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Energy barrier to decoherence
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We propose a ground-state approach to realizing quantum computers. This scheme is time-independent and
inherently defends against decoherence by possessing an energy barrier to excitation. We prove that our
time-independent qubits can perform the same algorithms as their time-dependent counterparts. Advantages
and disadvantages of the time-independent approach are described. A model involving quantum dots is pro-
vided for illustration.
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To realize the theoretical potential of quantum computa-describe the progress of the algorithm. To show precisely
tion [1-3], it is essential to confront the difficult task of how this works, suppose the11’0|vac> andciT’1|vac> are states
designing and constructing a functioning quantum computelocalized on the left and right dots of rowrespectively. The
[4]. An impressive body of quantum error correction litera-wave function of the electrof¥’), would be a superposition
ture has shown how, given a limitless supply of qubits ancbf such states. If we group together the creation operators
gates with fixedsmal) decoherence, the qubits can be con-jnto CiT:[CiTOCiTl]i it follows that the operatoP;=C/C;
nected to execute quantum computation algorithms of arbiprojects onto the two-dimensional subspace of states at row

trary complexity[5—7]. The daunting problem of supplying i. Then, by analogy with Eq1), we require that
the qubits and gates, however, remains unsolved. After an

intensive effort to find physical implementatiof8-21], it Pi|W)=UA i—1Pi_1|¥). (2)

remains unclear whether decoherence can be reduced enough

to make a useful quantum computer. In this paper, instead cﬁlere,Ai‘i_lzc;rCi_1 just moves the electron from row

a specific implementation, we suggest an approach to the 1 to rowi. In words, Eq.(2) states that the wave function

problem that inherently defends against decoherence with as each row is related to the wave function at the previous

energy barrief22]. This is achieved by proposing that a row by a specified unitary transformation.

qubit be constructed not as a two-state quantum system de- |f the electron wave functiofi¥’) satisfies Eq(2), then it

veloping throughN unitary time evolutions but, instead, as a can be interpreted as a development according to the algo-

time-independent quantum system developing through gthm, from the input stat®,| W) at row 0 to the output state

2(N+1)-dimensional Hilbert space. P W) at rowN. However, how can we force the electron to
To formulate this time-independent approach to quantungatisfy Eq.(2)? This is achieved by constructing the Hamil-

computation, let us first review the usual time-dependent aptonian in the 2N+ 1) space such that the ground-state wave

proach. Suppose that a quantum algorithm requires the wav@inction of the system satisfies EQ).

function of a qubit to develop through time evolutiondJ;, A particularly  convenient Hamiltonian is H

j=1,...N. Here, eachJ; is a two-by-two unitary matrix. :EiN:j_hi(Ui)v where

To be concrete, suppose that the qubit is realized as a single

electron that can occupy a localized state on a left quantum  hi(y)=¢c/ ,c,_;+ClC;—(C/UC,_;+H.c)] (3

dot or a localized state on a right quantum dbtg. 1).

Although we fully appreciate that such an implementationand the constant energy defines the energy scale of the

may be experimentally impractical, in principle it makes aHamiltonian. This Hamiltonian is positive semidefinite and

sensible qubit, and it is convenient for illustration. THe  has two degenerate ground states of zero energy. The two

coherently shift the wave function of the electron back andyround states both satisfy Eq2), but one hasPo|¥)

forth between the two localized states in accordance with :C(T)’ dvad and the other ha® o|‘1'>=08, Jvad. The two

possibilities correspond to different possible input values.

lg(t)) = Uil e(ti 1)) @ The complete Hamiltonian for a calculation with a specific
as depicted in Fig. 2. Since the wave function consists of two O> 1
amplitudes at each time, and there alH1) times, the | | >

progress of the algorithm can be described wititN2(1)
amplitudes.
In our time-independent approach, a qubit would not be
realized as a single electron shared between two dots but,
instead, as a single electron shared betwedw+21) dots
(Fig. 3). The amplitudes giving the electron’s wave function  FIG. 1. Electron shared between two quantum dots constitutes a
on each dot would supply the R+ 1) amplitudes needed to hypothetical qubit.
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FIG. 2. Quantum dot qubit develops in time in accordance with ~ FIG. 3. Electron in an array of quantum dots forms a single
the algorithm. qubit. Amplitude of wave function develops through array in accor-
dance with the algorithm. Lines indicate tunneling paths.
input value does not possess this degeneracy, but rather in-

cludes a small perturbation term so that the energies ofrease as more qubits are addad].

cao|vac> and cal|vac> differ slightly. As a result, there is a A second advantage to the ground-state approach is the
single nondegenerate ground state. fact that the system does not require time-dependent control.
Physically, the Hamiltoniari3) would be realized in the The Hamiltonian is static during any given calculation and
quantum dot system by fabricating the dots such that thepnly changes when switching from one algorithm to another.
possess appropriate on-site and tunneling matrix elementd§-or the quantum dot example that we give, this alteration
The four values in the matri}J; would determine the four could be implemented by using intermediate dots of adjust-
tunneling matrix elements that connect the states in row able voltage to control interdot tunneling rajeshis could
— 1 to the states in rouv The four values otJ; would not be  ease somewhat the problem of realizing a quantum com-
required to influence any other aspect of the array since thputer.
operator(3) has an appealing modular character: the unitary There are two disadvantages to our ground-state approach
matrix U; only enters the Hamiltonian through matrix ele- that should be pointed out. First, rather than having a small
ments between states on rows1 andi. The small pertur- system that evolves in time throughtime steps before de-
bation added to break the degeneracy3)fand select input coherence sets in, we requixet+ 1 copies of the small sys-
would be supplied physically by applying a voltage to one oftem. This could be an inefficient use of hardwarthough
the dots in row 0. After application of the perturbation, theit must be noted that a small time-dependent system can
system would be annealed to its ground state. The output aBquire a tremendous amount of hardware to control its evo-
the calculation would be obtained by measuring on which ofution.) Second, to detect the results of a calculation, an elec-
the dots at rowN the electron can be found. tron must be measured in roW. Since this does not occur
What are the advantages of this ground-state approach twith certainty, there is a chance that the system will have to
guantum computation? Most importantly, it possesses a cebe annealed to the ground state again after an unsuccessful
tain robustness against decoherence. Certainly, timeneasurement. However, it is possible to reduce this problem
dependent or time-independent perturbations of the Hamildrastically by adjusting™(U) in the Hamiltonian(3) to read
tonian could introduce errors into the calculation. Static
perturbations due to imperfect implementation of the requi- 1 1
site Hamiltonian will adversely influence the ground state. IfhN(U)=e¢| C}|_,Cy_1+ < C\Cy—~ (CLUCy_1+H.C) |.
a ground-state quantum computer is to function, such time- A A
independent sources of decoherence must first be removed (4)
by testing and refining the computer apparat(Shus o o ]
ability of a static Hamiltonian. The required precision of iS enhanced by a factor af/[A\?+(N—1)]. For A~N, the
implementation is as high as it is in the case of time_probabmty_of an unsuccessful measurement becomes_small.
dependent quantum computatipiiowever, the inevitable, Up to this point, we have focused upon a single qubit. To
uncontrollable time-dependent perturbations from the enviPerform useful quantum computations, we must consider the
ronment only influence the calculation if they excite the sys-M qubit case. It is natural to redefifi#’) to be anM qubit
tem out of the ground state. In a traditional quantum compustatel; to be a 2! by 2 unitary operator specified by the
tation these fluctuations lead to decoherence. In ground-stagégorithm, P;=T1,C ;C, to be a multiple qubit projector,
quantum computation, such excitations can be quenched Bnd Ai,i_lzﬂaC;iCa,i_l to be a multiple qubit mover,
large energy level spacings and low temperatures. While theshere the indexa specifies the qubit upon which a given
energy spacing of the HamiltonidB) does decrease with, operator acts. Unfortunately, if we simply insert these redefi-
it can be proven that the decrease is only algebraic and, initions into Eq.(2), the result constrains but does not fully
the multiple qubit case to be addressed below, need not dspecify theM qubit wave function. It contains no informa-
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tion about those terms in the many body wave function thaPhysically, in the quantum dot realization, the terms in Eq.

are annihilated by every project®t;, i.e., terms in which

(7) correspond to having the location of one qubit influence

not all electrons are at the same row of the computer. Weby the Coulomb interactionthe tunneling matrix elements
must posit a development equation that will specify all thesef another qubit.
terms (which have no analog in time-dependent quantum We note in conclusion that the idea of using a time-

computation, but will result in a| V') that is the ground state
of a simple Hamiltonian. This is achieved by defining')

independent Hamiltonian for quantum computation has been
raised beford24,25. This prior work, however, aimed to

to be the ground state of a hypothetical computer, with onlyyerform the usual time-dependent quantum computation us-

j of the actual computer’sl rows, and requiring
M
[wh=11 (1+C3Ua Caj WY (®)

It is straightforward to check that this more specific equatio
implies the multiple qubit redefinition of Eq2) and the

appropriate Hamiltonian is just the sum of the familiar one

qubit Hamiltoniang3).

With Eq. (5), we are now in a position to include the
essential two qubit controlledeT gate. Assume the algo-
rithm specifies as thgth operationl/; a controlledNoT of
qubit B by qubit A and unitary operationsl, ; on the other
qubitsa# A,B. The desired multiple qubit redefinition of Eq.
(2) will still hold if we modify Eq. (5) at row| to read

|‘I’j>=[1+CL,j,oCA,j—1,0(1+CJ|§,jCB,j—1)

+CI\,j,ch,j—l,l(lJFCJErs,jNCB,j—l)]

x [T @a+clu,Caj_n¥i™h,
a#A,B

(6)

whereN is the two-by-twoNOT matrix (the Pauli matrixo).

ing a static “cursor Hamiltonian.” Such an approaghre-
quires tailoring a Hamiltonian with specific three-particle in-
teractions andii) demands time-dependent state preparation
and measurement. In addition,(iti) is particularly suscep-
tible to decoherence in the form of unintended reflections

r[26] that are not relevant to our design. The “cursor Hamil-

tonian” is probably, therefore, unfeasible. Our approach
does not suffer from these basic problems, but its ultimate
viability can only be assessed by developing specific imple-
mentations. Our quantum dot array implemention seems un-
realistic (although it is encouraging to note that a classical
computation scheme using coupled quantum dots has been
implemented[27,28)). However, many other possibilities
could be envisioned, e.g., the ¢ 1) states of a single
qubit could take different locations in momentum space
rather than different locations in real space. Perhaps it will
even turn out to be fruitful to combine the approach we de-
scribe here with other ways of handling decoherence
[5-7,29.
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