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Quantum nonlinear dynamics of continuously measured systems
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Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is for-
mulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly
compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities
associated with a statistical ensemble such as variance or entropy. However a more direct comparison would
compare classical predictions to the quantum predictions for continuous simultaneous measurement of position
and momentum of a single system. In this paper we give a theory of such measurement and show that chaotic
behavior in classical systems can be reproduced by continuously measured quantum systems.
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I. INTRODUCTION

The Hamiltonian formulation of classical mechanics a
signs simultaneous, arbitrarily accurate, values for the
nonically conjugate position and momentum to distingui
able particles. Indeed in classical mechanics th
simultaneous values are regarded as properties of the
ticles themselves; measurement simply reveals these va
and need not, in principle, add uncertainty to their deter
nation. In quantum mechanics the conjugate position
momentum are represented by noncommuting operatorx̂

and p̂, with @ x̂,p̂#5 i\. It follows that there is no physica
state for which position and momentum can take dispers
free values. This is the content of the standard formulation
the uncertainty principlê(D x̂)2&^(D p̂)2&>\2/4, whereDÂ

5Â2^Â&. This does not mean, however, that simultaneo
measurements of position and momentum are imposs
only that such simultaneous measurements cannot be m
arbitrarily accurate@1#.

Our objective is to show that theobservedphase space
reconstructed from the classical stochastic measurem
record of continuous joint measurements of position and m
mentum, corresponds to the classical phase space descr
with added noise. By a careful specification of the measu
ment model, including the relevant states of the appara
together with a Markov assumption, we show that the
served classical stochastic measurement record corresp
to the conditional quantum averages^x̂(t)& and ^ p̂(t)&. We
obtain a stochastic Schro¨dinger equation for the conditiona
state of the system with complex noise, together with cla
cal stochastic equations for the variables correspondin
the observed measurement records. This extends the re
of Bhattacharyaet al. @2#, where only a position measure
ment was considered. Other authors@3–8# have considered a
general type of stochastic Schro¨dinger equation~which may
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be interpreted as corresponding to a measurement! in the
framework ofquantum state diffusionto examine dissipative
chaos in open systems.

A model for the simultaneous measurement of posit
and momentum was given long ago by Arthurs and Ke
@9#. This model consists of two meters that are allowed
interact instantaneously with the system. The interact
couples one of the meters to position and the other to m
mentum, encoding the results of the measurement in the
states of the meters. Projective measurements are then m
on each of the meter states separately. In more general t
the Arthurs-Kelly model is an explicit example of th
Gelfand-Naimark-Segal theorem@10# that enables us to write
a positive, joint probability density of two real variables~the
actual measurement outcomes! in terms of an inner produc
on an extended Hilbert space~extended to include the two
apparatus as well as the system to be measured!. It can also
be considered as an example of apositive operator valued
measure@11,12#. The Arthurs-Kelly model suggests a rou
to a phase-space description of quantum mechanics base
the joint outcomes of simultaneous measurements of pos
and momentum. However, to achieve a phase-space des
tion of the dynamics, it is necessary to consider a time
quence of such measurements. The Arthurs-Kelly mo
forces the conditional state of the system into a coher
state after a single measurement and is too strong for
purpose.

We generalize the Arthurs-Kelly model to allow for
weakening of the measurement. In this way repeated m
surements can take place without invariably reducing
system to a coherent state. By simultaneously increasing
number of measurements and weakening the strength of
measurement, the continuous limit is achieved. We show
under continuous observation the evolution of the syst
state is described by an Itoˆ stochastic Schro¨dinger equation.
Unlike evolution via the ordinary Schro¨dinger equation, con-
tinuous observation forces the conditional state of the sys
to remain localized. Hence the quantum mean of the pha
space variables can be thought of as a trajectory. It is in
©2001 The American Physical Society01-1
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light that we investigate quantum nonlinear dynamics un
continuous observation.

The theory of continuous measurement in quantum m
chanics was first developed by Barchielli and co-work
@13–15# and some of the results in this paper are containe
their work ~see also@16# and the work by Belavkin@17# and
Belavkin and Staszewski@18,19#!. However, our approach
uses the Arthurs-Kelly measurement model as a star
point and follows the work on continuous position measu
ments by Caves and Milburn@20# and Milburn @21#. In this
way our results have a clear physical interpretation.

In Sec. II we generalize the Arthurs-Kelly measureme
model. In Sec. III we derive the stochastic Schro¨dinger equa-
tion for continuous measurement which is then investiga
analytically in Sec. IV and simulated numerically in Sec.
for a chaotic system. Finally, in Sec. VI we discuss our
sults.

II. PHASE-SPACE MEASUREMENTS

Following Braunsteinet al. @22# we rederive and genera
ize the result implicit in the work of Arthurs and Kelly@9#.
The simultaneous measurement of position and momen
of a one-dimensional quantum system is achieved by c
structing an interaction governed by the Hamiltonian

ĤT5Ĥ~ x̂,p̂!1S 1

s
x̂p̂11sp̂p̂2D d~ t2t r !, ~2.1!

which couples the system HamiltonianĤ with two detectors
d1 andd2. The measurement model requires that the de
tors be prepared in the initial states

^xi udi&5~p\D i !
21/4 expS 2xi

2

2\D i
D , ~2.2!

^pi udi&5S p\

D i
D 21/4

expS 2pi
2D i

2\ D , ~2.3!

whereD15s2/2s andD25ss2/2. The parameters is called
the squeezing parameterand biases the coupling so that o
may obtain more information on either position or mome
tum. The parameters will be used to weaken the measur
ment, decreasing the amount of information collected
both position and momentum.

Before the interaction, the system stater̂ and the
combined-detector state

r̂d5ud1d2&^d1d2u[ud1&^d1u ^ ud2&^d2u ~2.4!

are assumed to be uncorrelated with an initial combin
density operator ofr̂ ^ r̂d . At t5t r the evolution operator
for the interaction

ÛI[expF2
i

\ S 1

s
x̂p̂11sp̂p̂2D G ~2.5!

couples the system to the measurement apparatus, entan
the system and detector states. After the interaction,
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probability of finding the detector positions in the small ar
@x1 ,x11dx1#3@x2 ,x21dx2# is

Prob~x1 ,x2!dx1dx2

5tr trd~ÛI r̂ r̂dÛI
†ux1x2&^x1x2u!dx1dx2 ~2.6!

5tr„Ŷs~x1 ,x2!r̂Ŷs~x1 ,x2!†
…dx1dx2 , ~2.7!

where tr(•••) and trd(•••) are the traces over the system a
detector states, respectively, Prob(x1 ,x2) is the probability
density, and theresolution operator

Ŷs~x1 ,x2![^x1x2uÛI ud1d2& ~2.8!

5~2p\!21E dp1 dp2 expF2
i

\ H p1S 1

s
x̂2x1D

1p2~sp̂2x2!J G^p1p2ud1d2& ~2.9!

5D̂S sx1 ,
1

s
x2D Ŷs~0,0!D̂S sx1 ,

1

s
x2D †

.

~2.10!

The displacement operator is

D̂~m,n![expF2
i

\
~m p̂2n x̂!G ~2.11!

and

Ŷs~0,0!5~2p\!21E dp1 dp2^p1 ,2p2ud1d2&

3D̂S sp2 ,
1

s
p1D †

. ~2.12!

We now define the annihilation operator

â[
1

A2\
S Asx̂1 i

1

As
p̂D , ~2.13!

which satisfies@ â,â†#51 and rewrite the displacement op
erator as

D̂~z!5exp~zâ†2z* â!, ~2.14!

wherez5(1/A2\)(Asm1 i @1/As#n). It can be easily shown
that

D̂~z!†5D̂~2z!5D̂~z!21, ~2.15!

D̂~z!âD̂~z!†5â2z. ~2.16!

The coherent states@23# are now defined by applying th
displacement operator onto the vacuum state

ua&[D̂~a!u0&. ~2.17!
1-2
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They satisfy the following relations:

âua&5aua&, ~2.18!

D̂~b!ua&5expF1

2
~a* b2ab* !G ua1b&, ~2.19!

^aub&5expS 2
1

2
uau22

1

2
ubu21a* b D , ~2.20!

E d2aua&^au5p. ~2.21!

Now defining %[(1/A2\)@Asp21 i (1/As)p1# we can re-
write Eq. ~2.12! as

Ŷs~0,0!5~2p\!21/2sp21E d2%^s%u0&D̂~% !†.

~2.22!

Using the above relations and integrating we obtain

^auŶs~0,0!ub&

5~2p\!21/2
2s

s211
expS 2

1

2
uau22

1

2
ubu2

1
s221

s211
a* b D ~2.23!

5~2p\!21/2
2s

s211
^aub&expS 2

2

s211
a* b D

~2.24!

5^au~2p\!21/2
2s

s211
:expS 2

2

s211
â†âD :ub&

~2.25!

where : : denotes normal ordering. Hence,

Ŷs~0,0!5~2p\!21/2
2s

s211
:expS 2

2

s211
â†âD :.

~2.26!

If we now definex5x11 ix2[(1/A2\)(Asx11 i @1/As#x2)
then the resolution operator becomes

Ŷs~x1 ,x2!5D̂~x!Ŷs~0,0!D̂~x!† ~2.27!

5~2p\!21/2
2s

s211
: expF2

2

s211

3~ â†2x* !~ â2x!G : ~2.28!

[~2\!21/2Ŷs~x!. ~2.29!
04210
The probability of finding the detector positions in the sm
area@x1 ,x11dx1#3@x2 ,x21dx2# is now

Prob~x!d2x52\ Prob~x1 ,x2!d2x ~2.30!

5tr„Ŷs~x!r̂Ŷs~x!†
…d2x ~2.31!

5tr„F̂s~x!r̂…d2x ~2.32!

whered2x5dx1dx2 and

F̂s~x![Ŷs~x!†Ŷs~x! ~2.33!

5p21S 2s

s211
D 2

:expF2S 2s

s211
D 2

3~ â†2x* !~ â2x!G : ~2.34!

is aneffect density@11#. It can be easily shown that

E xnF̂s~x!d2x5ân, ~2.35!

E uxu2F̂s~x!d2x5ââ†1S s221

2s D 2

. ~2.36!

Hence, defining the notion of a mean for this measurem
process

^ f ~x!&s[E f ~x!Prob~x!d2x ~2.37!

5E f ~x!tr„F̂s~x!r̂…d2x ~2.38!

we find that

^x&s5^â&, ~2.39!

^uxu2&s5^ââ†&1S s221

2s D 2

~2.40!

or

^x1&s5^x̂&, ^x2&s5^ p̂&, ~2.41!

^x1
2&s5^ x̂2&1

\

s S 11s4

4s2 D , ~2.42!

^x2
2&s5^ p̂2&1\sS 11s4

4s2 D , ~2.43!

where ^Â&5tr(Âr̂) is the quantum expectation. Thus th
readout variablesx1 and x2 give, respectively, the position
and momentum of the system with additional noise dep
1-3
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dent ons. We obtain maximal information from the syste
when the variances are at a minimum. That is, whens51.
In this case

F̂1~x!5p21:exp@2~ â†2x* !~ â2x!#: ~2.44!

5p21ux&^xu ~2.45!

and the probability density reduces to the Husimi density
Q function

Prob~x!5p21^xur̂ux& ~2.46!

5p21Q~x!. ~2.47!

Suppose we take a measurement and obtain the outcomx8.
As a consequence of the strength of this measuremen
system state collapses to a coherent state

r̂85
1

Prob~x8!
Ŷ1~x8!r̂Ŷ1~x8!† ~2.48!

5
1

^x8ur̂ux8&
ux8&^x8ur̂ux8&^x8u ~2.49!

5ux8&^x8u. ~2.50!

However, whens@1 the resolution operator has the expa
sion

Ŷs~x!5p21/2
2

s F12
1

s2
$112~ â†2x* !~ â2x!%G

1OS 1

s5D . ~2.51!

Using this result one can show that the system state co
tioned on the measurement outcomex8 is

r̂85 r̂1
2

s2
$tr@~ â†2x8* !~ â2x8!r̂#

2~ â†2x8* !~ â2x8!,r̂%1OS 1

s4D ~2.52!

and thus, ifs is large enough, the process of measurem
will have negligible effect on the system.

III. CONTINUOUS MEASUREMENT

Consider a sequence of phase-space measurements
erned by the Hamiltonian

ĤT5Ĥ~ x̂,p̂!1S 1

s
x̂p̂11sp̂p̂2D (

n50

`

d~ t2ndt !, ~3.1!

where after each measurement the detectors are reset in
initial states given by Eq.~2.2! or ~2.3!. The assumption tha
04210
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the detectors are reset is equivalent to making a Mar
assumption for a single apparatus coupled to the system
resetting the detector at each time step we ensure tha
coherent memory of the system state survives in the state
the apparatus. Following@20# we will first derive the master
equation for unconditional~or nonselective! evolution of the
system density operator in the continuous limitdt→0, s
→`. By unconditional evolution we mean that no account
taken of the measured results. Thus after each measure
occurs we ignore the result and average over all poss
measurement outcomes. If we denote the system density
erator immediately before thenth measurement byr̂(ndt)
then

r̂~ndt1dt !5ÛE d2x Ŷs~x!r̂~ndt !Ŷs~x!†Û† ~3.2!

where

Û[expS 2
i

\
Ĥdt D ~3.3!

512
i

\
Ĥdt1O~dt2!. ~3.4!

For any operatorÂ it is possible to show that

E d2x Ŷs~x!ÂŶs~x!†5Â2
1

s2
†â,@ â†,Â#‡1OS 1

s4D .

~3.5!

Hence we obtain

r̂~ndt1dt !2 r̂~ndt !

dt

52
i

\
@Ĥ,r̂~ndt !#2

1

dts2
†â,@ â†,r̂~ndt !#‡1O~dt !

1OS 1

s2D 1OS 1

dts4D . ~3.6!

By setting t5ndt and taking the continuous limitdt
→0, s→`, with g51/dts2 held constant, we obtain th
master equation for unconditional evolution,

dr̂

dt
52

i

\
@Ĥ,r̂ #2g†â,@ â†,r̂ #‡ ~3.7!

52
i

\
@Ĥ,r̂ #2

1

2\
G1†x̂,@ x̂,r̂ #‡2

1

2\
G2†p̂,@ p̂,r̂ #‡,

~3.8!

whereG1[gs andG2[g/s. This equation has already bee
derived by Barchielliet al. @13#. By setting G250 in Eq.
~3.8! we obtain the unconditional master equation for co
tinuous position measurements previously derived in@20#.
1-4
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We now wish to derive the conditional~or selective! mas-
ter equation for the system density operator. In this case
evolution of the system is conditioned on a history of me
surement readouts

$x~ndt !%5$x~0!,x~dt !,x~2dt !, . . . % ~3.9!

wherex(ndt) is the detector position for thenth measure-
ment. Hence, ifr̂(ndt) is the system density operator imm
diately before thenth measurement, then

r̂~ndt1dt !5Û@Prob„x~ndt !…#21Ŷs„x~ndt !…r̂~ndt !

3Ŷs„x~ndt !…†Û†. ~3.10!

To proceed we extend the definition of the readout varia
by setting

x~ t !5x~ndt ! for ndt<t,~n11!dt ~3.11!

and introduce the new variable

X~ t ![E
0

t

x~ t8!dt8. ~3.12!

HenceX(0)50 and

X~ndt !5dt (
m50

n21

x~mdt ! for n>1. ~3.13!

Using Eqs.~2.39! and ~2.40! we obtain

Ec„x~ndt !…5^x~ndt !&s ~3.14!

5tr„âr̂~ndt !…, ~3.15!

Vc„x~ndt !…5^ux~ndt !u2&s2u^x~ndt !&su2 ~3.16!

5tr„ââ†r̂~ndt !…2utr„âr̂~ndt !…u21S s221

2s D 2

,

~3.17!

where the subscriptc has been added to emphasize that
mean and variance are conditioned throughr̂ on the entire
history of measurement readouts. Now letting

dX~ndt !5X~ndt1dt !2X~ndt !5dtx~ndt ! ~3.18!

we find that

Ec„dX~ndt !…5dt tr„âr̂~ndt !…, ~3.19!

Vc„dX~ndt !…5dt2F tr„ââ†r̂~ndt !…2utr„âr̂~ndt !…u2

1S s221

2s D 2G ~3.20!

5
1

4
g21dt1O~dt2!, ~3.21!
04210
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where we have setg51/dts2 to be constant in anticipation
of the continuous limit. Hence fordt small enough, we can
approximate increments in the variableX by

dX~ndt !5tr„âr̂~ndt !…dt1
1

2
g21/2dj~ndt !, ~3.22!

where it is understood that the complex Itoˆ incrementdj is
of order ofdt1/2 and satisfiesE(dj)50, E(dj* dj)5dt. In
the continuous limitdt→0 with t5ndt constant, we have

dX~ t !5tr„âr̂~ t !…dt1
1

2
g21/2dj~ t !, ~3.23!

where j(t) is a complex Wiener process@24# and the Itoˆ
differential dj satisfies the algebra

E~dj!50, ~3.24!

dj* dj5dt, ~3.25!

dj250, ~3.26!

dj dt50. ~3.27!

To simplify the following we will always replacedj* dj by
dt and setdj25dj* 250 in anticipation of the above alge
bra in the continuous limit. Using Eq.~3.18! together with
Eq. ~3.22!, we obtain the following expansion for the res
lution operator~2.29!

Ŷs~x!52S gdt

pe D 1/2F11g1/2~Â†dj1Âdj* !

2gdtS Â†Â1
1

2D G1O~dt2!, ~3.28!

where

Â[â2tr~ âr̂ ! ~3.29!

and it is understood thatr̂5 r̂(ndt), x5x(ndt), and dj
5dj(ndt). Hence we find that

Ŷs~x!r̂Ŷs~x!†54
gdt

pe
~ r̂1g1/2$Â†dj1Âdj* ,r̂%

2gdt†Â,@Â†,r̂ #‡!1O~dt3! ~3.30!

and thus, using~3.4! we obtain
1-5
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r̂~ndt1dt !5 r̂2
idt

\
@Ĥ,r̂ #1g1/2$Â†dj1Âdj* ,r̂%

2gdt†Â,@Â†,r̂ #‡1O~dt3/2! ~3.31!

5 r̂2
idt

\
@Ĥ,r̂ #2gdt†â,@ â†,r̂ #‡

1g1/2H@ â†#r̂dj1g1/2H@ â#r̂dj*

1O~dt3/2!, ~3.32!

where we have defined the superoperator

H@Â#r̂[$Â2tr~Âr̂ !,r̂%. ~3.33!

In the limit dt→0 we obtain the master equation for cond
tional evolution,

dr̂~ t !5 r̂~ t1dt!2 r̂~ t ! ~3.34!

52
i

\
@Ĥ,r̂~ t !#dt2g†â,@ â†,r̂~ t !#‡dt

1g1/2H@ â†#r̂~ t !dj~ t !1g1/2H@ â#r̂~ t !dj~ t !* .

~3.35!

It is easy to see that upon averaging this stochastic diffe
tial equation, we reproduce our original master equation
unconditional evolution@Eq. ~3.7!#. However, note that un
like the unconditional equation, this equation preserves
pure-state property ofr̂. One can easily prove this by show
ing dr̂25dr̂ under the assumption thatr̂5uc&^cu, where
dr̂2[$dr̂,r̂%1dr̂ dr̂. As a consequence, the above mas
equation has an analog for pure-state evolution in terms
stochastic Schro¨dinger equation

duc&52
i

\
Ĥuc&dt2gS â†â1

1

2
2^â†&â2â†^â&

1u^â&u2D uc&dt1g1/2~ â†2^â†&!uc&dj

1g1/2~ â2^â&!uc&dj* , ~3.36!

where ^Â&5^c(t)uÂuc(t)&. In terms of position and mo
mentum variables the above equations read as

dr̂52
i

\
@Ĥ,r̂ #dt2

1

2\
G1†x̂,@ x̂,r̂ #‡dt2

1

2\
G2†p̂,@ p̂,r̂ #‡dt

1\21/2G1
1/2H@ x̂#r̂ dW11\21/2G2

1/2H@ p̂#r̂ dW2

~3.37!

and
04210
n-
r

e

r
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duc&52
i

\
Ĥuc&dt2

1

2\
G1~ x̂2^ x̂&!2uc&dt

2
1

2\
G2~ p̂2^ p̂&!2uc&dt1\21/2G1

1/2

3~ x̂2^ x̂&!uc&dW11\21/2G2
1/2~ p̂2^ p̂&!uc&dW2 ,

~3.38!

where

E~dWi !50, ~3.39!

dWidWj5d i j dt, ~3.40!

1

A2
~dW11 i dW2!5dj ~3.41!

and the readout variablesx1 andx2 obey the stochastic pro
cesses

dX1~ t !5tr„x̂r̂~ t !…dt1
1

2
\1/2G1

21/2 dW1~ t !, ~3.42!

dX2~ t !5tr„p̂r̂~ t !…dt1
1

2
\1/2G2

21/2 dW2~ t !, ~3.43!

with

X1~ t ![E
0

t

x1~ t8!dt8, X2~ t ![E
0

t

x2~ t8!dt8. ~3.44!

By setting G250 in Eq. ~3.37! we obtain the conditiona
master equation for continuous position measurements
viously derived in@21#. Note thatx1 andx2 are charged by
stationary white noise

x15^x̂&1
1

2
\1/2G1

21/2Ẇ1 , ~3.45!

x25^ p̂&1
1

2
\1/2G2

21/2Ẇ2 , ~3.46!

making their graph highly irregular. It is thus better to re
resent the measured trajectory by^ x̂& and ^ p̂&.

IV. ANALYTICAL INVESTIGATIONS

We will now investigate the effect of measurement on t
system state by settingĤ50 and defining

Vx[E~^x̂2&2^ x̂&2!, ~4.1!

Vp[E~^ p̂2&2^ p̂&2!, ~4.2!

Cxp[ES 1

2
^x̂p̂&1

1

2
^ p̂x̂&2^ x̂&^ p̂& D , ~4.3!
1-6



d

QUANTUM NONLINEAR DYNAMICS OF CONTINUOUSLY . . . PHYSICAL REVIEW A63 042101
FIG. 1. ~a! Contours of H
55p215x21x4 and the initial
state (\50.05). The trajectory
and final state att54 when ~b!
g50, ~c! g51/A2 ands51, and
~d! G151 and G250. ~e! The
combined variance of position an
momentum. All quantities are di-
mensionless.
nd
o
ib
s

whereVx andVp are the expected variances in position a
momentum, andCxp is the expected covariance between p
sition and momentum. The average is taken over all poss
measurement histories. One can then derive the following
of coupled differential equations

dVx

dt
5

g\

s
2

4sg

\
Vx

22
4g

s\
Cxp

2, ~4.4!
04210
-
le
et

dVp

dt
5sg\2

4g

s\
Vp

22
4sg

\
Cxp

2, ~4.5!

dCxp

dt
52

4g

\
CxpS sVx1

1

s
VpD , ~4.6!

the solutions of which are
Vx~ t !5
\

2s

„2sVx
01\ tanh~2gt !…„s\12Vp

0 tanh~2gt !…24sCxp
0 2 tanh~2gt !

„\12sVx
0 tanh~2gt !…„s\12Vp

0 tanh~2gt !…24sCxp
0 2 tanh2~2gt !

→ \

2s
as t→`, ~4.7!
1-7
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Vp~ t !5
s\

2

„2Vp
01s\ tanh~2gt !…„\12sVx

0 tanh~2gt !…24sCxp
0 2 tanh~2gt !

„\12sVx
0 tanh~2gt !…„s\12Vp

0 tanh~2gt !…24sCxp
0 2 tanh2~2gt !

→ s\

2
as t→`, ~4.8!

Cxp~ t !5
s\2Cxp

0 sech2~2gt !

„\12sVx
0 tanh~2gt !…„s\12Vp

0 tanh~2gt !…24sCxp
0 2 tanh2~2gt !

→0 as t→`, ~4.9!

whereVx(0)5Vx
0 , Vp(0)5Vp

0 , andCxp(0)5Cxp
0 . Hence the process of measurement induces the system state to co

into a coherent state. If the measurement retrieves no information on momentum, i.e.,G250, then

FIG. 2. ~a! Poincare´ map for
H55p228x21x4115x cos(2pt)
and the initial state (\50.05).
The trajectory and final state att
55 when ~b! g50, ~c! g51/A2
and s51, and ~d! G150 andG2

51. ~e! The combined variance o
position and momentum.
042101-8
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Vx~ t !5
\Vx

0

\14Vx
0G1t

, ~4.10!

Vp~ t !5Vp
01\G1t2

4Cxp
0 2G1t

\14Vx
0G1t

, ~4.11!

Cxp~ t !5
\Cxp

0

\14Vx
0G1t

~4.12!

and the growth in the momentum variance is unbound
Similarly, if the measurement retrieves no information
position then the position variance grows unbounded. Ho
ever, when both position and momentum are measured
multaneously the system state is forced into a coherent s
When ĤÞ0 we expect that for a suitable choice ofg, any
spreading of the quantum wave packet caused by nonline
ties in the Hamiltonian will be counteracted by th
measurement-induced localization.

One might naively assume that if the measurement o
retrieves information on position~or momentum! then the
state will not localize. However, this is not always the ca
Note that whenuCxp

0 u.\/2 in Eq.~4.11! the momentum vari-
ance will initially decrease. Thus if the system dynamics
such that it increases the covariance between position
momentum, then the continuous measurement of posi
may also localize momentum. For example, consider
Hamiltonian describing free-particle motion,Ĥ5ap̂2. When
G250, the variances and covariance satisfy

dVx

dt
52

4G1

\
Vx

214aCxp , ~4.13!

dVp

dt
5G1\2

4G1

\
Cxp

2 , ~4.14!

dCxp

dt
52

4G1

\
CxpVx12aVp . ~4.15!

Although we could not solve these equations analytically
is easy to see that all physical solutions are asymptotic
attracted to the stable fixed point

Vx5A a

2G1
\, Vp5AG1

2a
\, Cxp5

\

2
. ~4.16!

Hence, measurement of position does not introduce a d
sion in momentum and the state localizes~this result has
been derived previously in@20,25#!. However, for free-
particle motion, if we only measure momentum the st
does not localize. The system dynamics accelerates
growth in the position variance. See@4,5,7,8,19,26–30# for
more on localization and other analytical results.

V. NUMERICAL SIMULATIONS

We will now numerically investigate the solution of th
stochastic Schro¨dinger equation~3.36! for the driven system
04210
d.

-
si-
te.

ri-

ly

.

s
nd
n
e

it
ly

u-

e
he

H5ap21bx21cx41dx cos~vt !. ~5.1!

The numerical method to solve this equation is simple.
take advantage of the measurement-induced localization
use a local moving number basis

un&[
1

An!
â†nu0&, n50,1, . . . ,N ~s51! ~5.2!

truncated at some finite valueN. The stochastic terms ar
integrated using the first-order Euler method while oth
terms are integrated by diagonalizing the position and m
mentum operators and using the split-operator formula.

We will first consider an integrable case whena5b
55, c51, d50, and\50.05. The initial state was chose
to be a coherent state (s51) centered at (x,p)5(22,1)
when t50. The Husimi density of the initial state togeth
with the contours of the Hamiltonian are plotted in Fig. 1~a!.
The Husimi density of the evolved state (t54) together with
the trajectories (̂x̂&,^ p̂&) for different measurement scheme
is plotted in Figs. 1~b!–1~d!. The evolved state in Fig. 1~b! is

FIG. 3. ~a! The quantum~black! and classical~gray! trajectories
for the same Hamiltonian as in Fig. 2 except with\51026. ~b! The
combined variance of position and momentum.
1-9
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the result when no measurements occur (g50). In this case,
nonlinearities in the Hamiltonian cause the state to shear
evolves, spreading it along the contours. The trajectory
little meaning wheng50. In Fig. 1~c! the evolved state is
the result of continuous simultaneous measurement of p
tion and momentum withg51/A2 ands51. In this case the
state has remained localized as it follows the contours.
continuous measurement of position only (G250) whenG1
51 has also kept the state localized. This is shown in F
1~d!. The combined variance of position and momentum
plotted in Fig. 1~e!. We must emphasize that only when bo
position and momentum are measured together does the
jectory correspond via Eqs.~3.45! and~3.46! to the outcome
of an actual measurement. If only position is measured, o

^x̂& is observed whilê p̂& is simply the result of a math
ematical calculation.

Now consider the chaotic case whena55, b528, c
51, d515, v52p, and\50.05. A Poincare´ stroboscopic
map with unit strobing frequency is plotted in Fig. 2~a!. For
an initial state the same as above, the evolved state (t55)
together with the trajectories for different measurem
schemes is plotted in Figs. 2~b!–2~d!. When no measuremen
occurs@Fig. 2~b!# the chaotic action of stretching and foldin
spreads the state across the phase space. However, wh
continuously measure position and momentum@Fig. 2~c!# the
state remains localized and the trajectory resembles clas
motion with noise. This noise will vanish as we approach
classical limit\→0. In Fig. 3~a! we have plotted the quan
tum trajectory for the same parameter values as above ex
with \51026. In this case the total variance remains belo
o

,

to

04210
it
s

si-

e

.
s

ra-

ly

t

we

cal
e

ept

1025 @Fig. 3~b!# and the noise is not visible. The correspon
ing classical trajectory is plotted in gray and is only visib
when it deviates from the quantum trajectory att'5. The
evolution of this system under the continuous measurem
of position has already been studied by Bhattacharyaet al.
@2#. They also find that the measurement keeps the sys
state localized. It is not surprising that this is also the c
when only momentum is measured@Fig. 2~d!#.

VI. CONCLUSION

We have derived an Itoˆ stochastic Schro¨dinger equation
~3.36! describing the evolution of a quantum system und
the continuous simultaneous measurement of position
momentum. The outcome of this measurement is a class
stochastic record obeying Eq.~3.23!. As a consequence o
continuous measurement, the system state is forced to re
localized allowing a classical interpretation of the quantu
mean of the phase-space variables as the trajectory of
system. This trajectory corresponds to the actual meas
trajectory without the noise@Eqs.~3.45! and~3.46!#. Further-
more, the localization property allows a well-defined clas
cal limit via Ehrenfest’s theorem. Indeed, for small\, nu-
merical results show that the quantum system approxima
follows classical trajectories. However, a more complete t
oretical understanding of the classical limit under continuo
measurement is needed. Finally, it is worth mentioning t
continuous measurement of the periodically driven pen
lum restores the classically observed chaotic diffusion pre
ously suppressed by quantum dynamical localization@31#.
ev.
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