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Entanglement of quantum evolutions
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The notion of entanglement can be naturally extended from quantum states to the level of general quantum
evolutions. This is achieved by considering multipartite unitary transformations as elements of a multipartite
Hilbert space and then extended to general quantum operations. We show some connection between this
entanglement and the entangling capabilities of the quantum evolution.
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It is theoretically rewarding to describe the physical wo
in terms of subsystems. It follows that it is a fundamen
kinematical requirement to be able to describe the state s
of a composite system in terms of the simpler state spa
associated with its parts. In quantum theory, a basic ax
states that: The state space associated with a bipartite q
tum system made out of two subsystemsS1 andS2 is given
by the tensor product of the state spaces associated with
Si ’s @1#.

This fact has been shown in the recent years to be at
basis of many of the novel quantum capabilities in inform
tion processing and computational power@2#. Roughly
speaking, this is due to the fact that, on the one hand
tensor product rule gives rise to exponentially large st
spaces in which information can be encoded. On the o
hand, the very existence ofentangledstates, i.e., not produc
states with their characteristic correlations, amounts to a
kind of uniquely quantum computational resource. A lot
efforts have been made accordingly aimed at an underst
ing of the entanglement of quantum states@3#.

Clearly, the generation of such entangled states is a
ject that has interest on its own. Therefore more rece
attention started to be devoted to the entangling capabil
of quantum evolutions. Both from the point of view of ave
age entangling power@4# of a generald13d2 unitary trans-
formation and from the point of view of designing optim
strategies for entanglement production@5#.

In this paper, we address the related issue of entanglem
of quantum evolutions. This notion arises in a very sim
way once one recalls that unitary operators realizing
~closed! quantum dynamics of a multipartite system belo
to a multipartite state space as well, the so-called Hilb
Schmidt space. One is therefore naturally led to lift all t
notions developed so far for quantum state entanglemen
the operatorial realm. The point is to see whether, bey
their obvious mathematical meaning, such concepts at
operator level may provide some novel physical insight.

In the following, we shall move to the first steps of th
program by introducing an entanglement measureE over the
operator space over a bipartited3d state space. A quantum
protocol that providesE with a simple operational interpre
tation will be described. We shall studyE analytically, ob-
taining explicit results for arbitrary dimensiond. Moreover,
we shall show how this operator entanglement can be
tended to general quantum evolutions; such an extension
1050-2947/2001/63~4!/040304~4!/$20.00 63 0403
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allow us to reinterpret in a quite natural way the mappi
between quantum operations and quantum states very
cently discussed by Ciracet al. @6#. Finally, we shall make a
connection between operator entanglement and the en
gling power for bipartite unitary evolutions introduced in@4#.

Let us begin by recalling some basic definitions of ope
tor algebras. LetH be ad-dimensional Hilbert space. Th
algebra of linear operators overH has on its own a natura
structure ofd2-dimensional Hilbert space. The scalar produ
between two operatorsA and B is provided by the Hilbert-
Schmidt product: ^A, B&ªtr (A†B), iAiHSªA^A, A&.
When the operator algebra is thought of as endowed w
such structure, it will be denoted byHHS and accordingly the
ket notation will be used for operators. From the basic f
that the space of linear operators over a tensor produc
given by the tensor product of linear operators, it follows th

~H ^ 2!HS>H HS
^ 2 . ~1!

The space of operators associated with a bipartite quan
system is in itself a bipartite quantum state space. From
remark stem all the notions and tools developed so far for
study of entanglement of quantum states lift to the opera
level in a straightforward way. In particular, one can co
sider unitariesU in H HS

^ 2 as representing all the possib
evolutions of a~closed! bipartite quantum system with stat
spaceH ^ 2.

To address the issue of operator entanglement in a q
titative fashion, it is useful to recall that the Hilbert-Schmi
spaceHHS is isomorphic toH ^ 2 not just algebraically—in
that they have the same dimension—but also as Hilb
spaces. Indeed there exists a naturalHilbert-spaceisomor-
phismC betweenHHS andH ^ 2 given by

C:X°~X^ 1!uF1&, uF1&ª (
a51

d

ua& ^ 2, ~2!

where$ua&%a51
d is an orthonormal basis ofH. The relation

~2! defines indeed a unitary transformation:^C(X), C(Y)&
5^F1u(X†Y) ^ 1uF1&5(a51

d ^auX†Yua&5tr (X†Y)5^X,Y&.
Even thoughC does not preserve the algebraic structure
HHS , it has the property of mapping the groupU(H) onto
the manifold of maximally entangled states ofH ^ 2.
©2001 The American Physical Society04-1
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Moving to the bipartite case by tensoring, one obtain
unitary mapC ~strictly speaking it would beC ^ 2) between
H HS

^ 2 and H ^ 2
^ H ^ 2>H ^ 4 that associates the operatorX

with the vector

uC~X!&ª~X13^ 124!uF1& ^ 2 ~XPH HS
^ 2!, ~3!

where the indexes denote the factors inH ^ 4 in which the
corresponding operators have a nontrivial action.

The extension ofC to general quantum operations, i.e
completely positive~CP! maps is performed by observin
that, in view of the operator sum representation theorem@7#,
one has that any CP mapT acting on quantum statesr can be
written asT(r)5( iAirAi

† , (AiPHHS). This allows us to
associateT with the operator overH ^ 4 given by

(
i

uC~Ai !&^C~Ai !u5~T13^ 124!~ uF1&^F1u! ^ 2. ~4!

In particular, whenT is pure, i.e., just oneAi , one gets a
pure state consistent with Eq.~3!. From Eq.~4! it is straight-
forward to realize that the above mapping is—up to norm
ization factor—the one-to-one correspondence betw
quantum operations and quantum states discussed in Re@6#
by Cirac et al. for studying separability properties of qua
tum evolutions@see their Eq.~4!#. The idea is to extrac
information about the CP mapT from the ~unnormalized!
stateC(T) taking advantage of the large set of tools dev
oped to date for studying entanglement of quantum state
particular, protocols have been presented in Ref.@6# based on
local operations and classical communications to implem
a nonlocal transformationU by sharing the entangled sta
uC(U)&. It is remarkable that such a powerful correspo
dence between quantum operations and positive opera
simply stems from the natural extension of the basic map~2!.

Given an orthonormal basis$ej% j 51
d2

for HHS , any unitary

can be written asU5( i , j 51
d2

l i j ei ^ ej . Since the mappingC
associatesU with a state with the samel i j ’s, i.e., uC(U)&
ª( i , j 51

d2
l i j uC(ei)& ^ uC(ej )&, it should be clear that the en

tanglement properties ofU anduC(U)& are the same. Indee
all the entanglement measuresE(U) depend just on the sin
gular values $lk%k51

r of the matrix l5(l i j ) (r 5d2

2dim kerl is the rank ofl). In particular,U and uC(U)&
have the same Schmidt decomposition@1#. Once an entangle
ment measureE is given, it makes sense therefore to defi
E„C(U)… as the entanglement of the quantum evolutionU.
The generalization to an arbitrary CP mapT is obtained by
the formulaE(T)ªE„C(T)… where nowE in the left-hand
side is mixed state entanglement@8#.

We observe that from the fact that entanglement meas
for states are not increasing under local operations and c
sical communications~LOCCs! it follows that the entangle-
ment of an operationT does not increase ifT is followed by
LOCCs. This is easily seen as follows. LetL5( iAi ^ Bi be a
LOCC transformation. From the identityuC(XY)&5(X13

^ 124)uC(Y)&, it follows that uC(LT)&5L̃uC(T)&, whereL̃
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ª(i(Ai ^1) ^ (Bi ^ 1). Since this latter map is LOCC for th
bipartite system H ^ 2

^ H ^ 2, one has E„uC(LT)&…
5E„L̃uC(T)&…<E„uC(T)&….

In the remainder of the paper, we shall adopt as an
tanglement measure of the~normalized! uU&PH HS

^ 2 the lin-
ear entropy of the reduced density matrix

E~U !ª12Tr rU
2 , rUªTr uU&^Uu. ~5!

Even though the information theoretic content of the fun
tional E is less direct than the von Neumann entropyS(rU)
52Tr (rU ln rU), the linear entropy has the distinct adva
tage of being apolynomial in U. This algebraic simplicity
makes it possible to find for Eq.~5! explicit expressions from
which the main features of our operator entanglement m
sure can be easily derived.

Let T13 be the permutation~swap! operator between the
first and the third factor ofH ^ 4 and let us denote byT̂13 its
adjoint action, i.e.,T̂13(X)ªT13XT13. Reasoning as in Ref
@4#, it is not difficult to show that one can write

E~U !512
1

d4
^U ^ 2, T̂13~U ^ 2!&. ~6!

Notice that the termd4 is nothing but the normalization fac
tor of U ^ 2 (iUiHS

2 5tr (U†U)5tr 15d2); for a generic—not
unitary—X it must be replaced byiXi4.

Equation~6! allows us to give to our measure of operat
entanglement a direct operational meaning. To this aim,
introduce the projectorsP13

6
ª221(16T13) ^ 124 over the

subspaces corresponding to the eigenvalues61 of T13. The
operatorr13

1
ª2P13

1 /@d3(d11)# therefore represents the un
form state over the eigenvalue 1 subspace. Equation~6! can
be cast in the form

E~U !52Nd ^U ^ 2r13
1 U†^ 2, P13

2 &. ~7!

From this there follows that@apart from the numerical facto
Ndª(d11)/d#, E(U) can be viewed—and then in principl
measured—as the probability of success of the follow
protocol inH ^ 4. ~a! Prepare the stater13

1 ; ~b! let it evolve it
by U ^ 2, ~c! project on the eigenvalue21 eigenspace ofT13.

Now we shall derive the properties ofE:H HS
^ 2°R di-

rectly form Eq.~6!.
~a! First of all let us observe that from the relatio

@T13, (U1^ U2) ^ 2#50, it follows that; U1 ,U2PU(H),

E@~U1^ U2!U#5E@U~U1^ U2!#5E~U !. ~8!

This feature is not a peculiar property of the linear entropy
is nothing but the invariance ofE under thelocal unitary
transformations ofH HS

^ 2 @11#. In other words,E is constant
along the orbit of unitary elements generated by theU(H)4

action in H HS
^ 2 given by ) i 51

4 Ui3U°(U1^ U2)U(U3
†

^ U4
†). These transformations define a 4d2-dimensional sub-

group ofU(H HS
^ 2), that has the peculiar property of mappin

unitaries onto unitaries. The orbit ofU will be even referred
to as the local equivalence class ofU.
4-2
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~b! From d25iUiHS
2 , iT̂13i51 and using the Cauchy

Schwarz inequality, one has ^U ^ 2,T̂13(U
^ 2)&

<iUiHS
2 iT̂13(U

^ 2)iHS<iT̂13iiUiHS
4 5d4. Therefore E(U)

>0. Notice thatE is also invariant under Hermitian conju
gation:E(U)5E(U)* 5E(U†).

~c! From the previous point it follows that

E~U !50⇔T̂13~U ^ 2!5U ^ 2⇔@T13, U ^ 2#50. ~9!

On the other hand, point~a! ensures that one can conside
without loss of generality, just the transformations with t
form ~Schmidt decomposition! U5(k51

r lkek^ ek , (r<d2).
Inserting this expression in the fixed-point equation~9!, one
findskÞh⇒lklh50 that in turn implies one must have ju
one nonvanishing Schmidt coefficient. This means thatU is a
tensor product, i.e., the zero locus ofE is the local equiva-
lence class of the identity. Notice that the separability c
dition ~9! applies to all pure operationsT.

~d! SinceE(U)512(kulku4 and(kulku251, one recov-
ers the well known upper boundE(U)<121/d2. Such a
bound is met by all the elements in the local equivalen
class of the swap operator inH^ H. Indeed from Eq.~6! one
has E(S)512d24tr @(Ŝ S)T13(Ŝ S)T13#512d24tr @T24T13#
5121/d2. Obviously these maximally entangled transform
tions are the ones havingd2 nonvanishing Schmidt coeffi
cients with the same amplitude.

~e! The manifoldU(H ^ 2) endowed with the Haar mea
sure dU @12# becomes a probability space over which t
operator entanglement~6! defines a random variable. Reso
ing to group-theoretic arguments, it is possible to comp
the average ofE explicitly @10#:

E~U !U
ªE

U(H ^ 2)
dUE~U !5

d221

d211
. ~10!

It is interesting to notice that unitary operators have
average higher entanglement than generic operators. Ta
the ~uniform! average of Eq.~6! over the full unit ball of
H HS

^ 2, one obtainsE(X)X512^T13uQuT13& in which Q
ª* iXiHS51dXuX&^Xu ^ 2. Now it is easy to see thatQ

>1/d4p in that the latter operator is just the restriction to t
unitary submanifold of the unit ball inHHS of the same
integral of the former. It follows that ^T13uQuT13&
>^T13upuT13&, which in turn implies the announced inequa
ity.

In order to provide some exemplifications of the meas
~6!, now we consider a couple of very simple cases.

~1! Let $Pa%a51
r be a set of orthogonal projectors su

that (aPa51 and $Ua%a51
d is a set of orthogonal unitaries

One can write the controlled unitary operation overH ^ 2 U
5(aPa ^ Ua . One finds thatE(U)5121/d2(autr Pau2.
Of course the most~least! entangled situation, i.e.,E(U)
5121/d (E50), corresponds to having all thePa’s one-
dimensional (r 51,P151).

~2! Let $Uu%uP[0,2p) be the one-parameter family of
32 unitary transformations given byUuªexp@iusz

^2#
5cos(u)1^ 21 i sin(u)sz

^2 , where sz5diag (1,21). It is
04030
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straightforward to obtain: E(Uu)5221 sin2(2u), which
clearly displays the separable~maximally entangled! charac-
ter of theUu for u50, p/2 (u5p/4).

It is worthwhile to mention that the entanglement meas
~6! has a simple group-theoretic content in that it is twice
expectation value of the projectorP13

2 on the ~normalized!
stateuU& ^ 2. The more this latter state is antisymmetric wi
respect to the action of the swapT13, the more it is en-
tangled. In particular, for an unentangleduU& one has that
uU& ^ 2 is completely symmetric and one gets the quadra
relation Eq.~9!. Interestingly enough, this characterization
product states extends to the multipartite case. LetH
>(Cd) ^ N, and Ti ,i 1N be the swap between thei th and the
i 1Nth factor inH ^ 2. SinceuF& is a product stateiff , theN
single subsystem reduced density matrices are o
dimensional projectors, one finds that for auF& to be a prod-
uct a necessary and sufficient condition is

~12Ti ,i 1N!uF& ^ 250, ~11!

where i 51, . . . ,N21. These equation are just the opera
version of the condition given in Ref.@9#.

We finally discuss the relation of the entanglement of o
eratorU with its entangling power@4#. It must be stressed
that such a relation cannot be trivial. Indeed the more
tangled is an operator, the more it is nonlocal, but this d
not mean that the greater are its entangling capabilities~at
least in the sense discussed in@4#!. For example, the swap
operatorSmaps product states onto product states and th
fore does not have direct entangling capabilities. On
other hand, we have seen thatS is maximally entangled.

In Ref. @4# we defined the entangling powerep(U) of a
unitary U over H ^ 2 as the average of the entangleme
E(UuC&), where theuC& ’s are product states generated a
cording to some given probability distributionp. By choos-
ing for E the linear entropy of the reduced density matrix a
using a uniform, i.e.,U(d)3U(d)-invariantp for the uc& ’s,
one finds @4# ep(U)512d4^U ^ 2r13

1 r24
1 U†^ 2, T13&. Com-

paring this equation with Eq.~6!, straightforward algebra
reveals that

ep~U !5Nd
22@E~U !1E~US!2E~S!#. ~12!

The U-dependent part of the entangling power of the evo
tion UPU(H ^ 2) is proportional to the operator entangl
ment ofU averaged with respect to the multiplicative actio
of the permutation groupS2ª$1, S%. Another way to ex-
press Eq.~12! is as the average ofE along theS2 orbit of U
minus the average entanglement ofS2 itself. Notice that the
first two terms of Eq.~12! define two independent elemen
of the ring of polynomial invariants ofU @14#.

Clearly the simple relation~12! holds just whenE is the
linear entropy. On the other hand, the structure of Eq.~12!
ensures thatep is a good entangling power measure, wh
ever good entanglement measureE is chosen. It is therefore
tempting to suggest using a nondecreasing real-val
smooth function of Eq.~12! vanishing at 0 in order todefine
an entangling power measure forany E.
4-3
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Employing Eq.~12!, it is very easy to get the upper boun
on the entangling power derived in@4# @Eq. ~9! with d1
5d25d#. SinceE(S)5maxUE(U)5(d221)/d2 one imme-
diately obtains from Eq.~12!

ep~U !<Nd
22E~S!5

d21

d11
. ~13!

Furthermore, it is clear that in order for aU to meet such a
bound, i.e, to beoptimal in the language of Ref.@4#, a unitary
U must satisfy the constraints

E~U !5E~US!5E~S!. ~14!

Then an optimal transformationU must be maximally en-
tangled, such thatUS is maximally entangled as well. In
terms of theS2 action discussed above, one can state that
optimal transformations are characterized by the fact that
entanglement ofU is constant along itsS2 orbit and maxi-
mal. In view of its simplicity, such a statement might b
helpful in the search for optimal unitaries@13#. Notice that
ur

o
0

04030
e
e

property ~14! is obviously maximally violated by unitarie
belonging to the local equivalence classes of the identity
of the swap.

In this paper, we discussed the notion of entanglemen
a quantum evolution. This has been done by simply obse
ing that all the notions developed for quantum-state
tanglement make sense for quantum evolutions as well.
deed, operators acting on multipartite quantum state sp
belong on their own to multipartite Hilbert spaces. This
lows one to introduce entanglement measuresE for unitary
transformations and then to extend them to general quan
operations. Adopting asE the linear entropy, one can obtai
analytical expressions for the entanglement of a unitaryU
and make a simple connection with its entangling pow
Here we focused on the bipartite case, but it should be c
that the main idea of lifting the notion of entanglement to t
operatorial level extends in a straightforward manner to
multipartite case@15#.
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and M. Rasetti for a careful reading of the manuscript.
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