RAPID COMMUNICATIONS

Configuration-interaction approach for high-lying singly and doubly excited
states of two-electron systems

PHYSICAL REVIEW A, VOLUME 63, 040502R)

G. Lagmago Kamta? B. Piraux! and A. Scrinzt
!Laboratoire de Physique Atomique et Maldaire, UniversiteCatholique de Louvain, Chemin du Cyclotron 2,
B-1348 Louvain-la-Neuve, Belgium
Department of Physics and Astronomy, The University of Nebraska, 116 Brace Laboratory, Lincoln, Nebraska 68588-0111
SInstitut fur Photonik, Vienna University of Technology, Gusshausstrasse 27/387, 1040 Vienna, Austria
(Received 8 December 2000; published 21 March 2001

We introduce a configuration-interaction expansion in terms of Sturmian functions, which provides very
accurate nonrelativistic energies for the high-lying singly and doubly excited states of a two-electron system.
The approach, which requires a substantially smaller basis size by contrast to the standard configuration
interaction methods, provides accurate results even for large total angular momenta. Key features are the use
of different numbers of Sturmian functions for each electron, the inclusion of many different pairs of nonlinear
parameters in the expansion, as well as complex scaling. The accuracy and convergence of the method, applied
to helium, increases with the degree of excitation of one of the two electrons.
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The configuration-interactiofCl) method is based on the racy have prevented direct application of variational calcula-
wave-function expansion in terms of an antisymmetrizedions to higher Rydberg states. For higlembound states,
product of functions of the electron radial coordinates  asymptotic expansions based on a core polarization model
and spherical harmoniCé/i ,mi(Fi) coupled for a total angu- [14] have been considered as the only reliable approach, due

| . This i f the simplest and Al to difficulties encountered bwb initio variational calcula-
lar momentunt.. This 1s one ot the simplest and most flex- tions[6,12]. In this work, we propose an adequate Cl expan-
ible techniques forab initio calculations in two(or more

. sion that allows one to accurately describe high singly and
electron systems. However, CI calculations are known tQyo,ply excited states in heliumlike atoms for almost arbi-

have poor energy convergence and to require very large Xrary n and L, in the nonrelativistic case with an infinitely
pansions for reliable resulf4,2], so that perimetric coordi- massjve point nucleus. In addition, our approach permits one
nate[3] or Hylleraas-like[4—6] expansions are usually pre- to simultaneously obtain a large set of atomic state energies
ferred. Convergence is particularly slow for the ground stateyccurately by means of a single diagonalization, while re-
due to a cusp7] in the two-electron wave function, which is quiring a substantially smaller basis size.
a consequence of the singularity of the Coulomb repulsion The Hamiltonian of the two-electron system is written as
operator 11, atr4,=0. Schwart4 8] suggested that conver-
gence may be improved by usimg.=min(r;,r,) andr- H=—3V2—1V2—(ZIr) — (ZIry) +(1Irypy, (1)
=max(,r,), instead ofr; in the Cl expansion. This ap- ! 2
proach has been extendgdl, and the resulting modified CI whereZ denotes the nucleus charge and
significantly improves the accuracy and convergence of the
ground-state energy of He. For high asymmetrically excited 1 co4m r%
states(HAESS, where one electron is in a highly excited r_lzzqgo 2q—+1rq_+1
level and the other in the ground state or in a much lower =
excited level, there is little overlap between the two electrongg, 4 giverL and its projectiorM, we expand the solution of
clouds and therefore the cusp is less relevant. This worl, Schrdinger equatioH¥ =EV as
shows that the standard CI may be the bastinitio ap-
proach for dealing with such states.

Obtaining accurate energies for HAESs in helium has Vin(rr)=2 2 2 ¢ionA
been a long standing problem in theoretical atomic structure Moosom

q
2 Yo )Yap(=). @

physics. Variational calculations have yielded very accurate S5(rq) gk (r,)

energies for low-lying states in H8,5], but the accuracy of VA n” A)L\F/”(Fl,Fz), 3)
the results for excited states deteriorates rapidly with increas- M r

ing principal quantum numben. Improvements in varia- MM . -

tional techniqueg6,10] and in Cl expansiongll] have Where‘/’KsksV“ is the expansion coefficient adithe symme-

made possible the extension of variational calculations to th&ization operator. The Sturmian functiof5] are given by

intermediaten and L range f up to 18 forL=0 in Refs. Sk/(r)=Ny, 1" "*e “L2"%1 (2«r), where« is the non-

[10,11], andn up to 10 forL=2—7 in Refs.[6,12])). How- linear parametemﬁ/_ﬁfl(ZKr) a Laguerre polynomial, and
ever, the loss of accuracy in these variational approacheN;, a normalization factor. The inder of the Sturmian

subsists when the degree of excitation of the outer electron ifsnctions (SF9 takes the valueg’+1, /+2, /+3,

increasedsee e.g., Refl13]). Until now, this loss of accu- To avoid clumsy subscripts, we denote for the first electron
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TABLE |. Energy convergence for & and 8K states of He.
Reference data in bold characters are from R&f.

4'F 8K

(\,/) Size —E (au) (\,/) Size —E (au) n One SSF Five SSF Ref. ddt80,11]
0,3 24 2.031249981 (0,7 24 2.00781249999999 2 2.1749379 2.1752283 2.175229378237
(1,2 48 2031252264 (1,60 48 2.00781250587709 3 2.0686388 2.0686888 2.068689067472
(1,4 72 2.031255076 (1,8 72 2.00781251256537 4 2.0364951 2.03651198 2.036512083098
(2,3 96 2.031255095 (2,5 96 2.00781251256693 5 2.0226110 2.022618816 2.02261887230
(2,5 120 2.031255122 (2,7 120 2.00781251256816 6 2.0153731 2.015377421 2.01537745299
(3,4 144 2.031255123 (2,9 144 2.00781251257019 7 2.0111273 2.011129900 2.01112991951
(366 168 2.031255124 (3,4 168 2.00781251257020 8 2.0084254 2.008427109 2.00842712199

—2.03125514438175 —2.00781251257023 9 2.0066003 2.0066015077 2.00660151645

10 2.0053099 2.0053107884 2.0053107941

by Greek letters the nonlinear parameierand the radial,
orbital, and magnetic quantum numbersk, and u, while
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TABLE II. Energy absolute values fan 3S states of He, ob-

tained with one and with five SSFs. Reference data are from Ref.

[10], except the last three entries, which are taken from Rdfl.

11 2.0043641
12 2.0036501
13 2.0030981

2.00436469602
2.00365062305
2.00309846491

2.004364698
2.003650618
2.003098445

Roman letters, n, /, andm are used for electron 2" 14 20026626 200266272632 200266266
denotes the bipolar spherical harmonjd$]. Atomic units 15 20023126 200231283777 200231267
are used throughout this work. , 2.0020267  2.00202764274  2.00202763

The difficulty in describing HAESs arises from the fact 2 0017677 2 00179212209 2 00179211
that two distinct regions of space are associated with the 2'0014276 2'00159537519 2'00159535

electron clouds: a region close to the nucleus for the inner
electron cloud, and a region at large distance from the
nucleus for the outer electron cloud. An efficient expansion

19 2.0009003
20 2.0000458

2.00142933541
2.00128792977

for the wave function should contain both distance scales and 2* 1.9986305 200116651566
span the two regions simultaneously. SFs are suitable for this 22 2.00106149479
purpose becausg) they form a complete basis séii;) they 2.00097004347
are exact solutions of the Sclidinger equation for a single 24 2.00088992080
electron in the field of the nucleugiii) they depend on a 25 2.00081933006
26 2.00075681712

nonlinear parametex and an indexn, which both act like
spatial dilation factors. Indeed, forand/ fixed, decreasing 27
« increases the radial spread of the §F(r), and similarly 28
whenn increases withc and/ being fixed. Therefore, non- 29
linear parameters and radial indices of SFs could be adjusted30
in the basis in order to span the two regions mentioned ear
lier. This requires the basis to be built in such a way that the . . .

nonlinear pgrameter and the number of SF, attributyed to ongf€@sed in the basis. On the other hand, as this degree of

electron could be different from those attributed to the othefXCiation increases, correlations between the two electrons
[17]. decrease and therefore fewer angular configurations are nec-

In practice, we introduce aet of Sturmian functions essary for accurate results, so that the overall basis size can
(SSF, i.e., a combinatiofs, v-. ks ,n.. ] involving the SF be#ﬁgts\,tv;tt?c;?langlngzzwrrplésr. equation leads to a general
S,5(r1) with index v=A+1, N+2,... A+ v. associated y ger eq 9

/ K o ized eigenvalue problem that is solved through diagonaliza-
with electron 1, andSp,(r;) with index n=/+1, 7 tion. To describe doubly excited states, we use the complex

+2,.../+n. associated with electron 2. The pairs rotation techniqug19], which consists in performing the
(v~ .ks) and (0 k) are to be adjusted for each electron in transformatiorr;— ' "rj (0=6=m/2, j=1,2) on the Hamil-
order to increase the density of SFs in the two regions mertonian. With this technique, both energies and widths of dou-
tioned above for a HAES. Note that limitations of previousbly excited states are simultaneously obtained. Note that the
CI Sturmian expansionsl8] are due to the use of only one inclusion of many SSFs in the expansion causes near linear
SSF withks=ks and v~ =n- . Correlations are included in dependency problems in the basis that are adequately solved.
the basis by mixing different,/") pairs (angular configu- A full account of this work will be presented in a future
rationg in the infinite sum in Eq(2). For each ,/) se-  publication.

lected in the basis, one or many SSFksbeled in Eq.(3) by Table I illustrates the energy convergence with respect to
the indexs] may be selected. Using many SSFs allows ong(\,/), for the 4'F and 8K states of He, using the SSFs
to span a larger region, and thus permits a simultaneous d¢2.0,2;0.39,12and[2.0,2;0.17,12 respectively. The rate of
scription of many eigenstates. As the degree of excitation ofonvergence and the accuracy of the results improve as the
one electron increases, onty. or v~ (not both should be asymmetry of the states increases fronF4o 8 K. Indeed,
increased, and the corresponding nonlinear parameter desith an expansion of only 144 terms, we obtain energies for
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2.00070119491
2.00065148669
2.00060688281
2.00056670762
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TABLE Ill. Energies(in a.u) for the 10 lowest singly excited
singlet states in He fat =7, L=10, andL =11. Reference data in
bold characters are from Rdfl2].
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TABLE IV. Energies(E) and widths (") of the (N,K)=(2,1)
Rydberg series in He.

Burgerset al. [10] This work
L=7 n —E (a.u) —TI'/2 (a.u) —E (a.u) —I'/2 (a.u)
n —E (a.u) n —E (a.u)
8  2.007812512570227 8 2.0078125125702293 2 0.777867636 0.002270653 0.777870717 0.002262839
9 2.006172849096329 9 2.0061728490963298 3 0.589894682 0.000681239 0.589890735 0.000686687
10 2.005000007388375 10 2.0050000073883759 4 0.544881618 0.000246030 0.544878876 0.000247469
11 2.004132237176717 5 0.526686857 0.000109335 0.526685308 0.000109743
12 2.003472226797281 6 0517641112 0.000056795 0.517640185 0.000056913
13 2.002958583559211 7 0512513488 0.000032992 0.512512896 0.000033021
14 2.002551023402907 8 0.509332686 0.000020795 0.509332287 0.000020796
15  2.002222224690043 9 0.507225835 0.000013936 0.507225555 0.000013927
16 2.001953127055667 10 0.505759104 0.000009790 0.505758903 0.000009779
17  2.001730105535418 11 0.504697187 0.000007131
12 0.503904047 0.000005360
L=10 L=11 13 0.503296011 0.000004131
14 0.502819669 0.000003239
) ~E @y : “E@uy) 15 0.502439599 0.000002689
11  2.004132231822048 12 2.003472222425807 ' '
12 2.003472222565847 13 2.002958580052222 16 0.502131536  0.000002091
13 2.002958580165612 14 2.002551020551360 1 0.501878202 0.000001682
14  2.002551020644217 15 2.002222222342998 18 0.501667500  0.000001452
15 2.002222222419846 16 2.001953125102446 19 0.501490409  0.000001275
16 2.001953125166681 17 2.001730103893669 20 0.501340120  0.000001108
17 2.001730103947851 18 2.001543209951633
18 2.001543209997729 19 2.001385041616127 single basis expansion. Comparing with reference data, it
19 2.001385041655637 20 2.001250000056391 apr?ears that thepaccura.cy of OFl)JI’ regults increasesnyihd ,
20 2.001250000090496 21 2.001133786897338

that for n=12 our results turn out to be lowdr.e., more
accurate according to the variational princjptean refer-
the 4'F and 81K states within uncertainties of about 0  €nce data. This is impressive, comparing the basis size used
and 1013, respectively. Note that the SSFs used for thesdere with the expansion in perimetric coordina’ges _of Ref.
states require very few SFs with larger nonlinear parameters.0l; Where 24497 terms were used and optimization was
(only two of these are used herevhich are mainly involved ~Performed for each eigenstate separately. _ ,
in describing the inner electron. Also, the use of a SSF with AN adequate SSF for describing a given atomic state is
different nonlinear parameters appears to be crucial, becau§@nsistently obtained by exploiting the fact t'ﬁt,/(f) de-
such accuracy and convergence could not be achieved withs'ibes an electron of energ= — k?/2=—Z?/2n?, in the
SSF having identica' non”near parameters_ field of a nucleus of Chargé [15] Indeed, Consider, for
The interest in using many SSFs simultaneously in theexample, a bound state of He, with electron 1 in tisestate,
expansion is illustrated in Table Il. The second column conand electron 2 in an excited state with principal quantum
tains results obtained with only one S$Famely, the set nhumbern,. These electrons experience effective charges 2
[2.0,2;0.09,2p used in four angular configurations, leading and Z— o, respectively, wherer (0<o<1) results from
to 196 basis functions. Since the nonlinear paraméter screening by the inner electron. Such a state is accurately
=0.09 associated with the larger number of $Es=25 is described by including in the basis expansion, a SSF involv-
not large, only moderately high Rydberg states=@10 ing S:fh(rl) with k=2, andSﬁ’S/(rZ) with k¢=(Z—o)/n,
—15) are accurate to the order 10 which is already com- [i.e., (Z—1)/n,<ks=<Z/n,]. For doubly excited states, ad-
parable with results from available high precision variationalequate SSFs are determined similarly.
calculations fom=14 andn=15. Energies become less ac-  An optimization of nonlinear parameters for each eigen-
curate forn=16 and forn=10. Results in the third column state, as in standard variational calculations, may give ener-
are obtained with five SSFs adequately chosen to give abogies with the same accuracy as in Table I, with a smaller
700 basis terms and to span a larger region where electrofmsis size. However, this optimization leads to a loss of pre-
are expected. The accuracy of energies is significantly imeision for high Rydberg statelsl2]. Therefore, instead of
proved compared to the case with only one SSF. Almost alsuch a procedure, we use several SSFs with nonlinear param-
n3S state energies, with ranging from 2 to 30, are well eters covering a range of suitable values. As it appears from
converged, with an accuracy ranging from £0for low-  a comparison of the second and third columns in Table II,
lying states to at least 10° for higher Rydberg states. Note this gives high precision for many states in a single calcula-
that all these energies are obtained simultaneously, with &#on, with no significant gains by optimization. The price to

040502-3




RAPID COMMUNICATIONS

G. LAGMAGO KAMTA, B. PIRAUX, AND A. SCRINZI PHYSICAL REVIEW A 63 040502R)

pay is an increase of the basis size. This way, we have beesion has been used to simultaneously obtain all results pre-
able to perform calculations with as high as 70 antl as  sented in Table IV.
high as 15. In conclusion, we have shown that although CI fails to
Energies obtained for the first ten singlet bound states foaccurately describe atomic states where the cusp effect is
L=7, L=10, andL=11 are presented in Table Ill. For important, it may be the best approach when dealing with
givenL, energies have all been obtained simultaneously USHAESS, provided that it is implemented in a way that ac-
ing a single basis expansion. The purpose here is to illustratgounts for the asymmetry of the two electrons. This work
the efficiency of our method for large (L=8), where no  nroyides arab initio Cl approach for obtaining accurate non-
ab initio calculations have been performed. A comparison Ofg|ativistic energies for high singly and doubly excited states
our results with high precision variational calculations of; hajiumlike atoms. The method is fast, requires smaller
Ref. [12] shows an agreement within 18 for L=7, and  pagis sizes than standard Cl methods, and contrary to tradi-
also indicates that the accuracy of our results increases Witfyyn variational techniques, becomes increasingly accurate
increasingL andn. , as the degree of excitation of one of the electrons increases.
_ We now show that our method applies equally well 105 caiculations also exterab initio techniques to the do-
high-lying doubly excited states. Results obtained tor .. of largeL (L=8), where asymptotic expansions have

=0.2 are presented in Table IV in comparison with data,een considered as the only reliable approach. The extension
from Ref.[10] for a doubly excited Rydberg series below the of this work to account for mass-polarization, relativistic,

2s threshold. We use thé\(K,n) nomenclatur¢20], where  anq QED effects is straightforward. In addition, its extension

N andn respectively denote the principal quantum numbergg three (or more electron systems would not involve sig-
for the inner and outer electrons, aKds related to the angle ificant difficulties compared to standard CI.

between the two electrons. For smallwhere the cusp in-

fluence is important, our resultenergies and widthsagree G.L.K is grateful for the hospitality enjoyed at Universite
with reference data within 10 a.u. Asn increases, this Catholique de Louvain and acknowledges partial support
agreement improves, and for>8 the accuracy of our re- from the U.S. Department of Energy, Office of Basic Energy
sults is better than 10. Here again, a single basis expan- Sciences, under Grant No. DE-FG03-96ER14646.
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