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Neutral atom and a charged wire: From elastic scattering to absorption
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We solve the problem of a neutral atom interacting with a charged wire, giving rise to an attractive 1/r 2

potential in two dimensions. We show how a suitable average over all possible self-adjoint extensions of the
radial Schro¨dinger Hamiltonian eventually leads to the classical formula for absorption of the atom, a formula
shown to be in agreement with a recent experiment.
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The scattering of cold neutral atoms by a thin charg
wire has, for the first time, allowed theexperimentalstudy of
a pure attractive 1/r 2 potential in two dimensions@1#. The
absorption aspects of this experiment were successfully
scribed by a solution of the classical equations of motion
is the purpose of this paper to show how this absorpt
formula can be derived from theelasticscattering solutions
of the Schro¨dinger equation for this attractive singular pote
tial @2# instead of introducingad hoccomplex phase shifts
@3,4#. To do this, we employ a suitable average of theS
matrix arising from the mathematically well-defined sol
tions of the Schro¨dinger equation with a self-adjoint Hami
tonian and compute the corresponding absorption cross
tion in the classical limit. Our absorption cross section
then identical to the classical absorption cross section
describes the data of Ref.@1#.

To begin, we note that the electrical field of a wire wi
line charge per unit lengthl induces a dipole momentdW

5aEW in a neutral atom of polarizabilitya, which is then
attracted towards the wire. The interaction potential in cyl
drical coordinates~and Gaussian units so that the fine stru
ture constante2/\c'1/137),

Vpol~r !52
1

2
dW •EW 52

1

2
aE2~r !52

2al2

r 2
, ~1!

is always attractive. The radial Schro¨dinger Hamiltonian for
the atom with massM is

H52H 1

2M F ]2

]r 21
1

r

]

]r
2

m2

r 2 G1
2al2

r 2 J , ~2!

and the radial Schro¨dinger equation then becomes

H 1

2M F ]2

]r 21
1

r

]

]r
2

m2

r 2 G1
2al2

r 2 1EJ c~r !50, ~3!
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wherem, the orbital angular momentum quantum number
the z direction ~direction of the wire!, takes the values 0
61,62, . . . andE is the energy of the atom (\5c51). We
requiren2[4al2M2m2 to be greater than zero, so that th
singular potential remains attractive. We follow Meetz@5#
and define a two term regular@6# solutionf for this singular
potential

f~kr !5C@eigJin~kr !2e2 igJ2 in~kr !#, ~4!

with k2/2M5E, n254al2M2m2, andg an arbitrary phase
which characterizes the self-adjoint extension@5,7–9# of the
radial Schro¨dinger Hamiltonian~2!.

The partial-waveS matrix Sm is given by@10#

Sm5
L2

L1
, ~5!

where the Jost functionL1 andL2 in Eq. ~5! are determined
by the asymptotic behaviorr→` of f(kr). This in turn is
easily found from@11#:

Jn~z!;A 2

pz
cosS z2

np

2
2

p

4 D . ~6!

Comparing Eqs.~4! and~6!, we now evaluate the Jost func
tion L1 andL2 :

f~kr !.
C

A2kr
~L2eikr2L1e2 ikr !, ~7!

and it is not necessary to determine the value ofC in Eqs.~4!
or ~7! as it does not appear in the partial-waveS matrix:

Sm~g!5
L2

L1
5

eigenp/22e2 ige2np/2

eige2np/22e2 igenp/2
. ~8!

Now we utilize a method suggested by Radin@12# to
clarify the relation between the family of solutions in Eq.~4!,
each solution characterized byg @7#, with the alternative
unique solution, displaying absorption, found by Nels
@13#, for the same attractive 1/r 2 potential. We, however,
apply the method toS-matrix elements rather than Radin
©2001 The American Physical Society01-1
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Green functions and we work in two dimensions. Thus,
averageSm(g) over all g ’s corresponding toall self-adjoint
extensions:

^Sm&5
1

2pE0

2p

Sm~g! dg, ~9!

and now proceed to show that^Sm& displays absorption. Set
ting z5eig, the average in Eq.~9! becomes

2p i ^Sm&5enp/2 R
uzu51

dz

e2np/2z2enp/2/z

2e2np/2 R
uzu51

dz/z

e2np/2z22enp/2
, ~10!

and is readily evaluated as

^Sm&5e2np, ~11!

because the first contour integral of Eq.~10! has no poles
inside the contour.

The absorption cross section is given in terms of
partial-wave expansion as@3,14#

sabs5
1

k (
2m

1m

~12uSmu2!. ~12!

Becausen254al2M2m2.0, the limits of the sum onm
are given by the integer part of 2lAaM : m5@2lAaM #.

In order to take the quantum-mechanical expression~12!
to the classical limit, we follow a treatment given by Allilue
@15# in three dimensions. The two-dimensional absorpt
cross section~12! goes to

sabs5
2

kE0

1m

@12exp22pAm22m2#dm, ~13!

where the classical limit is given bym52lAaM@1, see
Kayser@16#. The second term in the integral of Eq.~13! is,
totally negligible with respect to the first term@one can show
the second integral to beO(1/Am)]. We finally get, from the
classical limit of our pure quantum-mechanical treatmen
this singular potential

sabs5
4lAaM

k
52A4a

M

l2

v2
, ~14!

wherek5Mv and the final form of our result~14! is seen to
be identical to Eq.~3! ~in the limit of zero radius of the wire!
of Ref. @1#, obtained by a classical argument.

Now that we have shown how the classical result for
sorption by a zero-radius charged wire follows from qua
tum mechanics, it is straightforward to include classical
sorption of an atom with energyE by the finite radiusRw of
the wire by introducing a phenomenological potential of t
form 2b/r 2. Classically, those atoms whose impact para
eterr does not exceedrmax5Ab/E will be absorbed~‘‘fall
03470
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to the center’’! @17#. In two dimensionssabs52rmax. For
the uncharged wire of radiusRw one getssabs52Rw for a
phenomenological strengthb5Rw

2E. With b5Rw
2E12al2,

it is clear that classically one has

sabs52ARw
2 1

4a

M

l2

v2
~15!

in agreement with Eq.~15! in Ref. @1#. Note that the phe-
nomenological classical potential we adopt for the unchar
wire with a finite radius is also singular, a choice ultimate
justified by the successful description of the data by Eq.~15!
in Ref. @1#.

We have emphasized the rigorous mathematics of
problem to illustrate the point that there is no difficulty, ne
ther quantum mechanically nor mathematically, with form
lating the problem of the interaction of a polarizable ato
with a zero-radius line charge, contrary to statements in
physics literature@18#. Attempts have been made to give th
continuous parameterg of the self-adjoint extensions of th
radial Schroedinger Hamiltonian with an attractive 1/r 2 po-
tential a physical interpretation@9,19#. One such interpreta
tion is briefly discussed in the appendix in conjunction w
a different method of solving Eq.~3!. However, given the
difficulty in trying to select a unique self-adjoint extensio
based upon physical arguments@9#, we instead have shown
that, by consideringall self-adjoint extensions by averagin
over g, one can go from a well-formulated quantum
mechanical elastic-scattering solution to the classical
mula for absorption, a formula which fits the experimen
data.

The work of M.B. was supported by the National Fund f
Scientific Research, Belgium and that of S.A.C. by N
Grant No. PHY-9722122.

APPENDIX

For completeness sake, we briefly discuss how
quantum-mechanical expression~11! can be derived from the
approach of the authors of Ref.@9#. These authors write the
physical solution@6# Rm(kr) to Eq. ~3! as

Rm~kr !5amJ2n~kr !1bmJn~kr !, ~A1!

where am and bm are determined by requiring the radi
wave functions to form an orthogonal set. They then fi
Rm(kr) to be of the form

Rm~kr !5cm@expi @um12m ln~k/M !#J2 in~kr !1Jin~kr !#,

~A2!

wherecm is a normalization factor andum a phase charac
terizing the self-adjoint extension. From Eqs.~A2! and ~6!

one now finds the partial-waveS̃m to be given by

S̃m5
expi ~um12n logk/M !e2np/21enp/2

expi ~um12n logk/M !enp/21e2np/2
, ~A3!
1-2
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since the connection betweenS̃m and the asymptotic form o
Rm(kr) is @9#

Rm~r!→A 1

2ppr
@exp2 i ~pr2pm2p/4!

1S̃m expi ~pr2p/4!#. ~A4!

From Eq.~A3!, one then finds the poles ofS̃m ~bound states!
to be of the formk5 ik, with

k5expum8 22pn/2n, n50,61,62, . . . , ~A5!

and

um8 5p2um . ~A6!

Equation~A5! shows that the domain ofum8 is
R
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03470
0<um8 ,2p, ~A7!

in order to include all possible values ofk in Radin’s sum
over all possible self-adjoint extensions. Taking Eq.~A6!

into account one can then compute^S̃m& in Eq. ~A3! exactly
as before and obtain again our result~11! by introducing now

the variablez5eium8 . Thus, the ‘‘pragmatic’’ approach of the
authors of Ref.@9# yields exactly the same average partia
wave S matrix as does our approach based upon a strai
forward application of mathematically rigorous but perha
less familiar techniques. Indeed, from Eq.~A5!, one can see
that choosing one specific self-adjoint extension amount
making the bound-states spectrum unique by specifying
position of one level in the spectrum@19#. We thus have
demonstrated, with the elastic-scattering solutions of R
@9#, that our averaging procedure leading to absorption
ultimately to the correct classical limit can be viewed as
average over all ways of specifying a unique quantu
mechanical bound-state spectrum.
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