
lowing condition is fulfilled@2#:

1

16p2 US dl

dr D
2

22l
d2l

dr2U!1, ~22!

wherel(r )52p\/p(r ) is the~local! de Broglie wavelength.
For potentials behaving as 1/r m, m.2, condition~22! is ful-
filled increasingly well asr decreases. We assume that the
is a range ofr values in the potential well where conditio
~22! is well fulfilled so that the WKB wave function,

cWKB~r !}
1

Ap~r !
cosS 1

\Er in

r

p~r 8!dr82
f in

2 D ~23!

is an accurate solution of the Schro¨dinger equation, see
Fig. 1. The anglef in in Eq. ~23! is the reflection phase at th
inner classical turning pointr in , which is defined so that the
WKB wave function~23! agrees with the exact quantum m
chanical wave functionc reg in this ‘‘WKB region’’; f in can
be taken to bep/2 if the conditions of the semiclassical lim
are fulfilled near the inner classical turning point@30#.

The r dependence of both the amplitude and the phas
the wave function~18! is that of the WKB wave function
~23! at E50, when the potential nearr is given by the
shorter-ranged term in the tail alone,

2M
\2

V~r !52
bm22

r m
, p~r !5\

b (m22)/2

r m/2
,

FIG. 1. Schematic illustration of a potential with a tail@Eq. ~2!#
consisting of an attractive 1/r 2 term and an attractive 1/r m term.
Near-threshold solutions of the Schro¨dinger equation are well ap
proximated by WKB wave functions in the ‘‘WKB region.’’ We
assume that this WKB region overlaps with a region of moderar
values where the potential is dominantly described by the 1r m

term.
2-3
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1

\Er in

r

p~r 8!dr85const2r. ~24!

If the WKB region overlaps with a range ofr values where
the potential is dominated by the 1/r m term ~see Fig. 1!, then
the quantization condition can be formulated by match
wave functions~23! and ~18! in this range of overlap. We
expect the WKB wave function here to be a smooth~ana-
lytic! function of energy, so, to order less thank2, we can
assumeE50 in Eq. ~23!. Equating the cosines in Eqs.~23!
and ~18! leads to the quantization condition

1

\Er in

r

p~r 8!dr82
f in

2
5np2r1

p

4
2d, ~25!

where the action integral on the left-hand side is to be ta
at threshold,E50. In the region of overlap, where the WK
approximation is accurateand the potential is dominated b
the 1/r m term, the r dependence of the action integral
compensated for by the term2r on the right-hand side o
Eq. ~25! @cf. Eq. ~24!#, so the expression

I 05
def1

\Er in

r

p~r 8!dr81
2

m22 S b

r D (m22)/2

2
f in

2
2

p

4
~26!

is independent ofr. With the help of Eq.~19! the quantiza-
tion condition~25! thus reduces to

tanS u1x1
p

2
2t ln qD5

tand

tanh~jp/2!
52

tanI 0

tanh~jp/2!
,

~27!

which is equivalent to

k25
4~m22!4/(m22)

b2
expH 2

t Fu1x1
p

2

1arctanS tanI 0

tanh~jp/2! D G J . ~28!

The multivalued nature of the arcus tangent in the expon
on the right-hand side of Eq.~28! allows the subtraction o
np (n is an integer!, and this leads to the known asymptot
(E→0) behavior of the energies of the dipole series,

En52
\2kn

2

2M 5
n→`

2F expS 2
2pn

t D . ~29!

The theory above now allows us to give an explicit expr
sion for the prefactorF in Eq. ~29!, namely,

F5
2\2

Mb2
~m22!4/(m22)expH 2

t Fu1x1
p

2

1arctanS tanI 0

tanh~jp/2! D G J . ~30!
04210
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Result ~30! holds under the condition that there is a WK
region where condition~22! is well fulfilled, and that this
region overlaps with a region ofr values where the potentia
is dominated by the 1/r m term; see Fig. 1. A definite choic
of the branch of arctan@tanI 0 /tanh(jp/2)# in Eq. ~30! fixes
the quantum numbersn assigned to the individual levels. If
in a given potential, we fix the numbering of levels, e.g.,
starting withn50 for the ground state, then this determin
which branch of the arcus tangent is to be taken. The cho
of branch remains undetermined in our present theory ba
on the near-threshold wave functions.

We now consider the case that the shorter ranged t
proportional to 1/r m is repulsive, and that the two terms@Eq.
~2!# constitute the whole potential~see Fig. 2!. This potential
again supports an infinite dipole series if the strength of
~attractive! 1/r 2 term is large enough (g.1/4).

The Schro¨dinger equation is given by

F d2

dr2
1

g

r 2
2

bm22

r m
2k2Gc~r !50. ~31!

In order to obtain near-threshold wave functions for sm
and moderate values ofr, we neglect the energy term in Eq
~31!, and the resulting equation

F d2

dr2
1

g

r 2
2

bm22

r m GZ~r !50 ~32!

can be solved with the help of Bessel functions. We keep
abbreviations t and j as defined in Eq.~5! with u
5argG( i t) and x5argG( i j). The real solution of Eq.~32!
which obeys the physical condition of vanishing at the orig
is

FIG. 2. Potential@Eq. ~2!# consisting entirely of a repulsive 1/r m

term and an attractive 1/r 2 term. Herem54 andg52g5200, so
the potential corresponds to the caseh55 studied by Varshni@32#.
The potential is given in units of its depthDe at its minimumr e ;
see Eq.~39!.
2-4
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Z~r !5 i exp@2pj/2#ArH i j
(1)~ ir!, r5

2

m22 S b

r D (m22)/2

,

~33!

which behaves as

Z~r !;Am22

p
bS r

b D m/4

exp~2r! ~34!

for small r.
For large values ofr we use the small argument expansi

@29# of the Hankel functionHi j
(1) in Eq. ~33!, and obtain the

leading terms

Z~r !;A r

pj sinh~pj!F ~m22! i jeixS r

b D i t

1~m22!2 i je2 ixS r

b D 2 i tG . ~35!

These leading terms must, except for a common constan
proportionality, agree with the near-threshold limit of wa
function ~9! as given in Eq.~12!, i.e., the ratios of the coef
ficients ofr 2 i t andr i t must be the same in Eq.~35! as in Eq.
~12!. This leads to the condition,

S kb

2 D 2i t

5~m22!2i je2i (u1x), ~36!

which is equivalent to exp@2i(u1x)#5exp(2it ln q), with q
5 1

2 kb(m22)22/(m22) as in Eq.~19!. This corresponds to
the quantization condition

kn
25

4~m22!4/(m22)

b2
expF2

t
~u1x2np!G , ~37!

where the multivalued contribution2np on the right-hand
side originates from the multivalued nature of the expon
tials in Eq.~36!. For the energiesEn we again obtain expres
sion ~29!, but for the prefactor we now have the analytic
formula

F~m,g!5
2\2

Mb2
~m22!4/(m22)e2(u1x)/t. ~38!

The Schro¨dinger equation~31! was studied by Papp@31#
and Varshni@32# for the casem54 with the aim of testing
approximation schemes such as the 1/N expansion and the
WKB approximation. As is customary in molecular physic
the parameters defining the potential are taken as the pos
r e of the potential minimum and the depthDe52V(r e) of
the well. The energies are normalized to the depth,«n
5En /De , and these normalized energies now depend o
on the strengthg of the attractive 1/r 2 term, which is related
to a parameter calledh2 in Ref. @32#. In terms of our poten-
tial parametersg andb, the parameters of Ref.@32# are
04210
of

-

l

,
on

ly

r e
252

b2

g
, De5

\2g2

8Mb2
, h25

g

8
. ~39!

For m54 the parameterst andj defined by Eq.~5! are
the same, and, according to Eqs.~37! and~38!, the threshold
behavior of the normalized energies is

«n5
En

De
52 f e22pn/t, f 5

F~m54,g!

De
5

e4u/t

h4
. ~40!

For potentials withh55, 15, and 25 Varshni@32# listed
normalized eigenvalues for quantum numbers fromn50 for
the ground state ton59, 30, and 55, respectively. In order t
demonstrate how these dipole series approach the limi
behavior@Eq. ~40!#, we plot the logarithms lnfn of the effec-
tive strength parameters

f n52«n3e2pn/t ~41!

against the quantum numbern. In the limit n→`, these ef-
fective strengths converge to the strengthf in Eq. ~40!. Here
f is defined only to within a factor consisting of an arbitra
integer power of exp(2p/t), so lnf is only defined modulo
2p/t. A definite choice off fixes the quantum numbersn
assigned to the individual states@see the discussion after Eq
~30!#.

The results are shown in Fig. 3. The values of lnf follow-
ing from Eq.~40! for the three values ofh are listed in Table
I, and shown as dashed horizontal lines in Fig. 3. The c
vergence of the effective strengths to the respective thres
limits is obvious. This convergence implies that the energ
of the near-threshold states are, for growingn, given with
increasing~absolute and relative! accuracy by formula~29!,
with the appropriate prefactor@Eq. ~38!#, just as the near-
threshold energies of a Rydberg series in a Coulomb po
tial are given with increasing~absolute and relative! accuracy
by the Rydberg formula with the appropriate threshold va
of the quantum defect@2#.

The well known fact that conventional WKB quantizatio
breaks down near threshold, for potentials falling off fas
than 1/r 2 asymptotically, was recently interpreted as a bre
down of Bohr’s correspondence principle@33#. The threshold
is, however, an unusual place to expect quantum class
correspondence for such potentials@8,10#, because it does
not correspond to the semiclassical limit. A potential fallin
off faster than 1/r 2 supports at most a finite number of boun
states, so the limit of infinite quantum numbers, which
fundamental to the usual formulation of Bohr’s correspo
dence principle, cannot be taken. Dipole series form an
teresting special case for this discussion. For potentials
portional to 1/r 2, the accuracy of semiclassica
approximations does not depend on energy—the semicla
cal limit is reached for large absolute values of the stren
parameter@2#. However, a sufficiently attractive 1/r 2 poten-
tial tail with a fixed strength parameterg.1/4 does support
an infinite number of bound states. As is obvious from t
tables in Ref.@32#, the relative errors of the energy eigenva
ues obtained via conventional WKB quantization beco
2-5
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FIG. 3. Logarithmic plot of the effective strength parametersf n

@Eq. ~41!# for the ~normalized! energy eigenvalues«n calculated by
Varshni@32# for a potential@Eq. ~2!# consisting entirely of a repul-
sive 1/r 4 term and an attractive 1/r 2 term forh55, 15, and 25. The
dashed horizontal line in each panel shows the threshold limitf
of the ln fn as the behavior of the energies approaches the di
series form@Eq. ~40!#; also see Table I. This limit is defined onl
modulo 2p/t, and the magnitudes of 2p/t for the various values of
h are shown as vertical bars in the respective panels.
04210
larger with increasing quantum numbers for all potenti
studied.@Note, however, that higher-order WKB results a
very accurate for all quantum numbers.# Thus dipole series
in potentials with an attractive 1/r 2 tail are a genuine ex-
ample where the naive expectation that semiclassical
proximations necessarily improve in the limitn→` is not
fulfilled. This naive interpretation of Bohr’s corresponden
principle fails in the present case. Here, as elsewhere,
correspondence principle refers to the semiclassical lim
For the attractive 1/r 2 potential tail, the semiclassical limi
can be realized by taking the limit of large strength para
eters, independent of energy. For a discussion of poten
tails falling off faster than 1/r 2; see Refs.@8,10#.

III. TUNNELING

When the 1/r 2 term is repulsive and the shorter-rang
1/r m term is attractive, then potential~2! represents a barrie
typical for the radial Schro¨dinger equation with nonvanish
ing angular momentum; see Fig. 4. The Schro¨dinger equa-
tion for this barrier is

F d2

dr2
2

g

r 2
1

bm22

r m
1k2Gc~r !50, g.0. ~42!

le

TABLE I. Values of lnf for the threshold limitsf which deter-
mine, via Eq.~40!, the explicit values of the normalized energies
the dipole series generated by the Schro¨dinger equation~31! for
m54.

h g 2p/t ln f

5 200 0.444566 20.0675707
15 1800 0.148106 10.0843669
25 5000 0.0888599 10.1142865

FIG. 4. Potential barrier consisting of a repulsive 1/r 2 term and
an attractive 1/r m term. Herem56 as for a van der Waals interac
tion, and the strength of the 1/r 2 term corresponds to a centrifuga
potential with angular momentum quantum numberl 51.
2-6
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For an angular momentum quantum numberl, the strength of
the 1/r 2 term isg5 l ( l 11).

In the following we shall calculate the threshold behav
of the probability for transmission from a region of low-r
values to the left of the barrier to large-r values beyond the
barrier. Reflection by and transmission through the poten
tail @Eq. ~2!# can also be discussed in the absence of
centrifugal term,g50 @9,34#, as long as there is a range
small r values where Eq.~22! is well fulfilled so that incom-
ing and reflected WKB waves are accurate solutions of
Schrödinger equation. The following theory can be appli
for g50, and even for aweakly attractive1/r 2 term, mean-
ing thatg can be negative but must be larger than21/4.

At threshold,E50, the Schro¨dinger equation~42! is

F d2

dr2
2

g

r 2
1

bm22

r m GW~r !50. ~43!

In analogy to Eq.~5!, we introduce the abbreviations

m5
defAg1

1

4
, n5

def 2m

m22
5

2

m22
Ag1

1

4
. ~44!

The conditiong.21/4 mentioned above implies that bo
m andn are positive real numbers. Two linearly independe
solutions of Eq.~43! are

W1;2~r !5ArJ6n~r!, r5
2

m22 S b

r D (m22)/2

. ~45!

The asymptotic (r→`) behavior of solutions~45! is

W1;2~r !;
~m22!7n

G~16n!
Ar S r

b D 7mS 12
~b/r !m22

~m22!2~16n!
D .

~46!

For large values ofr the 1/r 2 term dominates the poten
tial, and the Schro¨dinger equation~42! corresponds to

F d2

dr2
2

g

r 2
1k2GU50. ~47!

The solutions of Eq.~47! are functions ofkr only, and the
solution which describes an outward traveling wave is

U~kr !5expS i
p

2
m DAkrHm

(1)~kr !, ~48!

which behaves asymptotically (kr→`) as

U~kr !;A2

p
expF i S kr2

p

4 D G . ~49!

Near threshold,kr→0, the leading contribution to Eq.~48! is
@29#

U~kr ! ;
kr→0

2 i
A2

p
eipm/2G~m!S kr

2 D (1/2)2m

. ~50!
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The r dependence of Eq.~50! agrees with ther depen-
dence of the leading asymptotic (r→`) behavior of the so-
lution W1(r ) @see Eq.~46!#, so in the near-threshold limi
k→0 these solutions can be matched according to

U~kr ! 5
kr→0

LW1~r !, ~51!

and thek-dependent coefficient is given by

L5Ak
eipm/2

ip
G~11n!G~m!~m22!nS kb

2 D 2m

. ~52!

To the left of the barrier,r→0, the large argument expan
sion of the Bessel functionJn(r) yields

W1~r !;Am22

p
bS r

b D m/4

cosS r2
p

2
n2

p

4 D , ~53!

so the wave functionLW1(r ) has the form1

LW1~r ! ;
r→0Am22

4p
bS r

b D m/4

L•~e2 ipn/2ei (r2p/4)

1e1 ipn/2e2 i (r2p/4)!. ~54!

The amplitude and phase of the two terms in Eq.~54! corre-
spond to the amplitude and phase of leftward traveling~re-
flected! and rightward traveling~incoming! waves in the
WKB approximation, which becomes increasingly accur
for small-r values where the 1/r m term dominates the
potential. The associated current densiti
J5Im@(\/M)c* dc/dr#, are

Jin/refl5
\

4pM ~m22!uLu2, ~55!

1In a recent paper, Gao@35# studied potential tails consisting of
centrifugal term and an attractive term proportional to 1/r m, m56,
and he found the following rule: If the potential well supports
zero-energy bound state for an angular momentum quantum num
l b , it will also do so for l 5 l b64, l b68, . . . ~as long asl>0).
This rule and its generalization to anym.2 follow immediately
from the properties of the wave functionW1 @Eq. ~45!#, which
solves the Schro¨dinger equation~43! with the correct asymptotic
~large r ) boundary conditions and is to be matched to the regu
solution coming from the origin. To the left of the barrier,W1(r )
becomes proportional to Eq.~53!, and depends onl only via the
contribution 2np/252( l 1 1

2 )p/(m22) to the argument of the
cosine, so the wave function is invariant up to a sign whel
changes by an integral multiple ofm22. If matching to the regular
solution yields a bound state at threshold for one angular mom
tum quantum numberl b , then it will do so also forl 5 l b6(m
22), l b62(m22), . . . (l>0). An important condition for this
rule to hold is, of course, that the wave function to the left of t
matching point be essentially unaffected by the centrifugal pot
tial; for a potential well of finite depth this cannot be fulfilled for a
arbitrarily largel.
2-7
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TABLE II. Values of the coefficient@Eq. ~58!# of (kb)2m in the leading term describing the nea
threshold behavior of the transmission probabilities@Eqs. ~57!# through a potential barrier consisting of a
attractive 1/r m potential (m.2) and a repulsive 1/r 2 ~centrifugal! potential with a strength parameterg
corresponding to angular momentum quantum numberl, m5Ag11/45 l 11/2.

P(m,g) m53 m54 m55 m56

l 50 4p 4 2.52537 1.91196
l 51 p/9 4/9 0.465421 0.464911
l 52 p/32400 4/2025 0.00527976 0.00849758
l 53 0.21987031028 0.16125031025 0.0000143161 0.0000421688
l 54 0.865576310214 0.40627331029 0.14477031027 0.85639531027

l 55 0.883151310220 0.414522310213 0.687112310211 0.878061310210

l 56 0.299916310226 0.202710310217 0.176390310214 0.517031310213

l 57 0.402416310233 0.533097310222 0.269760310218 0.190840310216

l 58 0.241743310240 0.819834310227 0.263645310222 0.470489310220

l 59 0.715162310248 0.785816310232 0.173684310226 0.812985310224

l 510 0.112305310255 0.493600310237 0.804279310231 0.102260310227
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and they are equal to leading order, because the transm
current density is of higher order ink. The transmitted wave
traveling rightward at larger values is given by Eq.~49!, and
the associated current density is

Jtrans5
2\k

pM . ~56!

In order to obtain the current density of the reflected wave
an accuracy sufficient to fulfill the continuity condition,Jin
5Jrefl1Jtrans, we would have to include higher-order term
in the solution of the Schro¨dinger equation, in particular th
contribution proportional to (kr)1/21m in the near-threshold
limit @36#. From Eqs.~56! and ~55! the transmission prob
ability T5Jtrans/Jin is, to leading order,

T5
4p2

~m22!2nmn@G~n!G~m!#2 S kb

2 D 2m

5
def

P~m,g!~kb!2m.

~57!

The parametersm andn are defined in Eq.~44!, andm is
related to the angular momentum quantum numberl of the
centrifugal potential bym5Ag11/45 l 11/2. The propor-
tionality of T to k2m, i.e., toEl 11/2, is simply an expression
of Wigner’s threshold law@2#. Sinceb is the only length
scale in the Schro¨dinger equation, the dimensionless tran
mission probability is~to leading order! naturally propor-
tional to (kb)2m. The derivation above, however, also give
for all potential barriers consisting of a repulsive~or weakly
attractive! 1/r 2 term and an attractive 1/r m term (m.2), the
exact analytical expression for the coefficient of (kb)2m:

P~m,g!5
4p2

~m22!2n22mmn@G~n!G~m!#2
. ~58!

The numerical values ofP are listed in Table II form53, 4,
5, and 6, and for strength parametersg corresponding to
angular momentum quantum numbersl 50, . . . ,10.
04210
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When the strength of the 1/r 2 term vanishes,g50, we
have m51/2 and n51/(m22); result ~57! for this case
agrees with the result derived for the reflection probabi
12T of an attractive 1/r m potential tail@9,34#. For arbitrary
g (.21/4) and the special casem54, the Schro¨dinger
equation~42! can be solved analytically with the help o
Mathieu functions@20#. The transmission probability nea
E50 can be derived from the asymptotic (r→0 and r
→`) forms of the wave functions given in Ref.@20#, and
this leads exactly to result~57! with m54. Note, however,
that the aim of Ref.@20# was to derive scattering lengths an
effective range parameters based on an expansion of the
tangent of the scattering phase shifts as functions of
asymptotic wave numberk. This expansion is not really valid
for potentials behaving like Eq.~2!, and the number of us
able leading terms it contains depends on the angular
mentum quantum numberl and on the powerm of the attrac-
tive 1/r m term. In contrast, formula~57! derived above is not
restricted in such a way. It is valid for any strength parame
g.21/4 and for any, not necessarily integer, powerm.2.

The derivation above requires the compatibility of a
proximations~43! and~47! to the Schro¨dinger equation~42!
for a common range ofr values. In analogy to Eq.~17! this
leads to the condition

kb!ugu(1/2)1[1/(m22)], ~59!

which is fulfilled in the limitk→0 for any finite value ofugu.
As mentioned above, result~57! also gives the correct lead
ing behavior for the caseg50 @9,34#.

Tunneling probabilities are frequently approximated w
the help of the WKB formula@37#,

TWKB5exp~22I !, I 5E
r in

r out1

\
up~r !udr, ~60!

where r in and r out are the two classical turning points, be
tween which the local classical momentump(r ) is purely
imaginary. For potentials falling off faster than 1/r 2, formula
~60! fails near threshold, because it yields a finite value
2-8
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E50, whereas the exact tunneling probability vanishes
this limit, as pointed out in Ref.@38#. For a potential barrier
asymptotically equal tog/r 2 @times \2/(2M)#, the WKB
tunneling probability@Eq. ~60!# is proportional tok2Ag near
threshold, so the correct energy dependenceT}Em can be
recovered with the help of the Langer modificationg→g
11/4, which amounts to replacingl ( l 11) by (l 11/2)2 for
the centrifugal potential@2,37#. Criticisms and improvement
of the Langer modification were recently discussed in va
ous contexts@2,19,30,39#. The present derivation of the as
ymptotically (E→0) exact formula for the transmissio
probability for potential barriers of the special form@Eq. ~2!#
allows us to give a founded judgement on the accuracy of
usual procedure involving the WKB formula@Eq. ~60!# with
the Langer modified potential.

The integrand of the action integral in Eq.~60! is

1

\
up~r !u5Am2

r 2 2
bm22

r m
2k2, ~61!

where we have invoked the Langer modification and
placedg by g11/45m2. Note that the conditiong.21/4,
for which the above theory is applicable, corresponds to
condition that theLanger modifiedpotential is asymptoti-
cally repulsive. We obtain an upper bound for the integraI
if we neglect one of the subtracted terms in the square r
For a given pointr̃ with r in, r̃ ,r out, we thus have

I<E
r in

r̃ Am2

r 2 2
bm22

r m
dr1E

r̃

r outAm2

r 2 2k2dr. ~62!

Inequality~62! remains valid if we replace the inner classic
turning point r in by its threshold valuer in0 and the outer
classical turning pointr out by the valuer out0 obtained by
neglecting the 1/r m term in the potential:

r in05
b

m2/(m22)
<r in , r out05

m

k
>r out. ~63!

The right-hand side of inequality~62! can then be easily
evaluated analytically. We choose the value ofr̃ such, that
the two terms neglected in the respective integrals in Eq.~62!

have equal magnitudes atr̃ :

bm22

r̃ m
5k2, kr̃5~kb!122/m5~kb!122/m. ~64!

The leading orders of the approximated action integral
then

I approx5
defE

r in0

r̃ Am2

r 2 2
bm22

r m
dr1E

r̃

r out0Am2

r 2 2k2dr

5
mm

m22 F lnS 2m

~kb!122/mD 211O„~kb!224/m
…G .

~65!
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SinceI approx is an upper bound for the action integral ente
ing the WKB expression@Eq. ~60!#, the corresponding ex
pression exp(22Iapprox) is a lower bound for the WKB ap-
proximation to the tunneling probability:

TWKB>exp~22I approx!

5S e

2m D 2mm/(m22)

~kb!2m@11O„~kb!224/m
…#.

~66!

The coefficient of (kb)2m on the right-hand side of Eq
~66! is larger than the coefficientP of (kb)2m in the exact
expression@Eq. ~57!# for the near-threshold tunneling prob
ability. The usual WKB treatment overestimates the ex
tunneling probability by at least the factor

G5
def

lim
k→0

exp~22I approx!

T
5S em1nG~m!G~n!

2pmm21/2nn21/2D 2

. ~67!

For large values of the strengthg of the 1/r 2 term in the
potential, m and n are also large and we can express t
gamma functions in Eq.~67! via Stirling’s formula@29#. This
yields

G ;
g→`

11
m

12m
1OS 1

m2D , ~68!

showing that the WKB treatment@with the additional ap-
proximation according to Eq.~65!# becomes exact for large
angular momentum quantum numbers.

For smaller strength parametersg corresponding to lower
angular momentum quantum numbers, the error in the c
ventional WKB treatment of the tunneling probability ca
however, be quite large. Form53, 4, 5, and 6, the numerica
values of G are displayed in Fig. 5 as functions ofm
([ l 11/2). For a given strength of the 1/r 2 term in the po-
tential, the relative error in the WKB tunneling probabilit
increases with the powerm of the shorter-ranged 1/r m term,
and it becomes proportional tom for largem values. For the
realistic and important casem56 andm53/2, correspond-
ing to a van der Waals interaction with anl 51 centrifugal
potential, the WKB tunneling probability is too large by
least 38%.

Because of the large errors in the WKB tunneling pro
abilities for low partial waves, such methods should be
garded critically in the near-threshold regime. Consider, e
a reaction leading to a compound particle, where the form
tion cross section is typically given by an expression of
form @40,41#

sC5(
l 50

`

s l5(
l 50

`
~2l 11!p

k2
Tl . ~69!

HereTl is essentially the probability of transmission throu
the effective potential barrier in partial wavel. We mention
in passing that the transmission probability through a pot
tial barrier does not depend on the direction of propagat
@42#. Due to Wigner’s threshold law, the contributions fro
low partial waves dominate the cross section~69! near
threshold, so the large errors from these partial waves
2-9
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affect the whole sum. Accurate calculations for the simpl
case of a sharp edged centrifugal barrier were already
sented in Ref.@41#. Our present theory offers the exact res
for the near-threshold transmission probability in the m
realistic case of an additional 1/r m potential, which can de-
scribe the interaction due to polarization in a two-bo
atomic system.

Another example for the importance of transmission pr
abilities is the decay of a metastable system trapped b
potential barrier. The standard semiclassical expression
the widthG of such a resonant state is@43#

G5
\

tcl
T, ~70!

whereT is the transmission probability through the barrie
and tcl is the classical period of oscillation of the particle
the classically allowed region to the left of the barrier. It h
been frequently observed and again pointed out recently@44#
that this approximation is not accurate enough when
WKB approximation@Eq. ~60!# is used forT. If the semiclas-
sical approximation is applicable in the classically allow
region to the left of the barrier, then formula~70! should,
however, yield increasingly accurate results toward thre
old, provided the exact expression@Eq. ~57!# is used for the

FIG. 5. Behaviour ofG @Eq. ~67!# as function of the paramete
m for m53, 4, 5, and 6. For a potential barrier consisting of
attractive 1/r m potential and centrifugal potential with an angul
momentum quantum numberl 5m21/2, G is a lower bound for the
factor by which the conventional calculation of transmission pr
abilities via the WKB formula@Eq. ~60!# and the Langer modifica
tion of the potential overestimates the exact near-threshold tr
mission probabilities@Eq. ~57!#.
,
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transmission probability~assuming the potential barrier is o
the appropriate type!. This is particularly useful for ex-
tremely narrow near-threshold resonances for which the
rect numerical solution of the Schro¨dinger equation present
a problem.

IV. CONCLUSION

We have presented a comprehensive study of n
threshold properties for an attractive or repulsive 1/r 2 poten-
tial in conjunction with a shorter-ranged 1/r m contribution to
the potential tail,m.2. For an attractive 1/r 2 potential sup-
porting an infinite dipole series of bound states, we ha
derived an explicit expression for the threshold value of
pre-exponential factor determining the absolute positions
the energy levels according to Eq.~29!. For a potential tail
with an attractive 1/r m term, the WKB approximation be
comes increasingly accurate for small distancesr, and the
prefactor @Eq. ~30!# depends on the threshold value of a
appropriate WKB integral; see Eq.~26!. For a potential con-
sisting entirely of an attractive 1/r 2 term and a repulsive 1/r m

term (m.2), we have given the exact analytical express
@Eq. ~38!# for the pre-exponential factor, and we demo
strated the convergence of numerically calculated ene
levels@32# to the appropriate dipole series behavior; see F
3.

A repulsive 1/r 2 potential in conjunction with an attrac
tive 1/r m term (m.2) is a realistic representation of a po
tential barrier formed by a centrifugal potential and a short
ranged polarization potential. For this case we have deri
the exact analytical expression@Eq. ~57!# for the near-
threshold behavior of the probability for transmissio
through the barrier. It contains thek2m}El 11/2 behavior of
Wigner’s threshold law, as well as the analytical express
for the coefficient of this leading term; see Eq.~58!. The
conventional treatment, based on the WKB formula for t
transmission probability and the Langer modification of t
potential, gives the right energy dependence, but a co
cient which is too large. We have derived a lower bound@Eq.
~67!# for the factor by which the conventional WKB trea
ment overestimates the exact tunneling probability n
threshold. This factor approaches unity for large strength
the 1/r 2 term~large angular momentum quantum numbersl ),
but for fixed l it becomes arbitrarily large with increasin
powersm of the 1/r m term. For the realistic example corre
sponding tol 51 and a van der Waals potential (m56), the
WKB result overestimates the exact tunneling probability
at least 38%.
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