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We discuss the derivation of multimode rate equations for the description of a semiconductor laser with
external cavity. We adopt a formulation where the complex field amplitudes are coupled to the nonlinear gains.
For N lasing modes, this leads td\Pequations that display in-phased and antiphased time-dependent solutions.
A simplified reference model is obtained by assuming that the key parameters are frequency independent. A
general linear stability analysis leads to the prediction of two types of Hopf bifurcations. A nondegenerate
Hopf bifurcation occurs with the relaxation oscillation frequency as the characteristic bifurcation frequency. A
(N—1)-degenerate Hopf bifurcation occurs with a lower characteristic frequency. To assess the nature and
stability of the solutions emerging from the Hopf bifurcations, we perform a nonlinear stability analysis on a
reduced model obtained in the limit of large linewidth enhancement factor. In this asymptotic limit, the steady
state is always destabilized in favor of a stable periodic inphased or antiphased state. A numerical analysis
yields a bifurcation diagram of the multimode equations, which confirms the analytic results and reveals further
complex regimesquasiperiodic and chaotic, in-phased and antiphaaedhe amplitude of the field fed back
into the laser is increased.
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I. INTRODUCTION is analyzed in Sec. Il where we adopt the following strategy.
We formulate the multimode rate equations for a solid-state
Semiconductor lasers have characteristic times muchaser in terms of complex modal field amplitudes coupled to
shorter than other solid-state lasers. As a result, direct chathe nonlinear gains. This is at variance with the usual formu-
acterization of the laser output is not possible and only indidation of the rate equations that are expressed in terms of
rect methods can be used. They produce averages in the timgodal field amplitudes coupled to the average population
or in the frequency domain. In addition, the modeling of inversion and its spatial gratings. We note that in the nonlin-
semiconductors is much more complex than the modeling o¢ar gain formulation, each modal field amplitude is coupled
solid state lasers. There is a whole spectrum of theories varjo only one nonlinear gaigassociated with the same lasing
ing from the purely phenomenological approach with fitting cavity mode and that the multimode feature of the laser is
parameters to models based on théody theory in non- reflected only in a direct coupling of each nonlinear gain to
equilibrium statistical mechanidd—6]. Recently however, all modal intensities. We transpose this structure into the LK
very fast detectors have been used to provide a time resolg@quations to obtain their multimode extension. In the same
tion of the output signal7—11]. It appears from these ex- section, we derive the steady-state solutions and focus on
periments that in some circumstances a semiconductor lastheir linear stability. We introduce a simplified model based
with an external cavitfECSL) acting as feedback operates on the assumption that all modes have the same parameters.
in the longitudinal multimode regime. These results raise twd-or this model involvingN lasing modes, we show that the
questions: how do ECSL behave in the multimode regimesteady state may become unstable via two Hopf bifurcations,
and why does an ECSL operate on more than one mode. k& nondegenerate bifurcation, and a bifurcation of degeneracy
this paper, we address the first of these two questions. Thi§—1. This result is essential because it has been shown that
question was already studied with the same purpose in minthis property is one of the signatures of antiphase dynamics
in a recent papef10]. Our approach differs mostly in the [14] and the experimental results reported in R&f. give
type of equations that are derived. A comparison between thetrong evidence of antiphase dynamics.
two approaches is made at the end of Sec. Il. In another set The linear stability analysis of Sec. Il is limited because
of paperg12] the dynamics of the ECSL has been analyzedhe multimode LK equations are far too complex. This sug-
without the slowly varying amplitude approximation and gests to introduce an asymptotic limit>1 that has been
with proper boundary conditions. One of the results obtaineguccessful in the analysis of single-mode ECHI5]. In
in these papers is that for realistic values of the parameter§ecs. Ill and IV we find that to leading order the laser field
the single mode solution is stable against multimode oscillacan be decomposed as a sum Mfindependent periodic
tions only in a restricted domain. However, the multimodestates, an inphase state axe- 1 antiphase states. Solvabil-
regime has not yet been studied along these lines. ity conditions determine the slow evolution of the amplitudes
The first problem is to derive a multimode extension of of these states. From the evolution equations we recover the
the Lang-KobayashiLK) rate equations that describe a linear stability results fora>1. We also find bifurcation
single mode ECSL[13]. Since there is no derivation from equations for the periodic states, their stability and multista-
first principles of the single mode LK equations, a generali-bility, and the coexistence of the inphase and antiphase state.
zation to the multimode regime is not obvious. This question In order to validate the asymptotic limit studied in Sec.
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[ll, we have made extensive numerical simulations. Using aviation from the threshold injection curreri,, is the excess
continuation method16], we have determined the stability free-carrier density, andl is the ratio of the carrier density
boundary of the steady state by locating all the primary Hoplifetime to the cavity photon lifetime. The derivation of the
bifurcation branches. Then, by integrating in time the modekemiconductor laser rate equations from the general rate
equations, we have found that increasing the feedback rateguationg1) and(2) is not simple. A discussion of this topic
leads to a sequence of steady, periodic, two-frequency quaan be found in Refd.3-5].
siperiodic, and finally chaotic regimes. These regimes dis- If an external mirror feeds a fraction of the light back
play a clear inphase or antiphase signature, except when tlieto the laser, a source has to be added to the field equation.
chaos is of large amplitude. In Sec. V we present a summarit was shown by Lang and KobayadHi3] that a semicon-
of these simulations. ductor laser with this optical feedback can be modeled by the
field equation
Il. MULTIMODE RATE EQUATIONS

dEn

A. The Fabry-Perot cavity at (1+ia)FpEm+ 7mEm(t—7)e 7, )
The rate equations for a multimode solid-state 1444

couple the modal complex electric fiell,(t) to the popu-
lation inversionF(z,t) via the nonlinear equations

coupled to Eq.(4). E(t—17) is the field delayed by one
external cavity round trip time, the field phase mismatch
after one round trip is-iQ 7, andQ, is the isolated laser

dE.(D) . frequency.
fﬁ =Eq — ch+mf |p(m)|2F(z,t)dz}, (1) In view of these results, it is clear that to generalize the
dt L Jo LK equations to the multimode regime, the structure of Eq.
o (2) suggests that we simply replace E4) by
dF(z,1) — _
— —w(z)-F(z,0)| 1+ )|?|E Uﬁ, dF
T WEFED[1+ 2 PP T =P—Fum (1+2F0) S BudESs  (6)
2

with B,,=1, while keeping Eq(5) as it stands. The indices
y andn run from 1 toN, the number of lasing modes. The

rate equations for a Fabry-Perot cavity. The excitation of th%rosg;satur?tlon p%r]amete;‘ﬁnn ?Fet rglz;\te?h fo the carrier
population difference is modeled by the functimiz). The <e{1$| y gratings. They are restricted to the range/n

cavity photon decay rate ig;,,. The complex parametey,, - . .
is proportional to the linear susceptibility of the gain me- A numerical analysis of Eq¢5) and(6) has already been

- ; - : .. published[21,22. This analysis indicates that Eq&) and
dium. Its real part is a measure of the linear gain and itPY , . ; :
imaginary part is related to the dispersive properties of th 6) are valid candidates t_o describe the multlmodg ECSL.
medium. ence the more systematic approach foIIowed_ in this paper.
We first consider the single-mode regime. In solid-stated 'I_'he _stead;q-state _fr?l't“';'on _Of IEqﬁ) dand (?)t'ls ea\‘/?/y to K
laser theory, it is customary to derive from E¢$) and(2) Erve in analogy wi € single-mode sojution. We see

. ) : . steady-state solutions of the forf,(t)=Ee'%em' and
coupled equations relating the modal field amplituglg, F_()=F,. The external cavity freqSendile: is the shift

the average of the population inversionD(t)  of the lasing frequency due to the external cavity. It verifies
=(1/L)f5F(z,t)dz, and the population inversion grating the transcendental equation
Dm(t) = (1/L) [ cos(@2)F(zt)dz neglecting moments of _ .

o . — . Qem=—mV1l+a’sin(Q,+Q +tan .
the population inversion such &,,_,, with m—m’#0,m. em= "~ 7m "SI (et Qe m) 7 @]
The resulting three equations are the Tang, Statz, and deMate excess carrier density is given by
rate equationgl8]. In semiconductor laser theory, a different
formulation is preferred, which relates the complex electric Fin=—7mco8 (Qn+Qem) 7]
field En to the nonlinear gain F
=(2/L)f5 sir(0,2)F(z,t)dz=D(t)—D,(t). In reduced vari-
ables, this pair of equations can be written as

The field intensities are the solutions of a setMflinear
inhomogeneous equations

N
dEm z B |E |2: P+77mcoi(0m+ﬂe,m)7']
W=(1+ia)FmEm, (3) A T 1-29,c08 (Qpnt Qe ) 7]

At this point, we introduce a simplification that amounts
TdFm:p_F —(1+42F )| E|? (4) to assuming that the lasing modes are distributed over a
dt m i small frequency interval:

where E,,, is the slowly varying field amplitudeg is the Bmn=B<1 for m#n, np=n, and Qc,=Q,.

linewidth enhancement factgor Henry factoy, P is the de- (7
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It follows thatQ) ,,=Q andF ,=F. The assumption of equal 7=0(g 1?),

Bnm @amounts to the neglect of a weak dependence on the 9)
differencen—m [19,20. This becomes an exact property if

consecutive modes have equal frequency differences. TH® thaty=0(e). We chooser as the control parameter. In
experimental results reported in R¢8] suggest that to a the limit (9), it is easy to verify that the steady-state solution
very good approximation the modes are equally spaced. Thean be destabilized by Hopf bifurcations defined by the equa-

e=1/T<1,

7=0(e), P=0(1),

choice of a constany and{} ., is based on the fact that the

tions Dg(Ag=*iQg,n5)=0. The position of the Hopf bi-

frequency difference between the lasing modes is very smaftircations is obtained from the equations [Rg(As=
compared with the optical frequency, and that most proper=i{ls,7s)]=0:
ties of the laser cavity and of the external cavity elements do

not vary significantly across the optical spectrum of the las-

ing modes.

Given the above simplification we obtain the reference

- 1+2P
®[cogA)+asin(A)]2 SiA(Qg  7/2)

+0(e%?),
(10

model that will be used in the remainder of this paper. The

steady-state modal field intensity thus becomes

|E|2= P+ n»cogA)
[1-2ncogA)J[1+B(N-1)]’

with A= (Q+Q) 7.

with

— _ _ 1_
03=2P/T, Q=03 B

RiipiN-n Y

The imaginary part of the characteristic equations gives the

The linear stability of this solution can be investigated in Hopf frequency

the usual way. Seeking solutions of the multimode LK equa-

tions of the formE,(t) =[E+ eay(t) ]exp(Qd) and Fq(t)
=F+ef,(t) with 0<e<1 and whereE, F, andf(t) are

real buta,(t) is complex, the linearized equations for the

deviations from steady state yield the solutiay,(t)
=amn expit) andf,(t) =f,, exp(t). The characteristic equa-
tion for A is

DrXDN1=0, (8

with

T IDg=N\3+ N 2p(1—e *)cogA)+27]
+A[72(1—e )2+ 4ny(1—e M)cogA)+ Q2]
+27%y(1—e )2+ pQ4(1—e )
X[cogA)—asin(A)],

for S=R,L . An alternative form of the characteristic func-
tions Dg is given in Appendix A. Two relaxation oscillation
frequencies appear in these equations

2 1-8
2_°% 2_02
They are characterized by the same damping yate

B 1 1+2P
YT 2T 1-25cogA)

The main property to stress at this point is that any critical

point arising as a zero d, is (N—1) degenerate.

_ =] _
Qr =g +e cot( Qg 7/2)+0(e%?).

From expressiori10) for the critical value of the feedback
parameter, it follows that the condition>0 implies the
constraint

cogA)+asin(A)<O0. (12

If this condition is verified, there is a nondegenerate Hopf
bifurcation atnyg and a (\—1)-degenerate Hopf bifurcation
at »_. Note that if Eq.(12) is not verified, there is still the
possibility that Hopf bifurcations exist, but outside the do-
main of parameters defined by the scal{@y Extensive nu-
merical simulations suggest that the steady state is always
destabilized by a Hopf bifurcation if the feedback rate is
large enough.

When the Hopf bifurcations occur according to Et0),
the nondegenerate bifurcation will be the firste., 7y
< 7.) provided

Sir?(Qg7/2)>sirt(Q 7/2). (13

Otherwise, it is the degenerate Hopf associated With *
=0 that is the first self-pulsing instability of the steady state.
In the short delay limit ¢—0), the stability condition13)

reduces tﬁR>QL which is always true and means that for
7—0 the first instability is always the nondegenerate Hopf.
The condition(13) can be written as

2P BN 2P BN+2(1-p)
TN T aN+1-8

T oaNr1-g |

sin

To progress in the analysis of the characteristic equation,
we introduce an asymptotic limit. Semiconductor lasers with  The relevance of these results stems from the fact that the

an external cavitfECSL) normally operate in the regime
T>1, with a small feedbacly<1, and a large time delay
1. It has been showh23,24 that this regime can be
described by the following scaling

presence of a degenerate Hopf bifurcation has been shown to
be a signature for antiphase dynaniitd]. This is related to

the fact that there ard— 1 different eigenvectors associated
with the eigenvaluei(); . Because antiphase dynamics

033817-3



T. W. CARR, D. PIEROUX, AND PAUL MANDEL PHYSICAL REVIEW A63 033817

emerges from a degenerate Hopf bifurcation, the usual the@nd, in addition, the roots with the degeneraty 1 origi-
rems on the existence and stability of the time periodic sonating fromAA=0. We first consider the equation
lution emerging from the Hopf bifurcation no longer apply.

In a recent publicatiof25] dealing with a different problem, A+ petd(1—e *)=0. (15)
it has been shown that the properties of the solutions in the

vicinity of the degenerate Hopf bifurcation depend on thelet us determine if this characteristic equation may lead to a
mode number. For instance, it was shown in that paper thatiopf bifurcation. Assuming.=i(), we obtain from Eq(15)
for N=3 the emerging solutions are periodic and stablethe condition

However, for N=4, periodic and quasiperiodic solutions . ) ) .

emerge, with the periodic solutions being unstable and the 1Q+ig[Esin(A)+sin(Q7+A)]
quasiperiodic solutions being stable. Away from the Hopf _ — _
bifurcation, these two groups of solutions may exchange Folcod ) —codAx2n)]=0.

their stability. An explicit construction of the eigenvectors 14 (eq) part of this equation requir€sr=2n, which is

associated with the eigenvalus, and (), does not seem i,qnsistent with the imaginary part of this equation. The
possible at this level of description. To proceed further, we —

shall introduce another asymptotic limit in which this con- same conclusion holds for the produi . I—_|ence,_ this
struction is feasible. model does not support a degenerate Hopf bifurcation.

B. The ring cavity Ill. PHASE EQUATION ANALYSIS FOR a>1

The above formulation refers to a Fabry-Perot cavity. It is A. Derivation
interesting to contrast the results derived in that case with the |n the previous section we found isolated and
properties of a similar model set up for a ring cavity. Such a(N—1)-degenerate Hopf-bifurcation points on the branch of
formulation has been used recerth0] to analyze the inten-  steady-state solutions of the multimode-LK equations. To
sity statistics in the low-frequency fluctuation regime. Thesedescribe the emerging periodic solutions we follow the ap-
equations can be derived from Ed4) and (2) with ¢(m)  proach of Alsinget al. [15] who perform an asymptotic
=exp(dm2). Proceeding exactly as for the Fabry-Perot cavityanalysis of the single-mode case. By considering the limit

leads toN+1 coupled equations a>1 they derived a third-order phase equation that can be
analyzed forT>1. Here we will summarize the application
dEm=(1+ia)FEm+ En(t— 7)€ 197, of this asymptotic method to the multimode problem _and
dt refer the reader to Refl5] for details of the asymptotic
argument.
dF We make the following change of variables in E¢5)
TH=P—F—(1+2F)EH, Bl Enl?, and (6)
whereF is the space average of the excess carrier density. In = ;_, l r— T P /E _ 1
a ring laser, there is no need to derive equations for the o’ ' T’ 1+B(N=-1)"
population gratings since the propefty(m)|?=1 decouples
the gratings from the field equations at this level of approxi- ®

1
mation. Hence the difference in the number of equations be- Fm= 3 Xm: Em= VbP| 1+ Eym)ex;{|
tween the two models. The equation féused in Ref[10]
has an additional nonlinearity that complicates the algebrahe resulting equations are
but does not modify qualitatively the conclusions of the fol-

o8]

lowing analysis. Considering again the simplified model for  dx,, 2w N A
which 7, O, andBnm, are mode independent, itis easy to g =~ @&m—| 1+ —Xn b21 BrmYn| 1+ 51,
show that the linear stability analysis of the steady-state so- "
lutions is governed by the characteristic equation
dym Ym Ym(t—17)
— — = Xp| 1+ — |t oA | 1+ ——
(AAN"1D{=0, (14) dt a a
with Xcog P (t—7)— D], (16)
» B — do oA 1+y,(t—7)/a
A=N+ne d(1-e ), A=A(-A). e ]
m
The functionDy, differs slightly fromDg; they are identical here
for B=1. An explicit form of the functionDf, is given in W
Appendix A. 142p
: : : i : : o
Thus, this model predicts instabilities associated with the Q—wQ, =5 A= 77_2 (17)

roots of Dy (which has a nondegenerate Hopf bifurcafion
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In the limit «— o the leading-order approximation to Eq. In Eq. (23) we have recovered the linear stability prediction
(16) is for the frequencies given by E¢L1). The solution vectod
is composed of a sum of vectols,, weighted byA,,. For

dXm n=[1N-1] the vectors¥, correspond to antiphasé\P)

dt ~ 08Xm— bz Bmnyn. states, where each vector is phase shifted from the previous
by 27n/N. Different¥, correspond to a unique order of the
Yin phasesb,,. Whenn=N, each element o¥ equals 1 cor-
ot XmtAwcod Op(t—7)—Dy(1)], (18 responding to the inphagéP) state. The state vectors obey
the relations
dj)tm =0+ Xy. N T )
m; V. =UTP =0 if n=[1N—1] (AP modes
These equations can be combined to prodiNoeoupled .
third-order phase equations =N if n=N (IP mode, (29
o, d2d,, N N where U is a column vector with each element equal to 1
5 twé—; +b2 ,anW—Q [(U)nity]. These conditions appeared as “sum rules” in
dt dt n=1 [26,27. Orthogonality of the vectorsl,, follows directly
N from EqQs.(24) and(25). Thus, the solution vectab, has an
+bAw Y, Bmncod @ (t—7)—Pd,(t)]=0, grthogonal decomposition into AP and IP stadesweighted
n=1 vV A,.
(19 The phaseb (t) depends on the slowly evolving ampli-
tudesA,(T) andC,,(T), whose time dependence can be de-
wherem=[1N]. termined from solvability conditions for th@(w) problem.
However, calculating the solvability conditions for the
B. Leading order problem AL(T) is very difficult. This is because of the necessity of

accounting for all possible resonant terms of the 1 AP
statesA,. We instead definecomposite antiphase (CAP)
statesas

The phase equations are analyzed in the liait-0 as
T—o, while P=0(1), and welook for a solution of the
form

N—1

D (1 0) =P o(t, T+ 0Py (1, T)+O(w?).
B (T)= A
| _ e | w(T)= 2 An(T) ¥ (26)
A new slow-time variablel = wt is defined so that deriva-
tives int becomed/dt=d/dt+ wd/JT, and the delay termis ¢, that® (t) may be written as

expanded as

— fo t it
Dpyi(t=7) =B py(t—7,T) = 07Dy (L= 7,T) + O(w?72). Do(t, T)=Br(T)e'“t'+ Ay(T)e' +c.c+Qt+C(T),

20
(20 m=[1N]. 27
The leading order problem is
Orthogonality and the sum-rule propertg5) of the ¥,
3<I>mo z B determine that th&,, have the properties
an - '
1 N N
which has the solution N E: m=An, mz:l Bm=0. (28
N
o (t,T)= ATV, et tc.cl+Ot+Co(T), Each phaseb,(t) has only two s!owly yarying amplitudes
on(t.T) nzl[ (D ¥ mre c.cl m(T) Bm(T) andAy(T) for the harmonic oscillations at frequen-
cies w, and 1, respectively. There aid CAP statesB,,
m=[1,N], (2)  (versusN—1 AP statesA,) so that one is linearly dependent
on the others as implied by the sum rule on Byg; this over
where specification will be removed later. The slow evolution of
_wL (1-B)b, if ne[1N—1], 22) gzawl?)am(T) will be determined by solvability conditions at
—w2=1 if Nn=N (23) Before proceeding to th@(w) problem we wish to relate
R the evolution of the phas®,,(t) back to the original laser
and variables, the population inversiof,,, and electric field
E,. The inversion ig,,= (o/ @) Xn,= (o/ @) (d®,,/dt— Q).
Vo=exdi2m(n/N)(m—1)]. (24 The modal intensities,,=|E,|? are given in terms of,, by
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1 )2 P P
ln=DbP|1+— ) . (29 mi Zont
m aym P +bn§=:l Bmn It
N
In Appendix B we show that the vectgre=(y4, ... ,yn) Can
be written as ! N = =3P ottt EPmott — bngl Bmn® not
’ N
yoo| el DA S, BiunCO P po(t=7) = Prolt)].
dt? dt n
N (34)
n(ot) .
nzl 7 [Vhexp{i[wpt+dp(ot)]}+c.cl The homogeneous equation has a nontrivial solution propor-
“n tional to a constant, expf t) and expif). Terms on the
right-hand side of Eq(34) proportional to the homogeneous
+S 1B(wt) |, (30) solutions will cause secular termsdn,,;. Solvability condi-
tions are found by identifying the coefficients to secular

terms and setting them to zero.

where we have made the substituti®r wt and the polar It is straightforward to analyze the contribution of the
decomposition A,(T) = R,(T)exfi¢,(T)]. This expresses linear terms. The nonlinear cosine term is more difficult and
the mode intensities explicitly in terms of the slowly varying We have moved the computation details to Appendix C 1.
amplitudesR,,, ¢,, andC,,. However, our result simplifies For specific values of it is possible that resonance occurs

if the amplitudes are constant becalg=C,= ¢,n=0. Petween the antiphase states with frequeagy and the
We obtain(see Appendix B inphase state with relaxation frequensy=1. In Appendix

C 2 we discuss when these resonances may occur but a study
of the resulting evolution equations will not be pursued.

S Ry .
y= Z,l E[\Pn explif wpt+ ¢p(wt) ]} +c.c]+ O(w).
’ (31)

D. Amplitude equations

The amplitude equations forC,(T), Ax(T), and
N . . ) ) B, (T) are given below where we have introduced the
Substituting this result in Eq29) we have for the intensity polar coordinatesAy(T)=Ry(T)exdidn(T)] and B (T)

=Sn(T)exdien(T)], me[1N]:

2 &R
| = bp( U+ Z 21 _Z[q,n EXp{i[wnt+ (;Sn(a)t)]}-i-cc] Cm(T) =—A COiQT)‘]O(DI)JO(Dm),
n= wn
1 2ANT+ EANFie T DA sin(wT)Jy (D)) e N
* O(_z’g)' (32 N
v X 2 Bmndo(Dn) =0,

For constant amplitude solutions, the vector of modal inten-
sities is the steady state plus a perturbation that can be ex-
pressed as a decomposition into the AP and IP states. The
total intensity is a sum of the modal intensities. Recall that
U™ =0 for the AP modes so that

_ b
2Bpr+ ¢Btie” 1™ A sin(wr) Jo(Dy)

o

N
X X Bmnd1(Dy)e enM=0,
N n=1

4
lo= 2 In=UTI=bNP} 1+ —Rycogt+ ¢n(wt)] . where
m=1
(33) T T
Thus, for constant amplitudes the antiphase dynamics do not

affect the magnitude of the total intensifs]. There areN composite antiphase statBs,, any one of

which can be expressed as a sum of the others usin@Bq.
C. The O(w) problem By summing allN solvability conditions for theB,, and us-

The solution to the leading-order problem depends on th'éng the sum property we find that
slowly varying amplitude8,,(T), Ax(T), andC,(T). Their N
evolution equations are obtained from a solvability condition 2 J4(D,)eienM=0. (36)
on theO(w) problem. n=1
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This property can be used to elimindg (i.e., Dy and ¢y) 1 ¢
from the otherN—1 solvability conditions. Using the polar AT - . (43
coordinates and taking real and imaginary parts leads to |sin(Q7)[sinf[ wg 1 /2)7]

7- N Recall that¢ is related to the pumg®, andA is related to the
2R+ ERN+DA sin(wr)sin( E)Jl(DQ E Bmdo(D,) =0, feedback strengthy [see Eq.(17)]. For a fixed value of the
n=1 pump, Eq.(43) indicates the value of the feedback where the
(37) steady state becomes unstable to either AP or IP periodic
solutions. The IP bifurcation occurs before the AP bifurca-

N
2Rygyr+bA sin(m)cos( %)Jlm.)n; Brndo(D)=0,  fion (A1=Ax) provided

1
(38) Sir?| = 7| =sir? &T . (44)
2 2
) X T
2Sn7+ &Syt A sm(wr)sm( wLE)JO(D,)Jl(Dm)ZO, Because & w <1, the IP mode is the first bifurcation for
7<m independent ofw, . For 7 fixed and w<rmod 27
me[1N—-1], (399  <2m (instead ofr=m and fixed, Eq.(44) is a condition on

o and henceB. In the next section we will analyze the

_ T bifurcation to the IP state followed by an analysis of the
2Spemrt A sif(w7)co§ w5 |Jo(D1)I1(Dm) =0, bifurcation to AP states.
Lastly, we comment on the relationship of the zero solu-
me[1N-1]. (40) tion and its stability to the steady-state solution of E&s.

and(6). In the stability analysis of the zero solution we have
There are two important properties of the evolution equal€covered the linear stability results of the original problem
tions that greatly simplify further analysis. First, neittigg 1N the limit «>1. Specifically, Eq(43) for the bifurcation
or the S,, depend on the phases. Second, the equations f&°int is the largea limit of Eq. (10), while Eq. (44) that
the S, are decoupled from each other. That is, the evolutiorfetermines whether the bifurcation is inphase or antiphase,
of a particular CAP stateS,, depends on itself and the Matches Eq(13) exactly.
inphase staté, but not the othe5,. The evolution equa-
tions for all theS,, are equivalent as would be expected from B. IP state
symmetry. As a result of these two properties, the study of Assume that\;< A, so that the primary bifurcation is to
the amplitude equations reduces to just two equation&{or  he |p state. Lasers operating in the IP state have many dy-
and any particulaBy,, theN—2 otherS;, being equivalent. namical properties in common with single mode lasers. The
IP state is defined aB,=0, m=[1N-1], Ry=R,#0,

IV. ANALYSIS OF THE AMPLITUDE EQUATIONS Rnt=0, whereR, satisfies the bifurcation equation
A. Zero solution & R, A, D,
The zero solutiorRy=0, B,=0, m=[1,N] corresponds A= . /1 |\ 3,(D,) 2 3D (45)
to the steady-state solution of E¢S) and(6) and identically |sin(Q7)|sin 57

satisfies the amplitude equations. To test its linear stability
we consideiRy andB, small and determine the eigenvalues |n the Ilimit R,—0 we recover the bifurcation poini
of the linear system to be =A,. For Rj<1 the bifurcation equation can be approxi-
mated local to the bifurcation point d@2=8(A—A,)/A,

1 1
AN=— | E+2A Sin(QT)Sinz(—T) , (41 and is supercritical. In the limi\ — oo the amplitude of the
2 2 IP state takes multiple values defined ly(D,)=0. Thus,
the zeros of the,(D) are solutions to the bifurcation equa-
ANp=— 1 E+2A sin(Q T)sinz(&T) . n=[1N-1], tion for_large feedback. The IP state bifur_cates gt limit poi_nts
2 2 determined from the extrema of the bifurcation equation
(420 dA/dD,=0. They are found to occur fdD, satisfying
where the N—1) degeneracy of the eigenvalug results 2J,(D,)—D,Jo(D,)=0. (46)

from theN—1 equivalent CAP amplitude equations. We will
see that all of the linear stability properties of the steady stateinear stability analysis will confirm that these are saddle-

are preserved by the stability of the zero solution. node(SN) bifurcations. The node solutions are the origin of
If sin(Q27)>0 then the zero solution is stable. However, if the multiple-valued solutions defined By(D,)=0.
sin(Q7)<0 bifurcations occur ik ,=0 orAy=0. The former Linear stability is examined using,=u;,, Ry=R,

determines an N—1)-degenerate bifurcation of the AP +uy, and u,,uy<1l. This linear system has an
states ifA = A, while the latter determines a bifurcation to (N—1)-degenerate eigenvalug, and an isolated eigenvalue
the IP mode ifA=A,, where \n given by
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¢ 1 sirX([w,/2]7) D,Jo(D)) The e\_/olution of th(_a CAP phases all have the same fre-
Am=— > 1- > 1 3.0y |’ (47 guency since the amplitudes of the CAP states are equal. The
Siﬁz(—r) = only difference between the CAP states is due to the initial
2 condition of the phase.
1D,Jy(D
)\N=—§[ _E%' (48) - A .
1(D, om(T) 0,0+ ¢0me, @, 5 SiN(w7)SIiN(w 7).

The isolated eigenvalugy corresponds to the variablg, (52)
and describes the stability of the IP state with respect to an IP
perturbation. When =0 we obtain the condition for limit Finally, we wish to show how the bifurcation to the CAP
points of the multiple solutions and examining the sign ofstates relates to the original AP states. Using(26). and the
d\y/dD, proves that these are SN bifurcations. sum rules for the AP state vectors, E@5), and the CAP

The CAP states become unstable whgp=0. However, states, Eq(28), a particular AP state is given by
the bifurcation point of CAP states occurs on the unstable

branch of the IP solution. Hence, there are no stable an- 1 N
tiphase solutions that bifurcate from the IP state. That is, the AL(T)=—Spe" 19T > P, elemo, (53
IP state will not become unstable due to AP perturbations N =1
and we expect the inphase solution to be preserved. An out-
line of a proof of this result is given in Appendix D. where gy is determined by Eq(28). Thus, the AP bifurca-
tion will be to a pure AP stateX,#0, A,=0, n#p) if the
C. AP state initial conditions are such that the CAP states are in an an-

Assume that\ 4< A, so that the primary bifurcation is to tPhase configurationt¥’,. In the next section numerical
the AP (CAP) state. The AP state is defined Rg=0, S, analysis finds that a pure AP state is in fact observed when

=S,#0, S,1=0, whereS, satisfies the bifurcation equa- € Zero solution becomes unstable.

tion
¢ S A D D. Summary of analysis and AP-IP coexistence
A A A
A= 1| 3Dy =5 3,Da Here we focus on the case,<A, so that the first bifur-
|sin(Qq-)|sin( wL_T) neA neA cation is to the AP state. The same qualitative results are
2 valid whenA <A, and the IP state is the first bifurcation. In

(49 Fig. 1(a) we plot the bifurcation diagram of the AP state.

WhenA=A,, there is a supercritical bifurcation to the AP
state. AsA is increased, the initial branch of solutions as-
ymptotes to a valu®, such thatl; (D) =0. Our numerical
analysis in the next section describes the higher-order bifur-
cations and chaos that occur along this branch.

There exists SN bifurcations to AP states with different
amplitudes leading to multistability. These are predicted both
by the bifurcation equatiod9) and the linear stability re-
sults (50). Linear stability also predicts the possibility of a
combined AP and IP state solutidlabeled as “AP+ IP"),
where each state has nonzero amplitude. However, we can
prove that this bifurcation occurs on the unstable branch of
AP solutions and is unstable.

, (50 The bifurcation diagram in Fig.(4) describes the ampli-
tude of the AP state when the amplitude of the IP state is
zero. We now consider the properties of a nonzero IP state,

(51) with zero AP state, that bifurcates from the zero solution if
A=A,. The results are shown in Fig(. We still assume
that Ap<A, so that the AP state is the first bifurcation.

SN bifurcations that lead to multiple stability occur when Hence, the zero solution is unstable whér= A, and we

Am=0. The isolated eigenvaluey corresponds to the vari- expect the IP state to be unstable. To be more precise we

able uy and indicates that the IP state becomes unstablexamine the eigenvalues for the stability of the IP state given

when\y=0. However, as for the antiphase bifurcation from by Eqgs.(47) and(48). The eigenvalua, given by Eq.(48),

the inphase state bifurcation of the previous section, the inis O at the bifurcation point and is negative along the branch

phase bifurcation from the antiphase state occurs on the umf IP solutions. However, the eigenvalkg, is positive at the

stable branch of antiphase solutions and is unstable. Thé bifurcation point so that the IP state is unstable. To see
proof follows that presented in Appendix D. this take the limit aD,—0:

Analysis of the AP bifurcation equation yields similar char-
acteristics as the IP bifurcation equation. LocalAg the
bifurcation equation i©3=8(A — A A)/A and is supercriti-
cal. Multistability arises due to SN bifurcationgs con-
firmed by a stability analysiswhen 2J;(Da) —DaJo(Dp)
=0, and forA—o the amplitude of the AP states takes
multiple values defined by,(D,)=0.

Linear stability is examined usin@,,=Sx+U,, Ry
=uy, and ugy,uy<<1l. This linear system has an
(N—1)-degenerate eigenvalig, and an isolated eigenvalue
Ay given by

e 1 122500
m 2 J1(Da)

1 Si(7/2)  DpJo(Dp)
2 sif([w /2]7) J1(Da)

)\N:_g 1
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3 i ' T ' - developed in Appendix D. These points are labeled as “IP:
@ U—S” (unstable to stabjan Fig. 1(b). Thus, for certailA
gl ] there is a coexistence of AP states and IP states described by

Rao#0, R,=0 andR,=0, R,#0, respectively.

As A is increased, the zero state will bifurcate to an AP
periodic state. For high values @f the antiphase attractor
displays a crisis and becomes in phase, as described in the
next section. Upon decreasingthe system returns along the
inphase branch described above and shown in Fig). 1
However, the IP state loses stability when satisfies Eq.
(55) and will return to the AP state. In the next section we
show that the sequence of bifurcations predicted by the
asymptotic analysis is exhibited by the simulation of the
original system.

V. NUMERICAL RESULTS

3 . . . . , In this section, we check the validity of the analytical
(b) results of the previous sections. This is necessary because
o5 PU2S / these results have been derived under the double assumption
LP ~-s .

- a—o andT>1. Next, we analyze the dynamics of the full
.................................................................................................. and reduced models given by Eq46) and Egs.(18), re-
2r 1 spectively, beyond the first Hopf bifurcation.

To obtain our numerical results, we used a continuation
method and intensive numerical integration. For the former,
we used DDE-BIFTOOL, a MATLAB package dedicated to
the continuation of delay-differential equatiofis]. For the
latter, we used a variable step-size Runge-Ku(& ihtegra-
tion scheme with Hermite interpolatig29]. All the numeri-
cal experiments were carried out with=2000, P=1/2, and
7=1600, or equivalently é{&=2, ®~0.02236, 7=0Q
~35.777, as fixed parameters. For the full model, we chose
a=5. We focused on the three and four-mode cases.

In the previous sections, we show that the laser steady
_ _ _ _ i _ state is destabilized by a Hopf bifurcation leading to a peri-

FIG. 1. Analytical bifurcation diagrams illustrating the case g regime ifA=77a/w2 is increased beyond,, or A,.
Aa<A;. (@ Ra#0, R=0, (b) Ra=0 andR;#0. "AP + IP"  According to Egs(43) and (44), the emerging periodic re-
indicates the secondary bifurcation describedRay: 0 andR,#0 ime is inphase or antiphase, depending on the valye. of

that occurs on the saddle branch of solutions and is unstable. “IP: . - .
—S” indicates a bifurcation point where the nonzero IP state be- 0 check that prediction, we plot in Fig. 2 the Hopf bifurca-

comes stable. Fixed parametegs=2, 8=0.8, =0.022 36, and tion branches in the parameter spade ) for a three-mode
=0 =35.777 system. The full curves correspond to the full model, the

dotted curves to the reduced model, and the dashed curves to
the asymptotic predictions given by E@3). The curves

- _ é _ _ sir’(w, 7/2) characterized b\ constant correspond to Hopf bifurcations
lim\,= (1—r), =— . (54 . . L .
D,—0 2 Sir?(7/2) from which an inphase periodic solution emerges. The
other curves that fold back about=1 correspond to
BecauseA ,<A,, r>1 and\,>0. (N—1)-degenerate Hopf bifurcations from which an an-

The eigenvalue ,, does not remain positive. The quantity tiphase periodic solution emerges. As can be seen, the dotted
D,Jo(D))/J4(D,) is a decreasing function dd, so that the curves are almost indistinguishable from their corresponding
IP state becomes stable whBn increases to a value such full curves. This demonstrates that neglecting the terms of
that order 1k and 1k?2 in Egs.(16) has little effect on the loca-

tion of the primary Hopf bifurcation points.
DiJo(Dy) 2 Equations(43) and(44) that result from Eqs(18) by tak-
Ji(D) T (59) ing advantage of the large value fsuccessfully predict the
main features of the bifurcation curves, even if a quantitative
The change from an unstable to stable IP state odéumn  discrepancy can be noticed between the dashed curves and
the branch of solutions emanating froln=A,, and(ii) on  the corresponding full and dotted curves. This discrepancy
the upper branch of solutions emanating from the limitoriginates from the expansion of the delayed term in Eq.
points. This can be proved using arguments similar to thos€0). This expansion is justified only ib7<1. However, for
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F1G. 2. (8 Hopf bifurcation curves in the A, ) parameter FIG. 3. Forward(a and backwardb) bifurcation diagrams of

space folN=3 modes. The full lines are obtained numerically from the reduced model Eqél8) for N=3 modes. The local maxima of
the full model Eqs(16) with «=5. The dotted lines are obtained Y1(t) aré plotted versus the feedback parameterLabelsS, P,
numerically from the reduced model Eq48). The dashed lines QP andC design, respectively, steady, periodic, quasiperiodic, and
correspond to the analytical predictions of E43). (b) Enlarge-  chaotic regimes. The subscript(lespectively, A means inphase
ment of the box in(@). Fixed parametersi=2, w=0.022 36, and (respectively, antiphageOnly the stable regimes are plotted, but
r=0=735.777. for the dotted part of thé®, branch that is unstable. Fixed param-
eters:same as in Fig. 1
the values of parameters we use heve;=0.8. We have
checked that a better quantitative agreement was achievetbgenerated Hopf bifurcation located Aat-1 destabilizes
for w7~0.4. For larger values obr, Eg. (20) is not valid  the steady state in favor of an antiphase periodic refiee
anymore and the delayed terd,(t—7,T—w7) must be 4(a)]. This regime is stable up th~4.6. It is then destabi-
retained. This leads to amplitude equations that are stillized by a torus bifurcation from which an antiphase quasi-
delay-differential equations as in R¢R0]. periodic solution emergd$ig. 4(b)]. At A~5.6, the regime
For each set of curves, i.e., full, dotted, or dashed, Fig. becomes slightly chaoti€Fig. 4(c)]. The chaotic attractor
shows that the inphase curve has two common points witlevolves while sustaining antiphase oscillatiofriy. 4(d)]. It
each antiphase curve. At such a point, the inphase and ais destroyed at\ ~8.3 and is replaced by an inphase chaotic
tiphase Hopf bifurcations collide and the branches of peritegime[Fig. 4(e)].
odic solutions emerging from these bifurcations exchange IncreasingA further, the inphase chaos evolves into a full
stability. As magnified in Fig. @), a bifurcation collision developed chaos where inphase and antiphase features are
occurs atB=0 for the three sets of curves. This is expectedboth presen{Fig. 4(f)]. If A is decreased from there, the
since the modes of the system are totally decouple@ at regime returns to the inphase chaos followed by an inphase
=0 and the laser dynamics displays most likely a combinagquasiperiodic regim¢Fig. 4g)]. The inphase quasiperiodic
tion of inphase and antiphase oscillations. regime maintains until it vanishes at a torus bifurcation for
A typical bifurcation diagram is presented in Fig. 3. It is A~6. At that value, the regime becomes inphase periodic
obtained from the reduced model E¢$8) for N=3 modes [Fig. 4(h)]. Decreasing furtheA down to A~1.4, the peri-
and 8=0.8. The top(bottom) diagram is drawn by increas- odic regime is destabilized by a two-degenerated Hopf bifur-
ingly (decreasingly sweepingA. At each change of\, a cation, as predicted by the asymptotic analyjsiee Fig.
small amplitude noise is added to the current solution beford(b)]. At that bifurcation, the laser regime jumps onto the
letting the system relax towards its new regime. Withoutantiphase branch. As shown in Fig. 2, the branch of unstable
noise, the switch from a solution with equglto a solution inphase periodic regimgndicated by a dotted curve in Fig.
with unequaly; would be impossible with our numerical 3(b)] joins the branch of steady states/st=1.2.
integrator. Adding noise also helps the system to move away It is worthwhile to note thay,=y,=y; in the miscella-
from a branch that just changed from stable to unstable. neous inphase regimes described above. Moreover, the an-
Figure 3 also demonstrates bistability between thdiphase regimes are of the AD1 type, i.e., each mode displays
inphase and antiphase regimes. As shown in Fig. 2, a twdhe same behavior shifted from one anotf2§,27). The dy-
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FIG. 4. Temporal time traces of, y,, andy; displayed by the reduced model E¢$8) for N=3 modes. Value of\: (a) 3, (b) 5, (¢
5.6, (d) 8, (e) 9, (f) 18, (g) 7, and(h) 3. Regimes(a)—(d) and regimese)—(h) are localized on the antiphase and inphase branches,
respectively. See the main text for a thorough description. Other fixed paransaters:as in Fig. 1

namics of the full mod€eJEqgs.(16)] with «=5, is very simi- VI. DISCUSSION
lar to that of the reduced model. However, it displays two
regimes that are absent in the~ case. First, the antiphase

guasiperiodic regime locks into a periodic regime for 6.2

<A<6.7 [Fig. 5a)]. The end of the locking area corre-

The recent experiments that have been reported on the
observation of multimode regimes in ECSL are the motiva-
tions of this paper. They force the consideration of the mul-
timode extension of the Lang-KobayastiK) equations.

) . . . Pis extension is not unigue and therefore models must be
inphase solutions with unequa [Fig. 5(b)]. . scrutinized and confronted with experiments for validation.

For 5=0.9, we have chgcked that t'he. laser bifurcates The first problem that arises is the derivation of a multi-
from the stead_y state to an inphase periodic state, conforms, o 4a extension of the LK equations. The problem stems
ing to the prediction of Fig. 2. Moreover, we have found tWo f3y, the fact that the LK equations are phenomenological
other .|nphase brgnches that coexist with the main one. Thegquations. Fortunately, they are rate equations, implying a
domain of stability is 14.£A<18.0 and 15.2A<18.6, fajrly low level of sophistication in the physical description.
respectively. The system can thus display multistability beyye have derived Eqg5) and (6) by analogy with the mul-
tween three different inphase regimes. The two extraimode solid-state laser theory in the rate equation approxi-
branches present the same dynamical sequences as the maigtion.
inphase branch: from steady to periodic to quasiperiodic to Another difficulty is related to the experimental observa-
chaotic regime. Switching between the three branches as tion of antiphase regimes that are necessarily multimode. In
is varied has been observed. &+ 0.9 and 0<A <20, we  solid-state lasers with homogeneous broadening, multimode
found no stable antiphase regime. Only the chaotic regimeegimes are not possible in the ring configuration. They re-
presents a partial antiphase feature similar to that shown iquire population gratings or spatial holes burned in the popu-
Fig. 4(g). lation inversion profile. This effect is produced by the spatial

Finally, two other kinds of antiphase dynamics have beerinhomogeneity of the field intensitfand not the field ampli-
noticed for four-mode systems. The first one is illustrated intude, as is the case in a Fabry-Perot cavity. The physics of
Fig. 5(c). The four modes group into two clusters whgre  semiconductor lasers is much more complex and the spatial
=y, andys;=Yy, (or any other configuration obtained by per- grating is usually neglected on the grounds that diffusion
mutation of they;). This is an example of AD2 regime should wash it out. Though it is clear that diffusion will
[26,27. In the second case, displayed in Figd)5 the four  reduce the role of the gratings, the very existence of multi-
modes group also into two clusters, but the modes in one ahode regimes suggests that some residual effects remain and
the clusters display small differences. have a profound influence on the laser dynamics. Our ap-
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evolve according to solvability conditions determined at
higher order. The dynamics of the IP state are identical to the
single-mode laser and we reproduce the results of Alsing
et al. [15]. Namely, the bifurcation is supercritical, and for
large feedback, there are saddle-node bifurcations leading to
multistability.

Determining the solvability conditions for the AP states is
extremely difficult and can be done only approximately.
However, progress can be made by introducing the “com-
posite antiphase states” for which we can derive exact solv-
ability conditions. The bifurcation results are similar to the
IP state in that the AP bifurcation is supercritical and there
exists critical feedback strengths where multistability ap-
pears. The drawback of the CAP states is that we can no
longer differentiate between thé—1 AP states. We cannot
test the stability of one AP state with respect to another, and
so cannot say whether one, two, or -1 AP states will
bifurcation atA 5. However, our method has been very suc-
cessful in describing the competition between the IP and AP
states.

In previous studies of antiphase dynamics in solid-state

lasers, it has been found that the AP dynamics is periodic or
guasiperiodic, depending on the number of moblef25].
For the semiconductor laser with delay that is considered
here, the initial bifurcation is always to a periodic state. Qua-
siperiodic solutions occur for higher levels of feedback as
secondary bifurcations.

Of particular importance is the competition between the
IP and AP states. We can provide explicit conditions for
which will be the first bifurcation. Numerical analysis has
reduced model Eqg18): AD2-like periodic regime withy,=y, shown that for large fe_Ed_baCk' hi_gher-order b_ifgr(_:ations
andys~y,. 8=0.85 andA =7.0. Other fixed parametersame as ~ Cause a system that was initially an'qphase to exhibit mpha_se
in Fig. 2. dynamics after the crisis of the antiphase attractor. Surpris-

ingly, when the feedback is decreased, the system exhibited
. ) IP periodic solutions. Our bifurcation study has shown that
proach has been fully phenomenological, using the experigyen when the first bifurcation is AP, for example, there are
mental facts to motivate a multimode description of thecoexisting branches of IP solutions. Hence, the jump from
ECSL. However, there remains to derive, in a more fundathe |P to AP state for decreasing feedback, as seen in the
mental way, these multimode equations to understand whicCRumerical simulations, is well predicted by a definite bifur-
balance of linear and nonlinear processes dominates thetion point.
physics of these devices. _ ~ Finally, the analytical predictions have been confirmed by

In order to simplify somewhat the analysis of the multi- 3 humerical approach on both the full equati¢hé) and the
mode ECSL rate equatiort§) and(6), we have introduced a 41 approximate equation§l8). Using a continuation
reference model by assuming the mode independence @hethod for delay-differential equations, we have determined
three key parameter3). the location and type of bifurcation points. The numerical

A linear stability analysis of the steady-state solutions hagegyits were in excellent agreement with the analytical pre-
been performed both for general parameters and in thgjctions. The main observed regimes have also been de-
asymptotic limita>1, T>1. The latter is from the analysis scriped. The periodic, quasiperiodic, and lightly chaotic re-
of evolution equations derived to describe the blfurcatlnggimes exhibit always a clear inphase or antiphase signature.

periodic solutions. The results of the two analyses are conye have observed no local bifurcation allowing for the re-

due to a Hopf bifurcation depends on the delay and on the

cross-saturation parameter, and the cross-saturation param-

gter plays a critical role in detgrmmmg if Fhe first bifurcation ACKNOWLEDGMENTS
is to inphase or antiphase periodic solutions.

The periodic solutions that bifurcate from the steady state This research was supported by the Fonds National de la
are analyzed using the asymptotic limit=1. To leading Recherche Scientifigue and the Interuniversity Attraction
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FIG. 5. Temporal time traces of the. () N=3 modes, full
model Egs.(16): locking of the antiphase quasiperiodic reginae.
=5, B=0.8, andA=6.5. (b) N=3 modes, full model: inphase
quasiperiodic regime withy,#y,#y;, =5, =0.8, and A
=6.0. (c) N=4 modes, full model: AD2 periodic regime wityy
=y, andy;=Yy,, a=5, 8=0.75, andA =4.0. (d) N=4 modes,
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APPENDIX A: THE CHARACTERISTIC FUNCTIONS

The characteristic equatior(8) and (14) obtained from B EN: Rn o i de, dey )2
the linear stability analysis of Sec. Il depend on three func- Y~ ~ &, W2l lwg| wnt | —| et 5
tions,Dg, D, andDg, which can be written as "

_ _ . . dB
Dg=(1—B+NB)(AB+AB*)C+AAD, xexplifont+ dn(wt) ]} +c.c| —wES™ o,

D, =(1-B)(AB+AB*)C+AAD
L=(1=A) )c ' whered¢,/dt anddB/dt are O(w) constants. But because

DL=N(AB+AB*)C+AAD+2EX(1— B)(N-1)], w<1 we have

in terms of the functions N R,
yznzl — [V, explil wpt+ ¢y wt) T} +c.c]+O(w),
=1 02

(B2)

A=\+7ne 4 (1-e ), A=A(-A),

B=(1+ia)E,C=(1+2F)E,

5 where we have used the property that the derivatives of
D=\T+1+2E%(1—- 8+ BN). andB areO(w).

APPENDIX B: INTENSITIES
APPENDIX C: COMPUTING THE SOLVABILITY

The vectory=(y4, ...,yn) Can be written as CONDITION
1/ d2 d 1. Nonlinear contribution
—_ | a1, — <o 1. p_ -1, ) )
Y=7h dtZS q""“’fdts P-£0S U, We now present some of the computational details lead-

ing to the solvability conditions. The amplitudes in polar
where S is the cross-saturation matrix, whose elements argoordinates —are An(T)=Ry(T)exdign(T)] and Bn(T)
given by B.,n; hence Sis 1 on the diagonal ang in every = Sn(T)exdigy(T)]. The phase difference can then be writ-
off diagonal element. ten as
The cross-saturation matrix can be decomposed as O (= 7)— D oo(t) = — Q7+ D, Sin( 6,)+ D, Sin 6,

S=(1-p)lg+pUUT,
. . . . . . T . T
wherel 4 is the usual identity matrix. The advantage of this D=4 sw( wRE) Ry, Q,=4 sw( wLE) S,, (C1

expression foiSis that it is easy to comput®- ¥, because
the action ofUT on theW¥,, is known from Eq.(25). It also

allows us to obtain the inverse &as - -
0=\t—s|+tédn, O=|t— 5|+ on,
S_l_ 1 I bB UUT | ( 2 ¢N n ( 2) ®n
R A
) ) _ o so that
With this result we can determir@ - & and thery is given

by cog @ po(t—7) = Dpo(t)]
d? d

y:_(_+w§a) =cogQ7)cog D, sin(6,)+D,sin(6,)]

dt’ +sin(Q 7)sir D, sin(6,)+ D, sin(6,,)].
N

Rn(wt) .
X n; T [V, expli[ wnt+ ¢n(wt)]} +c.c] Use the identity[28] [Egs.(9.1.2 and(9.1.43
+Sl'B("’t)]* (B1) extiD sin(0)]= 3 J(D)ek,

where we have made the substitutibs wt. This expresses
the mode intensities explicitly in terms of the slowly varying whereJ, is the ordeik Bessel function of the first kind. Then
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COS{(I)nO(t_ T)_(Dno(t)]
=cos(QT)Re” > Jk(D,)exmka,)}
k=—o

>

K==

X

J(Dp)exp(ik6,) ]+sin(Q7-)Im[ oo

Expanding the products, we collect terms proportional to

constants, exjw, t and exgt. Extra care is necessary if reso-
nances between the two frequencies are to be considezed
Appendix C 2.

PHYSICAL REVIEW A63 033817

=(2,1), which occurs for8=3/(3+N). For the present
analysis we assume thatis tuned away from resonances.

APPENDIX D: STABILITY OF THE IP STATE

Outline of proof

The calculation of the nonlinear term is completed byThen

noting that

N
gl Bmn CO§ P o(t— 1) — @ o(1)]

corresponds to the cross-saturation ma®pperating on the
acting on the cos of the phase difference.

2. Resonances

Additional secular terms will be produced if there is a
resonance relationship between the modes iexp)( and
exp(t). There is not a primary resonaneg =1 for S#0.
However, higher-order resonancep/q)w, =1 (p#q, p
andq integers are possible if

p2_q2

.t _ c2
b= ey P (€2

We expect the strongest resonance to be whpi)(

Let
_ D|J0(D|) _S|nz[((1)|_/2)7']
o0 ]
_ 3 1 _ 1
Kn——z l—er , AN=—¢ 1—§G .

The AP bifurcation point and the SN bifurcation point are
determined byA,=0 and\ =0, respectively. The bifurca-
tion points occur when

2
AP: G=Ga=_, SN: G=G=2,

Because\ <A, we have from Eq(44) thatr<1 and so
G,=G, ; the value ofG at the AP bifurcation is greater than
or equal to the value o6 at the SN bifurcation. It can be
shown thatG is a decreasing function @, on any interval
whereG is continuous. Thud), at the SN bifurcation point

is greater than or equal to the value®f at the AP bifurca-
tion. Thus, the AP bifurcation occurs on the lower branch of
solutions emanating from the SN bifurcation point. Linear
stability indicates this is the unstable branch.
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