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Threshold properties of attractive and repulsive Ir? potentials
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We study the near-threshol&{-0) behavior of quantum systems described by an attractive or repulsive
1/r? potential in conjunction with a shorter-ranged™(m>2) term in the potential tail. For an attractive 4/
potential supporting an infinite dipole series of bound states, we derive an explicit expression for the threshold
value of the pre-exponential factor determining the absolute positions of the bound-state energies. For poten-
tials consisting entirely of the attractiveri/term and a repulsive 4T term, the exact expression for this
prefactor is given analytically. For a potential barrier formed by a repulsive téfm (e.g., the centrifugal
potentia) and an attractive L' term, we derive the leading near-threshold behavior of the transmission
probability through the barrier analytically. The conventional treatment based on the WKB formula for the
tunneling probability and the Langer modification of the potential yields the right energy dependence, but the
absolute values of the near-threshold transmission probabilities are overestimated by a factor which depends on
the strength of the 17 term (i.e., on the angular momentum gquantum numBeand on the powem of the
shorter ranged 1" term. We derive a lower bound for this factor. It approaches unity for Igrbet it can
become arbitrarily large for fixetl and large values ofm. For the realistic examplé=1 and m=6, the
conventional WKB treatment overestimates the exact near-threshold transmission probabilities by at least 38%.
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[. INTRODUCTION ues of the potential strengfl2]. Repulsive 17> potentials
appear commonly as centrifugal potential in the radial Schro
Encouraged by the interest in cold atoms and their interdinger equation. An attractive rf/ potential can occur
actions, there has recently been strong activity in the study ahrough the interaction of a charged particle with a perma-
atomic and molecular systems near the threshold which sepaent electric dipole, as in the scattering of electrons by polar
rates the bound-state regime from the continuurh The  molecules[12] or by excited hydrogen atomd3-15. If
Schralinger equation for a particle of masd in a potential ~ such an attractive A7 potential is sufficiently strong, it sup-
V(r) is ports an infinite “dipole series” of bound stat¢$3-17.
Moderately strong attractive rf/ potentials have been seen
2 M as a probable mechanism for the generation of “quantum
Y'(r)+ —[E=V(r)]y(r)=0, r>0, (1)  halo states'T18]. If the strength of theattractive 1/r? term
h is too weak, then the potential supports at most a finite num-
ber of bound statetsee, e.g., Ref19]).
and the behavior of its solutions near threshold depends cru- We study potentials behaving for largeas
cially on the asymptoti¢large+) behavior of the potential.

For long ranged potentials falling off slower tharr2/ #2 [y pgm2
(e.g., the Coulomb potentialthe threshold==0 represents V(r)= v SE——] m>2. 2
the semiclassical limif2], and there are infinitely many Mr r

bound states if the potential tail is attractive. The behavior of
the quasicontinuum of bound states just below threshold an@ihe dimensionless strength paramegesf the 1f2 term can
the real continuum above threshold is well understood, abe positive or negative, and for the centrifugal potential in
least for the case of one Coulombic coordinate, on the basite radial part of the three-dimensional Satinger equation
of quantum defect theory. with angular momentum quantum numbér we have
For potentials tails falling off faster thanr?/ the thresh- y=1(1+1). The strength of the 4T term is expressed in
old E=0 represents the anticlassical limit of the Satinger  terms of the (non-negative parameters, which has the
equation, and the potential supports at most a finite numbeshysical dimension of a length.
of bound states. Near-threshold properties of bound and con- For m=4 the Schrdinger equation with potentia(2)
tinuum states for deep potentials with attractive tails fallingposesses analytical solutions based on Mathieu functions
off faster than 17> have been the subject of several recen20—22. More general potentials like E&) have been stud-
publications[3—11]. ied extensively over the yeal23-2§, mainly with the aim
This paper deals with potentials asymptotically propor-of understanding scattering properties. In the present paper
tional to 1f2 which represent the borderline separating thewe focus on two particular features of 1 potentials. In Sec.
long-range tails from shorter-range tails. For a potential proil we study potentials with an attractiver?/term strong
portional to 12, the energy dependence scales out of thesnough to support an infinite dipole series of bound states,
Schralinger equation(1); the semiclassical limit is reached and we calculate the threshold value of the factor determin-
neither forE— 0 nor for|E|—, but for large absolute val- ing the absolute values of the energies in the series. In Sec.
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Il we study potential barriers consisting of a repulsive?1/
term and an attractive A7 term, and we derive the exact

expression for the near-threshold behavior of the transmis-

sion probability through the barrier. This enables us to give

founded judgement on the accuracy of the conventional pro
cedure for deriving transmission probabilities which is base
on the WKB formula and the Langer modification of the

potential.

Il. DIPOLE SERIES OF BOUND STATES
When the 172 term in the potential taflEq. (2)] is attrac-

def
tive, we haveg =—y>0. If the strength parameteris suf-

ficiently large, viz. g>l/4 then the potential supports an o funct|onH(1) in (10)
infinite “dipole series” of bound states whose energies ap-

proach an exponential behavior near thresha@-17:

[{— 2mn ) 3
X m

The limiting value of the ratio of successive energies in &

dipole series is fixed by the strength of the?lferm in the
potential  tail, and is simply lim,.E,/E 1

=exp(2m/\g— 1/4). However, the constant of proportional-
ity F in Eq. (3) depends very sensitively on the potential at
shorter distances, where it necessarily deviates from tife 1/

behavior.

PHYSICAL REVIEW A63 042102

d2
L
dr? r?

2

R=0. (8

%’he solutions of Eq(8) are functions of«r only, and the
d)hysmally relevant solution is

mmpﬂw%—%ﬁ&ﬁﬂﬂmm, )
which behaves asymptociallyi(— =) as
2
WKW~VE®M—KW (10

is the Hankel function of orderr
as defined in Re1[29]

quWT)JiT(Z) _J—iT(Z)

Hi(i)(z) - sinh( 7 7)

(11)

For sufficiently small values ok, we may use the small
argument expansion of the Bessel functions in Bd,) to

obtain
o K)o 1)
e (2 rerio X

We first look at the case where the shorter ranged term det

proportional to /™ is attractive. At thresholdE=0, the
Schralinger equatior(1) with potential(2) is

d2 g Bm*Z
—+ = M(r)=0. 4
{ =t (r) (@)
We introduce the abbreviations
def 1 def 27 2 1
NIy T2 m—2 V97 ©

Two linearly independent analytical solutions of E4) are

def o (ﬁ)(m—z)& ©

Mio(N)=Vsip), p=——s

Here J.;. stands for the ordinary Bessel functi¢9] of
order +ié. The asymptotici(— o) behavior of solution$6)
is

Ml;z(r)”

__ o\ Fi¢ *ir
Hﬁ(?) (1_

(BIH™2
[(1%i¢)

(m—2)%(1+i¢))
(7
For sufficiently larger, the shorter-ranged term in the

potential tail can be neglected, so the Sclimger equation
for finite negative energyE = —#2«%/(2M), is

kr—0 K
R(xr) ~ V rrsinh(77)
(12)
whered = argI'(i 7). Ther dependence of the leading terms

X[1+0((kr)?)],
in Eq. (12) is the same as the largesehaviof Eq. (7)] of the
zero-energy wave functioni€gs. (6)] in the full potential
tail [Eq. (2)], so we can determine the near-thresh@kh)
solution of the Schidinger equation to order below? by
taking the appropriate superposition of the solutig®)s

def

Mo(r)=M.,(r).

The coefficientL is determined by the condition that the
leading asymptoticr(—<) terms derived for Eq(13) from
Eq. (7) agree with the corresponding leading terms in Eq.
(12):

K i - i ﬁ —ir
L= N mrsinh(7n® Tarigm-2) §< 2 ) '

(14

R(kr)=LM(r)+L* (13)

Solutions (6) of the Schrdinger equation(4) at energy
zero are accurate as long as the energy tefris negligible
in comparison with the smaller of the two potential terms,

which is g/r? when the shorter-ranged term is dominant.
This implies
r<g. (15

The Schrdinger equation with the full potential tail can be
approximated by its asymptotic forfEqg. (8)], whenr is so

042102-2



THRESHOLD PROPERTIES OF ATTRACTIVE AND.. .. PHYSICAL REVIEW A3 042102

large that the shorter ranged tergi" ?/r™ is negligible
compared with the longer-ranged tegtr?, implying

ﬂ WKB region
1U(m-2)" (16)

r>
g

We can match the superpositipkq. (13)] of zero-energy
solutions to solution$9),(12) of Eq. (8) if there is a region of V(1
r values, where conditiond6) and(15) are satisfied simul-
taneously. This is the case when the right-hand side of Eq
(15) is much larger than the right-hand side of Et6), i.e.,

when

K B<g(M2)+ [U(m=2)] (17)

In other words, matching is justified in the limit— 0, which

is sufficient to determine the leading near-threshold behaviol

of the energy eigenvalues. An estimate for the numerical

accuracy of the near-threshold formulas derived below can- FIG. 1. Schematic illustration of a potential with a tq. (2)]

not, however, be given on the basis of the leading termgonsisting of an attractive ¢/ term and an attractive 17" term.

alone. For this we would require a knowledge of the next-toNear-threshold solutions of the Schioger equation are well ap-

leading terms, for which we would have to include correc-Proximated by WKB wave functions in the “WKB region.” We

tions of orderE in the wave functions. assume that this WKB region overlaps with a region of moderate
As r decreases, the argumenin solutions(6) becomes values where the potential is dominantly described by thé& 1/

large, and we approximate the near-threshold wave functioff™

(13) via the large argument expansion of the Bessel functions . 1 )

[29], J..i(p)~ V2/(mp)cog pi(m/2)é—j], and WKB wave functionsyus>p~ ?exf = (i/f)/pdr], are

accurate solutions of the Schiinger equation when the fol-
lowing condition is fulfilled[2]:

dx22d2>\
ar] ~M ez

r

r—0

ar
M (r) o rm/4cos(p—z+5 , (18

1

where § is an angle defined by

T where\ (r)=2=#A/p(r) is the(local) de Broglie wavelength.
tar( OFx+5— 7ln q), For potentials behaving asr}, m>2, condition(22) is ful-
filled increasingly well ag decreases. We assume that there
is a range ofr values in the potential well where condition
_ kB . (19) (22) is well fulfilled so that the WKB wave function,
q Z(m_2)2/(m—2)’

tand=t T
and=tan 2§

in analogy tod=argI'(i7) [see Eq.(12)] we have intro- wWKB(r)oc%cos(% r p(r’)dr’—ﬁ> (23
p(r

. 2
e Irll’l
duced the abbreviatiog dzfargl“(ig).
The regular solutionjie{r) of the Schrainger equation is an accurate solution of the ScHinger equation, see

also depends on the potential at smialialues, and vanishes . o . _
atr=0. Bound states exist for energies at which the regularlg' 1. The anglab,, in Eq. (23) is the reflection phase at the

solution matches to the wave functioig. (13)] in the re- inner classical turning poirt,, which is defined so that the

gion where the potential is already dominated by the twoWKB wave function(23) agrees with the exact quantum me-

: . e chanical wave function),.4 in this “WKB region”; ¢, can
Sggr?trizl:;\:);er(qr?Jisteo;ézeer;&Illl)[/E?s: ()], so the condition of be taken to ber/2 if the conditions of the semiclassical limit

are fulfilled near the inner classical turning pojB0].

" M’ Ther dependence of both the amplitude and the phase of
re9_ < (200  the wave function(18) is that of the WKB wave function

threg My (23) at E=0, when the potential near is given by the

) ) . . ) shorter-ranged term in the tail alone,
Semiclassical wave functions are defined with the help of

the local classical momentum,

p(r)=v2M[E-V(r)], (21)
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1(r
> p(r’)dr’=const—p. (24 0.0

Tin

If the WKB region overlaps with a range ofvalues where
the potential is dominated by ther T/term(see Fig. 1, then
the quantization condition can be formulated by matching
wave functions(23) and (18) in this range of overlap. We

&
expect the WKB wave function here to be a smo¢iha- §
lytic) function of energy, so, to order less thaR, we can
assumeE=0 in Eq.(23). Equating the cosines in EqRJ)
and(18) leads to the quantization condition

il Y + 225 25

fL I’inp(r ) r 2 =Nnm P 4 ’ ( ) 1.0 - il
where the action integral on the left-hand side is to be taker o0 0 rz,ro 30 e

at thresholdE=0. In the region of overlap, where the WKB

approximation is accuratend the potential is dominated by ~ FIG. 2. PotentialEq. (2)] consisting entirely of a repulsiverl?
the 1f™ term, ther dependence of the action integral is term and an attractive i term. Herem=4 andg=— y=200, so
compensated for by the termp on the right-hand side of the potential corresponds to the cage 5 studied by Varshrii32].

Eq. (25) [cf. Eq. (24)], so the expression The potential is given in units of its depi, at its minimumr;
see Eq.(39.
def{ rr 2 B (m—2)/2 o T
|n=— rydr’+ ——| = T (26 Result(30) holds under the condition that there is a WKB
0 p(r’) (26)
v, m—21r 2 4 region where conditior{22) is well fulfilled, and that this

o ) _ region overlaps with a region ofvalues where the potential
is independent of. With the help of Eq(19) the quantiza- js dominated by the L7 term; see Fig. 1. A definite choice

tion condition(25) thus reduces to of the branch of arctdtanl ,/tanh¢n/2)] in Eq. (30) fixes
the quantum numbens assigned to the individual levels. If,
tar( 6+ xy+ T tin ql= tand _ tanlg in a given potential, we fix the numbering of levels, e.g., by
2 tanh(éw/2) tanh( éw/2)’ starting withn=0 for the ground state, then this determines

(27)  which branch of the arcus tangent is to be taken. The choice
of branch remains undetermined in our present theory based

which is equivalent to on the near-threshold wave functions.
We now consider the case that the shorter ranged term

, 4(m—2)¥m=2) 2 T proportional to /™ is repulsive, and that the two terrfiq.
K :Tex J0txt 5 (2)] constitute the whole potentiésee Fig. 2 This potential
again supports an infinite dipole series if the strength of the
tanl, (attractive 1/r? term is large enoughgt>1/4).
+arcta76 W) ] (28 The Schrdinger equation is given by
The multivalued nature of the arcus tangent in the exponent a2 g pm™? )
on the right-hand side of Eq28) allows the subtraction of a2 Tz m K #(r)=0. (39

n# (n is an integex, and this leads to the known asymptotic
(E—0) behavior of the energies of the dipole series,

ﬁzKﬁ n—e 2mn
E.=——5— = —Fex -

In order to obtain near-threshold wave functions for small
and moderate values of we neglect the energy term in Eq.
(29 (31), and the resulting equation

2M
The theory above now allows us to give an explicit expres- d_2 g9 B2 Z(r)=0 (32)
sion for the prefactoF in Eq. (29), namely, dr2  r2 pm -

2

F= (m— 2)4/(m—2)expl’z 0+ x + Z can be_sqlved with the help of B_essel _functions. WQ keep the
Mp? T 2 abbreviations 7 and ¢ as defined in Eq.(5) with 6
an =ardl'(i7) and y=ardl'(i£). The real solution of Eq(32)
an . . o L .
+arcta _ o W1 (30) yvhlch obeys the physical condition of vanishing at the origin
tanh é7/2) is
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2 (B (m-2)/2
Z(r)=i exq — m&l21NTH B ip), b= ?> |
(33
which behaves as
m—2 ( I,)m/4
2~ \— Bl exw=p) (34

for smallr.

For large values aof we use the small argument expansion

[29] of the Hankel functiorH(}) in Eq. (33), and obtain the
leading terms

r )T
z(n~ ngsinr(wf){(m_z) éex(ﬁ)

+(m—2)‘feix<%) } (35
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hZQZ
8MpB?’

2
rzzzﬁ—, e:

¢ g

g
2_2
=g

(39
For m=4 the parameters and ¢ defined by Eq(5) are

the same, and, according to E¢37) and(38), the threshold
behavior of the normalized energies is

E,
EnTRH "

De

F(m=4,g) B e40/7'

D, _,74'

- _ fe—Z’JTrI/T’ f= (40)

For potentials withn=5, 15, and 25 Varshnj32] listed
normalized eigenvalues for quantum numbers from0 for

the ground state to=9, 30, and 55, respectively. In order to
demonstrate how these dipole series approach the limiting
behaviorEq. (40)], we plot the logarithms Iy, of the effec-

tive strength parameters

fo=—g,xe?™" (41)

against the quantum number In the limit n—co, these ef-

These leading terms must, except for a common constant déctive strengths converge to the strengjth Eq. (40). Here
proportionality, agree with the near-threshold limit of wavef is defined only to within a factor consisting of an arbitrary

function (9) as given in Eq(12), i.e., the ratios of the coef-
ficients ofr ~'” andr'” must be the same in E5) as in Eq.
(12). This leads to the condition,

(ﬁ)ZIT:(m_Z)zigeZi(H‘F){), (36)

2

which is equivalent to exfgi(6+ x)]=exp(d7Inq), with g

=1xkB(m—2)"2(M2) a5 in EQ.(19). This corresponds to

the quantization condition

4(m_2)4/(m—2)
BZ

2__
Kn=

37)

2
exp{;(tﬂx—nw) ,

where the multivalued contributior n7 on the right-hand

side originates from the multivalued nature of the exponen-

integer power of exp(&/7), so Inf is only defined modulo
2x/ 7. A definite choice off fixes the quantum numbers
assigned to the individual statesee the discussion after Eq.
(30)].

The results are shown in Fig. 3. The values of follow-
ing from Eq.(40) for the three values of; are listed in Table
I, and shown as dashed horizontal lines in Fig. 3. The con-
vergence of the effective strengths to the respective threshold
limits is obvious. This convergence implies that the energies
of the near-threshold states are, for growimggiven with
increasing(absolute and relatiyeaccuracy by formuld29),
with the appropriate prefactdieq. (38)], just as the near-
threshold energies of a Rydberg series in a Coulomb poten-
tial are given with increasin@absolute and relatiyeaccuracy
by the Rydberg formula with the appropriate threshold value
of the quantum defed®].
The well known fact that conventional WKB quantization

tials in Eq.(36). For the energiek,, we again obtain expres- breaks down near threshold, for potentials falling off faster
sion (29), but for the prefactor we now have the analytical than 1t? asymptotically, was recently interpreted as a break-

formula

2

(38)

F(m,g): z(m_2)4/(m—2)e2(0+)()/7.

The Schrdinger equatior(31) was studied by Papf81]
and Varshni 32] for the casem=4 with the aim of testing
approximation schemes such as thbl Bxpansion and the

WKB approximation. As is customary in molecular physics, portional  to

down of Bohr’s correspondence princi3]. The threshold

is, however, an unusual place to expect quantum classical
correspondence for such potentig&10], because it does
not correspond to the semiclassical limit. A potential falling
off faster than /% supports at most a finite number of bound
states, so the limit of infinite quantum numbers, which is
fundamental to the usual formulation of Bohr’s correspon-
dence principle, cannot be taken. Dipole series form an in-
teresting special case for this discussion. For potentials pro-
1¢?, the accuracy of semiclassical

the parameters defining the potential are taken as the positi@pproximations does not depend on energy—the semiclassi-

re of the potential minimum and the depih= —V(r,) of
the well. The energies are normalized to the depth,

cal limit is reached for large absolute values of the strength
parametef2]. However, a sufficiently attractive r&/ poten-

=E, /D, and these normalized energies now depend onlyial tail with a fixed strength parametge>1/4 does support

on the strengtty of the attractive ¥? term, which is related
to a parameter calleg? in Ref.[32]. In terms of our poten-
tial parameterg and B, the parameters of Ref32] are

an infinite number of bound states. As is obvious from the
tables in Ref[32], the relative errors of the energy eigenval-
ues obtained via conventional WKB quantization become
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-0.05

-0.15 -

-0.25 -

Inf,

-0.35 -

-0.45 -

0.10

0.05
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-0.05

-0.10
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0.15
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Inf,

0.00 -

-0.05
0

(©)

0.00

0.05
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20
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20 30 40
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TABLE I. Values of Inf for the threshold limit§ which deter-
mine, via Eq.(40), the explicit values of the normalized energies in
the dipole series generated by the Sclimger equation31) for
m=4,

n g 27l In f

5 200
15 1800
25 5000

—0.0675707
+0.0843669
+0.1142865

0.444566
0.148106
0.0888599

larger with increasing quantum numbers for all potentials
studied.[Note, however, that higher-order WKB results are
very accurate for all quantum numbdr$hus dipole series

in potentials with an attractive 17 tail are a genuine ex-
ample where the naive expectation that semiclassical ap-
proximations necessarily improve in the limmnt-oo is not
fulfilled. This naive interpretation of Bohr’'s correspondence
principle fails in the present case. Here, as elsewhere, the
correspondence principle refers to the semiclassical limit.
For the attractive 1# potential tail, the semiclassical limit
can be realized by taking the limit of large strength param-
eters, independent of energy. For a discussion of potential
tails falling off faster than 1?; see Refs[8,10].

IIl. TUNNELING

When the 1% term is repulsive and the shorter-ranged
1/r™ term is attractive, then potentié®) represents a barrier
typical for the radial Schiinger equation with nonvanish-
ing angular momentum; see Fig. 4. The Sclinger equa-
tion for this barrier is

d2 m-2
4 +18r_m+k2 Y(r)y=0, y>0.

42
dr2 r2 42

V(O VY

FIG. 3. Logarithmic plot of the effective strength parametigrs
[Eqg. (41)] for the (normalized energy eigenvalues, calculated by
Varshni[32] for a potentialEq. (2)] consisting entirely of a repul- 00 10 20 3.0 2.0
sive 1% term and an attractive 9 term for =5, 15, and 25. The o
dashed horizontal line in each panel shows the threshold linfit In
of the Inf, as the behavior of the energies approaches the dipole FIG. 4. Potential barrier consisting of a repulsive?lierm and
series form Eqg. (40)]; also see Table I. This limit is defined only an attractive I term. Herem=6 as for a van der Waals interac-
modulo 2r/ 7, and the magnitudes of& 7 for the various values of  tion, and the strength of ther®/term corresponds to a centrifugal
7 are shown as vertical bars in the respective panels. potential with angular momentum quantum numberl.
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For an angular momentum quantum numbéehe strength of Ther dependence of Eq50) agrees with the depen-

the 142 term isy=I(1+1). dence of the leading asymptotic{>) behavior of the so-
In the following we shall calculate the threshold behaviorlution W;(r) [see Eqg.(46)], so in the near-threshold limit

of the probability for transmission from a region of law- k—0 these solutions can be matched according to

values to the left of the barrier to largevalues beyond the

barrier. Reflection by and transmission through the potential kr—0

tail [Eq. (2)] can also be discussed in the absence of the U(kr) = LWqy(r), (51)

centrifugal term,y=0 [9,34], as long as there is a range of

smallr values where Eq22) is well fulfilled so that incom- and thek-dependent coefficient is given by

ing and reflected WKB waves are accurate solutions of the K3

. . . . ei7T/.L/2 —n
Schralinger equation. The following theory can be applied L=k T(1+ v)l“(M(m—Z)”(—) . (52

for y=0, and even for aveakly attractivel/r? term, mean- i 2
ing thaty can be negative but must be larger thai/4.
At threshold,E=0, the Schrdinger equation42) is To the left of the barriem;— 0, the large argument expan-
sion of the Bessel functiod,(p) yields
d2 y ﬁm*Z
— ot ]W(r)=0. (43) m—2 [r\m4 T o
dr® r ' Wi (r)~ Tﬁ<ﬁ> COS(P—EV—Z), (53

so the wave functiom. W, (r) has the forrm

def [ defpy 2 1
RENY p TR Tma VYT G4 rﬂo\/ﬁrm"‘
41

In analogy to Eq(5), we introduce the abbreviations

B
The conditiony> —1/4 mentioned above implies that both ' 'B
w andv are positive real numbers. Two linearly independent +etimizgTilpm ) (54)
solutions of Eq(43) are

LWl(r) — L‘(e—iﬂ'v/Zei(p—'n'M)

The amplitude and phase of the two terms in &) corre-

W _ \/—J 2 (B (m=2)i2 45 spond to the amplitude and phase of leftward travelirg
121N =2, (p), p= m—2\r . (49 flected and rightward traveling(incoming waves in the
WKB approximation, which becomes increasingly accurate
The asymptotic (— ) behavior of solutiong45) is for smallr values where the 47" term dominates the
B B , potential. The associated current densities,
(m=2)"" fr)"# (BIr)™ J=Im[ (%I M) y* dyidr], are
Wl;Z(r)NW\/F 2 -
(1xv) B (m—2)%(1*+v)
(46 St (m=2)|L| (55
in/refl A M '

For large values of the 1f? term dominates the poten-
tial, and the Schminger equatior(42) corresponds to

d2 y Yin a recent paper, G4@®5] studied potential tails consisting of a
— — ~ +Kk?|lu=0. (47) centrifugal term and an attractive term proportional td"1/m=6,
dr? r? and he found the following rule: If the potential well supports a
zero-energy bound state for an angular momentum quantum number
The solutions of Eq(47) are functions okr only, and the |, it will also do so forl=I,*=4, 1,+8, ... (as long ad=0).
solution which describes an outward traveling wave is This rule and its generalization to amy>2 follow immediately
from the properties of the wave functio; [Eg. (45)], which
LT solves the Schidinger equation(43) with the correct asymptotic
U(kr)zexr< ! E“) \/WHE})(kr), (48) (larger) boundary conditions and is to be matched to the regular
solution coming from the origin. To the left of the barri&¥,(r)
which behaves asymptoticallk(— ) as becomes proportional to E@53), and depends oh only via the

contribution —mr/2:—(l+§)7r/(m—2) to the argument of the
cosine, so the wave function is invariant up to a sign when

2 ] T
U(kr)~ \/;QXF{ [ ( kr— Z) : (490 changes by an integral multiple of— 2. If matching to the regular
solution yields a bound state at threshold for one angular momen-

Near thresholdkr — 0, the leading contribution to E¢48) is UM quantum numbefy,, then it will do so also forl =1, (m
[29] dr— 9 ®9) -2), l,x2(m-2), ... (=0). An important condition for this

rule to hold is, of course, that the wave function to the left of the
matching point be essentially unaffected by the centrifugal poten-

(50) tial; for a potential well of finite depth this cannot be fulfilled for an
arbitrarily largel.

kr—0 2 . kr (112)=p
Utkn) ~ —'i;e'”“’zr(ﬂ>(7)

042102-7



MORITZ, ELTSCHKA, AND FRIEDRICH PHYSICAL REVIEW A63 042102
TABLE II. Values of the coefficien{Eq. (58)] of (kB)?* in the leading term describing the near-

threshold behavior of the transmission probabilifiegs. (57)] through a potential barrier consisting of an

attractive 1/™ potential (n>2) and a repulsive i (centrifuga) potential with a strength parameter

corresponding to angular momentum quantum nunhpgr=+/y+ 1/4=1+1/2.

P(m,y) m=3 m=4 m=5 m=6

=0 4 4 2.52537 1.91196
=1 /9 4/9 0.465421 0.464911
=2 /32400 4/2025 0.00527976 0.00849758
=3 0.21987(x 108 0.16125(< 10 ® 0.0000143161 0.0000421688
=4 0.865576¢ 10 14 0.40627310°° 0.14477x 107 0.856395¢10™ 7
|=5 0.88315Kx 10°%° 0.41452210° 13 0.68711 10 1 0.878061x 10~ 1°
=6 0.299916¢ 1026 0.20271x 10" Y7 0.176390x 10~ ** 0.51703%x 10 13
=7 0.402416¢ 1073 0.53309% 10°%? 0.269760< 1018 0.190840< 10716
=8 0.24174% 10740 0.819834< 10?7 0.263645¢ 1022 0.47048% 10~ %°
=9 0.71516X 10 %8 0.785816<10 32 0.173684< 1026 0.812985¢ 10~ %4
=10 0.11230% 105 0.493600< 10~%7 0.80427% 10" 3¢ 0.102260x 10~ %7

and they are equal to leading order, because the transmitted When the strength of the r#/ term vanishesy=0, we
current density is of higher order kn The transmitted wave have u=1/2 and v=1/(m—2); result (57) for this case
traveling rightward at large values is given by Eq49), and  agrees with the result derived for the reflection probability
the associated current density is 1—-T of an attractive /™ potential tail[9,34]. For arbitrary
vy (>—1/4) and the special casm=4, the Schrdinger
2hk equation(42) can be solved analytically with the help of
thanszm' (56) Mathieu functions[20]. The transmission probability near
E=0 can be derived from the asymptotic¢(0 andr
In order to obtain the current density of the reflected wave to—) forms of the wave functions given in R€f0], and
an accuracy sufficient to fulfill the continuity conditiody,  this leads exactly to resu(67) with m=4. Note, however,
=Jef+ Jyans We would have to include higher-order terms that the aim of Ref[20] was to derive scattering lengths and
in the solution of the Schdinger equation, in particular the effective range parameters based on an expansion of the co-
contribution proportional toKr)¥?>*# in the near-threshold tangent of the scattering phase shifts as functions of the
limit [36]. From Eqs.(56) and (55) the transmission prob- asymptotic wave numbéx This expansion is not really valid
ability T=Jyand/Jin is, to leading order, for potentials behaving like Eq2), and the number of us-
able leading terms it contains depends on the angular mo-
472 K\ 2 def mentum quantum numbérand on the powem of the attrac-
T= ( ) =P(m,y)(kB)?*. tive 1/ ™ term. In contrast, formulés7) derived above is not
(M=2)2"up[T(¥)[(u)]? restricted in such a way. It is valid for any strength parameter
(57 y>—1/4 and for any, not necessarily integer, power 2.
The derivation above requires the compatibility of ap-
proximations(43) and (47) to the Schrdinger equatior(42)
for a common range af values. In analogy to Eq17) this
leads to the condition

kﬁ<| ,y|(l/2)+[1/(m72)]’ (59)

2

The parameterg and v are defined in Eq44), andu is
related to the angular momentum quantum numbef the
centrifugal potential byu=\y+1/4=1+1/2. The propor-
tionality of T to k?#, i.e., toE' %2, is simply an expression
of Wigner’s threshold law2]. Since 8 is the only length
scale in the Schidinger equation, the dimensionless trans- = i i o o
mission probability is(to leading order naturally propor- which is _fulfllled in the limitk— O for any finite value ofy|.
tional to (kB)2~. The derivation above, however, also gives, AS mentioned above, resul7) also gives the correct lead-
for all potential barriers consisting of a repulsit@ weakly ~ Ing behavior for the casg=0 [9,34]. _ _
attractive 1/r2 term and an attractive f7 term (m>2), the Tunneling probabilities are frequently approximated with
exact analytical expression for the coefficient kf3}2*: the help of the WKB formula37,

outl
pp. Toke=exp —21), |:f_ %|p(r)|dr, (60)

P , = . 58 lin
M Tt

wherer;, andr,, are the two classical turning points, be-
The numerical values @® are listed in Table Il fom=3, 4, tween which the local classical momentymir) is purely
5, and 6, and for strength parameterscorresponding to imaginary. For potentials falling off faster tharr4/formula
angular momentum quantum numbersO, . . . ,10. (60) fails near threshold, because it yields a finite value at
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E=0, whereas the exact tunneling probability vanishes irSincel ,p,0xiS an upper bound for the action integral enter-
this limit, as pointed out in Ref.38]. For a potential barrier ing the WKB expressiofEq. (60)], the corresponding ex-
asymptotically equal toy/r? [times #2/(2M)], the WKB  pression expt 2l approy IS @ lower bound for the WKB ap-
tunneling probabilitf Eq. (60)] is proportional tok?” near ~ proximation to the tunneling probability:

threshold, SO the correct energy dependeﬁz_eE_“ can be Tuke= XA — 2l appron

recovered with the help of the Langer modificatign- vy
+1/4, which amounts to replacirigl + 1) by (I+1/2)? for ( e )2”"”(”“2)

2

the centrifugal potentidl2,37]. Criticisms and improvements = (kB)?#[1+0((kp)*~4M)].

of the Langer modification were recently discussed in vari-

ous context§2,19,30,39. The present derivation of the as- (66)
ymptotically (E—0) exact formula for the transmission  The coefficient of kB)?* on the right-hand side of Eq.
probability for potential barriers of the special fofq. (2)]  (66) is larger than the coefficier® of (kB)?* in the exact
allows us to give a founded judgement on the accuracy of thexpressiofEq. (57)] for the near-threshold tunneling prob-
usual procedure involving the WKB formul&g. (60)] with ability. The usual WKB treatment overestimates the exact
the Langer modified potential. tunneling probability by at least the factor

The integrand of the action integral in 0) is
? § e def exp(—2l appro) . elﬁyr(ﬂ)r( v)

2
1 wr gz G:i'ino T ﬂ—l/zyv—uz) - (67)
FIpOI=\ Tz ==K (61

For large values of the strength of the 1f2 term in the
where we have invoked the Langer modification and repotential, » and » are also large and we can express the
placedy by y+ 1/4= u?. Note that the conditiony>—1/4,  gamma functions in Eq67) via Stirling’s formula[29]. This
for which the above theory is applicable, corresponds to thgields
condition that theLanger modifiedpotential is asymptoti-

27w

cally repulsive. We obtain an upper bound for the integral Gy:ml+ £+O iz) (68)
if we neglect one of the subtracted terms in the square root. 12p e
For a given poin? with rin<7<rout, we thus have showing that the WKB treatmertvith the additional ap-

proximation according to Eq65)] becomes exact for large

T u? M2 o [u? angular momentum quantum numbers.
|<ﬁ Tz m dr+L Té'_k dr. (62 For smaller strength parameteysorresponding to lower
" angular momentum quantum numbers, the error in the con-
Inequality(62) remains valid if we replace the inner classical Ventional WKB treatment of the tunneling probability can,
turning pointr;, by its threshold value,,, and the outer Nnowever, be quite large. Fan=3, 4,5, and 6, the numerical
classical turning point o, by the valuer, obtained by Vvalués of G are displayed in Fig. 5 as functions of

neglecting the /™ term in the potential: (=1+1/2). For a given strength of therf/terr_n in the po-
tential, the relative error in the WKB tunneling probability

increases with the powen of the shorter-ranged 17 term,
=T out- (63 and it becomes proportional ta for largem values. For the
realistic and important case=6 andu=3/2, correspond-
ing to a van der Waals interaction with &1 centrifugal

The right-hand §|de of inequalit}62) can thS” be easily potential, the WKB tunneling probability is too large by at
evaluated analytically. We choose the valuer dduch, that a5t 389%.

the two terms neglected in the respective integrals in(&2). Because of the large errors in the WKB tunneling prob-

have equal magnitudes at abilities for low partial waves, such methods should be re-
garded critically in the near-threshold regime. Consider, e.g.,

~|=

lino= grin v Touto™
2/(m—2
u ( )

B2 5~ 1—2 1—2 a reaction leading to a compound particle, where the forma-
Tm =K% kr=(kg)""""=(kp)" """ (64 tion cross section is typically given by an expression of the
form [40,41]
The leading orders of the approximated action integral are o o
21+ 1)7
then o=, o=, ———T. (69
=) =] k2
| d:efJ'F [u? ﬁm*zdw jroufo [ K2dr HereT, is essentially the probability of transmission through
approx™ J N rZ - pm 7 1?2 the effective potential barrier in partial waveWe mention

in passing that the transmission probability through a poten-
tial barrier does not depend on the direction of propagation
- 1+O((k,3)24/m)l- [42]. Due to Wigner's threshold law, the contributions from
low partial waves dominate the cross secti@®9) near
(65  threshold, so the large errors from these partial waves will

2u
n
(kIB)172/m

mu
" m-2
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25 ' ' transmission probabilityassuming the potential barrier is of
the appropriate type This is particularly useful for ex-
tremely narrow near-threshold resonances for which the di-
rect numerical solution of the Schiimger equation presents

a problem.

IV. CONCLUSION

We have presented a comprehensive study of near-
threshold properties for an attractive or repulsive’ Poten-
tial in conjunction with a shorter-rangedr T/ contribution to
the potential tailm>2. For an attractive i potential sup-
porting an infinite dipole series of bound states, we have
derived an explicit expression for the threshold value of the
pre-exponential factor determining the absolute positions of
the energy levels according to E@9). For a potential tail
with an attractive I/™ term, the WKB approximation be-

n comes increasingly accurate for small distanceand the

FIG. 5. Behaviour ofG [Eq. (67)] as function of the parameter prefactor[Eq. (30)] depends on the threshold value of an
wn for m=3, 4, 5, and 6. For a potential barrier consisting of anappropriate WKB integral; see E(R6). For a potential con-
attractive /™ potential and centrifugal potential with an angular sisting entirely of an attractive i term and a repulsive AT
momentum quantum numbk x—1/2, G is a lower bound for the  term (m>2), we have given the exact analytical expression
factor by which the conventional calculation of transmission prob-[Eq_ (39)] for the pre-exponential factor, and we demon-
abilities via the WKB formuld Eq. (60)] and the Langer modifica- gtrated the convergence of numerically calculated energy

tion of the potential overestimates the exact near-threshold tranffévels[32] to the appropriate dipole series behavior; see Fig.
mission probabilitiegEq. (57)]. 3 '

A repulsive 1/2 potential in conjunction with an attrac-

tive 1/™ term (m>2) is a realistic representation of a po-

affect the whole sum. Accurate calculations for the Slmples{ential barrier formed by a centrifugal potential and a shorter-

case Of. a sharp edged centrifugal barrier were already pr?énged polarization potential. For this case we have derived
sented in Ref[41]. Our present theory offers the exact res:ult,[he exact analytical expressioiEq. (57)] for the near-

for Fhe. near-threshold trqnsmission prqbability in the MOr&hreshold behavior of the probability for transmission
realistic case of an additionalrl] potential, which can de- through the barrier. It contains tHeé*«E'*12 behavior of

Sf”b.e thetmteracnon due to polarization in a tWO'bOdyWigner’s threshold law, as well as the analytical expression
atomic system. for the coefficient of this leading term; see E&S8). The

Another example for the importance of transmission prOb'conventional treatment, based on the WKB formula for the

ab|||t|e§ IS the decay of a metastab_le system trappec_i by flansmission probability and the Langer modification of the
potential barrier. The standard semiclassical expression fop;otential, gives the right energy dependence, but a coeffi-
the widthT" of such a resonant state[i$3] cient which is too large. We have derived a lower bo[i&d.
(67)] for the factor by which the conventional WKB treat-
h ment overestimates the exact tunneling probability near
I'= t_dT’ (70) threshold. This factor approaches unity for large strengths of

. . . _the 12 term(large angular momentum quantum numbers
whereT is the transmission probability through the barrier, bt for fixed | it becomes arbitrarily large with increasing

andt, is the classical period of oscillation of the particle in powersm of the 1+™ term. For the realistic example corre-
the classically allowed region to the left of the barrier. It hassponding td =1 and a van der Waals potentiah€ 6), the

been frequently observed and again pointed out recély  \ykp result overestimates the exact tunneling probability by
that this approximation is not accurate enough when the; |aast 38%.

WKB approximation Eg. (60)] is used forT. If the semiclas-
sical approximation is applicable in the classically allowed
region to the left of the barrier, then formu({@0) should,
however, yield increasingly accurate results toward thresh- M.J.M. is grateful to Bernhard Urban for an encouraging
old, provided the exact expressipg. (57)] is used for the comment, and to Thomas Purr for practical help.
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