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Quantum nonlinear dynamics of continuously measured systems
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Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is for-
mulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly
compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities
associated with a statistical ensemble such as variance or entropy. However a more direct comparison would
compare classical predictions to the quantum predictions for continuous simultaneous measurement of position
and momentum of a single system. In this paper we give a theory of such measurement and show that chaotic
behavior in classical systems can be reproduced by continuously measured quantum systems.
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[. INTRODUCTION be interpreted as corresponding to a measuremanthe
framework ofquantum state diffusioto examine dissipative
The Hamiltonian formulation of classical mechanics as-chaos in open systems.
signs simultaneous, arbitrarily accurate, values for the ca- A model for the simultaneous measurement of position
nonically conjugate position and momentum to distinguish-and momentum was given long ago by Arthurs and Kelly
able particles. Indeed in classical mechanics thesg9]. This model consists of two meters that are allowed to
simultaneous values are regarded as properties of the panteract instantaneously with the system. The interaction
ticles themselves; measurement simply reveals these valugsuples one of the meters to position and the other to mo-
and need not, in principle, add uncertainty to their determimentum, encoding the results of the measurement in the final
nation. In quantum mechanics the conjugate position andiates of the meters. Projective measurements are then made
momentum are represented by noncommuting operators, on each of the meter states separately. In more general terms
and p, with [x,p]=if%. It follows that there is no physical the Arthurs-Kelly model is an explicit example of the
state for which position and momentum can take dispersiofselfand-Naimark-Segal theoreh0] that enables us to write
free values. This is the content of the standard formulation o& positive, joint probability density of two real variablgke
the uncertainty principlé(Ax)2)((Ap)?)=#2/4, whereAA  actual measurement outcomés terms of an inner product
=A—(A>. This does not mean, however, that simultaneou$" an extended Hilbert spag¢extended to include the two
measurements of position and momentum are impossibl@Pparatus as well as the system to be meagutedan also
only that such simultaneous measurements cannot be maf§ considered as an example opasitive operator valued
arbitrarily accuratd1]. measurg11,12. The Arthurs-Kelly model suggests a route
Our objective is to show that thebservedphase space, t0 a phase-space description of quantum mechanics based on
reconstructed from the classical stochastic measuremetfte joint outcomes of simultaneous measurements of position
record of continuous joint measurements of position and moand momentum. However, to achieve a phase-space descrip-
mentum, corresponds to the classical phase space descriptiton of the dynamics, it is necessary to consider a time se-
with added noise. By a careful specification of the measurequence of such measurements. The Arthurs-Kelly model
ment model, including the relevant states of the apparatuforces the conditional state of the system into a coherent
together with a Markov assumption, we show that the obstate after a single measurement and is too strong for this
served classical stochastic measurement record correspongigrpose.
to the conditional quantum averagée(t)) and(ﬁ(t)). We We generalize the Arthurs-Kelly model to allow for a
obtain a stochastic Schdimger equation for the conditional weakening of the measurement. In this way repeated mea-
state of the system with complex noise, together with classisurements can take place without invariably reducing the
cal stochastic equations for the variables corresponding teystem to a coherent state. By simultaneously increasing the
the observed measurement records. This extends the resultsmber of measurements and weakening the strength of each
of Bhattacharyaet al. [2], where only a position measure- measurement, the continuous limit is achieved. We show that
ment was considered. Other authf8s-8] have considered a under continuous observation the evolution of the system
general type of stochastic Schiinger equatioriwhich may  state is described by an’ Igiochastic Schdinger equation.
Unlike evolution via the ordinary Schdinger equation, con-
tinuous observation forces the conditional state of the system
*Electronic address: ajs@maths.ug.edu.au to remain localized. Hence the quantum mean of the phase-
"Electronic address: milburn@physics.ug.edu.au space variables can be thought of as a trajectory. It is in this
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light that we investigate quantum nonlinear dynamics undeprobability of finding the detector positions in the small area

continuous observation. [Xq,Xg+dX ] X[X5,Xo+dX,] iS
The theory of continuous measurement in quantum me-
chanics was first developed by Barchielli and co-workers Prob(x1,Xz)dx;dX;
[13—-15 and some of the results in this paper are contained in A ma s
their work (see alsd16] and the work by Belavkifi17] and =trirg(UippqU; [xpxe) (XaXa| ) dxg dx (2.6)
Belavkin and Staszewskil8,19). However, our approach . .
uses the Arthurs-Kelly measurement model as a starting =tr(Y ,(X1,%2) pY 5(X1,%2) Ndx1d%,, 2.7

point and follows the work on continuous position measure-
ments by Caves and Milbuf20] and Milburn[21]. In this ~ Where tr¢ - -) and tg(- - -) are the traces over the system and
way our results have a clear physical interpretation. detector states, respectively, Prebfx,) is the probability
In Sec. Il we generalize the Arthurs-Kelly measurementdensity, and theesolution operator
model. In Sec. Il we derive the stochastic Salirmer equa- N -
tion for continuous measurement which is then investigated Y o(X1,X2) =(X1Xz| U, |d1dy) (2.9
analytically in Sec. IV and simulated numerically in Sec. V
for a chaotic system. Finally, in Sec. VI we discuss our re-

i 1.
sults. :(Zﬂﬁ)_lf dp, dp, ex;{— g(pl(gX_M)

Il. PHASE-SPACE MEASUREMENTS (P1paldydy) 2.9

+pa(sp— Xz))
Following Braunsteiret al. [22] we rederive and general-

ize the result implicit in the work of Arthurs and Kell[]. R 1\ . 1 \f
The simultaneous measurement of position and momentum =D(sx1,gx2>Yg(0,O)D(sx1,gx2) .
of a one-dimensional quantum system is achieved by con-

structing an interaction governed by the Hamiltonian

(2.10

The displacement operator is
Hr=H(x,p)+

1. n
gXP1+SPP2>5(t—tr), @
(2.11

. ..
D(M,V)EGXF{ — 7 (up=vx)
which couples the system Hamiltoni&hwith two detectors

d, andd,. The measurement model requires that the detecand
tors be prepared in the initial states

_Xiz YU(OIO)Z(ZWﬁ)ilJ dpl dp2<pli_p2|dld2>
(xi|diy=(mhA) " exp 57+ |, 2.2
21 A, 1\t
k| V4 —p2A, XD sp, SP1 (2.12
<pi|di>: (A_) ex 27 s (23)
' We now define the annihilation operator
whereA ;= 0?/2s andA,=sc?/2. The parametes is called . 1
the squeezing parametemnd biases the coupling so that one a=——| Jsx+i—p (2.13
may obtain more information on either position or momen- 2% Js )’

tum. The parametes will be used to weaken the measure-

ment, decreasing the amount of information collected onwhich satisfiefa,a’]=1 and rewrite the displacement op-
both position and momentum. erator as

Before the interaction, the system stafe and the R R R
combined-detector state D({)=exp¢a'—¢*a), (2.19

pa=d10,)(d1dy|=|d;)(dy] @ |dy)(dy| (2.4  wherel=(1\2#)(\su+i[1/(/s]v). It can be easily shown
that

are assumed to be uncorrelated with an initial combined- A A A
density operator op®p4. At t=t, the evolution operator D()'=D(-0)=D(, (2.19
for the interaction

D(yab(y)'=a—¢. (2.16

(2.5 The coherent state)3] are now defined by applying the
displacement operator onto the vacuum state

couples the system to the measurement apparatus, entangling A

the system and detector states. After the interaction, the |a)=D(a)|0). (2.17

~ i(1.. nn
U,Eexp{—g(gxpﬁsppz)
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They satisfy the following relations:

ala)=ala), (2.18

|la+B), (2.19

A 1

D(B)la>=exp[§(a*ﬁ—aﬁ*)
1 1

<aIB>=eXP< —§|a|2—§|B|2+a*ﬂ), (220

f d?a|a){a|=. (2.2

Now defining o= (1/y2%)[ Vsp,+i(1/ys)p;] we can re-
write Eq.(2.12 as

YU(O,0)=(27Th)_1/2077_1J d?e(ae|0)D(e)".
(2.22

Using the above relations and integrating we obtain

(@Y ,(0,0(8)

20 1 1
=(2wﬁ)*1’202+ . exp( —5lal?= 3187
o’—1 .
0_2+1a B (2.23
20 2
:(2Wﬁ)_1/202+1<alﬂ>e)(p< 0?41 o )
(2.29
20 2 .
:<a|(2wﬁ)1’2m:exp( - 02+1aTa) :1B)
(2.295
where : : denotes normal ordering. Hence,
A 20 2 ...
Y (0,0=(27h) 1?2 exp — a'al:.
(0.0=( ) o’+1 o’+1
(2.2

If we now definey= x;+ixo,=(1N2%)(\/sx +i[ 1//s]X,)
then the resolution operator becomes

Y (x1,%2) =D (X)Y ,(0,0D(x)" (2.27)

20 2
=(2mh) 1?2 cexpg —
( ) a’+1 o’+1

x(a'—x*)(a—x)

: (2.28

=(2h) " Y2Y ,(x). (2.29

PHYSICAL REVIEW A63 042101

The probability of finding the detector positions in the small
areal x1,x1+dx1]X[x2,x2+dx2] is now

Prol ) d2y = 2% Prok(x;,X,)d?x (2.30
=tr(Y ,(x)pY (x)Nd?x (2.31)
=tr(F ,(x)p)d?x (2.32

whered?y=dy;dy, and

Fo)=Y (0 o(x) (2.33

20 2 20 2
=g 1 cexpg —
o?+1 o?+1

x(a'=x*)(a—x)

: (2.39

is aneffect density11]. It can be easily shown that

f X"F(x)d?xy=a", (2.35

2_ 2
< “n =1
f |XI?Fo(x)d*x=aa’+ ) (2.36
Hence, defining the notion of a mean for this measurement
process

(00)e= [ 10Protd 2.37
= f fOO(F ,(x)p)d2x (2.38
we find that
(X)o=(a), (2.39
~a o?—1\2
(Ix1%)o=(aal)+ 20) (2.40
or
(X0)o=(X),  (X2)o=(P). (2.41)
n _no hl1+0* )
0D=(0)+ 5| =5 (2.42
(XB)= (P + s ”"4) (243
2 402 |’ ’

where (A)=tr(Ap) is the quantum expectation. Thus the
readout variablex; andx, give, respectively, the position
and momentum of the system with additional noise depen-
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dent ono. We obtain maximal information from the system the detectors are reset is equivalent to making a Markov
when the variances are at a minimum. That is, whenl.  assumption for a single apparatus coupled to the system. By
In this case resetting the detector at each time step we ensure that no
R R R coherent memory of the system state survives in the states of
Filx) =7 tiexd—(a"—x*)(a—x)1: (2.44) the apparatus. Followin0] we will first derive the master
equation for unconditiondor nonselectiveevolution of the
=7 x)xl (2.45  system density operator in the continuous limtt—0, o
. . . ! — o0, By unconditional evolution we mean that no account is
and the probability density reduces to the Husimi density Ofayen of the measured results. Thus after each measurement
Q function occurs we ignore the result and average over all possible
measurement outcomes. If we denote the system density op-

Prol x)=7 Yx|p 2.4 .
Hx)=m"Hxlplx) (2:49 erator immediately before theth measurement by(nét)
=7 1Y) (247 then

Suppose we take a measurement and obtain the outgbme ~ L5t =0 J 2% - o Tyt
As a consequence of the strength of this measurement the p(nét+at)=U [ d°% Y,(x)p(nd)Y ,(x)'U" (3.2)

system state collapses to a coherent state

where
p'=—Y.i(x)pYix)' 2.4 . i
P protix) 1(x)pYa(x") (2.48 UEEX[{ —gH&) 33
— O @49 i
== X XXpIX X : —1__¢ 2
(x'plx") 1 ﬁHatJrO(&t ). (3.9
=X Hx’I- 250 por any operatoA it is possible to show that
However, wherr>1 the resolution operator has the expan- 1
sion f d2x ¥, (0AY (0 1=A- = [a[af All+0| = |.
5 1 (o (o
Ya(x)=77_”2;{1— —{1+2@"-x*)@-x)} 39
7 Hence we obtain
1 R -
+0 ;)- (259 p(nst+6t)— p(nét)
ot
Using this result one can show that the system state condi- i
tioned on the measurement outcoppeis - _rhO _ ArAat 2
7 [H.p(ndt)] Uz[a,[a p(NSt)]1+0(ot)
A . 2 R R R
p'=p+ =@ —x"*)(@a—x")p] 1
o +0| | +0| — |- (3.6
oz oto

—(@'—x"*)a-x"),p}+0

(2.52 By setting t=nét and taking the continuous limitst
—0, 0—%, with y=1/8to® held constant, we obtain the

and thus, ifo is large enough, the process of measuremenfnaster equation for unconditional evolution,

will have negligible effect on the system.

0_4

dp i DU
w__ _ t
Il. CONTINUOUS MEASUREMENT gt~ ptthelmralatell 37
Consider a sequence of phase-space measurements gov- [N 1 PPN 1 A a
erned by the Hamiltonian == 7 [Hpl= 3 Talx.[xp]l= 5 Talp.[p.p]l,

(3.8

1 e
gxp1+spp2)n§=‘,o s(t—nat), (3.9 wherel’ ;= ys andI',= y/s. This equation has already been

derived by Barchielliet al. [13]. By settingI',=0 in Eq.
where after each measurement the detectors are reset into #88) we obtain the unconditional master equation for con-
initial states given by E¢2.2) or (2.3). The assumption that tinuous position measurements previously derivefRii.

HT: H(;(,ﬁ)‘F
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We now wish to derive the conditionédr selectivé mas-  where we have seg=1/6to” to be constant in anticipation
ter equation for the system density operator. In this case thef the continuous limit. Hence foft small enough, we can
evolution of the system is conditioned on a history of mea-approximate increments in the variabieby
surement readouts

where x(nét) is the detector position for theth measure-

ment. Hence, ip(nst) is the system density operator imme-

. where it is understood that the complex lb@rementsé is
diately before thenth measurement, then

of order of 6t2 and satisfie€(5£) =0, E(5&* 8¢)=6t. In

~ ~ PP ~ the continuous limitdt— 0 with t=n4dt constant, we have
p(ndt+ t)=U[Prok(x(nst))] 1Y ,(x(nédt))p(ndt)

XY, (x(nst)TUT. (3.10 . 1
dA(t) =tr(ap(t))dt+ E«fl’zolg(t), (3.23
To proceed we extend the definition of the readout variable

by setting

where £(t) is a complex Wiener procegg4] and the lio
x()=x(not) for nétst<(n+1)st (31D (ifferential d¢ satisfies the algebra

and introduce the new variable

t E(dé)=0, (3.29
X(t)EJ x(tHdt'. (3.12
0 derdé=dt, (3.29
HenceX(0)=0 and
n—1 dg?=0, (3.2
X(nédt)= atmEo x(mét) for n=1. (3.13
d¢ dt=0. (3.27

Using Egs.(2.39 and(2.40 we obtain

_ To simplify the following we will always replacé&* 5¢ by
Ecx(no)=(x(nd), (3.14 8t and sets&?= 6¢*?=0 in anticipation of the above alge-
bra in the continuous limit. Using Eq3.18 together with

=tr@p(nat)), (319 Eq.(3.22, we obtain the following expansion for the reso-
lution operator(2.2
Velr(no0)=(|x(N8)[2),~ [ (x(na0)), 2 (3.16 perator(z.29
L . o2—1\2 R y 1/2 R R
=tr(@a’p(nén)) - [tr@p(na)|*+| —~ ) , Yo(x>:2(;) 1+ yYH AT 6¢+ Aoe*)
(3.17 1
— AT A = 2
where the subscript has been added to emphasize that the 7’&(“4 At 2 +0(at%), (3289
mean and variance are conditioned throygbn the entire
history of measurement readouts. Now letting
where
SX(nst)=X(nst+ 8t)— X(nst)=Sty(nst) (3.18
we find that A=a—tr(ap) (329
Eo(8X(ndt))= dttr(ap(nat)), (319  and it is understood thai=p(ndt), y=x(ndt), and 5¢

= §&(nét). Hence we find that

Ve(8X(ndt))= ot?| tr(@a’p(nét)) — [tr(@p(ndt))|?

A N yot . A . .
Y, 00pY (0 T=4——(p+ v Ao+ Ase* p}

0.2_1 2
+ ) (3.20
20 I
—yStLA[AT,p])+O(8t%)  (3.30
1
37 Tot+O(at?), (3.21 and thus, using3.4) we obtain
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- ~ 1ot 12 gt A sex o I 1 S I3\)2
p(nét+ot)=p— —[H.p]+y A 66+ A5¢* p) dlg)=— zAlW)dt= o Ta(x—(x))?| y)dt
_ AT At S / .
’)’&[A,[A vp]]+o( &3 2) (33]) _ %Fz(p_<p>)2|¢>dt+h—1/21"11/2
R ) SN IR A a .~ .
= _I?[va]_')’gt[a,[atp]] X(X—<X>)|l/;>dwl+ﬁ71/21_‘21/2(p—<p>)|¢;>dW2,
o . (3.39
+yY?H[a"]p o+ v ?H[alp 5¢*
where
+0(8t3), (3.32
E(dW,)=0, (3.39
where we have defined the superoperator
H[Alp={A-tr(Ap).p}. (333 L
—(dW;+i dW,)=d¢& (3.4)
In the limit 5t— 0 we obtain the master equation for condi- V2

tional evolution, . )
and the readout variables andx, obey the stochastic pro-

dp(t)=p(t+dt) = p(t) (334 O€SSeS

i L o Xm(t)=tr(§<f)(t))dt+%ﬁl’2I‘1’l’2dWl(t), (3.42
==z [H.p(0]dt—yla[a,p(t)]]dt

. . . 1 -
+ Y21 At p(t)dE(t) + yH2H[alp () dE(t)* dXo(t) =tr(pp(D)dt+5 A1, Y2 dWiy(1),  (3.43
(3.35
with
It is easy to see that upon averaging this stochastic differen- . .
tial equation, we reproduce our original master equation for xl(t)zf X, (t")dt’, Xz(t)Ef Xo(t")dt’. (3.44
unconditional evolutiodEq. (3.7)]. However, note that un- 0 0

like the unconditional equation, this equation preserves the

pure-state property df One can easily prove this by show- By settingI',=0 in Eq. (3.37 we obtain the conditional

ing do2=d5 under th ion thaie h master equation for continuous position measurements pre-
Ing dp®=dp under the assumption t at=y)(y|, where viously derived in[21]. Note thatx,; andx, are charged by
dp?={dp,p}+dp dp. As a consequence, the above masteflstationary white noise

equation has an analog for pure-state evolution in terms of a

stochastic Schitinger equation ~ 1 .
e X1:<X>+§ﬁ1/2F1_1/ZW1- (3.49
i~ P A
dly)=— -H[y)dt—y a'a+ E—(aUa—aT(a) 1 .
X2:<b>+§ﬁl/21ﬂ271/2W2, (3.49
+|(a)|? | |gydt+ yYAaT—(a")|y)d
I@F1) [ (@)ly)de making their graph highly irregular. It is thus better to rep-
YA (A))| g dE" (339 esent the measured trajectory g§) and(p).

“ “ IV. ANALYTICAL INVESTIGATIONS
where (Ay={(y(t)|A|(t)). In terms of position and mo-

mentum variables the above equations read as We will now investigate the effect of measurement on the
system state by setting=0 and defining

- (RPN 1 A non 1 A n
+A VA PHX]p AW+ AT VAT, PH plp dW, Vo=E(P2)—(p)?), 4.2
(3.3
1 .. 1 .. A A
and Cup=E| 5 (XP)+ 5 (PX) = (X)(P) | 4.3
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5

a 0
() ~5g 0 5
X
5
FIG. 1. (a) Contours of H
=5p?+5x?+x* and the initial
Q state (=0.05). The trajectory
a o | and final state at=4 when (b)
y=0, (c) y=1/\/2 ands=1, and
(d I'y'=1 and I',=0. (¢) The
combined variance of position and
momentum. All quantities are di-
mensionless.
() 3¢ 0 5 () ~Sg 0 5
X X
2 T T T T T T T
o 15F i
g
o
o
o 1
X
L
N><
05 .
0 1 1 1 | I 1
© "o 05 1 15 2 25 3 35 4
t
whereV, andV, are the expected variances in position and dv, 4y ) 4sy )
momentum, an€, , is the expected covariance between po- W:S%_ s—ﬁvp - Tcxp ' (4.5
sition and momentum. The average is taken over all possible
measurement histories. One can then derive the following set
of coupled differential equations dC,, 4y 1
dt Z—?Cxp SVX+ gvp , (46)

dVX:’y_h_ﬂV 2_4_yc 2

dt s h X sk XP?

(4.4 the solutions of which are

fi (2sV+hitani(2yt))(sh +2Vp tani(2y1))—4sC) 2tani(2yt) 4
V()= 52 —— as t—o, 4.7
28 (h+2sV3 tanh(2yt))(sh + 2V tant(2y1)) — 4sC) 2 tanif(2yt) 28
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5

2 0
-5
(@ 25 5
5
FIG. 2. (8 Poincaremap for
H=5p2—8x2+ x*+ 15x cos(2nt)
2 0 and the initial state #=0.05).
The trajectory and final state &t
=5 when(b) y=0, (c) y=1/12
ands=1, and(d) I'y=0 andT',
=1.(e) The combined variance of
" . 5 . position and momentum.
© 5 0 5 (@) 5 0 5
X X
5 T T T T T T T T T
4+ _
N/\
&
3F 4
2
o
e [ -
IZ
&
1 5 =

vt st (2Vp+sh tant(291))(f + 2sV5 tank(29t)) - 4sC) tani(29t)  sh t 8
== — 5 a — 0, .
=7 (h+2s\Vg tant(2yt))(sh + 2V tank(2y1)) — 4sCJ P tantf(2yt) 2 S

sh2Cy, sech(2yt)

—0 —0, 4.9
(i + 25V tani(2yt))(sh + 2V} tank{ 2 y1)) — 45 CY, 2 tanif(2yt) as t 49

Cxp(t):

whereV,(0)=V?, Vp(0)=V°, and Cxp(0)=C2p. Hence the process of measurement induces the system state to collapse
into a coherent state. If the measurement retrieves no information on momentuii, &, then
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VO °
V()= ———, (4.10 I ]
A R avOr gt !
3. -
V(1) =VO+ ATt ACk Tt 4.1 il 1
=V, .+ -, .
P P hravort it ]
c? = 1
Cap(t) = ——— (4.12 -t 1
P R+ 4VOr gt
ot g
and the growth in the momentum variance is unbounded.  _s} -
Similarly, if the measurement retrieves no information on
.- .- . 4+ 4
position then the position variance grows unbounded. How-
-5 L L L L L L L L L

ever, when both position and momentum are measured si 5
multaneously the system state is forced into a coherent state X

WhenH#0 we expect that for a suitable choice of any
spreading of the quantum wave packet caused by nonlineari
ties in the Hamiltonian will be counteracted by the
measurement-induced localization.

One might naively assume that if the measurement only
retrieves information on positiofor momentum then the
state will not localize. However, this is not always the case.
Note that whedcgp|>ﬁ/2 in Eg.(4.11 the momentum vari-
ance will initially decrease. Thus if the system dynamics is
such that it increases the covariance between position an _
momentum, then the continuous measurement of positior <ost .
may also localize momentum. For example, consider the

Hamiltonian describing free-particle motiod,=ap?. When
I',=0, the variances and covariance satisfy

1.5

-0 2KpH~(p)

dVi 4l ® % 1 2 s 4 5
th:—Tvx2+4acxp, (4.13 .
FIG. 3. (a) The quantuniblack) and classicalgray) trajectories
% —T.h— 4_F1C 2 (4.14 for the same Hamiltonian as in Fig. 2 except witk: 10~ 6. (b) The
dt 1 o xR ) combined variance of position and momentum.
dC Ar H=ap?+bx?+cx*+dx cog t). 5.1
2=~ =20Vt 2V, (4.19 P o) ©.9

The numerical method to solve this equation is simple. To
Although we could not solve these equations analytically, itake advantage of the measurement-induced localization we
is easy to see that all physical solutions are asymptoticallyise a local moving number basis
attracted to the stable fixed point

V,=1/ aﬁ V——\/Flﬁ C ——ﬁ
X 2_I1 ' P 2a"’ XpT o
truncated at some finite valud. The stochastic terms are

Hence, measurement of position does not introduce a diffu- ; X .
sion in momentum and the state localizghis result has integrated using the first-order Euler method while other

been derived previously if20,25). However, for free- terms are integrated by diagonalizing the position and mo-

particle motion, if we only measure momentum the statd"entum operators anq using t_he split-operator formula.
We will first consider an integrable case whemr=b

does not localize. The system dynamics accelerates the

: s ; =5, c=1, d=0, andA=0.05. The initial state was chosen
growth in the position variance. S¢4,5,7,8,19,26—3pfor ' ' ' =
more on localization and other analytical results. to be a coherent st_atgs{: 1). centered_ "’.‘t. Xp)=(—21)
whent=0. The Husimi density of the initial state together

with the contours of the Hamiltonian are plotted in Figa)l
The Husimi density of the evolved state<(4) together with

1.
=__3afn = =
n) e 0}, n=01,...N (s=1) (5.2

(4.16

V. NUMERICAL SIMULATIONS

We will now numerically investigate the solution of the
stochastic Schidinger equatior{3.36) for the driven system

the trajectories(x),(p)) for different measurement schemes
is plotted in Figs. (b)—1(d). The evolved state in Fig.(h) is

042101-9
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the result when no measurements occp=Q). In this case, 10 ° [Fig. 3b)] and the noise is not visible. The correspond-
nonlinearities in the Hamiltonian cause the state to shear asiitg classical trajectory is plotted in gray and is only visible
evolves, spreading it along the contours. The trajectory hawhen it deviates from the quantum trajectorytat5. The
litle meaning wherny=0. In Fig. 1c) the evolved state is evolution of this system under the continuous measurement
the result of continuous simultaneous measurement of posef position has already been studied by Bhattachatyal.
tion and momentum wity=1/\/2 ands=1. In this case the [2]. They also find that the measurement keeps the system
state has remained localized as it follows the contours. Thetate localized. It is not surprising that this is also the case
continuous measurement of position only,E0) whenl';  when only momentum is measurgiéig. 2(d)].
=1 has also kept the state localized. This is shown in Fig.
1(d). The combined variance of position and momentum is
plotted in Fig. 1e). We must emphasize that only when both
position and momentum are measured together does the tra- \we have derived an ltstochastic Schidinger equation
jectory correspond via Eq$3.49 and(3.46) to the outcome (3 36 describing the evolution of a quantum system under
of an actual measurement. If only position is measured, onlyhe continuous simultaneous measurement of position and
(x) is observed whilg(p) is simply the result of a math- momentum. The outcome of this measurement is a classical
ematical calculation. stochastic record obeying E.23. As a consequence of
Now consider the chaotic case whax5, b=—8, ¢ continuous measurement, the system state is forced to remain
=1, d=15, w=2m, and#=0.05. A Poincarestroboscopic localized allowing a classical interpretation of the quantum
map with unit strobing frequency is plotted in Figa2 For  mean of the phase-space variables as the trajectory of the
an initial state the same as above, the evolved stat)  system. This trajectory corresponds to the actual measured
together with the trajectories for different measurementrajectory without the noisgEqgs.(3.45 and(3.46)]. Further-
schemes is plotted in Figs(l8—2(d). When no measurement more, the localization property allows a well-defined classi-
occurs[Fig. 2(b)] the chaotic action of stretching and folding cal limit via Ehrenfest’s theorem. Indeed, for sm#ll nu-
spreads the state across the phase space. However, when merical results show that the quantum system approximately
continuously measure position and momenfirig. 2(c)] the  follows classical trajectories. However, a more complete the-
state remains localized and the trajectory resembles classicatetical understanding of the classical limit under continuous
motion with noise. This noise will vanish as we approach themeasurement is needed. Finally, it is worth mentioning that
classical limitz—0. In Fig. 3a) we have plotted the quan- continuous measurement of the periodically driven pendu-
tum trajectory for the same parameter values as above excelpim restores the classically observed chaotic diffusion previ-
with 2=10"8. In this case the total variance remains belowously suppressed by quantum dynamical localizafRi.

VI. CONCLUSION
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