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Solution of the Schradinger equation for the time-dependent linear potential
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In this paper | have drawn out the steps to be followed in order to derive the exactdBgeowave
function for a particle in a general one-dimensional time-dependent linear potential. To this end | have used the
so-called Lewis and Riesenfeld invariant method, which is based on finding an exact quantum-mechanical
invariant in whose eigenstates the exact quantum states are found. In particular, | have obtained the wave
functions of a particle in the linear potential well, driven by a monochromatic electric field.
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It is well known that both time-independent and time- of conceptual interest in studying chd@ and is of experi-
dependent harmonic oscillator potential models have extermental relevance in modeling realistic systef@§ A stan-
sively been used to study problems belonging to differendard approach used to find the wave functions for this system
areas of physics such as molecular physics, quantum chers to calculate semiclassically the Floquet operator in the
istry, quantum optics, solid state physics and quantum fieldasis of the eigenstates for the unperturbeet @) system
theory, among others. Most of the problems modeled by §9]. Recently, Cocke and ReicHllO] have employed a
time-independent harmonic oscillator potential can be easilglightly different Hamiltonian to study the high-harmonic
found in standard undergraduate and graduate textdddks generation in a driven triangular potential well. In that case
while those modeled by a time-dependent harmonic oscillathe Hamiltonian was given by
tor potential are still more commonly found published in
scientific reviewq 2]. p2

Bes_ldes the harmonic oscillator potential model, the linear H(t) = — + e X+ qex coswt + V| (X), 2
potential model has also been largely employed to study sev- 2m
eral problems in physics. For instance, Schweiter, Tilch, and

Ebeling[3] have investigated the motion of Brownian par- whereV, (x)=0 for x<L andV,(x)=%= for x>L and the

ticlgs in a piecewise linear potgntial.. Mankin, Ainsaar, andother symbols and letters have their usual meaning. To com-
Reiter [4] have employed a piecewise linear potential to, 4o the spectrum of the emitted radiation they first calcu-

study current reversals in ratchets driven by trichotomoug,eq the acceleration and induced dipole moment of the per-
noise. Chunga_t al. [5] have use_d t_he Airy f_ur_lctlons to cal- rbed system #0) by integrating numerically the
culate numerically the transmission coefficient for temarySchr'tdinger equation in the unperturbed energy basis. Then

alloys of AlGa, N as a function of concentratiox). The ey computed the time series of the expectation value of the
time-independent linear potential has experimentally beeR . qjeration and took the modulus squared of its Fourier
used to provide the realization of a miniaturized magnetiG,,nsform.

guide for neutral atomfs].

) ) , , ) To the best of my knowledge there is no publication re-
The most investigated kind of time-dependent linear POorting the solution of the Schdinger equation for the sys-

tential is the one describing the motion of a particle driveniam, described by either E4L) or Eq. (2) without consider-
by a monochromatic electric field. For this system thejy annroximate and/or numerical calculations. Furthemore,
Hamiltonian is given by it seems that no one had reported the solution of the ‘Schro
2 dinger equation for a particle in a general time-dependent
H(t)=p—+qeox+qex coswt, (1) linear potential,V(x,t)=f(t)x. The main purpose of this
2m work is to obtain, through the Lewis and Riesenfeld invariant
) method [11], an analytical expression to the Sctiimger
wherem andq are the mass and electric charge of the paryyaye function for a particle in a general time-dependent lin-
ticle, respectively« is the strength of the constant electric ear potential. As a particular case, | calculate the wave func-
field that constitutes the confining well, aeds the strength  tion for a particle in a linear potential driven by a monochro-
of the time-dependent electric field that drives the systemnatic electric field.
with frequency w. According to Pustylniko\[7] a simple Although the Lewis and Riesenfeld invariant method is
classical interpretation of Eql) is a massive ball vibrating discussed in Refl11], here I will present, for the sake of
on a periodically vibrating platform, under the influence of completeness, the basic features of it. fiebe the solution
gravity. This system in both classical or quantum version isf the Schidinger equation of a given system described by
the time-dependent HamiltoniaH(t), i.e.,
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Now let us suppose that there exists a quantum-mechanickfom Eg. (5) one can see that i is a solution of the

invariant, | (t), for this system that satisfies the equation

d i A
G (0= 2[OHO+ 2 =0. @

time-dependent Schdinger equation, any function defined
by ¢=1V¥ will also be. In particular, one can choode as
being the eigenfunction df(t). Therefore, since the eigen-
function of the invariant given by Eq12) is of the form
T ocexd 7(t)x], this suggests that the solution of the time-

By applying Eq.(4) on ¥ and after some minor algebra, we dependent Schdinger equation for the system considered

get

9
i (1) =H() (1Y) (5)

has the form of the trial function
\If(X,t)=Ne[”(t)X+'“(t)], (13

whereN is a normalization constant ang(t) and w(t) are

which implies that the action of the invariant operator on aarbitrary time-dependent functions. The substitution of Eq.
Schralinger wave function produces another solution of the(13) into the time-dependent Schiiager equation gives

Schralinger equation. This result is valid for any invariant if
the latter involves the operation of time differentiation. Deal-
ing with a time-dependent harmonic oscillator it is more con-

venient to considel(t) given by the quadratic forr2]
1(t)=a(t)p?+ B(1)X*+ y() (px+xp), (6)

once the Hamiltonian is itself quadratic pnand x. In the
present case, the Hamiltonian is given by

2

H(x,p,t)= 2p—m+f(t)x, (7)

which is linear inx. So, | consider the linear invariant
[(t)=A(t)p+B(t)x+ C(t), (8)
which must satisfy Eq(4). In Eq. (8) A(t), B(t), andC(t)

are real functions. The substitution of E@) into Eq. (4)
gives

(A+%B p+Bx+[C—f(t)A(t)]=0. 9)

A solution of the above relation is obtained by

- B
A=——, (103
B=0, (10b
C=f(1)A(t). (100

By consideringB=0, we get from Eqs(10a and(10¢ the
following solutions

A(t)=a=const,

(113
C(t)zaftf(t')dt'. (11b

Hence, after findingA(t), B(t), and C(t), the linear in-
variant reads

I(t)=a p+ftf(t’)dt’>. (12)

. 2
i px+ p]=— =— 72(t) + f(1)x

2m (14)
yielding

ifin(t)=f(t), (158

: h?
ifip(t) == 5= 7%(1) (15b)

The formal solution of Eq(153 is

i [t

77('[)=—%f f(t")dt’. (16

Then, for f(t) specified, one can easily solve Eq&5)
and obtain the wave function for the system described by Eq.
(7). For the case wherg(t) =qgey+ ge coswt, the solutions
of Egs.(15) are

q .
n(t)=— w—h(eowt—l— esinwt), (179
iq2 6o(wt)3 .
ty=——— +2€,€e(SiNwt— wt coswt
wO=-—— = oe( )
+ €2 ! t L 2wt 17b)
ely0 4sm , (17b

and the wave function for a particle in a linear potential
driven by a monochromatic electric field reads

iq :
P(x,t)=N ex;{ — E(EOwH € Sinwt)Xx

+2e€,€(Sinwt — wt coswt)

iq? (eo(wt)3
2mh w® 3

5 2 . (18

5 1 1
+ €°| = wt— —Sin 2wt

Summing up, in this work the Lewis and Riesenfeld in-
variant method has been used for obtaining the Sthger

034102-2



BRIEF REPORTS PHYSICAL REVIEW A 63 034102

wave function of a particle in a general time-dependent lin- | would like to express my gratitude to Departamento de
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