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Theory of a multimode semiconductor laser with optical feedback
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We discuss the derivation of multimode rate equations for the description of a semiconductor laser with
external cavity. We adopt a formulation where the complex field amplitudes are coupled to the nonlinear gains.
For N lasing modes, this leads to 2N equations that display in-phased and antiphased time-dependent solutions.
A simplified reference model is obtained by assuming that the key parameters are frequency independent. A
general linear stability analysis leads to the prediction of two types of Hopf bifurcations. A nondegenerate
Hopf bifurcation occurs with the relaxation oscillation frequency as the characteristic bifurcation frequency. A
(N21)-degenerate Hopf bifurcation occurs with a lower characteristic frequency. To assess the nature and
stability of the solutions emerging from the Hopf bifurcations, we perform a nonlinear stability analysis on a
reduced model obtained in the limit of large linewidth enhancement factor. In this asymptotic limit, the steady
state is always destabilized in favor of a stable periodic inphased or antiphased state. A numerical analysis
yields a bifurcation diagram of the multimode equations, which confirms the analytic results and reveals further
complex regimes~quasiperiodic and chaotic, in-phased and antiphased! as the amplitude of the field fed back
into the laser is increased.
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uc
ha
d
ti
o

ar
ng

o
-
las
s
w
e
.

Th
in

e
t

r s
e
d
e

te
illa
de

o
a

al
io

gy.
ate
to
u-

s of
ion
lin-
led
g
is
to
LK
me
on

ed
ters.
e
ns,

racy
that
ics

se
g-

ld

l-
es
the

ta-
tate.
c.
I. INTRODUCTION

Semiconductor lasers have characteristic times m
shorter than other solid-state lasers. As a result, direct c
acterization of the laser output is not possible and only in
rect methods can be used. They produce averages in the
or in the frequency domain. In addition, the modeling
semiconductors is much more complex than the modeling
solid state lasers. There is a whole spectrum of theories v
ing from the purely phenomenological approach with fitti
parameters to models based on theN body theory in non-
equilibrium statistical mechanics@1–6#. Recently however,
very fast detectors have been used to provide a time res
tion of the output signal@7–11#. It appears from these ex
periments that in some circumstances a semiconductor
with an external cavity~ECSL! acting as feedback operate
in the longitudinal multimode regime. These results raise t
questions: how do ECSL behave in the multimode regim
and why does an ECSL operate on more than one mode
this paper, we address the first of these two questions.
question was already studied with the same purpose in m
in a recent paper@10#. Our approach differs mostly in th
type of equations that are derived. A comparison between
two approaches is made at the end of Sec. II. In anothe
of papers@12# the dynamics of the ECSL has been analyz
without the slowly varying amplitude approximation an
with proper boundary conditions. One of the results obtain
in these papers is that for realistic values of the parame
the single mode solution is stable against multimode osc
tions only in a restricted domain. However, the multimo
regime has not yet been studied along these lines.

The first problem is to derive a multimode extension
the Lang-Kobayashi~LK ! rate equations that describe
single mode ECSL@13#. Since there is no derivation from
first principles of the single mode LK equations, a gener
zation to the multimode regime is not obvious. This quest
1050-2947/2001/63~3!/033817~15!/$15.00 63 0338
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is analyzed in Sec. II where we adopt the following strate
We formulate the multimode rate equations for a solid-st
laser in terms of complex modal field amplitudes coupled
the nonlinear gains. This is at variance with the usual form
lation of the rate equations that are expressed in term
modal field amplitudes coupled to the average populat
inversion and its spatial gratings. We note that in the non
ear gain formulation, each modal field amplitude is coup
to only one nonlinear gain~associated with the same lasin
cavity mode! and that the multimode feature of the laser
reflected only in a direct coupling of each nonlinear gain
all modal intensities. We transpose this structure into the
equations to obtain their multimode extension. In the sa
section, we derive the steady-state solutions and focus
their linear stability. We introduce a simplified model bas
on the assumption that all modes have the same parame
For this model involvingN lasing modes, we show that th
steady state may become unstable via two Hopf bifurcatio
a nondegenerate bifurcation, and a bifurcation of degene
N21. This result is essential because it has been shown
this property is one of the signatures of antiphase dynam
@14# and the experimental results reported in Ref.@9# give
strong evidence of antiphase dynamics.

The linear stability analysis of Sec. II is limited becau
the multimode LK equations are far too complex. This su
gests to introduce an asymptotic limita@1 that has been
successful in the analysis of single-mode ECSL@15#. In
Secs. III and IV we find that to leading order the laser fie
can be decomposed as a sum ofN independent periodic
states, an inphase state andN21 antiphase states. Solvabi
ity conditions determine the slow evolution of the amplitud
of these states. From the evolution equations we recover
linear stability results fora@1. We also find bifurcation
equations for the periodic states, their stability and multis
bility, and the coexistence of the inphase and antiphase s

In order to validate the asymptotic limit studied in Se
©2001 The American Physical Society17-1
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III, we have made extensive numerical simulations. Usin
continuation method@16#, we have determined the stabilit
boundary of the steady state by locating all the primary H
bifurcation branches. Then, by integrating in time the mo
equations, we have found that increasing the feedback
leads to a sequence of steady, periodic, two-frequency
siperiodic, and finally chaotic regimes. These regimes
play a clear inphase or antiphase signature, except when
chaos is of large amplitude. In Sec. V we present a summ
of these simulations.

II. MULTIMODE RATE EQUATIONS

A. The Fabry-Perot cavity

The rate equations for a multimode solid-state laser@17#

couple the modal complex electric fieldĒm( t̄ ) to the popu-
lation inversionF̄(z, t̄ ) via the nonlinear equations

dĒm~ t̄ !

d t̄
5ĒmH 2gcm1

gm

L E
0

L

uf~m!u2F̄~z, t̄ !dzJ , ~1!

]F̄~z, t̄ !

] t̄
5w~z!2F̄~z, t̄ !S 11(

p
uf~p!u2uĒm~ t̄ !u2D ,

~2!

where f(m)5A2 sin(qmz) is a lasing cavity mode. This
choice of the eigenfunctions means that we formulate
rate equations for a Fabry-Perot cavity. The excitation of
population difference is modeled by the functionw(z). The
cavity photon decay rate isgcm . The complex parametergm
is proportional to the linear susceptibility of the gain m
dium. Its real part is a measure of the linear gain and
imaginary part is related to the dispersive properties of
medium.

We first consider the single-mode regime. In solid-st
laser theory, it is customary to derive from Eqs.~1! and ~2!

coupled equations relating the modal field amplitudeĒm ,
the average of the population inversionD̄( t̄ )
5(1/L)*0

LF̄(z, t̄ )dz, and the population inversion gratin

D̄m( t̄ )5(1/L)*0
L cos(2qmz)F̄(z,t̄)dz, neglecting moments o

the population inversion such asD̄m2m8 with m2m8Þ0,m.
The resulting three equations are the Tang, Statz, and de
rate equations@18#. In semiconductor laser theory, a differe
formulation is preferred, which relates the complex elec
field Ēm to the nonlinear gain F̄m

5(2/L)*0
L sin2(qmz)F̄(z,t̄)dz5D̄( t̄)2D̄m( t̄). In reduced vari-

ables, this pair of equations can be written as

dEm

dt
5~11 ia!FmEm , ~3!

T
dFm

dt
5P2Fm2~112Fm!uEmu2, ~4!

where Em is the slowly varying field amplitude,a is the
linewidth enhancement factor~or Henry factor!, P is the de-
03381
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viation from the threshold injection current,Fm is the excess
free-carrier density, andT is the ratio of the carrier density
lifetime to the cavity photon lifetime. The derivation of th
semiconductor laser rate equations from the general
equations~1! and~2! is not simple. A discussion of this topi
can be found in Refs.@3–5#.

If an external mirror feeds a fractionh of the light back
into the laser, a source has to be added to the field equa
It was shown by Lang and Kobayashi@13# that a semicon-
ductor laser with this optical feedback can be modeled by
field equation

dEm

dt
5~11 ia!FmEm1hmEm~ t2t!e2 iVmt, ~5!

coupled to Eq.~4!. Em(t2t) is the field delayed by one
external cavity round trip timet, the field phase mismatch
after one round trip is2 iVmt, andVm is the isolated laser
frequency.

In view of these results, it is clear that to generalize t
LK equations to the multimode regime, the structure of E
~2! suggests that we simply replace Eq.~4! by

T
dFm

dt
5P2Fm2~112Fm!(

n
bmnuEnu2, ~6!

with bnn51, while keeping Eq.~5! as it stands. The indice
m andn run from 1 toN, the number of lasing modes. Th
cross-saturation parametersbmn are related to the carrie
density gratings. They are restricted to the range 0<bmn
<1.

A numerical analysis of Eqs.~5! and~6! has already been
published@21,22#. This analysis indicates that Eqs.~5! and
~6! are valid candidates to describe the multimode ECS
Hence the more systematic approach followed in this pa

The steady-state solution of Eqs.~5! and ~6! is easy to
derive in analogy with the single-mode solution. We se
steady-state solutions of the formEm(t)5EmeiVe,mt and
Fm(t)5Fm . The external cavity frequencyVe,m is the shift
of the lasing frequency due to the external cavity. It verifi
the transcendental equation

Ve,m52hmA11a2 sin@~Vm1Ve,m!t1tan21a#.

The excess carrier density is given by

Fm52hm cos@~Vm1Ve,m!t#.

The field intensities are the solutions of a set ofN linear
inhomogeneous equations

(
n51

N

bmnuEnu25
P1hm cos@~Vm1Ve,m!t#

122hm cos@~Vm1Ve,m!t#
.

At this point, we introduce a simplification that amoun
to assuming that the lasing modes are distributed ove
small frequency interval:

bmn5b,1 for mÞn, hm5h, and Ve,m5Ve .
~7!
7-2
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It follows thatVm5V andFm5F. The assumption of equa
bnm amounts to the neglect of a weak dependence on
differencen2m @19,20#. This becomes an exact property
consecutive modes have equal frequency differences.
experimental results reported in Ref.@9# suggest that to a
very good approximation the modes are equally spaced.
choice of a constanth andVe,m is based on the fact that th
frequency difference between the lasing modes is very sm
compared with the optical frequency, and that most prop
ties of the laser cavity and of the external cavity elements
not vary significantly across the optical spectrum of the l
ing modes.

Given the above simplification we obtain the referen
model that will be used in the remainder of this paper. T
steady-state modal field intensity thus becomes

uEu25
P1h cos~D!

@122h cos~D!#@11b~N21!#
,

with D5(V1Ve)t.
The linear stability of this solution can be investigated

the usual way. Seeking solutions of the multimode LK eq
tions of the formEm(t)5@E1«am(t)#exp(iVet) and Fm(t)
5F1« f m(t) with 0,«!1 and whereE, F, and f m(t) are
real butam(t) is complex, the linearized equations for th
deviations from steady state yield the solutionam(t)
5am exp(lt) and f m(t)5 f m exp(lt). The characteristic equa
tion for l is

DR3DL
N2150, ~8!

with

T21DS5l31l2@2h~12e2lt!cos~D!12g#

1l@h2~12e2lt!214hg~12e2lt!cos~D!1VS
2#

12h2g~12e2lt!21hVS
2~12e2lt!

3@cos~D!2a sin~D!#,

for S5R,L . An alternative form of the characteristic func
tions DS is given in Appendix A. Two relaxation oscillation
frequencies appear in these equations

VR
25

2

T
@P1h cos~D!#, VL

25VR
2 12b

11b~N21!
.

They are characterized by the same damping rateg

g5
1

2T

112P

122h cos~D!
.

The main property to stress at this point is that any criti
point arising as a zero ofDL is (N21) degenerate.

To progress in the analysis of the characteristic equat
we introduce an asymptotic limit. Semiconductor lasers w
an external cavity~ECSL! normally operate in the regim
T@1, with a small feedbackh!1, and a large time delay
t@1. It has been shown@23,24# that this regime can be
described by the following scaling
03381
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«[1/T!1, h5O~«!, P5O~1!, t5O~«21/2!,
~9!

so thatg5O(«). We chooseh as the control parameter. I
the limit ~9!, it is easy to verify that the steady-state soluti
can be destabilized by Hopf bifurcations defined by the eq
tions DS(lS56 iVS ,hS)50. The position of the Hopf bi-
furcations is obtained from the equations Re@DS(lS5
6 iVS ,hS)#50:

hR,L52«
112P

@cos~D!1a sin~D!#2 sin2~V̄R,Lt/2!
1O~«3/2!,

~10!

with

V̄R
252P/T, V̄L

25V̄R
2 12b

11b~N21!
. ~11!

The imaginary part of the characteristic equations gives
Hopf frequency

VR,L5V̄R,L1«
112P

2
cot~V̄R,Lt/2!1O~«3/2!.

From expression~10! for the critical value of the feedbac
parameter, it follows that the conditionh.0 implies the
constraint

cos~D!1a sin~D!,0. ~12!

If this condition is verified, there is a nondegenerate Ho
bifurcation athR and a (N21)-degenerate Hopf bifurcation
at hL . Note that if Eq.~12! is not verified, there is still the
possibility that Hopf bifurcations exist, but outside the d
main of parameters defined by the scaling~9!. Extensive nu-
merical simulations suggest that the steady state is alw
destabilized by a Hopf bifurcation if the feedback rate
large enough.

When the Hopf bifurcations occur according to Eq.~10!,
the nondegenerate bifurcation will be the first~i.e., hR
,hL) provided

sin2~V̄Rt/2!.sin2~V̄Lt/2!. ~13!

Otherwise, it is the degenerate Hopf associated withDL
N21

50 that is the first self-pulsing instability of the steady sta
In the short delay limit (t→0), the stability condition~13!

reduces toV̄R.V̄L which is always true and means that f
t→0 the first instability is always the nondegenerate Ho
The condition~13! can be written as

sinFA2P

T

bN

bN112bGsinFA2P

T

bN12~12b!

bN112b G.0.

The relevance of these results stems from the fact that
presence of a degenerate Hopf bifurcation has been show
be a signature for antiphase dynamics@14#. This is related to
the fact that there areN21 different eigenvectors associate
with the eigenvalueiVL . Because antiphase dynamic
7-3
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emerges from a degenerate Hopf bifurcation, the usual th
rems on the existence and stability of the time periodic
lution emerging from the Hopf bifurcation no longer appl
In a recent publication@25# dealing with a different problem
it has been shown that the properties of the solutions in
vicinity of the degenerate Hopf bifurcation depend on t
mode number. For instance, it was shown in that paper
for N53 the emerging solutions are periodic and stab
However, for N54, periodic and quasiperiodic solution
emerge, with the periodic solutions being unstable and
quasiperiodic solutions being stable. Away from the Ho
bifurcation, these two groups of solutions may exchan
their stability. An explicit construction of the eigenvecto
associated with the eigenvaluesVR and VL does not seem
possible at this level of description. To proceed further,
shall introduce another asymptotic limit in which this co
struction is feasible.

B. The ring cavity

The above formulation refers to a Fabry-Perot cavity. I
interesting to contrast the results derived in that case with
properties of a similar model set up for a ring cavity. Suc
formulation has been used recently@10# to analyze the inten-
sity statistics in the low-frequency fluctuation regime. The
equations can be derived from Eqs.~1! and ~2! with f(m)
5exp(iqmz). Proceeding exactly as for the Fabry-Perot cav
leads toN11 coupled equations

dEm

dt
5~11 ia!FEm1hmEm~ t2t!e2 iVmt,

T
dF

dt
5P2F2~112F !(

n
bmnuEnu2,

whereF is the space average of the excess carrier density
a ring laser, there is no need to derive equations for
population gratings since the propertyuf(m)u251 decouples
the gratings from the field equations at this level of appro
mation. Hence the difference in the number of equations
tween the two models. The equation forF used in Ref.@10#
has an additional nonlinearity that complicates the alge
but does not modify qualitatively the conclusions of the f
lowing analysis. Considering again the simplified model
which hm , Vm , andbmn are mode independent, it is easy
show that the linear stability analysis of the steady-state
lutions is governed by the characteristic equation

~AĀ!N21DR850, ~14!

with

A5l1he2 iD~12e2lt!, Ā5A~2D!.

The functionDR8 differs slightly fromDR ; they are identical
for b51. An explicit form of the functionDR8 is given in
Appendix A.

Thus, this model predicts instabilities associated with
roots of DR8 ~which has a nondegenerate Hopf bifurcatio!
03381
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and, in addition, the roots with the degeneracyN21 origi-
nating fromAĀ50. We first consider the equation

l1he6 iD~12e2lt!50. ~15!

Let us determine if this characteristic equation may lead t
Hopf bifurcation. Assumingl5 iV, we obtain from Eq.~15!
the condition

iV1 ih@6sin~D!1sin~Vt7D!#

1h@cos~D!2cos~D7Vt!#50.

The real part of this equation requiresVt52np, which is
inconsistent with the imaginary part of this equation. T
same conclusion holds for the productAĀ . Hence, this
model does not support a degenerate Hopf bifurcation.

III. PHASE EQUATION ANALYSIS FOR aš1

A. Derivation

In the previous section we found isolated a
(N21)-degenerate Hopf-bifurcation points on the branch
steady-state solutions of the multimode-LK equations.
describe the emerging periodic solutions we follow the a
proach of Alsing et al. @15# who perform an asymptotic
analysis of the single-mode case. By considering the li
a@1 they derived a third-order phase equation that can
analyzed forT@1. Here we will summarize the applicatio
of this asymptotic method to the multimode problem a
refer the reader to Ref.@15# for details of the asymptotic
argument.

We make the following change of variables in Eqs.~5!
and ~6!:

t→ t

v
, t→ t

v
, v5A2P

T
, b5

1

11b~N21!
,

Fm5
v

a
xm , Em5AbPS 11

1

a
ymDexpF i S Fm2

V

v
t D G .

The resulting equations are

dxm

dt
52vjxm2S 11

2v

a
xmDb(

n51

N

bmnynS 11
yn

2a D ,

dym

dt
5xmS 11

ym

a D1vLS 11
ym~ t2t!

a D
3cos@Fm~ t2t!2Fm#, ~16!

dFm

dt
5V1xm1

vL

a

11ym~ t2t!/a

11ym /a
sin@Fm~ t2t!2Fm#,

where

V→vV, j5
112P

2P
, L5

ha

v2
. ~17!
7-4
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In the limit a→` the leading-order approximation to Eq
~16! is

dxm

dt
52vjxm2b(

n51

N

bmnyn ,

dym

dt
5xm1Lv cos@Fm~ t2t!2Fm~ t !#, ~18!

dFm

dt
5V1xm .

These equations can be combined to produceN coupled
third-order phase equations

d3Fm

dt3
1vj

d2Fm

dt2
1b(

n51

N

bmn

dFn

dt
2V

1bLv (
n51

N

bmn cos@Fn~ t2t!2Fn~ t !#50,

~19!

wherem5@1,N#.

B. Leading order problem

The phase equations are analyzed in the limitv→0 as
T→`, while P5O(1), and welook for a solution of the
form

Fm~ t;v!5Fm0~ t,T!1vFm1~ t,T!1O~v2!.

A new slow-time variableT5vt is defined so that deriva
tives in t becomed/dt5]/]t1v]/]T, and the delay term is
expanded as

Fm j~ t2t!5Fm j~ t2t,T!2vtFm jT~ t2t,T!1O~v2t2!.
~20!

The leading order problem is

]3Fm0

]t3
1b(

n51

N

bmn

]Fn0

]t
5V,

which has the solution

F0m~ t,T!5 (
n51

N

@An~T!Cmne
ivnt1c.c.#1Vt1Cm~T!,

m5@1,N#, ~21!

where

vn
25vL

25~12b!b, if nP@1,N21#, ~22!

5vR
251 if n5N ~23!

and

Cmn5exp@ i2p~n/N!~m21!#. ~24!
03381
In Eq. ~23! we have recovered the linear stability predictio
for the frequencies given by Eq.~11!. The solution vectorF
is composed of a sum of vectorsCn weighted byAn . For
n5@1,N21# the vectorsCn correspond to antiphase~AP!
states, where each vector is phase shifted from the prev
by 2pn/N. DifferentCn correspond to a unique order of th
phasesFm . Whenn5N, each element ofCN equals 1 cor-
responding to the inphase~IP! state. The state vectors obe
the relations

(
m51

N

Cmn5UTCn50 if n5@1,N21# ~AP modes!

5N if n5N ~IP modes!, ~25!

whereU is a column vector with each element equal to
@~U!nity#. These conditions appeared as ‘‘sum rules’’
@26,27#. Orthogonality of the vectorsCn follows directly
from Eqs.~24! and~25!. Thus, the solution vectorF0 has an
orthogonal decomposition into AP and IP statesCn weighted
by An .

The phaseFm(t) depends on the slowly evolving ampl
tudesAn(T) andCm(T), whose time dependence can be d
termined from solvability conditions for theO(v) problem.
However, calculating the solvability conditions for th
An(T) is very difficult. This is because of the necessity
accounting for all possible resonant terms of theN21 AP
statesAn . We instead definecomposite antiphase (CAP
statesas

Bm~T!5 (
n51

N21

An~T!Cmn ~26!

so thatFm(t) may be written as

F0m~ t,T!5Bm~T!eivLt1AN~T!eit1c.c.1Vt1Cm~T!,

m5@1,N#. ~27!

Orthogonality and the sum-rule property~25! of the Cmn
determine that theBm have the properties

1

N (
m51

N

CmnBm5An , (
m51

N

Bm50. ~28!

Each phaseFm(t) has only two slowly varying amplitude
Bm(T) and AN(T) for the harmonic oscillations at frequen
cies vL and 1, respectively. There areN CAP statesBm
~versusN21 AP statesAn) so that one is linearly dependen
on the others as implied by the sum rule on theBm ; this over
specification will be removed later. The slow evolution
the Bm(T) will be determined by solvability conditions a
O(v).

Before proceeding to theO(v) problem we wish to relate
the evolution of the phaseFm(t) back to the original laser
variables, the population inversionFm , and electric field
Em . The inversion isFm5(v/a)xm5(v/a)(dFm /dt2V).
The modal intensitiesI m5uEmu2 are given in terms ofym by
7-5



g

en
e
T

ha

n

th

ion

or-

s

lar

e
nd
1.

rs

tudy

he

T. W. CARR, D. PIEROUX, AND PAUL MANDEL PHYSICAL REVIEW A63 033817
I m5bPS 11
1

a
ymD 2

. ~29!

In Appendix B we show that the vectory5(y1 , . . . ,yN) can
be written as

y52S d2

dt2
1vj

d

dtD
3F (

n51

N
Rn~vt !

vn
2

†Cn exp{i @vnt1fn~vt !#%1c.c.‡

1S21B~vt !G , ~30!

where we have made the substitutionT5vt and the polar
decomposition An(T)5Rn(T)exp@ifn(T)#. This expresses
the mode intensities explicitly in terms of the slowly varyin
amplitudesRn , fn , andCm . However, our result simplifies
if the amplitudes are constant becauseRnt5Cmtt5fntt50.
We obtain~see Appendix B!

y5 (
n51

N
Rn

vn
2
†Cn exp$ i @vnt1fn~vt !#%1c.c.‡1O~v!.

~31!

Substituting this result in Eq.~29! we have for the intensity

I 5bPS U1
2

a (
n51

N
Rn

vn
2
†Cn exp{i @vnt1fn~vt !] %1c.c.‡D

1OS 1

a2
,
v

a D . ~32!

For constant amplitude solutions, the vector of modal int
sities is the steady state plus a perturbation that can be
pressed as a decomposition into the AP and IP states.
total intensity is a sum of the modal intensities. Recall t
UTCn50 for the AP modes so that

I tot5 (
m51

N

I m5UTI 5bNPH 11
4

a
RN cos@ t1fN~vt !#J .

~33!

Thus, for constant amplitudes the antiphase dynamics do
affect the magnitude of the total intensity@25#.

C. The O„v… problem

The solution to the leading-order problem depends on
slowly varying amplitudesBm(T), AN(T), andCm(T). Their
evolution equations are obtained from a solvability condit
on theO(v) problem.
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]3Fm1

]t3
1b(

n51

N

bmn

]Fn1

]t

523Fm0ttT2jFm0tt2b(
n51

N

bmnFn0T

2bL (
n51

N

bmn cos@Fn0~ t2t!2Fn0~ t !#.

~34!

The homogeneous equation has a nontrivial solution prop
tional to a constant, exp(ivLt) and exp(it). Terms on the
right-hand side of Eq.~34! proportional to the homogeneou
solutions will cause secular terms inFm1. Solvability condi-
tions are found by identifying the coefficients to secu
terms and setting them to zero.

It is straightforward to analyze the contribution of th
linear terms. The nonlinear cosine term is more difficult a
we have moved the computation details to Appendix C
For specific values ofb it is possible that resonance occu
between the antiphase states with frequencyvL and the
inphase state with relaxation frequencyvR51. In Appendix
C 2 we discuss when these resonances may occur but a s
of the resulting evolution equations will not be pursued.

D. Amplitude equations

The amplitude equations forCm(T), AN(T), and
Bm(T) are given below where we have introduced t
polar coordinatesAN(T)5RN(T)exp@ifN(T)# and Bm(T)
5Sm(T)exp@iwm(T)#, mP@1,N#:

Cm~T!52L cos~Vt!J0~DI !J0~Dm!,

2ANT1jAN1 ie2 i t/2bL sin~vt!J1~DI !e
ifN(T)

3 (
n51

N

bmnJ0~Dn!50,

2BmT1jBm1 ie2 ivLt/2
b

vL
2

L sin~vt!J0~DI !

3 (
n51

N

bmnJ1~Dn!eiwn(T)50,

where

DI54 sinS vR

t

2DRN , Dm54 sinS vL

t

2DSm . ~35!

There areN composite antiphase statesBm , any one of
which can be expressed as a sum of the others using Eq.~28!.
By summing allN solvability conditions for theBm and us-
ing the sum property we find that

(
n51

N

J1~Dn!eiwn(T)50. ~36!
7-6
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This property can be used to eliminateBN ~i.e., DN andwN)
from the otherN21 solvability conditions. Using the pola
coordinates and taking real and imaginary parts leads to

2RNT1jRN1bL sin~vt!sinS t

2D J1~DI ! (
n51

N

bmnJ0~Dn!50,

~37!

2RNfNT1bL sin~vt!cosS t

2D J1~DI ! (
n51

N

bmnJ0~Dn!50,

~38!

2SmT1jSm1L sin~vt!sinS vL

t

2D J0~DI !J1~Dm!50,

mP@1,N21#, ~39!

2SmwmT1L sin~vt!cosS vL

t

2D J0~DI !J1~Dm!50,

mP@1,N21#. ~40!

There are two important properties of the evolution eq
tions that greatly simplify further analysis. First, neitherRN
or the Sm depend on the phases. Second, the equations
the Sm are decoupled from each other. That is, the evolut
of a particular CAP stateSm depends on itself and th
inphase stateAN , but not the otherSn . The evolution equa-
tions for all theSm are equivalent as would be expected fro
symmetry. As a result of these two properties, the study
the amplitude equations reduces to just two equations forRN
and any particularSm , theN22 otherSm being equivalent.

IV. ANALYSIS OF THE AMPLITUDE EQUATIONS

A. Zero solution

The zero solutionRN50, Bm50, m5@1,N# corresponds
to the steady-state solution of Eqs.~5! and~6! and identically
satisfies the amplitude equations. To test its linear stab
we considerRN andBm small and determine the eigenvalu
of the linear system to be

lN52
1

2 Fj12L sin~Vt!sin2S 1

2
t D G , ~41!

ln52
1

2 Fj12L sin~Vt!sin2S vL

2
t D G , n5@1,N21#,

~42!

where the (N21) degeneracy of the eigenvalueln results
from theN21 equivalent CAP amplitude equations. We w
see that all of the linear stability properties of the steady s
are preserved by the stability of the zero solution.

If sin(Vt).0 then the zero solution is stable. However,
sin(Vt),0 bifurcations occur ifln50 or lN50. The former
determines an (N21)-degenerate bifurcation of the A
states ifL5LA , while the latter determines a bifurcation
the IP mode ifL5L I , where
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L I ,A5
1

2

j

usin~Vt!usin2@vR,L/2!t]
. ~43!

Recall thatj is related to the pump,P, andL is related to the
feedback strengthh @see Eq.~17!#. For a fixed value of the
pump, Eq.~43! indicates the value of the feedback where t
steady state becomes unstable to either AP or IP peri
solutions. The IP bifurcation occurs before the AP bifurc
tion (L I<LA) provided

sin2S 1

2
t D>sin2S vL

2
t D . ~44!

Because 0<vL<1, the IP mode is the first bifurcation fo
t,p independent ofvL . For t fixed and p<t mod 2p
,2p ~instead oft>p and fixed!, Eq. ~44! is a condition on
vL and henceb. In the next section we will analyze th
bifurcation to the IP state followed by an analysis of t
bifurcation to AP states.

Lastly, we comment on the relationship of the zero so
tion and its stability to the steady-state solution of Eqs.~5!
and~6!. In the stability analysis of the zero solution we ha
recovered the linear stability results of the original proble
in the limit a@1. Specifically, Eq.~43! for the bifurcation
point is the largea limit of Eq. ~10!, while Eq. ~44! that
determines whether the bifurcation is inphase or antipha
matches Eq.~13! exactly.

B. IP state

Assume thatL I,LA so that the primary bifurcation is to
the IP state. Lasers operating in the IP state have many
namical properties in common with single mode lasers. T
IP state is defined asBm50, m5@1,N21#, RN5RIÞ0,
RNT50, whereRI satisfies the bifurcation equation

L5
j

usin~Vt!usinS 1

2
t D

RI

J1~DI !
5

L I

2

DI

J1~DI !
. ~45!

In the limit RI→0 we recover the bifurcation pointL
5L I . For RI!1 the bifurcation equation can be approx
mated local to the bifurcation point asDI

258(L2L I)/L I

and is supercritical. In the limitL→` the amplitude of the
IP state takes multiple values defined byJ1(DI)50. Thus,
the zeros of theJ1(D) are solutions to the bifurcation equa
tion for large feedback. The IP state bifurcates at limit poi
determined from the extrema of the bifurcation equat
dL/dDI50. They are found to occur forDI satisfying

2J1~DI !2DIJ0~DI !50. ~46!

Linear stability analysis will confirm that these are sadd
node~SN! bifurcations. The node solutions are the origin
the multiple-valued solutions defined byJ1(DI)50.

Linear stability is examined usingSm5um , RN5RI
1uN , and um ,uN!1. This linear system has a
(N21)-degenerate eigenvaluelm and an isolated eigenvalu
lN given by
7-7
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lm52
j

2 F 12
1

2

sin2~@vL/2#t!

sin2S 1

2
t D

DIJ0~DI !

J1~DI ! G , ~47!

lN52jF12
1

2

DIJ0~DI !

J1~DI !
G . ~48!

The isolated eigenvaluelN corresponds to the variableuN
and describes the stability of the IP state with respect to a
perturbation. WhenlN50 we obtain the condition for limit
points of the multiple solutions and examining the sign
dlN /dDI proves that these are SN bifurcations.

The CAP states become unstable whenlm50. However,
the bifurcation point of CAP states occurs on the unsta
branch of the IP solution. Hence, there are no stable
tiphase solutions that bifurcate from the IP state. That is,
IP state will not become unstable due to AP perturbati
and we expect the inphase solution to be preserved. An
line of a proof of this result is given in Appendix D.

C. AP state

Assume thatLA,L I so that the primary bifurcation is to
the AP ~CAP! state. The AP state is defined asRN50, Sm
5SAÞ0, SmT50, whereSA satisfies the bifurcation equa
tion

L5
j

usin~Vt!usinS vL

1

2
t D

SA

J1~DA!
5

LA

2

DA

J1~DA!
.

~49!

Analysis of the AP bifurcation equation yields similar cha
acteristics as the IP bifurcation equation. Local toLA the
bifurcation equation isDA

258(L2LA)/LA and is supercriti-
cal. Multistability arises due to SN bifurcations~as con-
firmed by a stability analysis! when 2J1(DA)2DAJ0(DA)
50, and for L→` the amplitude of the AP states take
multiple values defined byJ1(DA)50.

Linear stability is examined usingSm5SA1um , RN
5uN , and um ,uN!1. This linear system has a
(N21)-degenerate eigenvaluelm and an isolated eigenvalu
lN given by

lm52jF12
1

2

DAJ0~DA!

J1~DA! G , ~50!

lN52
j

2 F12
1

2

sin2~t/2!

sin2~@vL/2#t!

DAJ0~DA!

J1~DA! G . ~51!

SN bifurcations that lead to multiple stability occur whe
lm50. The isolated eigenvaluelN corresponds to the vari
able uN and indicates that the IP state becomes unsta
whenlN50. However, as for the antiphase bifurcation fro
the inphase state bifurcation of the previous section, the
phase bifurcation from the antiphase state occurs on the
stable branch of antiphase solutions and is unstable.
proof follows that presented in Appendix D.
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The evolution of the CAP phases all have the same
quency since the amplitudes of the CAP states are equal.
only difference between the CAP states is due to the ini
condition of the phase.

wm~T!52vwT1wm0 , vw5
LA

2
sin~vt!sin~vLt!.

~52!

Finally, we wish to show how the bifurcation to the CA
states relates to the original AP states. Using Eq.~26! and the
sum rules for the AP state vectors, Eq.~25!, and the CAP
states, Eq.~28!, a particular AP state is given by

An~T!5
1

N
SAe2 ivwT (

m51

N

Cmne
iwm0, ~53!

wherewN0 is determined by Eq.~28!. Thus, the AP bifurca-
tion will be to a pure AP state (ApÞ0, An50, nÞp) if the
initial conditions are such that the CAP states are in an
tiphase configurationCp . In the next section numerica
analysis finds that a pure AP state is in fact observed w
the zero solution becomes unstable.

D. Summary of analysis and AP-IP coexistence

Here we focus on the caseLA,L I so that the first bifur-
cation is to the AP state. The same qualitative results
valid whenL I,LA and the IP state is the first bifurcation. I
Fig. 1~a! we plot the bifurcation diagram of the AP stat
WhenL5LA , there is a supercritical bifurcation to the A
state. AsL is increased, the initial branch of solutions a
ymptotes to a valueRA such thatJ1(DA)50. Our numerical
analysis in the next section describes the higher-order bi
cations and chaos that occur along this branch.

There exists SN bifurcations to AP states with differe
amplitudes leading to multistability. These are predicted b
by the bifurcation equation~49! and the linear stability re-
sults ~50!. Linear stability also predicts the possibility of
combined AP and IP state solution~labeled as ‘‘AP1 IP’’ !,
where each state has nonzero amplitude. However, we
prove that this bifurcation occurs on the unstable branch
AP solutions and is unstable.

The bifurcation diagram in Fig. 1~a! describes the ampli-
tude of the AP state when the amplitude of the IP state
zero. We now consider the properties of a nonzero IP st
with zero AP state, that bifurcates from the zero solution
L5L I . The results are shown in Fig. 1~b!. We still assume
that LA,L I so that the AP state is the first bifurcatio
Hence, the zero solution is unstable whenL5L I and we
expect the IP state to be unstable. To be more precise
examine the eigenvalues for the stability of the IP state gi
by Eqs.~47! and~48!. The eigenvaluelN , given by Eq.~48!,
is 0 at the bifurcation point and is negative along the bran
of IP solutions. However, the eigenvaluelm is positive at the
IP bifurcation point so that the IP state is unstable. To
this take the limit asDI→0:
7-8
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lim
DI→0

lm52
j

2
~12r !, r 5

sin2~vLt/2!

sin2~t/2!
. ~54!

BecauseLA,L I , r .1 andlm.0.
The eigenvaluelm does not remain positive. The quanti

DIJ0(DI)/J1(DI) is a decreasing function ofDI so that the
IP state becomes stable whenDI increases to a value suc
that

DIJ0~DI !

J1~DI !
5

2

r
. ~55!

The change from an unstable to stable IP state occurs~i! on
the branch of solutions emanating fromL5L I , and~ii ! on
the upper branch of solutions emanating from the lim
points. This can be proved using arguments similar to th

FIG. 1. Analytical bifurcation diagrams illustrating the ca
LA,L I . ~a! RAÞ0, RI50, ~b! RA50 and RIÞ0. ‘‘AP 1 IP’’
indicates the secondary bifurcation described byRAÞ0 andRIÞ0
that occurs on the saddle branch of solutions and is unstable. ‘‘IP
→S’’ indicates a bifurcation point where the nonzero IP state
comes stable. Fixed parameters:j52, b50.8, v50.022 36, and
t5V535.777.
03381
t
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developed in Appendix D. These points are labeled as ‘‘
U→S’’ ~unstable to stable! in Fig. 1~b!. Thus, for certainL
there is a coexistence of AP states and IP states describe
RAÞ0, RI50 andRA50, RIÞ0, respectively.

As L is increased, the zero state will bifurcate to an A
periodic state. For high values ofL the antiphase attracto
displays a crisis and becomes in phase, as described in
next section. Upon decreasingL the system returns along th
inphase branch described above and shown in Fig. 1~b!.
However, the IP state loses stability whenDI satisfies Eq.
~55! and will return to the AP state. In the next section w
show that the sequence of bifurcations predicted by
asymptotic analysis is exhibited by the simulation of t
original system.

V. NUMERICAL RESULTS

In this section, we check the validity of the analytic
results of the previous sections. This is necessary bec
these results have been derived under the double assum
a→` andT@1. Next, we analyze the dynamics of the fu
and reduced models given by Eqs.~16! and Eqs.~18!, re-
spectively, beyond the first Hopf bifurcation.

To obtain our numerical results, we used a continuat
method and intensive numerical integration. For the form
we used DDE-BIFTOOL, a MATLAB package dedicated
the continuation of delay-differential equations@16#. For the
latter, we used a variable step-size Runge-Kutta 4~3! integra-
tion scheme with Hermite interpolation@29#. All the numeri-
cal experiments were carried out withT52000,P51/2, and
t51600, or equivalently j52, v'0.022 36, t5V
'35.777, as fixed parameters. For the full model, we ch
a55. We focused on the three and four-mode cases.

In the previous sections, we show that the laser ste
state is destabilized by a Hopf bifurcation leading to a pe
odic regime if L5ha/v2 is increased beyondL I or LA .
According to Eqs.~43! and ~44!, the emerging periodic re
gime is inphase or antiphase, depending on the value ob.
To check that prediction, we plot in Fig. 2 the Hopf bifurc
tion branches in the parameter space (L, b) for a three-mode
system. The full curves correspond to the full model, t
dotted curves to the reduced model, and the dashed curv
the asymptotic predictions given by Eq.~43!. The curves
characterized byL constant correspond to Hopf bifurcation
from which an inphase periodic solution emerges. T
other curves that fold back aboutL51 correspond to
(N21)-degenerate Hopf bifurcations from which an a
tiphase periodic solution emerges. As can be seen, the do
curves are almost indistinguishable from their correspond
full curves. This demonstrates that neglecting the terms
order 1/a and 1/a2 in Eqs.~16! has little effect on the loca-
tion of the primary Hopf bifurcation points.

Equations~43! and~44! that result from Eqs.~18! by tak-
ing advantage of the large value ofT, successfully predict the
main features of the bifurcation curves, even if a quantitat
discrepancy can be noticed between the dashed curves
the corresponding full and dotted curves. This discrepa
originates from the expansion of the delayed term in E
~20!. This expansion is justified only ifvt!1. However, for

U
-
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the values of parameters we use here,vt'0.8. We have
checked that a better quantitative agreement was achi
for vt'0.4. For larger values ofvt, Eq. ~20! is not valid
anymore and the delayed termFm j(t2t,T2vt) must be
retained. This leads to amplitude equations that are
delay-differential equations as in Ref.@30#.

For each set of curves, i.e., full, dotted, or dashed, Fig
shows that the inphase curve has two common points w
each antiphase curve. At such a point, the inphase and
tiphase Hopf bifurcations collide and the branches of p
odic solutions emerging from these bifurcations excha
stability. As magnified in Fig. 2~b!, a bifurcation collision
occurs atb50 for the three sets of curves. This is expect
since the modes of the system are totally decoupled ab
50 and the laser dynamics displays most likely a combi
tion of inphase and antiphase oscillations.

A typical bifurcation diagram is presented in Fig. 3. It
obtained from the reduced model Eqs.~18! for N53 modes
andb50.8. The top~bottom! diagram is drawn by increas
ingly ~decreasingly! sweepingL. At each change ofL, a
small amplitude noise is added to the current solution be
letting the system relax towards its new regime. Witho
noise, the switch from a solution with equalyi to a solution
with unequalyi would be impossible with our numerica
integrator. Adding noise also helps the system to move a
from a branch that just changed from stable to unstable.

Figure 3 also demonstrates bistability between
inphase and antiphase regimes. As shown in Fig. 2, a t

FIG. 2. ~a! Hopf bifurcation curves in the (L, b) parameter
space forN53 modes. The full lines are obtained numerically fro
the full model Eqs.~16! with a55. The dotted lines are obtaine
numerically from the reduced model Eqs.~18!. The dashed lines
correspond to the analytical predictions of Eq.~43!. ~b! Enlarge-
ment of the box in~a!. Fixed parameters:j52, v50.022 36, and
t5V535.777.
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degenerated Hopf bifurcation located atL'1 destabilizes
the steady state in favor of an antiphase periodic regime@Fig.
4~a!#. This regime is stable up toL'4.6. It is then destabi-
lized by a torus bifurcation from which an antiphase qua
periodic solution emerges@Fig. 4~b!#. At L'5.6, the regime
becomes slightly chaotic@Fig. 4~c!#. The chaotic attractor
evolves while sustaining antiphase oscillations@Fig. 4~d!#. It
is destroyed atL'8.3 and is replaced by an inphase chao
regime@Fig. 4~e!#.

IncreasingL further, the inphase chaos evolves into a f
developed chaos where inphase and antiphase feature
both present@Fig. 4~f!#. If L is decreased from there, th
regime returns to the inphase chaos followed by an inph
quasiperiodic regime@Fig. 4~g!#. The inphase quasiperiodi
regime maintains until it vanishes at a torus bifurcation
L'6. At that value, the regime becomes inphase perio
@Fig. 4~h!#. Decreasing furtherL down toL'1.4, the peri-
odic regime is destabilized by a two-degenerated Hopf bif
cation, as predicted by the asymptotic analysis@see Fig.
1~b!#. At that bifurcation, the laser regime jumps onto t
antiphase branch. As shown in Fig. 2, the branch of unsta
inphase periodic regime@indicated by a dotted curve in Fig
3~b!# joins the branch of steady states atL'1.2.

It is worthwhile to note thaty15y25y3 in the miscella-
neous inphase regimes described above. Moreover, the
tiphase regimes are of the AD1 type, i.e., each mode disp
the same behavior shifted from one another@26,27#. The dy-

FIG. 3. Forward~a! and backward~b! bifurcation diagrams of
the reduced model Eqs.~18! for N53 modes. The local maxima o
y1(t) are plotted versus the feedback parameterL. Labels S, P,
QP, andC design, respectively, steady, periodic, quasiperiodic, a
chaotic regimes. The subscript I~respectively, A! means inphase
~respectively, antiphase!. Only the stable regimes are plotted, b
for the dotted part of thePI branch that is unstable. Fixed param
eters:same as in Fig. 1.
7-10
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FIG. 4. Temporal time traces ofy1 , y2, andy3 displayed by the reduced model Eqs.~18! for N53 modes. Value ofL: ~a! 3, ~b! 5, ~c!
5.6, ~d! 8, ~e! 9, ~f! 18, ~g! 7, and ~h! 3. Regimes~a!–~d! and regimes~e!–~h! are localized on the antiphase and inphase branc
respectively. See the main text for a thorough description. Other fixed parameters:same as in Fig. 1.
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ap-
namics of the full model@Eqs.~16!# with a55, is very simi-
lar to that of the reduced model. However, it displays t
regimes that are absent in thea→` case. First, the antiphas
quasiperiodic regime locks into a periodic regime for 6
<L<6.7 @Fig. 5~a!#. The end of the locking area corre
sponds to the appearance of chaos. Secondly, there are
inphase solutions with unequalyi @Fig. 5~b!#.

For b50.9, we have checked that the laser bifurca
from the steady state to an inphase periodic state, confo
ing to the prediction of Fig. 2. Moreover, we have found tw
other inphase branches that coexist with the main one. T
domain of stability is 14.1,L,18.0 and 15.2,L,18.6,
respectively. The system can thus display multistability
tween three different inphase regimes. The two ex
branches present the same dynamical sequences as the
inphase branch: from steady to periodic to quasiperiodic
chaotic regime. Switching between the three branches aL
is varied has been observed. Forb50.9 and 0,L,20, we
found no stable antiphase regime. Only the chaotic reg
presents a partial antiphase feature similar to that show
Fig. 4~g!.

Finally, two other kinds of antiphase dynamics have be
noticed for four-mode systems. The first one is illustrated
Fig. 5~c!. The four modes group into two clusters wherey1
5y2 andy35y4 ~or any other configuration obtained by pe
mutation of theyi). This is an example of AD2 regime
@26,27#. In the second case, displayed in Fig. 5~d!, the four
modes group also into two clusters, but the modes in on
the clusters display small differences.
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VI. DISCUSSION

The recent experiments that have been reported on
observation of multimode regimes in ECSL are the motiv
tions of this paper. They force the consideration of the m
timode extension of the Lang-Kobayashi~LK ! equations.
This extension is not unique and therefore models mus
scrutinized and confronted with experiments for validatio

The first problem that arises is the derivation of a mu
mode extension of the LK equations. The problem ste
from the fact that the LK equations are phenomenologi
equations. Fortunately, they are rate equations, implyin
fairly low level of sophistication in the physical descriptio
We have derived Eqs.~5! and ~6! by analogy with the mul-
timode solid-state laser theory in the rate equation appr
mation.

Another difficulty is related to the experimental observ
tion of antiphase regimes that are necessarily multimode
solid-state lasers with homogeneous broadening, multim
regimes are not possible in the ring configuration. They
quire population gratings or spatial holes burned in the po
lation inversion profile. This effect is produced by the spat
inhomogeneity of the field intensity~and not the field ampli-
tude!, as is the case in a Fabry-Perot cavity. The physics
semiconductor lasers is much more complex and the sp
grating is usually neglected on the grounds that diffus
should wash it out. Though it is clear that diffusion w
reduce the role of the gratings, the very existence of mu
mode regimes suggests that some residual effects remain
have a profound influence on the laser dynamics. Our
7-11
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proach has been fully phenomenological, using the exp
mental facts to motivate a multimode description of t
ECSL. However, there remains to derive, in a more fun
mental way, these multimode equations to understand w
balance of linear and nonlinear processes dominates
physics of these devices.

In order to simplify somewhat the analysis of the mul
mode ECSL rate equations~5! and~6!, we have introduced a
reference model by assuming the mode independenc
three key parameters~7!.

A linear stability analysis of the steady-state solutions
been performed both for general parameters and in
asymptotic limita@1, T@1. The latter is from the analysi
of evolution equations derived to describe the bifurcat
periodic solutions. The results of the two analyses are c
sistent with each other. The destabilization of the steady s
due to a Hopf bifurcation depends on the delay and on
cross-saturation parameter, and the cross-saturation pa
eter plays a critical role in determining if the first bifurcatio
is to inphase or antiphase periodic solutions.

The periodic solutions that bifurcate from the steady st
are analyzed using the asymptotic limita@1. To leading
order we find that the laser intensity output can be deco
posed into an IP state andN21 AP states whose amplitude

FIG. 5. Temporal time traces of theyi . ~a! N53 modes, full
model Eqs.~16!: locking of the antiphase quasiperiodic regime.a
55, b50.8, andL56.5. ~b! N53 modes, full model: inphase
quasiperiodic regime withy1Þy2Þy3 , a55, b50.8, and L
56.0. ~c! N54 modes, full model: AD2 periodic regime withy1

5y2 and y35y4 , a55, b50.75, andL54.0. ~d! N54 modes,
reduced model Eqs.~18!: AD2-like periodic regime withy15y2

andy3'y4 . b50.85 andL57.0. Other fixed parameters:same as
in Fig. 2.
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evolve according to solvability conditions determined
higher order. The dynamics of the IP state are identical to
single-mode laser and we reproduce the results of Als
et al. @15#. Namely, the bifurcation is supercritical, and fo
large feedback, there are saddle-node bifurcations leadin
multistability.

Determining the solvability conditions for the AP states
extremely difficult and can be done only approximate
However, progress can be made by introducing the ‘‘co
posite antiphase states’’ for which we can derive exact so
ability conditions. The bifurcation results are similar to th
IP state in that the AP bifurcation is supercritical and the
exists critical feedback strengths where multistability a
pears. The drawback of the CAP states is that we can
longer differentiate between theN21 AP states. We canno
test the stability of one AP state with respect to another,
so cannot say whether one, two, or allN21 AP states will
bifurcation atLA . However, our method has been very su
cessful in describing the competition between the IP and
states.

In previous studies of antiphase dynamics in solid-st
lasers, it has been found that the AP dynamics is periodi
quasiperiodic, depending on the number of modesN @25#.
For the semiconductor laser with delay that is conside
here, the initial bifurcation is always to a periodic state. Qu
siperiodic solutions occur for higher levels of feedback
secondary bifurcations.

Of particular importance is the competition between t
IP and AP states. We can provide explicit conditions
which will be the first bifurcation. Numerical analysis ha
shown that for large feedback, higher-order bifurcatio
cause a system that was initially antiphase to exhibit inph
dynamics after the crisis of the antiphase attractor. Surp
ingly, when the feedback is decreased, the system exhib
IP periodic solutions. Our bifurcation study has shown th
even when the first bifurcation is AP, for example, there
coexisting branches of IP solutions. Hence, the jump fr
the IP to AP state for decreasing feedback, as seen in
numerical simulations, is well predicted by a definite bifu
cation point.

Finally, the analytical predictions have been confirmed
a numerical approach on both the full equations~16! and the
a@1 approximate equations~18!. Using a continuation
method for delay-differential equations, we have determin
the location and type of bifurcation points. The numeric
results were in excellent agreement with the analytical p
dictions. The main observed regimes have also been
scribed. The periodic, quasiperiodic, and lightly chaotic
gimes exhibit always a clear inphase or antiphase signat
We have observed no local bifurcation allowing for the r
versible switch from inphase to or from antiphase.
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APPENDIX A: THE CHARACTERISTIC FUNCTIONS

The characteristic equations~8! and ~14! obtained from
the linear stability analysis of Sec. II depend on three fu
tions,DR , DL , andDR8 , which can be written as

DR5~12b1Nb!~ĀB1AB* !C1AĀD,

DL5~12b!~ĀB1AB* !C1AĀD,

DR85N~ĀB1AB* !C1AĀ@D12E2~12b!~N21!#,

in terms of the functions

A5l1he2 iD~12e2lt!, Ā5A~2D!,

B5~11 ia!E,C5~112F !E,

D5lT1112E2~12b1bN!.

APPENDIX B: INTENSITIES

The vectory5(y1 , . . . ,yN) can be written as

y52
1

b S d2

dt2
S21

•F1vj
d

dt
S21

•F2jVS21
•U D ,

whereS is the cross-saturation matrix, whose elements
given bybmn ; hence,S is 1 on the diagonal andb in every
off diagonal element.

The cross-saturation matrix can be decomposed as

S5~12b!I d1bUUT,

whereI d is the usual identity matrix. The advantage of th
expression forS is that it is easy to computeS•Cn because
the action ofUT on theCn is known from Eq.~25!. It also
allows us to obtain the inverse ofS as

S215
1

12b
I d2

bb

12b
UUT.

With this result we can determineS21
•F and theny is given

by

y52S d2

dt2
1vj

d

dtD
3F (

n51

N
Rn~vt !

vn
2

†Cn exp$ i @vnt1fn~vt !#%1c.c.‡

1S21
•B~vt !G , ~B1!

where we have made the substitutionT5vt. This expresses
the mode intensities explicitly in terms of the slowly varyin
03381
-

re

amplitudesRn , fn , and Cm . The result simplifies if the
amplitudes are constant becauseRnt5Cmtt5fntt50. From
Eq. ~B1! we obtain

y52 (
n51

N
Rn

vn
2 FCnF ivjS vn1

dfn

dt D2S vn1
dfn

dt D 2G
3exp$ i @vnt1fn~vt !#%1c.c.G2vjS21

•

dB

dt
,

wheredfn /dt anddB/dt areO(v) constants. But becaus
v!1 we have

y5 (
n51

N
Rn

vn
2
†Cn exp$ i @vnt1fn~vt !#%1c.c.‡1O~v!,

~B2!

where we have used the property that the derivatives of
andB areO(v).

APPENDIX C: COMPUTING THE SOLVABILITY
CONDITION

1. Nonlinear contribution

We now present some of the computational details le
ing to the solvability conditions. The amplitudes in pol
coordinates are An(T)5Rn(T)exp@ifn(T)# and Bm(T)
5Sn(T)exp@iwn(T)#. The phase difference can then be wr
ten as

Fn0~ t2t!2Fn0~ t !52Vt1DI sin~u I !1Dn sin~un!,

DI54 sinS vR

t

2DRN , Qn54 sinS vL

t

2DSn , ~C1!

u I5S t2
t

2D1fN , un5S t2
t

2D1wn ,

so that

cos@Fn0~ t2t!2Fn0~ t !#

5cos~Vt!cos@DI sin~u I !1Dn sin~un!#

1sin~Vt!sin@DI sin~u I !1Dn sin~un!#.

Use the identity@28# @Eqs.~9.1.2! and ~9.1.43#

exp@ iD sin~u!#5 (
k52`

`

Jk~D !eiku,

whereJk is the orderk Bessel function of the first kind. Then
7-13
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cos@Fn0~ t2t!2Fn0~ t !#

5cos~Vt!ReH F (
k52`

`

Jk~DI !exp~ iku I !G
3F (

k52`

`

Jk~Dn!exp~ ikun!G J 1sin~Vt!Im@ . . . #.

Expanding the products, we collect terms proportional
constants, expivLt and expit. Extra care is necessary if reso
nances between the two frequencies are to be considered~see
Appendix C 2!.

The calculation of the nonlinear term is completed
noting that

(
n51

N

bmn cos@Fn0~ t2t!2Fn0~ t !#

corresponds to the cross-saturation matrixSoperating on the
acting on the cos of the phase difference.

2. Resonances

Additional secular terms will be produced if there is
resonance relationship between the modes exp(ivLt) and
exp(it). There is not a primary resonancevL51 for bÞ0.
However, higher-order resonances (p/q)vL51 (pÞq, p
andq integers! are possible if

b5
p22q2

p21q2~N21!
, p.q. ~C2!

We expect the strongest resonance to be when (p,q)
d

ic

J

G.

J

l-

s,

03381
o

5(2,1), which occurs forb53/(31N). For the present
analysis we assume thatb is tuned away from resonances

APPENDIX D: STABILITY OF THE IP STATE

Outline of proof

Let

G5
DIJ0~DI !

J1~DI !
, r 5

sin2@~vL /2!t#

sin2S 1

2
t D .

Then

ln52
j

2 F12
1

2
rG G , lN52jF12

1

2
GG .

The AP bifurcation point and the SN bifurcation point a
determined byln50 andlN50, respectively. The bifurca
tion points occur when

AP: G[GA5
2

r
, SN: G[GI52.

BecauseL I,LA , we have from Eq.~44! that r<1 and so
GA>GI ; the value ofG at the AP bifurcation is greater tha
or equal to the value ofG at the SN bifurcation. It can be
shown thatG is a decreasing function ofDI on any interval
whereG is continuous. Thus,DI at the SN bifurcation point
is greater than or equal to the value ofDI at the AP bifurca-
tion. Thus, the AP bifurcation occurs on the lower branch
solutions emanating from the SN bifurcation point. Line
stability indicates this is the unstable branch.
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