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Entanglement of quantum evolutions

Paolo Zanardi
Istituto Nazionale per la Fisica della Materia (INFM) and Institute for Scientific Interchange (ISI) Foundation,
Viale Settimio Severo 65, 1-10133 Torino, Italy
(Received 20 October 2000; published 20 March 2001

The notion of entanglement can be naturally extended from quantum states to the level of general quantum
evolutions. This is achieved by considering multipartite unitary transformations as elements of a multipartite
Hilbert space and then extended to general quantum operations. We show some connection between this
entanglement and the entangling capabilities of the quantum evolution.
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It is theoretically rewarding to describe the physical worldallow us to reinterpret in a quite natural way the mapping
in terms of subsystems. It follows that it is a fundamentalbetween quantum operations and quantum states very re-
kinematical requirement to be able to describe the state spaeently discussed by Ciragt al.[6]. Finally, we shall make a
of a composite system in terms of the simpler state spacegPnnection between operator entanglement and the entan-
associated with its parts. In quantum theory, a basic axiorgling power for bipartite unitary evolutions introduced #j.
states that: The state space associated with a bipartite quan-Let us begin by recalling some basic definitions of opera-
tum system made out of two subsysteSjsandS, is given  tor algebras. Let{ be ad-dimensional Hilbert space. The
by the tensor product of the state spaces associated with tiségebra of linear operators ovét has on its own a natural
Si’s [1]. structure ofd2-dimensional Hilbert space. The scalar product

This fact has been shown in the recent years to be at theetween two operator& and B is provided by the Hilbert-
basis of many of the novel quantum capabilities in informa-Schmidt ~ product: (A, B):=tr (A'B), |Allus:=V(A, A).
tion processing and computational powg2]. Roughly  When the operator algebra is thought of as endowed with
speaking, this is due to the fact that, on the one hand theuch structure, it will be denoted BBy, and accordingly the
tensor product rule gives rise to exponentially large statéket notation will be used for operators. From the basic fact
spaces in which information can be encoded. On the othehat the space of linear operators over a tensor product is
hand, the very existence ehtangledstates, i.e., not product given by the tensor product of linear operators, it follows that
states with their characteristic correlations, amounts to a new
kind of uniquely quantum computational resource. A lot of (H ®2)HSEH§§_ (1
efforts have been made accordingly aimed at an understand-

ing of the entanglement of quantum staf8$ . . N
Clearly, the generation of such entangled states is a sut')[he space of operators associated with a bipartite quantum

ject that has interest on its own. Therefore more recentlfyStem Is in itself a bipartite quantum state space. From this

attention started to be devoted to the entangling capabilitie%emark stem all the notions and tools develqped so far for the
of quantum evolutions. Both from the point of view of aver- Study of entanglement of quantum states lift to the operator

age entangling powd#] of a generad; X d, unitary trans- Igvel ina s.tra|gh.tforwgr2d way. In part!cular, one can con-
formation and from the point of view of designing optimal sider !J”'ta”eSU n HHS_ as_representlng all the Poss'b'e
strategies for entanglement productic. evolutions of a(closed bipartite quantum system with state

. . ®2
In this paper, we address the related issue of entanglemeRPacert "*. _ _
of quantum evolutions. This notion arises in a very simple 10 address the issue of operator entanglement in a quan-

way once one recalls that unitary operators realizing thditative fashiqn, it is usgful to rgcall that the HiIbgrt-Schmidt
(closed quantum dynamics of a multipartite system belongSPaC€Mns is isomorphic to} “* not just algebraically—in
to a multipartite state space as well, the so-called Hilbert{hat they have the same dimension—but also as Hilbert
Schmidt space. One is therefore naturally led to lift all theSPaces. Indeed there exsts@e; natidbert-spaceisomor-
notions developed so far for quantum state entanglement @hiSm¥ betweer s and = given by
the operatorial realm. The point is to see whether, beyond
their obvious mathematical meaning, such concepts at the
operator level may provide some novel physical insight. VX (X D)|[DT), |[@7):= Z |a)®©?, 2

In the following, we shall move to the first steps of this et
program by introducing an entanglement measticver the
operator space over a bipartide<d state space. A quantum Where{|)}%_; is an orthonormal basis df. The relation
protocol that provide€ with a simple operational interpre- (2) defines indeed a unitary transformatigi? (X), W (Y))
tation will be described. We shall study analytically, ob- =(® " [(XTY)@1|®d")=29_ (a|XTY|a)=tr (XTY)=(X,Y).
taining explicit results for arbitrary dimensiah Moreover, Even though¥ does not preserve the algebraic structure of
we shall show how this operator entanglement can be exHys, it has the property of mapping the grotfy) onto
tended to general quantum evolutions; such an extension withe manifold of maximally entangled states7af2.

d
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Moving to the bipartite case by tensoring, one obtains a=3;(A®1)®(B;®1). Since this latter map is LOCC for the
unitary mapWV (strictly speaking it would bal®?) between  bipartite system H®20H ®2, one has E(|W(LT)))
H 115 and H ®2@H 2= “* that associates the operatér = E(T|W(T)))<E(W¥(T))).

with the vector In the remainder of the paper, we shall adopt as an en-
tanglement measure of taormalized |U) e H ;3 the lin-
|\1/(x))::(x13®}124)|<1>+)®2 (Xe Hﬁ’é ) ®) ear entropy of the reduced density matrix
2
where the indexes denote the factorsHi¥* in which the B(U)=1=Trpy, py=Tr|UKUI. ®
corresponding operators have a nontrivial action. Even though the information theoretic content of the func-
The extension ofl’ to general quantum operations, i.e., tional E is less direct than the von Neumann entr&fy,,)
completely positive(CP) maps is performed by observing — _1r(p1Inp), the linear entropy has the distinct advan-

that, in view of the operator sum representation thedréln tage of being apolynomialin U. This algebraic simplicity
one has that any CP mél'gactmg on quantum statgscan be  makes it possible to find for E¢5) explicit expressions from
written asT(p) =Z;AipAj, (AjeHys). This allows us to  which the main features of our operator entanglement mea-
associatél with the operator ovet{ ®* given by sure can be easily derived.

Let T,5 be the permutatioiswap operator between the

first and the third factor of{ ®* and let us denote by, its
- )| = + +]y®2 . 13
Ei W ADNP (A =(T1® L) (I0TX DTN (4) adjoint action, i.e.;T;5(X):=T13XT;3. Reasoning as in Ref.
[4], it is not difficult to show that one can write

In particular, whenT is pure, i.e., just oneA;, one gets a 1

pure state consistent with E€®). From Eq.(4) it is straight- E(U)=1- —(U%2, T,{U®?)). (6)

forward to realize that the above mapping is—up to normal- d

ization factor—the one-to-one correspondence between

quantum operations and quantum states discussed if@ef. Notice that the ternd* is nothing but the normalization fac-

by Ciracet al. for studying separability properties of quan- tor of U®2 (|U||Zs=tr (UTU)=tr 1=d?); for a generic—not

tum evolutions[see their Eq.(4)]. The idea is to extract unitary—X it must be replaced bXx|*.

information about the CP map from the (unnormalizegl Equation(6) allows us to give to our measure of operator

stateW(T) taking advantage of the large set of tools devel-entanglement a direct operational meaning. To this aim, we

oped to date for studying entanglement of quantum states. limtroduce the projectorPi5:=2"1(1+T9)®1,, over the

particular, protocols have been presented in Fdfbased on  subspaces corresponding to the eigenvattésof T,5. The

local operations and classical communications to implemertbperatorpL::2|:>1+3/[d3(d+ 1)] therefore represents the uni-

a nonlocal transformatiot) by sharing the entangled state form state over the eigenvalue 1 subspace. Equa@pnan

|¥(U)). It is remarkable that such a powerful correspon-pe cast in the form

dence between quantum operations and positive operators

simply stems from the natural extension of the basic (@ E(U)=2N4 (U®?p;uT®2 PL). )
Given an orthonormal bas{:ej}?il for Hys, any unitary . )

. a2 . . From this there follows thdapart from the numerical factor

can be written ak)=2;_,;;&®¢;. Smce’ the mapping’ Ng:=(d+1)/d], E(U) can be viewed—and then in principle

associated) with a state with the samk;;’s, i.e., [W(V))  measured—as the probability of success of the following

=3{_;\j|W(e))®|W(e)), it should be clear that the en- protocol inH 4. (a) Prepare the state;,; (b) let it evolve it

tanglement properties &f and| ¥ (U)) are the same. Indeed by U®2, (c) project on the eigenvalue 1 eigenspace of ;3.

all the entanglement measurig¢U) depend just on the sin- Now we shall derive the properties & H 2R di-
gular values {\};_;, of the matrix A\=(\;) (r=d? rectly form Eq.(6).
—dim ker\ is the rank of:). In particular,U and|[¥(U)) (a) First of all let us observe that from the relation

have the same Schmidt decompositi@h Once an entangle- [T13, (U;©U,)®%]=0, it follows thatV U;,U,eU(H),
ment measur& is given, it makes sense therefore to define

E(W(U)) as the entanglement of the quantum evolutihn E[(U;@U,)U]=E[U(U;®@U,)]=E(U). 8
The generalization to an arbitrary CP m@ps obtained by
the formulaE(T):=E(¥(T)) where nowE in the left-hand  This feature is not a peculiar property of the linear entropy; it
side is mixed state entanglemgs. is nothing but the invariance d& under thelocal unitary
We observe that from the fact that entanglement measurdgansformations of{ ;2 [11]. In other wordsE is constant
for states are not increasing under local operations and claslong the orbit of unitary elements generated by ti(e()*
sical communicationsLOCCs it follows that the entangle- action in H{32 given by I ,U;x U (U;@U,)U(U]
ment of an operatioi does not increase T is followed by g U]). These transformations define d%dimensional sub-
LOCCs. This is easily seen as follows. llet X;A;®B; be a  group oft/(H {}2), that has the peculiar property of mapping
LOCC transformation. From the identith’ (XY))=(Xi3  unitaries onto unitaries. The orbit of will be even referred
® 10| W (Y)), it follows that| ¥ (LT))=L|W(T)), whereL  to as the local equivalence class\f
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(b) From d?=||U||Zs, |T:13l=1 and using the Cauchy- straightforward to obtain:E(U,;)=2"'sir?(26), which
Schwarz  inequality, —one  has (U®2T,;4U%?)) clearly displays the separablmaximally entangledcharac-
<[V Tis(U D) fus=[ T |U[ffs=d". ThereforeE(U)  'o7 O el 1on B2 B0 w2 (oo mid

=0. Notice thatE is also invariant under Hermitian conju- Itis wor;hwhile to mention that the entgnglem_e_nt measture
gatibn' E(U)=E(U)*=E(U") (6) has a S|mpltla grmf;p:heoretlc s;r)ntent |rr11 trzat itis ItWICde the
i . S expectation value of the projectét;; on the (normalize

(c) From the previous point it follows that state|U)®2. The more this latter state is antisymmetric with
respect to the action of the swaps, the more it is en-
tangled. In particular, for an unentangléd) one has that
|U)®2 is completely symmetric and one gets the quadratic
relation Eq.(9). Interestingly enough, this characterization of
product states extends to the multipartite case. et
=(C%®N, and T;i+n be the swap between théh and the
i +Nth factor in ®2. Since|®) is a product statéf , theN
single subsystem reduced density matrices are one-

E(U)=0eT,4U%2)=U%2s[T,, U®2]=0. (9)

On the other hand, poire) ensures that one can consider,
without loss of generality, just the transformations with the
form (Schmidt decompositiony =3} _ N\ e®e,, (r<d?).
Inserting this expression in the fixed-point equati®j one
findsk#h=X\A,=0 that in turn implies one must have just
one nonvanlshln_g Schmidt coefficient. This means ther_Ia dimensional projectors, one finds that fojda) to be a prod-
tensor product, i.e., the zero locus Bfis the local equiva- - o

; . . o uct a necessary and sufficient condition is
lence class of the identity. Notice that the separability con-
dition (9) applies to all pure operationg

(d) SinceE(U)=1—3,|\,|* andZ|\,|?=1, one recov- (I=Tiien)| @) #2=0, (12)
ers the well known upper bounB(U)<1-1/d?. Such a _ _ )
bound is met by all the elements in the local equivalencevherei=1,... N—1. These equation are just the operator
class of the swap operator #® . Indeed from Eq(6) one ~ Version of the condition given in Reff9].
has E(S)=1—d *tr[(S29)T1a(S® Y Tyal=1—d~ *tr [ TosT 1] We finally discuss the relation of the entanglement of op-

=1-1/d2. Obviously these maximally entangled transforma-€ratoru with its entangling poweif4]. It must be stressed

tions are the ones havind? nonvanishing Schmidt coeffi- that such a relation cannot be trivial. Indeed the more en-
cients with the same amplitude. tangled is an operator, the more it is nonlocal, but this does

(6) The manifoldi/(H ©2) endowed with the Haar mea- not mean that the greater are its entangling capabiligés

suredU [12] becomes a probability space over which thel€ast in the sense discussed[#]). For example, the swap
operator entanglemet#) defines a random variable. Resort- operatorSmaps product states onto product states and there-

ing to group-theoretic arguments, it is possible to computefore does not have direct entangling capabilities. On the

the average o explicitly [10]: other hand, we have seen tl&is maximally entangled.
In Ref. [4] we defined the entangling powep(U) of a
2_ unitary U over H®? as the average of the entanglement
E(U)Y ::f UE(U)= _ (100  E(U|W¥)), where the'¥)'s are product states generated ac-
UH #?) d?+1 cording to some given probability distributign By choos-

ing for E the linear entropy of the reduced density matrix and

It is interesting to notice that unitary operators have onysing a uniform, i.e.U(d) x U(d)-invariantp for the |4)’s,

average higher entanglement than generic operators. Takinghe finds[4] ep(U)=1-d%U®%p1p5UT2, T o). Com-

the guniform) average of Eq(6) over thefull unit ball of  paring this equation with Eq(6), straightforward algebra
Hps, one obtainsE(X)*=1—(T14Q|T;3) in which Q  reveals that

= [ |x],,s= 10X X)(X|¥?. Now it is easy to see thaQ
=1/d*r in that the latter operator is just the restriction to the ep(U)= NJZ[E(U)JF E(US)—E(9)]. (12
unitary submanifold of the unit ball i{,gs of the same

integral of the former. It follows that(T1jQ|Ti9  TheU-dependent part of the entangling power of the evolu-
%<T13|w|T13>, which in turn implies the announced inequal- i U cU(H®?) is proportional to the operator entangle-

ity. ) o ment of U averaged with respect to the multiplicative action
In order to provide some exemplifications of the measurgy ihe permutation grougs,:={1, S}. Another way to ex-
(6), now we consider a couple of very simple cases. press Eq(12) is as the average & along theS, orbit of U

(1) Let{I1,};—, be a set of orthogonal projectors such minys the average entanglementfitself. Notice that the

thats I1,=1and{U,}3_, is a set of orthogonal unitaries. first two terms of Eq(12) define two independent elements
One can write the controlled unitary operation o¢ef? U of the ring of polynomial invariants of [14].

=3,11,®8U,. One finds thatE(U)=1—1/d°S trII |2 Clearly the simple relatiori12) holds just wherE is the

Of course the mostleas) entangled situation, i.eE(U)  linear entropy. On the other hand, the structure of @@)
=1-1/Md (E=0), corresponds to having all tHé,'s one-  ensures thag, is a good entangling power measure, what-
dimensional (=11I1,=1). ever good entanglement measiés chosen. It is therefore

(2) Let {Ug}ycio2n be the one-parameter family of 2 tempting to suggest using a nondecreasing real-valued
X2 unitary transformations given byJ,:=exdifoc?]  smooth function of Eq(12) vanishing at 0 in order tdefine
=cos@)1®2+i sin(&)a?z, where o,=diag(1,—1). It is an entangling power measure fany E
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Employing Eq.(12), it is very easy to get the upper bound property (14) is obviously maximally violated by unitaries
on the entangling power derived i#] [Eq. (9) with d;  belonging to the local equivalence classes of the identity and
=d,=d]. SinceE(S)=max,E(U)=(d?>—1)/d? one imme-  of the swap.
diately obtains from Eq(12) In this paper, we discussed the notion of entanglement of
a quantum evolution. This has been done by simply observ-
ing that all the notions developed for quantum-state en-
tanglement make sense for quantum evolutions as well. In-
deed, operators acting on multipartite quantum state spaces
Furthermore, it is clear that in order forldto meet such a belong on their own to multipartite Hilbert spaces. This al-
bound, i.e, to b@ptimalin the language of Ref4], a unitary  lows one to introduce entanglement meastEesr unitary
U must satisfy the constraints transformations and then to extend them to general quantum
operations. Adopting ak the linear entropy, one can obtain
analytical expressions for the entanglement of a unitary
and make a simple connection with its entangling power.
Here we focused on the bipartite case, but it should be clear
gwat the main idea of lifting the notion of entanglement to the
8peratoria| level extends in a straightforward manner to the
Mmultipartite casg15].

e d-
ep(U)=Ng*E(S)= 577 (13)

S

E(U)=E(US)=E(S). (14)

Then an optimal transformatiod must be maximally en-
tangled, such thatS is maximally entangled as well. In
terms of theS, action discussed above, one can state that th
optimal transformations are characterized by the fact that th
entanglement ofJ is constant along itsS, orbit and maxi-
mal. In view of its simplicity, such a statement might be | would like to thank Ch. Zalka for critical discussions
helpful in the search for optimal unitari¢$3]. Notice that and M. Rasetti for a careful reading of the manuscript.
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