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Configuration-interaction approach for high-lying singly and doubly excited
states of two-electron systems
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We introduce a configuration-interaction expansion in terms of Sturmian functions, which provides very
accurate nonrelativistic energies for the high-lying singly and doubly excited states of a two-electron system.
The approach, which requires a substantially smaller basis size by contrast to the standard configuration
interaction methods, provides accurate results even for large total angular momenta. Key features are the use
of different numbers of Sturmian functions for each electron, the inclusion of many different pairs of nonlinear
parameters in the expansion, as well as complex scaling. The accuracy and convergence of the method, applied
to helium, increases with the degree of excitation of one of the two electrons.
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The configuration-interaction~CI! method is based on th
wave-function expansion in terms of an antisymmetriz
product of functions of the electron radial coordinatesr i ,

and spherical harmonicsYl i ,mi
( r̂ i) coupled for a total angu

lar momentumL. This is one of the simplest and most fle
ible techniques forab initio calculations in two~or more!
electron systems. However, CI calculations are known
have poor energy convergence and to require very large
pansions for reliable results@1,2#, so that perimetric coordi-
nate@3# or Hylleraas-like@4–6# expansions are usually pre
ferred. Convergence is particularly slow for the ground st
due to a cusp@7# in the two-electron wave function, which i
a consequence of the singularity of the Coulomb repuls
operator 1/r 12 at r 1250. Schwartz@8# suggested that conver
gence may be improved by usingr ,5min(r1,r2) and r .

5max(r1,r2), instead ofr i in the CI expansion. This ap
proach has been extended@9#, and the resulting modified C
significantly improves the accuracy and convergence of
ground-state energy of He. For high asymmetrically exci
states~HAESs!, where one electron is in a highly excite
level and the other in the ground state or in a much low
excited level, there is little overlap between the two elect
clouds and therefore the cusp is less relevant. This w
shows that the standard CI may be the bestab initio ap-
proach for dealing with such states.

Obtaining accurate energies for HAESs in helium h
been a long standing problem in theoretical atomic struc
physics. Variational calculations have yielded very accur
energies for low-lying states in He@3,5#, but the accuracy of
the results for excited states deteriorates rapidly with incre
ing principal quantum numbern. Improvements in varia-
tional techniques@6,10# and in CI expansions@11# have
made possible the extension of variational calculations to
intermediaten and L range (n up to 18 forL50 in Refs.
@10,11#, andn up to 10 forL5227 in Refs.@6,12#!. How-
ever, the loss of accuracy in these variational approac
subsists when the degree of excitation of the outer electro
increased~see e.g., Ref.@13#!. Until now, this loss of accu-
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racy have prevented direct application of variational calcu
tions to higher Rydberg states. For higher-L bound states,
asymptotic expansions based on a core polarization m
@14# have been considered as the only reliable approach,
to difficulties encountered byab initio variational calcula-
tions @6,12#. In this work, we propose an adequate CI expa
sion that allows one to accurately describe high singly a
doubly excited states in heliumlike atoms for almost ar
trary n and L, in the nonrelativistic case with an infinitel
massive point nucleus. In addition, our approach permits
to simultaneously obtain a large set of atomic state ener
accurately by means of a single diagonalization, while
quiring a substantially smaller basis size.

The Hamiltonian of the two-electron system is written

H52 1
2 “ r 1

2 2 1
2 “ r 2

2 2 ~Z/r 1! 2 ~Z/r 2! 1~1/r 12! , ~1!

whereZ denotes the nucleus charge and

1

r 12
5 (

q50

`
4p

2q11

r ,
q

r .
q11 (

p52q

q

Yq,p* ~ r̂ ,!Yq,p~ r̂ .!. ~2!

For a givenL and its projectionM, we expand the solution o
the Schro¨dinger equationHC5EC as

CL,M~r1 ,r2!5(
l,l

(
s

(
nn

cksksnn
ll LM A

3
Snl

ks~r 1!

r 1

Snl

ks ~r 2!

r 2
Lll

LM~ r̂ 1 , r̂ 2!, ~3!

wherecksksnn
ll LM is the expansion coefficient andA the symme-

trization operator. The Sturmian functions@15# are given by
Snl

k (r )5Nnl
k r l 11e2krLn2l 21

2l 11 (2kr ), wherek is the non-
linear parameter,Ln2l 21

2l 11 (2kr ) a Laguerre polynomial, and
Nnl

k a normalization factor. The indexn of the Sturmian
functions ~SFs! takes the valuesl 11, l 12, l 13, . . . .
To avoid clumsy subscripts, we denote for the first elect
©2001 The American Physical Society02-1



ct
th
ne
th
io
an
th

-
st
ea
th
o
he

rs
in
e
us
e

n
d

d

e of
ons
nec-
can

l-
iza-
lex

ou-
the
ear

lved.
e

t to
s
f

the

for

Ref.

RAPID COMMUNICATIONS

G. LAGMAGO KAMTA, B. PIRAUX, AND A. SCRINZI PHYSICAL REVIEW A 63 040502~R!
by Greek letters the nonlinear parameterk and the radial,
orbital, and magnetic quantum numbersn, l, andm, while
Roman lettersk, n, l , andm are used for electron 2.Lll

LM

denotes the bipolar spherical harmonics@16#. Atomic units
are used throughout this work.

The difficulty in describing HAESs arises from the fa
that two distinct regions of space are associated with
electron clouds: a region close to the nucleus for the in
electron cloud, and a region at large distance from
nucleus for the outer electron cloud. An efficient expans
for the wave function should contain both distance scales
span the two regions simultaneously. SFs are suitable for
purpose because~i! they form a complete basis set;~ii ! they
are exact solutions of the Schro¨dinger equation for a single
electron in the field of the nucleus;~iii ! they depend on a
nonlinear parameterk and an indexn, which both act like
spatial dilation factors. Indeed, forn andl fixed, decreasing
k increases the radial spread of the SFSnl

k (r ), and similarly
whenn increases withk and l being fixed. Therefore, non
linear parameters and radial indices of SFs could be adju
in the basis in order to span the two regions mentioned
lier. This requires the basis to be built in such a way that
nonlinear parameter and the number of SF, attributed to
electron could be different from those attributed to the ot
@17#.

In practice, we introduce aset of Sturmian functions
~SSFs!, i.e., a combination@ks ,n. ;ks ,n.# involving the SF
Sn,l

ks (r 1) with index n5l11, l12, . . . ,l1n. associated

with electron 1, andSn,l
ks (r 2) with index n5l 11, l

12, . . . ,l 1n. associated with electron 2. The pai
(n. ,ks) and (n. ,ks) are to be adjusted for each electron
order to increase the density of SFs in the two regions m
tioned above for a HAES. Note that limitations of previo
CI Sturmian expansions@18# are due to the use of only on
SSF withks5ks andn.5n. . Correlations are included in
the basis by mixing different (l,l ) pairs ~angular configu-
rations! in the infinite sum in Eq.~2!. For each (l,l ) se-
lected in the basis, one or many SSFs@labeled in Eq.~3! by
the indexs] may be selected. Using many SSFs allows o
to span a larger region, and thus permits a simultaneous
scription of many eigenstates. As the degree of excitation
one electron increases, onlyn. or n. ~not both! should be
increased, and the corresponding nonlinear parameter

TABLE I. Energy convergence for 41F and 81K states of He.
Reference data in bold characters are from Ref.@6#.

4 1F 8 1K
(l,l ) Size 2E (a.u.) (l,l ) Size 2E (a.u.)

~0,3! 24 2.031249981 ~0,7! 24 2.00781249999999
~1,2! 48 2.031252264 ~1,6! 48 2.00781250587709
~1,4! 72 2.031255076 ~1,8! 72 2.00781251256537
~2,3! 96 2.031255095 ~2,5! 96 2.00781251256693
~2,5! 120 2.031255122 ~2,7! 120 2.00781251256816
~3,4! 144 2.031255123 ~2,9! 144 2.00781251257019
~3,6! 168 2.031255124 ~3,4! 168 2.00781251257020

À2.03125514438175 À2.00781251257023
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creased in the basis. On the other hand, as this degre
excitation increases, correlations between the two electr
decrease and therefore fewer angular configurations are
essary for accurate results, so that the overall basis size
be kept within minimal limits.

The stationary Schro¨dinger equation leads to a genera
ized eigenvalue problem that is solved through diagonal
tion. To describe doubly excited states, we use the comp
rotation technique@19#, which consists in performing the
transformationr j→eiur j (0<u<p/2, j 51,2) on the Hamil-
tonian. With this technique, both energies and widths of d
bly excited states are simultaneously obtained. Note that
inclusion of many SSFs in the expansion causes near lin
dependency problems in the basis that are adequately so
A full account of this work will be presented in a futur
publication.

Table I illustrates the energy convergence with respec
(l,l ), for the 41F and 81K states of He, using the SSF
@2.0,2;0.39,12# and @2.0,2;0.17,12#, respectively. The rate o
convergence and the accuracy of the results improve as
asymmetry of the states increases from 41F to 8 1K. Indeed,
with an expansion of only 144 terms, we obtain energies

TABLE II. Energy absolute values forn 3S states of He, ob-
tained with one and with five SSFs. Reference data are from
@10#, except the last three entries, which are taken from Ref.@11#.

n One SSF Five SSF Ref. data@10,11#

2 2.1749379 2.1752283 2.175229378237
3 2.0686388 2.0686888 2.068689067472
4 2.0364951 2.03651198 2.036512083098
5 2.0226110 2.022618816 2.02261887230
6 2.0153731 2.015377421 2.01537745299
7 2.0111273 2.011129900 2.01112991951
8 2.0084254 2.008427109 2.00842712199
9 2.0066003 2.0066015077 2.00660151645

10 2.0053099 2.0053107884 2.0053107941
11 2.0043641 2.00436469602 2.004364698
12 2.0036501 2.00365062305 2.003650618
13 2.0030981 2.00309846491 2.003098445
14 2.0026626 2.00266272632 2.00266266
15 2.0023126 2.00231283777 2.00231267
16 2.0020267 2.00202764274 2.00202763
17 2.0017677 2.00179212209 2.00179211
18 2.0014276 2.00159537519 2.00159535
19 2.0009003 2.00142933541
20 2.0000458 2.00128792977
21 1.9986305 2.00116651566
22 2.00106149479
23 2.00097004347
24 2.00088992080
25 2.00081933006
26 2.00075681712
27 2.00070119491
28 2.00065148669
29 2.00060688281
30 2.00056670762
2-2
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the 41F and 81K states within uncertainties of about 1028

and 10213, respectively. Note that the SSFs used for th
states require very few SFs with larger nonlinear parame
~only two of these are used here!, which are mainly involved
in describing the inner electron. Also, the use of a SSF w
different nonlinear parameters appears to be crucial, bec
such accuracy and convergence could not be achieved w
SSF having identical nonlinear parameters.

The interest in using many SSFs simultaneously in
expansion is illustrated in Table II. The second column c
tains results obtained with only one SSF~namely, the set
@2.0,2;0.09,25#! used in four angular configurations, leadin
to 196 basis functions. Since the nonlinear parametek
50.09 associated with the larger number of SFsn.525 is
not large, only moderately high Rydberg states (n510
215) are accurate to the order 1027, which is already com-
parable with results from available high precision variatio
calculations forn514 andn515. Energies become less a
curate forn>16 and forn<10. Results in the third column
are obtained with five SSFs adequately chosen to give a
700 basis terms and to span a larger region where elect
are expected. The accuracy of energies is significantly
proved compared to the case with only one SSF. Almost
n3S state energies, withn ranging from 2 to 30, are wel
converged, with an accuracy ranging from 1026 for low-
lying states to at least 10210 for higher Rydberg states. Not
that all these energies are obtained simultaneously, wi

TABLE III. Energies ~in a.u.! for the 10 lowest singly excited
singlet states in He forL57, L510, andL511. Reference data in
bold characters are from Ref.@12#.

L57

n 2E ~a.u.! n 2E ~a.u.!
8 2.007812512570227 8 2.0078125125702293
9 2.006172849096329 9 2.0061728490963298

10 2.005000007388375 10 2.0050000073883759
11 2.004132237176717
12 2.003472226797281
13 2.002958583559211
14 2.002551023402907
15 2.002222224690043
16 2.001953127055667
17 2.001730105535418

L510 L511

n 2E ~a.u.! n 2E ~a.u.!
11 2.004132231822048 12 2.00347222242580
12 2.003472222565847 13 2.00295858005222
13 2.002958580165612 14 2.00255102055136
14 2.002551020644217 15 2.00222222234299
15 2.002222222419846 16 2.00195312510244
16 2.001953125166681 17 2.00173010389366
17 2.001730103947851 18 2.00154320995163
18 2.001543209997729 19 2.00138504161612
19 2.001385041655637 20 2.00125000005639
20 2.001250000090496 21 2.00113378689733
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single basis expansion. Comparing with reference data
appears that the accuracy of our results increases withn, and
that for n>12 our results turn out to be lower~i.e., more
accurate according to the variational principle! than refer-
ence data. This is impressive, comparing the basis size
here with the expansion in perimetric coordinates of R
@10#, where 24 497 terms were used and optimization w
performed for each eigenstate separately.

An adequate SSF for describing a given atomic state
consistently obtained by exploiting the fact thatSn,l

k (r ) de-
scribes an electron of energyE52k2/252Z2/2n2, in the
field of a nucleus of chargeZ @15#. Indeed, consider, for
example, a bound state of He, with electron 1 in the 1s state,
and electron 2 in an excited state with principal quant
numbern2. These electrons experience effective charge
and Z2s, respectively, wheres (0,s<1) results from
screening by the inner electron. Such a state is accura
described by including in the basis expansion, a SSF invo
ing Sn,l

ks (r 1) with ks52, andSn,l
ks (r 2) with ks5(Z2s)/n2

@i.e., (Z21)/n2<ks<Z/n2]. For doubly excited states, ad
equate SSFs are determined similarly.

An optimization of nonlinear parameters for each eige
state, as in standard variational calculations, may give e
gies with the same accuracy as in Table II, with a sma
basis size. However, this optimization leads to a loss of p
cision for high Rydberg states@12#. Therefore, instead o
such a procedure, we use several SSFs with nonlinear pa
eters covering a range of suitable values. As it appears f
a comparison of the second and third columns in Table
this gives high precision for many states in a single calcu
tion, with no significant gains by optimization. The price

TABLE IV. Energies~E! and widths (G) of the (N,K )5(2,1)
Rydberg series in He.

Burgerset al. @10# This work

n 2E ~a.u.! 2G/2 ~a.u.! 2E ~a.u.! 2G/2 ~a.u.!

2 0.777867636 0.002270653 0.777870717 0.0022628
3 0.589894682 0.000681239 0.589890735 0.0006866
4 0.544881618 0.000246030 0.544878876 0.0002474
5 0.526686857 0.000109335 0.526685308 0.0001097
6 0.517641112 0.000056795 0.517640185 0.0000569
7 0.512513488 0.000032992 0.512512896 0.0000330
8 0.509332686 0.000020795 0.509332287 0.0000207
9 0.507225835 0.000013936 0.507225555 0.0000139

10 0.505759104 0.000009790 0.505758903 0.0000097
11 0.504697187 0.000007131
12 0.503904047 0.000005360
13 0.503296011 0.000004131
14 0.502819669 0.000003239
15 0.502439599 0.000002689
16 0.502131536 0.000002091
17 0.501878202 0.000001682
18 0.501667500 0.000001452
19 0.501490409 0.000001275
20 0.501340120 0.000001108
2-3
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pay is an increase of the basis size. This way, we have b
able to perform calculations withn as high as 70 andL as
high as 15.

Energies obtained for the first ten singlet bound states
L57, L510, andL511 are presented in Table III. Fo
given L, energies have all been obtained simultaneously
ing a single basis expansion. The purpose here is to illust
the efficiency of our method for largeL (L>8), where no
ab initio calculations have been performed. A comparison
our results with high precision variational calculations
Ref. @12# shows an agreement within 10215 for L57, and
also indicates that the accuracy of our results increases
increasingL andn.

We now show that our method applies equally well
high-lying doubly excited states. Results obtained foru
50.2 are presented in Table IV in comparison with da
from Ref.@10# for a doubly excited Rydberg series below t
2s threshold. We use the (N,K ,n) nomenclature@20#, where
N andn respectively denote the principal quantum numb
for the inner and outer electrons, andK is related to the angle
between the two electrons. For smalln, where the cusp in-
fluence is important, our results~energies and widths! agree
with reference data within 1025 a.u. As n increases, this
agreement improves, and forn.8 the accuracy of our re
sults is better than 1027. Here again, a single basis expa
m
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sion has been used to simultaneously obtain all results
sented in Table IV.

In conclusion, we have shown that although CI fails
accurately describe atomic states where the cusp effec
important, it may be the best approach when dealing w
HAESs, provided that it is implemented in a way that a
counts for the asymmetry of the two electrons. This wo
provides anab initio CI approach for obtaining accurate no
relativistic energies for high singly and doubly excited sta
in heliumlike atoms. The method is fast, requires sma
basis sizes than standard CI methods, and contrary to tr
tional variational techniques, becomes increasingly accu
as the degree of excitation of one of the electrons increa
Our calculations also extendab initio techniques to the do
main of largeL (L>8), where asymptotic expansions ha
been considered as the only reliable approach. The exten
of this work to account for mass-polarization, relativist
and QED effects is straightforward. In addition, its extens
to three~or more! electron systems would not involve sig
nificant difficulties compared to standard CI.
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