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Neutral atom and a charged wire: From elastic scattering to absorption
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We solve the problem of a neutral atom interacting with a charged wire, giving rise to an attracfive 1/
potential in two dimensions. We show how a suitable average over all possible self-adjoint extensions of the
radial Schrdinger Hamiltonian eventually leads to the classical formula for absorption of the atom, a formula
shown to be in agreement with a recent experiment.
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The scattering of cold neutral atoms by a thin chargedvherem, the orbital angular momentum quantum number in
wire has, for the first time, allowed trexperimentaktudy of  the z direction (direction of the wirg, takes the values 0,
a pure attractive tf potential in two dimensiongl]. The =1,=2, ... and¢is the energy of the atonfi=c=1). We
absorption aspects of this experiment were successfully deequirer?’=4aX?>M —m? to be greater than zero, so that the
scribed by a solution of the classical equations of motion. Isingular potential remains attractive. We follow Me¢&
is the purpose of this paper to show how this absorptiorand define a two term regulf] solution ¢ for this singular
formula can be derived from thelastic scattering solutions potential
of the Schrdinger equation for this attractive singular poten- _ _
tial [2] instead of introducingad hoccomplex phase shifts (kr)=C[e"7J;,(kr)—e "I, (kn)], (4)
[3,4]. To do this, we employ a suitable average of ®%e¢ . = ) ’ .
matrix arising from the mathematically well-defined solu- With kK/2M=¢, v*=4a\*M —m", andy an arbitrary phase,
tions of the Schrdinger equation with a self-adjoint Hamil- Which characterizes the self-adjoint extensiéiv—9 of the
tonian and compute the corresponding absorption cross sef@dial Schrdinger Hamiltonian2).
tion in the classical limit. Our absorption cross section is 1he partial-waveS matrix Sy, is given by[10]
then identical to the classical absorption cross section that r
describes the data of Réfl]. Sp=—o, (5)

To begin, we note that the electrical field of a wire with Ly

line charge per unit length induces a dipole momerd \hore the Jost functiof. and£_ in Eq. (5) are determined

=aE in a neutral atom of polarizabilityr, which is then  py the asymptotic behaviar—o of ¢(kr). This in turn is
attracted towards the wire. The interaction potential in cylin-easily found from{11]:

drical coordinatesand Gaussian units so that the fine struc-

ture constane?/fc~1/137), ] 2 v s
D)~ co§ 2= -~ 7| (6)
1.. 1 2a\? ,
Vol =— §d' E=— EaE (N=—-—-, (1)  Comparing Eqgs(4) and(6), we now evaluate the Jost func-
r tion £, andL_:
is always attractive. The radial Scldinger Hamiltonian for _C ikr ikr
the atom with masM is p(kr)= \/mw*e —Lie ™), @
1[92 19 m?] 2a)N? and it is not necessary to determine the valu€ af Egs.(4)
H= —[m 2 o 1zt r—z] : (2 or(7) as it does not appear in the partial-weSenatrix:
L ei yewrr/2_ e*i Ye~ varl2
and the radial Schobnger equation then becomes Sn(y)==—"— — . 8
£+ el7e V7T/2_e Iyevw/Z
1 &_2+£i_m_2 N 2“7\2+5 W)=0, () Now we utilize a method suggested by Radit?] to
2M | or? roor  r? r? ’ clarify the relation between the family of solutions in E4),

each solution characterized by [7], with the alternative

unigue solution, displaying absorption, found by Nelson
*Email address: michel.bawin@ulg.ac.be [13], for the same attractive ¥ potential. We, however,
"Email address: coon@nmsu.edu apply the method t&-matrix elements rather than Radin’s
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Green functions and we work in two dimensions. Thus, weto the center’) [17]. In two dimensionso <= 2pmax- FOr
averageSy(y) overall y's corresponding tall self-adjoint  the uncharged wire of radiuR,, one getso,ps=2R,, for a
extensions: phenomenological strengii=R2E. With B=R2E+2a\?,
1 (2n it is clear that classically one has

(Sw=5=] “Sun v, © —
_ 2

_ . Taps—2 Ry, + ™ 2 (15
and now proceed to show thi®,,) displays absorption. Set- v

ting z=€'”?, the average in Eq9) becomes ) ) .
in agreement with Eq(15) in Ref. [1]. Note that the phe-

dz nomenological classical potential we adopt for the uncharged
27i(Sy,)=e"? jg S wire with a finite radius is also singular, a choice ultimately
Z=1e" " z—e"""z justified by the successful description of the data by E&)
477 in Ref. [1]. _ _ _ _
—e m/zjg . (10 We havg emphasized t'he rigorous _mather_naﬂcs of thls
lZ=1e~ V272 — V72 problem to illustrate the point that there is no difficulty, nei-
ther quantum mechanically nor mathematically, with formu-
and is readily evaluated as lating the problem of the interaction of a polarizable atom
- with a zero-radius line charge, contrary to statements in the
(Smy=e""", 1D physics literatur¢18]. Attempts have been made to give the
continuous parametey of the self-adjoint extensions of the

because the first contour integral of HG0) has no poles . . o ; )
inside the contour. radial Schroedinger Hamiltonian with an attractive<1po-

The absorption cross section is given in terms of thetfami‘."‘I a _physiqal interprfatatio[rg,lg]. O_ne_ such_inter_pretaj
partial-wave expansion 48,14 tion is briefly discussed in _the appendix in conjunction with
a different method of solving Eq3). However, given the
1 I difficulty in trying to select a unique self-adjoint extension
Tans= 1 2 (1—Snl?). (12) based upon physical argumeifd, we instead have shown
—u that, by considerin@ll self-adjoint extensions by averaging
- ) 5 e over y, one can go from a well-formulated quantum-
Becausev®=4a\"M—m“>0, the limits of the sum om  ochanical elastic-scattering solution to the classical for-

are given by the integer part oh2/aM: u=[2\aM]. mula for absorption, a formula which fits the experimental
In order to take the quantum-mechanical expressidh  §ata.

to the classical limit, we follow a treatment given by Alliluev

[15] in three dimensions. The two-dimensional absorption The work of M.B. was supported by the National Fund for

cross sectiorjl2) goes to Scientific Research, Belgium and that of S.A.C. by NSF
Grant No. PHY-9722122.

2 [(+tnm
=— 1—exp—2mu?—m?]dm, 13
Tabs kfo [1-exp-2myu ] 13 APPENDIX
where the classical limit is given by=2\JaM>1, see For completeness sake, we briefly discuss how the

Kayser[16]. The second term in the integral of E4.3) is,  quantum-mechanical expressidri) can be derived from the
totally negligible with respect to the first terffone can show  approach of the authors of R¢8]. These authors write the
the second integral to k8(1/y/)]. We finally get, from the  physical solutior[6] R,(kr) to Eq.(3) as

classical limit of our pure quantum-mechanical treatment of

this singular potential Rm(kr)=amnJ_ (kr)+bgJ,(kr), (AL)
AN aM Aa \? where a,, and b, are determined by requiring the radial
Tabs= 2\ M =2 (14  wave functions to form an orthogonal set. They then find
v R, (kr) to be of the form

wherek=Muv and the final form of our resulil4) is seen to _ : _ )

be identical to Eq(3) (in the limit of zero radius of the wije Rin(Kr) = Crl €XPIL 6+ 240 IN(KIM) ] i, (k) + Jip (kD) ],

of Ref.[1], obtained by a classical argument. (A2)
Now that we have shown how the classical result for abyyperec,, is a normalization factor ané,, a phase charac-

sorption by a zero-radius charged wire follows from quan-erizing the self-adjoint extension. From Eq#2) and (6)

tum mechanics, it is straightforward to include classical ab—One now finds the partial-wavi, to be given by

sorption of an atom with energy by the finite radiuR,, of

the wire by introducing a phenomenological potential of the .
wire oy ! ueing a p gica’ p ! expi(6,,+2vlogk/M)e™ "2+ e/

form — B/r2. Classically, those atoms whose impact param- T —
! Sm=— (A3
eterp does not exceegd .= VB/E will be absorbed“fall expi(6p,+2viogk/M)e"™+e~ 7T
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since the connection betwe&g, and the asymptotic form of
Rm(kr) is [9]

1
Rin(p)—\/ prp[exp— i(pp—mm=—m/4)

+S,, expi(pp— 7l4)].

(A4)

From Eq.(A3), one then finds the poles &, (bound states
to be of the formk=i«, with

k=exph,,—2mn/l2v, n=0,£1,+2 ..., (AD)
and
0=~ 0. (AB)

Equation(A5) shows that the domain df;, is
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0<0, <2m, (A7)

in order to include all possible values &fin Radin’s sum
over all possible self-adjoint extensions. Taking H#6)

into account one can then compyt,,) in Eq. (A3) exactly
as before and obtain again our regult) by introducing now

the variablez=¢'’m. Thus, the “pragmatic” approach of the
authors of Ref[9] yields exactly the same average partial-
wave S matrix as does our approach based upon a straight-
forward application of mathematically rigorous but perhaps
less familiar techniques. Indeed, from E&5), one can see
that choosing one specific self-adjoint extension amounts to
making the bound-states spectrum unique by specifying the
position of one level in the spectruni19]. We thus have
demonstrated, with the elastic-scattering solutions of Ref.
[9], that our averaging procedure leading to absorption and
ultimately to the correct classical limit can be viewed as an
average over all ways of specifying a unique quantum-
mechanical bound-state spectrum.
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