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Spontaneous emission from a quasi-two-dimensional Wigner crystal in a multilayer configuration
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Department of Physics, University of Rijeka, 51000 Rijeka, Croatia
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Spontaneous emission~SE! from electrons forming a quasi-two-dimensional Wigner crystal in a dielectric
cavity is discussed for a multilayer configuration. All layers in the system are considered as dielectrics with
real dielectric constants. Within such a model, we treat SE completely from the quantum-mechanical~QM!
point of view, i.e., we use the quantized electromagnetic field in dielectrics and calculate its interaction with
electrons in the Wigner crystal. The full QM approach enables us to go beyond the standard dipole approxi-
mation and take into account, e.g., the vibration of electrons around their regular positions inside the crystal
and the change of electron positions during the deexcitation process. We analyze only the perpendicular
transitions, which involve quantum states determined mainly by the image potential. Since this potential is
relatively weak for a typical configuration of a Wigner lattice, the corresponding electromagnetic lifetimet is
estimated to be very large (t&1023 s ). We derive a simple expression for the angular distribution of the SE
radiation and analyze its possible deviation from the dipole radiation (sin2 u ) spectrum. For a typical Wigner
crystal formed above a liquid He layer we have found no significant corrections to the spectrum obtained in the
dipole approximation. We also consider the case of a Wigner crystal in a~micro!cavity between two metallic
plates, discuss the effect of the cavity selection rules on the SE rate, and examine the corresponding discrete SE
spectrum.

DOI: 10.1103/PhysRevA.63.033815 PACS number~s!: 42.50.Lc, 73.21.2b, 78.90.1t
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I. INTRODUCTION

Spontaneous emission~SE!, which describes the decay o
an excited electronic state due to the electron-photon in
action, is obviously a typical quantum-mechanical~QM!
problem. The full QM treatment includes the quantization
an electronic system~e.g., discrete electronic states in mo
ecules or atoms! as well as the quantization of the photo
field in the surrounding media. In real systems this may b
very difficult task so that one usually describes the exci
molecule by a point dipole and calculates its interaction w
the electromagnetic field, determined from the Maxw
equations. Such calculations, performed with the help of
Fermi golden rule, then lead to the SE decay rate in
dipole approximation. Interestingly enough, it follows fro
the fluctuation-dissipation theorem that the same result
be derived within classical electrodynamics~CE! theory@1#.

In this paper we wish to discuss the SE from a Wign
crystal. This crystal is formed by electrons at low electr
densities (n&1012 cm22) and at very low temperatures (T
&2 K). Theoretically predicted more than 60 years ago
Wigner @2# and experimentally verified more than 20 yea
ago by Greems and Adams@3#, this crystal has not yet bee
completely investigated, mainly because of experimental
ficulties in preparing such a peculiar electronic configurati
In the usual theoretical model, which tries to simulate
experimental setup@3,4#, electrons are deposited on a diele
tric layer ~liquid He! with a metallic substrate. Such ele
trons are delocalized in the perpendicular direction, th
forming a quasi-two-dimensional~2D! crystal along the di-
electric surface. The parallel@5,6# as well as the perpendicu
lar excitations@7,8# of a Wigner crystal have already bee
investigated and here we wish to analyze the electromagn
SE decay rate@1,9# from the first excited perpendicular stat
Note that the metallic substrate below the crystal acts o
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cally as a mirror, so we shall also discuss the case o
Wigner crystal between two metallic plates that behave a
planar optical cavity@10#.

The Wigner crystal is obviouslynot a typical electronic
system, so the calculation of the SE spectrum within
point-dipole approximation may be inadequate. This a
proximation holds when the electron deexcitation is localiz
within a single molecule, but it becomes questionable in
Wigner crystal in which the mean position of the electron
the perpendicular excited state is significantly different fro
that in the ground state@8#. In order to take into accoun
delocalization effects, which also include the oscillations
Wigner electrons around their regular lattice positions,
shall extend the QM approach beyond the standard dip
theory. The extension requires the quantization of the e
tromagnetic field, which could be performed in a standa
way only for dielectrics with a real dielectric constant@11#.
However, this is a good assumption in our model because
He layer~which supports the Wigner crystal! has no optical
transitions within the Wigner SE spectrum. Moreover, it a
represents a potential barrier (;1 eV) that efficiently pre-
vents Wigner electrons from penetrating the metallic s
strate. Besides the photon field, we shall also quantize
lateral vibrations of Wigner electrons and describe them
phonons. This will enable us to discuss a possible temp
ture dependence of the SE decay rate.

In order to draw some general conclusions regarding
SE spectrum, in this paper we shall first develop a the
essentially appropriate for any electron system confined
planar multilayer geometry. The specific results for the p
pendicular SE decay rate from the quasi-2D Wigner crys
are then obtained with the help of one-particle ‘‘hydrogeni
wave functions@12#. In that sense, this paper is organized
follows. In Sec. II we define the Hamiltonian of our syste
and represent it in a quantized form appropriate for the
©2001 The American Physical Society15-1
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termination of the SE decay rate. In Sec. III we calculate t
rate within both CE and QM theory and, in the latter ca
we particularly analyze the extension to the standard dip
approximation. In Sec. IV we give the general results
some typical planar geometries, and in Sec. V we disc
them for two possible configurations of a Wigner lattic
Section VI contains the conclusions.

II. MODEL HAMILTONIAN

We analyze a system of quasi-2D electrons, which form
Wigner crystal. The electrons are well localized in the p
pendicular~z! direction and are embedded into a dielect
layer which is surrounded by other planar dielectric lay
~Fig. 1!. All layers are assumed translationally invaria
along the parallel (r) direction and their dielectric propertie
are described by a dielectric constante(z) which is taken as
real.

The electrons of a Wigner crystal interact with a phot
field and here we briefly describe the Hamiltonian approp
ate for such an interaction. We start by writing the Maxw
equations for the electric fieldE and the magnetic induction
B in the medium described by a dielectric constante(r )

¹@e~r !E~r ,t !#54pr~r ,t !, ¹3E~r ,t !1
1

c

]B~r ,t !

]t
50,

¹B~r ,t !50, ¹3B~r ,t !5
4p

c
j ~r ,t !1

1

c

]@e~r !E~r ,t !#

]t
.

~1!

The N electrons of our system, at positionsr i with mass
m, electric chargee, and velocityvi , form the electric charge
densityr(r ,t)5( ied(r2r i) and the electric current densit
j (r ,t)5( ievid(r2r i), and obey the Lorentz force equatio

m
dvi

dt
5eEi1

e

c
vi3Bi . ~2!

FIG. 1. Geometry of the model. Wigner electrons~black dots!
are placed in a dielectricj 51.
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Here we use the notationEi5E(r i ,t),Bi5B(r i ,t) . We in-
troduce the vectorA(r ,t) and the scalarF(r ,t) potential in
the standard way

B~r ,t !5¹3A~r ,t !, E~r ,t !52¹F~r ,t !2
1

c

]A~r ,t !

]t
.

With the help of the generalized ‘‘transverse gauge’’

¹@e~r !A~r ,t !#50, ~3!

we can derive constitutive equations~1! and ~2! from the
Lagrangian@11#

L5
1

2 (
i

mv i
21E dr

8p
@e~r !E22B2#

1
1

cE drJA 2E drrF. ~4!

From Eq. ~4! we find the generalized coordinates and t
conjugate momenta,

H A;PA52
1

4pc
eEJ , $F;PF50%,

H r i ;pi5mvi1
e

c
A i J , ~5!

which enable us to write the HamiltonianH of our system in
a familiar form,

H5HA1He1HeA . ~6!

Here He describes the kinetic energy of electrons in t
Wigner crystal together with their Coulomb interaction in t
presence of dielectric media,

He5(
i

pi
2

2m
1

1

2 (
i

eF i , ~7!

HA represents the photon field energy in a medium with
dielectric constante(r ),

HA5E dr
1

8p F e~r !

c2 S ]A

]t D 2

1~¹3A!2G , ~8!

and the interaction between the photon and the crystal fie
given by

HeA52(
i

1

2m

e

c
@piA i1A ipi #1(

i

1

2m

e2

c2
A iA i . ~9!

In our model, the dielectric constant is not changed insid
dielectric layer. Thus, for all Wigner electrons atr i it follows
from Eq.~3! that ¹ iA i50, which gives

@pi ,A i #52 i\¹ iA i50. ~10!
5-2
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A. Quantization of the crystal field

The HamiltonianHe @Eq. ~7!# of the quasi-2D electron
system, which polarizes the surrounding dielectric laye
takes the standard form@6#

He5(
i

~Ki
i1Ki

'!1
1

2 (
i

(
j Þ i

Wee~ri j ,zi ,zj !

1(
i

Wim~zi !, ~11!

whereKi
i and Ki

' denote a parallel and a perpendicular
netic energy of an electron (i ), respectively,Wee denotes the
interaction between electrons in the presence of a diele
media at the parallel distanceri j 5(ri2rj ) and at the per-
pendicular positions (zi ,zj ), andWim describes the interac
tion of each electron with dielectric layers~image potential!.

The assumed localization in the perpendicular direct
enables us to factorize the electron wave functionCe into
the lateralv(r) and the perpendicularu(z) component@6#,

Ce~r,z!5v~r!u~z!. ~12!

In the 2D Wigner crystal, the excited perpendicular sta
correspond to a temperature above 6 K@8#, while the crystal
exists typically below 2 K. Therefore, we can assume tha
electron, possibly excited in the first (l 51) perpendicular
state, is surrounded by other electrons in the ground (l 50)
perpendicular state. Within the Hartree approximation,
can write

u~z!5)
i 51

N1

u0~zi !)
i 51

N2

u1~zi !, N11N25N,N1@N2

~13!

whereul(zi) are the one-particle variational wave function
Let us divide the termWee ~which contains both the par

allel and the perpendicular coordinates! into the staticW0
ee

and the dynamicalWh
ee part @6#. The static part describes th

average interaction between electrons at their regular la
sitesri

0 ,

W0
ee~z!5

1

2 (
i

(
j Þ i

Wee~ri j
0 ,zi ,zj !,

and the rest of theWee interaction is addressed to the d
namical part. This term is obviously not sensitive to the p
ticular wave functions of a few possibly excited electrons,
we can calculate it assuming that all electrons are in th
ground perpendicular states,

Wh
ee~Dr!5

1

2 (
i

(
j Þ i

^u0~zi !u0~zj !u@Wee~ri j ,zi ,zj !

2Wee~ri j
0 ,zi ,zj !#uu0~zj !u0~zi !&.

Now we can divideHe into thez andr dependent part,He
5He(z)1He(r), where
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He~z!5(
i

@Ki
'1Wim~zi !#1W0

ee~z! ~14!

andHe(r)5( iKi
i1Wh

ee(Dr) . Clearly,u(z) andv(r) in Eq.
~12! are now determined as the eigenfunctions ofHe(z) and
He(r), respectively. In the harmonic approximation,He(r)
describes the phonons of a 2D Wigner crystal@5,6#,

He~r!5(
m

(
k

\vmkS bmk
† bmk1

1

2D , ~15!

wherebmk
† (bmk) are standard creation~annihilation! phonon

operators of the crystal mode with the polarizationm
5(L,T), the wave vectork, and the frequencyvmk . Here
(L,T) stands for the longitudinal and transverse mode,
spectively, andk belongs to the first Brillouin zone.

B. Quantization of the photon field

Let us now quantize the photon field. We must find t
eigenmodesfK(r ) appropriate for our system@11#,

“3“3fK~r !5
e~r !

c2
vK

2 fK~r !, ~16!

which obey the ‘‘transversality’’ conditions

“@e~r !fK~r !#50, “3fK~r !5continuous . ~17!

The indexK denotes all linearly independent solutions of t
eigenequation~16! with eigenfrequenciesvK . The Hermic-
ity of Eq. ~16! leads to the orthonormality condition

E dre~r !fK* ~r !fK8~r !5dK,K8 . ~18!

The vector potential is then expanded in terms of the crea
aK

† and annihilationaK operators for photons as

A~r ,t !5c(
K

sK@aK~ t !fK~r !1aK
† ~ t !fK* ~r !#. ~19!

The quantization requirement

@Aa~r ,t !,Pb
A~r 8,t !#5 i\da,bd~r2r 8!

leads to the standard commutation relations

@aK~ t !,aK8
†

~ t !#5dK,K8 , @aK~ t !,aK8~ t !#50,

with sK5Ah/vK. The HamiltonianHA ~8! of the photon
field now takes the second-quantized form

HA5(
K

\vKS aK
† aK1

1

2D . ~20!

III. SPONTANEOUS-EMISSION DECAY RATE

The spontaneous-emission~SE! rate is defined as the in
verse lifetime of an excited electronic state which deca
5-3
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Z. LENAC PHYSICAL REVIEW A 63 033815
exponentially owing to the interaction with the photon fie
As already pointed out, although a typical quantu
mechanical problem, this process can also be treated w
the framework of classical electrodynamics. In order to g
a clear comparison between the results of the two
proaches, we first briefly describe the classical calculation
the SE rate.

A. Classical electrodynamics approach

In classical electrodynamics~CE!, an excited molecule
with the transition energy\v is described by an oscillating
point dipoled(t)5d0 exp(2ivt) at the molecule positionr0.
Then, from Maxwell equations one determines the dip
electric fieldEd(r ,t)5Ed(r )exp(2ivt) and calculates the SE
rate as the power lost by the dipole in supporting its o
field, normalized to the corresponding photon energy,

gCE5
1

\v

v

2
Im@Ed~r0!•d0* #. ~21!

The field of a dipoleEd(r ) in simple layered systems@13#
as well as for a general multilayer configuration@14# can be
obtained from the corresponding 2D Fourier transfo
Ed(k,z) by integration over the parallel wave vectork
5(kx ,ky). Considering a perpendicular transition (d0

5d0ẑ), this leads to the following result for the SE rate
the molecule located atz0 in a j th layer @13,14#:

g j
CE5g j `

CEG j
CE , g j `

CE5Ae j

v3

3\c3
ud0u2,

G j
CE5

3

2
ReE

0

`S dkk

kjb j
D k2

kj
2

~11r 2 j
p e2ib j z0

2

!~11r 1 j
p e2ib j z0

1

!

~12r 2 j
p r 1 j

p e2ib j dj !
,

~22!

whereg j `
CE is the SE rate in the infinite medium~j! with a

dielectric constante j . Here kj5Ae jv/c and b j5Akj
22k2

are the total and perpendicular photon wave vectors in
j th layer, respectively,dj is the layer thickness,z0

25z0 and
z0

15(dj2z0) are the distances of the dipole from the laye
boundaries, whiler 2 j

p 5r j , . . . ,n
p and r 1 j

p 5r j , . . . ,0
p are the

standard Fresnel reflection coefficients of the surround
stacks of layers~see Fig. 1!. Note that onlyp-polarized
modes are involved in perpendicular transitions. In the fi
approximation, we can adopt this simple approach to ca
late the SE rate of a weakly excited Wigner crystal by
placing the crystal with a single dipole at the positionr0
where the assumed~local! excitation takes place.

B. Quantum-mechanical approach

To calculate the quantum-mechanical~QM! SE rate, we
assume the electron crystal to be initially in the excited s
Ce

1 with the energyE1, and the photon field to be in th
vacuum stateu0 f&. Owing to the interaction with the field
the crystal undergoes the transition to the ground stateCe

0
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with the energyE0, while, simultaneously, a photonK with
the energy\vK is created. The Fermi Golden Rule gives f
the SE rate,

g5
2p

\2 (
K

z^Ce
10 f uHeAu1KCe

0& z2d~v102vK!, ~23!

where\v105(E12E0) is the excitation energy of the crys
tal.

We assume that the crystal wave functions are given
Eqs. ~12! and ~13! and that only one electron is in the firs
excited perpendicular stateu1(zi). This gives for the matrix
element

^Ce
10 f uHeAu1KCe

0&5
e

m
A h

vK
TK ,

where, from Eqs.~9!, ~10!, and~19!, the transition amplitude
TK is given by

TK5^v~r!u1~zi !ufK~r i !•pi uu0~zi !v~r!&. ~24!

Note that in this model the perpendicular transitions are co
pletely decoupled from the parallel electron lattice exci
tions ~phonons!, so that in Eq.~24! the same ‘‘parallel’’
wave functionv(r) appears in both theCe

0 andCe
1 quantum

states.

Dipole approximation

In the case of SE from a molecule~or an atom! the posi-
tion of the transition electron is localized inside a molecu
so that the dipole approximation~DA! usually applies. If the
changeDz of the electron position during the transition
much smaller than the wavelengthl of the emitted photon,
we can make the same approximation for the Wigner cry
as well. Thus, assumingr0 as the average electron positio
we havefK(r i).fK(r0), so that

TK
dip. i

m

e
v10fK~r0!•d10

p , ~25!

where

d10
p 52 i

e

mv10
^Ce

1upi uCe
0& ~26!

is effectively the dipole moment of the crystal. Clearly, ifCe
1

andCe
0 are the exact eigenfunctions of the HamiltonianHe ,

then, using the identitypi5 i (m/\)@He ,r i #, this dipole mo-
ment reduces to the standard transition dipole moment:

d105e^Ce
1ur i uCe

0&. ~27!

However, since in this work the exact wave functions are
known andul(z) are to be determined using the variation
method, we retaind10

p rather thand10 as the relevant transi
tion dipole matrix element.

As in the case of SE from molecules, the SE rate from
Wigner crystal in the dipole approximation is given by th
classical result~22!, provided that we setv5v10 and let
d0→2d10

p . We can easily check this on the example of SE
5-4
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an infinite medium with the dielectric constante5e j . From
Eqs. ~16! and ~18!, the appropriate vector-potential eige
functions are (K5 k̃n)

fk̃n~r !5
1

AVe j

ei k̃•rek̃n ,

where V is the normalization volume,k̃ is the three-
dimensional photon wave vector, andek̃n are the two or-
thogonal polarization unit vectors perpendicular tok̃. With
these eigenfunctions in Eq.~25!, from Eqs.~23! and~25! we
have

g j `
dip5

~2p!2

\Ve j
(
k̃n

v10
2

v k̃n

uek̃n•d10
p u2d~v102v k̃n!.

Converting the sum overk̃ into the integral in the standar
way and using the dispersion relationv k̃n5 k̃c/Ae j to
change to frequency as the integration variable, we find

g j `
dip5Ae j

4v10
3

3\c3
ud10

p u2, ~28!

which is the familiar QM result for the SE rate in a lossle
medium.

In deriving this result we have neglected the differen
between the macroscopic fieldE and the local fieldEloc
actually acting on electrons. In consideration of molecu
~atomic! SE, the local field is usually macroscopically calc
lated assuming a small real@11# or virtual @15# cavity around
the excited molecule, whereas most microscopic consi
ations of a dielectric medium agree with the virtual cav
result for the local field@16–18#. The effect of the local field
on the SE rate in a nonabsorbing isotropic medium can t
formally be taken into account~in both the CE and QM
approaches! by rescaling the corresponding dipole mome
d→Ld @16#. This givesuLu2 as the local-field correction fac
tor to the SE rate, whereL53e j /(2e j11) in the real cavity
@11# and L5(e j12)/3 in thevirtual cavity @15–18# model
for the local field. It is expected that the same local-fie
correction factor should apply to the SE rates of molecule
an inhomogeneous system, supposing they are not too c
to an interface. As concerns SE from a Wigner crystal, i
natural to consider systems with Wigner electrons immer
in vacuum, as in our calculations performed in Sec. V. Th
electrons are well separated from the supporting He laye~a
dielectric constant which is also close to one!, so that we
shall neglect local-field effects in further considerations.

Beyond the dipole approximation

Let us now discuss the general case in which the ave
position of a spontaneously emitting electron differs ma
edly in the ground and first excited state, so that the dip
approximation could be unsatisfactory.

Owing to the planar geometry of the system we can
general write
03381
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fK~r !5
1

AA
eik•rfkb

ns~z!, ~29!

whereA is the normalization area and the quantum numbeK
comprises the 2D parallel wave vectork, the perpendicular
wave vectorb in a suitably chosen layer, the polarizatio
indexn5(p,s) ~see Appendix A!, and the indexs denoting
the type of the mode. We shall be concerned mainly with
radiation ~propagating! modes with the dispersion relation

vK5vkb5
c

Ae
~k21b2!1/2, ~30!

so from now on we shall omit the indexs. The dispersion
relation ~30! defines the perpendicular wave vectorb l in
each dielectric layerl with a dielectric constante l : b l(vK)
5@e lvK

2 /c22k2#1/2.
Inserting Eq.~29! into Eq. ~24! and decompositing the

momentum operator according topi5pi
'1pi

i , we haveTK

5TK
'1TK

i , where

TK
'5

1

AA
^u1~zi !ufkb

n ~zi !•pi
'uu0~zi !&^v~r!ueik•riuv~r!&,

TK
i 5

1

AA
^u1~zi !ufkb

n ~zi !uu0~zi !&•^v~r!ueik•ripi
iuv~r!&.

In the dipole approximation (r i→r0), the transition ampli-
tudeTK

' remains finite while both terms inTK
i tend to zero.

Therefore, we assume thatTK
' generally dominatesTK

i . In-
troducing the parallel displacements from the equilibriu
positions of the lattice electronsui5(ri2ri

0), we obtain

TK'TK
'5

1

AA
^u1~zi !u f kb

p'~zi !pi
'uu0~zi !&e

ik•ri
0
e2(1/2)D(k),

~31!

where

D~k!5^v~r!u~k•ui !
2uv~r!&

defines the standard Debye-Waller factor. Here it descri
the suppression of the ‘‘perpendicular’’ spontaneous em
sion due to the parallel oscillations of electrons in t
Wigner crystal. Using the standard expansion of the elect
displacementui in terms of the phonon operators (bmk ,bmk

† ),
we have@5,19#

D~k!5(
m

(
k

S \

2Nmvmk
D k2ucosFm~k,k!u2~2nmk11!,

~32!

whereFm(k,k) is the angle between the wave vectork and
the polarization vector of the (m,k) mode, and nmk

5@exp(\vmk /kT)21#21 gives the average number of ex
cited phonons at temperatureT.
5-5
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Note that, since only the perpendicular componentf kb
p' of

the eigenfunctionfkb
n appears inTK

' , only the p-polarized
photon modes are involved in the SE process in this appr
mation. The eigenfunctionsf kb

p'(z) in a j th layer are of the
general form

f kb
p'~z!5Fpk~ f j

pe2 ib j z1gj
peib j z!, ~33!

where the normalization factorFp(k,b) and the functions
f j

p(k,b) andgj
p(k,b) are determined from the boundary~17!

and normalization~18! conditions~see Appendix A!. Since
only p-polarized modes are relevant, we can use in Eq.~23!

(
K

5(
b

(
k

5(
b

A

~2p!2 E0

2p

dfE
0

`

dkk.

This gives for the QM SE rate of the Wigner crystal locat
in the j th layer

g j5g j `
dipG j ,

G j5
3

2
pe j (

b
E

0

`

dk
k3

kj
3

uFpu2v10~b!e2D(k)d~v102vkb!,

~34!

whereg j `
dip is given by Eq.~28!, with the perpendicular di-

pole moment~26!

d10
p 52 i

e

m

1

v10
^u1~z!upzuu0~z!&. ~35!

We have introduced the dimensionless factor

v10~b j !5U ^u1~z!u~ f j
pe2 ib j z1gj

peib j z!
]

]z
uu0~z!&

^u1~z!u
]

]z
uu0~z!&

U 2

,

~36!

which, through the electron wave functionsul(z), implicitly
takes into account the perpendicular delocalization of
electron during the (1→0) transition.

The SE rate in the dipole approximationg j
dip is obtained

by letting z→z0 and ri→ri
0 in Eq. ~34!. The z→z0 limit

transformsv10(b j ) into

vz0~b j !5u f j
pe2 ib j z1gj

peib j zu2, ~37!

which is independent of the electron wave functionsul(z).
The limit ri→ri

0 gives D(k)→0, so the influence of the
electron delocalization on the SE rate is completely
glected. Notice that in our model one can still allow t
dipole atz0 to oscillate in the parallel direction. In this cas
D(k) does not vanish, and Eq.~34! describes the SE rat
from the strictly 2D Wigner crystal, configured in the plan
z5z0.
03381
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IV. RESULTS FOR DIFFERENT GEOMETRIES

Further examination of the~normalized! SE rate~34! is
possible only for a given geometry, from which one has
determine the plane-wave factors (Fp, f j

p ,gj
p). Let us discuss

in more detail three simple but qualitatively different case

A. Two semi-infinite dielectrics

We assume that two dielectrics, divided by thez50
plane, occupy the whole space (d1→`,d2→`) and the
Wigner crystal lies in the upper layer (j 51) ~Fig. 1!. The
boundary conditions allow two types of modes~Appendix A!
that contribute to the SE rate.

1. Type-I modes†kÏk1ÄAe1„v10 Õc…‡

Type-I modes are defined forb1
2.0, so we shall trans-

form the summation overb values and accordingly thed
function in Eq.~34! as

(
b

5(
b1

5
L

2pE db1,

d~v102vb1k!5
e1

b1

v10

c2
d„b12b1~v10!…. ~38!

With the appropriate plane-wave functions@Eqs. ~A4! and
~A5!#, the contribution from the type-I modes to the norma
ized SE rate becomes

G1
I 5

3

4E0

k1S dkk

k1b1
D k2

k1
2 v10

I ~b1!e2D(k). ~39!

2. Type-II modes†kÏk2ÄAe2„v10 Õc…‡

Type-II modes are defined forb2
2.0. In that case, instead

of transformations~38!, it is more appropriate to use th
transformations

(
b

5(
b2

5
L

2pE db2,

d~v102vb2k!5
e2

b2

v10

c2
d†b22b2~v10!‡. ~40!

The corresponding plane-wave functions@Eqs. ~A6! and
~A7!# now define the contribution from the type-II modes
the normalized SE rate,

G1
II 5

3

4 E0

k2S dkk

k2b2
D k2

k1k2
v10

II ~b1!e2D(k). ~41!

The total normalized SE rate~34! contains the contribu-
tion from both types of modes:

G15G1
I 1G1

II . ~42!

The calculation ofv10
I (b1) or v10

II (b1) from Eq. ~36! re-
quires the knowledge of perpendicular wave functions. Ho
5-6
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ever, in the dipole approximation~DA!, the corresponding
matrix elementsvz0 ~37! do not depend uponul(z), so we
obtain

vz0
I ~b1!5~11ur 12

p u2!12Re~r 12
p e2ib1z0!,

vz0
II ~b1!5~e2 /e1!2u12r 12

p u2ue2ib1z0u.

The corresponding CE result follows from Eq.~22!:

G1
CE5

3

2
ReE

0

kM S dkk

k1b1
D k2

k1
2 ~11r 12

p e2ib1z0!,

where the upper integration limit iskM5max(k1,k2). This is
exactly the same result~42! as derived in the DA, although i
is rather difficult to prove it analytically.

If the whole space is occupied by the same dielec
(e25e1), we obtain the obvious resultG1

dip5G1
CE51. No-

tice that thee2→e1 limit has no physical sense in the QM
case ifv10(b1) are determined by the wave functionsul(z),
because in our model these wave functions should vanish
z,0.

B. Two dielectrics on a metallic plate

We discuss a system in which an infinite dielectric (d1
→`) at z.0 is separated by a dielectric plate at2d2,z
,0 from an infinite metallic substrate atz,2d2 ~Fig. 1!. A
metallic plate is described by an infinite dielectric const
so that the boundary conditions allow only type-I mod
~Appendix A!. This means that in the calculation of the no
malized SE rate~34! we can use the transformations~38!.

Let us assume that a Wigner crystal lies in the up
dielectric layer (j 51). Inserting the appropriate plane-wav
functions@Eqs.~A8! and ~A9!# into Eq. ~34! we find

G15
3

4 E0

k1S dkk

k1b1
D k2

k1
2 v10~b1!e2D(k). ~43!

In the DA, we obtain

vz0~b!52@11Re~g1
pe2ib1z0!#.

Exactly the same result follows~even analytically! from
Eq. ~22! in the corresponding CE approach.

From Eq.~43! one can easily derive the angular distrib
tion of SE radiation. Lettingk5k1 sinu we can write the
space angle~averaged over the polar anglef) as dV1
5 sinudu5(dkk/k1b1). Therefore the SE radiation emitted
the upper half-space in theu direction ~Fig. 1! is given as

G1~u![dG1 /dV15
3

4
sin2 uv10~b1!e2D(k). ~44!

Hereb15k1 cosu, while b2 remains real only fork,k2. For
e2,e1, it becomes purely imaginary in the regionk2,k
,k1 and for thosek values the radiation is totally reflecte
from the dielectric~2!.
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In thed2→0 limit, the present geometry describes a sem
infinite dielectric~with a Wigner crystal! at z.0 on a semi-
infinite metal atz,0, and this limit could not be obtained i
the preceding section. In thed2→` limit, one obtains two
semi-infinite dielectric layers. Formally, one can s
exp(2ib2d2)→0, which givesg1

p→r 12
p and Eq.~43! leads to

Eq. ~39!, i.e., it reproduces the contribution only from type
modes because it still takes into account the influence of
metallic plate in the infinity which suppresses the type
modes. To obtain the contributions from both modes as
the preceding section~i.e., without an influence of a metallic
plate!, one has to be rather careful and make a clear~al-
though inconsistent! replacement: exp(2ib2d2)→0,
uexp(2ib2d2)u2→1. This means that, in calculatingv10(b1) or
vz0(b1) in order to determine the SE rate~43!, one has to
take f 1

p51, g1
p→r 12

p , ug1
pu2→1.

A qualitatively different situation is obtained if one puts
Wigner crystal in the lower dielectric (j 52), i.e., at2d2
,z,0. As before, one can take the appropriate plane-w
functions@Eqs.~A8! and~A10! from Appendix A# and insert
them into Eq.~34! to calculate the SE rate. However, a
obvious problem arises if one tries to use the ‘‘hydrogeni
wave functions, appropriate for a semi-infinite space, so a
describe a Wigner crystal embedded in a dielectric layer w
a finite thickness. This problem will be discussed in mo
detail in the next section.

C. Two dielectrics between two metallic plates

Here we discuss a model of a ‘‘dielectric cavity,’’ i
which two dielectric layers are bounded by two semi-infin
metallic plates. The dielectrics withe5e1 and e5e2 are
confined at 0,z,d1 and2d2,z,0, respectively, and me
tallic plates withe5` occupy the rest of the space~Fig. 1!.
Since there is no electromagnetic field in that space,
boundary conditions allow neither type-I nor type-II mode
Instead, from Appendix A it follows that only discrete value
of parameterb are allowed, which we enumerate by inde
(n):

(
b

5(
b(n)

5(
n

, d~v102vb
j
(n)k!5

e j

k

v10

c2
d~k2k(n)!.

~45!

The allowed wave vectors are defined for both valuesj
51,2) in the same way:k(n)5Akj

22b j
(n)2. The solutions ex-

ist if either b1
2>0 or b2

2>0, i.e., because of the perfec
screening of the metallic plates there are no true surf
modes with wave vectors that satisfyb1

2,0,b2
2,0.

To be specific, let us assume that the crystal lies in
upper dielectric (j 51). Using the transformations~45!, the
normalized SE rate~34! becomes

G15
3

2
pe1k1(

n

k(n)2

k1
2

uFpu2v10
(n)e2D(k(n)). ~46!
5-7
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Here v10
(n) is determined by Eq.~36! with b15b1

(n) and the
normalization factorFp is given in Appendix A with k
5k(n).

In the DA, we setv10
(n)→vz0

(n) , andvz0
(n)5vz0(b1

(n)) is cal-
culated from Eq.~37!,

vz0
(n)5ue2 ib1

(n)z01e2 ib1
(n)(2d12z0)u2.

In the CE approach, which should be equivalent to
DA result, one has obvious numerical difficulties in calcul
ing G1

CE from Eq. ~22!. Namely, exactly atk5k(n) the de-
nominator in the integral vanishes. The integral can be
culated by using mathematical expansion methods, wh
finally lead to Eq.~46! with v10

(n)→vz0
(n) .

Quantum cavity

The situation becomes much more transparent in thed2
→0 limit, in which case a single dielectric (j 51) is placed
between two metallic plates, thus forming a typical quant
cavity. The eigenvalues~A13!, b1

(n)5np/d1 ,n50,1,2. . . ,
are obviously chosen to satisfy the boundary conditions
the electromagnetic field, which must vanish atz50 andz
5d1. With theseb1

(n) values, the normalization factorF0
p

takes a particular simple form~A14! and the normalized SE
rate ~46! becomes

G15
3

4 S p

k1d1
D (

n50

n0 F12n2S p

k1d1
D 2Gcnv10

(n)e2D(k(n)),

~47!

wherec051/2 (cn51,n51,2,3, . . . ) and thehighest sum-
mation index follows fromb1

(n)2.0: n05@k1p/d1#. Particu-
larly, in the DA we find

vz0
(n)52$11 cos@2np~12z0 /d1!#%,

which, inserted into Eq.~47! and withD(k)50, leads to the
well-known result for the SE rate of a dipole in an ide
quantum cavity with perfect mirrors@10#.

V. DISCUSSION

In order to calculate the SE rate from a Wigner crys
using the results derived in the preceding section, we
must determine the appropriate one-electron wave funct
ul(z). Since the image potentialWim(z) represents the domi
nant interaction in the HamiltonianHe(z) @Eq. ~14!#, we take
as the variational functionsul(z) the ‘‘hydrogenic’’ wave
functions which are theexact wave functions for the 1/z
potential. Taking the origin at the bottom of the~semi–
infinite! layer in which the electron crystal resides, we ha
for z.0 @8#

u0~z!5Aaze2z/2, u1~z!5AaBzS 12
b

2
z De2hz/2,

~48!

andul(z)50 for z,0. Herez52az is the normalized per-
pendicular coordinate. From the orthonormality requirem
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dzul* ~z!um~z!5d lm , $ l ,m%5$1,2%, ~49!

we obtain the coefficients

b~h!5
~h11!

3
, B2~h!5

3h5

~h22h11!
.

The variational parameters (a,h) are determined by mini-
mizing the energy of the Wigner lattice in the Hartree a
proximation@6,8#.

With the above wave functions we can easily calculate
relevant matrix elements,

^u0uzuu0&5
1

4a
I 3

D~1!,

^u1uzuu1&5
B

4a F I 3
D~h!2bI4

D~h!1
b2

4
I 5

D~h!G , ~50!

^u1uzuu0&5
B

4a F I 3
D~s0!2

b

2
I 4

D~s0!G ,
^u1u

]

]z
uu0&5aBSD~s0!, ~51!

^u1u~ f 1
pe2 ib1z1g1

peib1z!
]

]z
uu0&

5aB@ f 1
pSD~s1!1g1

pSD~s2!#. ~52!

Here we have introduced the dimensionless parameteD
52ad1, whered1 denotes the finite thickness of a dielectr
layer ~with a Wigner crystal, Fig. 1!. Obviously, the use of
the wave functionsul(z) @Eq. ~48!# is not appropriate for
finite d1 values because they do not vanish forz.d1. How-
ever, if we assume that the Wigner electrons are locali
above thez50 plane, in the first approximation we can st
use these wave functions if the contribution to the mat
elements, appearing inv10(b1) @Eq. ~36!# from the region
z.d1, is negligible. This will be the case ifd1 is much larger
than the delocalization parameters oful(z), that is, if

d1*10/a and d1*10/ah. ~53!

The other dimensionless parameters in Eqs.~50!–~52! are

s05
1

2
~11h!, s65

1

2 S 11h6 i
b1

a D , ~54!

while SD(s) denotes the sum of three integrals,

SD~s!5I 1
D~s!2

~11b!

2
I 2

D~s!1
b

4
I 3

D~s!,

I n
D~s!5E

0

D

dxxne2sx. ~55!
5-8
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Note that, in thed1→` limit, I n
D(s) simplifies to I n

`(s)
5n!/sn11.

We first consider the usual system geometry, here term
two dielectrics on a metallic plate, in which the electrons are
located above a dielectric layer on a metallic substrate.
SE rateg1 for a Wigner crystal in the vacuum (e151) sepa-
rated by a thin liquid helium (e251.0572) layer from a me-
tallic (e35`) substrate is shown by full curves in Fig.
Obviously, with increasingr 0 or d2, the interaction between
Wigner electrons and their interaction with the image pot
tial becomes weaker. As a consequence, Wigner elect
become more delocalized, which leads to the smaller va
of the transition-matrix element and, finally, to the smal
SE rates. For the typical values of a Wigner latticer 0
51000 Å and d25100 Å, we find a50.0417 Å21, h
50.765, andv1050.0105eV. This gives a very large elec
tromagnetic lifetime of the first excited perpendicular sta
t51/g1'0.7131023 s, as well as a significant change in th
average electron position during the transition@see Eq.~50!#:
Dz5^u1uzuu1&2^u0uzuu0&'53 Å. Note, however, that the
wavelength of the emitted photonl52pc/v10'1.183106

Å is still much larger than the average electron displacem
Dz.

Since Dz/l!1 for the typical values ofr 0 and d2, the
dipole approximation holds perfectly well and one cann
distinguish betweeng1 andg1

dip in Fig. 2. Ultimately, this is
due to the low-electron density in the Wigner crystal lead
to a weak electron interaction and, accordingly, to the l
transition frequencies. If one increases the electron den
the emitted photon wavelength decreases, but the elec
delocalization also decreases simultaneously@6,8#. We find
al.100 typically at all electron densities implyings6.s0
in Eq. ~52!, i.e., the validity of the dipole approximation.

The dotted curves in Fig. 2 representg1
dip defined, how-

FIG. 2. The SE rateg1 as a function of the lattice parameterr 0,
shown for different thicknessesd2 of the He substrate. The dotte
lines represent the dipole approximation.
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ever, with the~perpendicular! dipole moment

d105e^u1~z!uzuu0~z!& ~56!

in place ofd10
p ~26!. As already stressed,d10

p andd10 coincide
if ul(z) are the exact eigenfunctions of the Hamiltonian
He(z) @Eq. ~14!#. For thevariational wave functions, how-
ever, these two dipole moments differ@see Eq.~51!# and
have opposite behavior with respect to the delocalization
rametera, i.e., d10

p ;a while d10;1/a. This is also illus-
trated in Fig. 3, where we have plotted the dependence
these transition dipole moments ona. As seen in this figure,
the crossing pointad , defined byd10

p (ad)5d10(ad), does
not necessarily coincide with the optimal variational val
a0. Since the SE rate is proportional to the square of
dipole moment and@d10

p /d10#
2;a4, even a small deviation

of a0 from ad leads to a significant difference between t
SE ratesg1

dip for the two definitions of the dipole moment, a
can be observed in Fig. 2. The same discrepancy was poi
out in Ref.@20#, but here we have given a rigorous explan
tion.

The angular distributionof the ~normalized! SE rate as
given by Eq.~44! is shown in Fig.~4! for several values of
the parametera. It is determined by the standard dipole r
diation factor sin2 u modified by the factorv10(b1) @Eq.
~36!#, which involves the matrix elements given by Eq.~52!.
The corrections due to the electron delocalization, which
ter explicitly into the termss6 @Eq. ~54!#, become important
for b1 /a*1, i.e., in the case when the electron delocaliz
tion (;1/a) becomes comparable with the~perpendicular!
wavelength (;1/b1) of the emitted photon. We see from th

FIG. 3. The transition dipole momentsd10
p andd10 as functions

of a delocalization parametera. The dipole moments are given i
units ea0 (a0 is the Bohr radius!. The dotted lines denote th
‘‘energy-optimized’’a0 and the ‘‘dipole-optimized’’ad values, for
r 05300 Å, d25100 Å.
5-9
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figure that fora*100/l ~which is the case of SE from
Wigner crystal!, the spectrum approaches that obtained in
dipole approximation (a→`), while for lower values ofa it
markedly differs from the standard sin2 u form and becomes
much sharper around theu590° angle.

The temperature dependenceof the SE rate is given by
the Debye-Waller factorD(k). From Eq. ~32! follows
D(k);k2 and for a reciprocal-lattice vectorg0 one finds
D(g0);1 at low temperatures (T&2 K! @5,19# at which the
Wigner crystal exists. Since we obtaink1 /g0!1 for the
highest allowed wave vector (k5k1), we find D(k)!1 for
all k<k1 wave vectors. This means that we can neglect
influence of parallel oscillations of Wigner electrons, as w
as temperature effects, on the perpendicular SE rate.

As a by-product, we can easily calculate the electrom
netic SE rate froma single electron above a metallic surfac
@21#. The electron is trapped by the image potentialWim(z)
52e2/4z, so the wave functionsul(z) are nowexact. Let-
ting d2→0 and r 0→`, we find a51/4a0 ,h50.5,\v
50.638eV,l51944Å,Dz59.5Å , so the dipole approxima
tion obviously holds. From Eqs.~35! and ~56! we find the
dipole momentd10

p 5d1052.235ea0, and the electromagneti
SE rate~34! is g52.7553106 s21.

It is well known that much larger SE rates for an electr
above a metallic surface are derived when other deca
mechanisms are taken into account. Besides the electrom
netic coupling, the image states couple with the metallic s
strate through the penetration of the image state wave fu
tionsul(z) into the metal and through the evanescent tails
bulk and surface states outside the metal@21#. However, in
the case of a Wigner crystal on a dielectric layer, this la
~liquid He! provides a potential barrier which separat

FIG. 4. The angular distribution of the normalized SE ra
G1(u), shown for different delocalization parametersa. The chosen
values arer 05300 Å, d25100 Å, l53.93105 Å. Note that the
influence of a delocalization parameterh ~here,h50.73) on the SE
rate is of much less importance.
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Wigner electrons from electrons in a metallic substrate,
we expect that other mechanisms are not of great importa

We have also considered the geometry, here termedtwo
dielectric layers between two metallic plates, in which the
Wigner crystal is embedded at 0,z,d1 in the dielectric
~vacuum! layer of finite thickness, and the spacez.d1 being
occupied by another metal~Fig. 1!, i.e., effectively in a pla-
nar cavity formed by two metallic~perfect! mirrors. The
electron localization, besides the image potential, can be
supported by the external pressing field, in which case
metallic plates obviously represent electrodes in the us
experimental configuration@3,4#. As discussed in Ref.@8#, the
influence of the pressing field on the delocalization para
etersa,h is not significant. This means that we can still u
the wave functionsul(z) ~48! in the present situation, pro
viding that the electrons are localized above thez50 plane
in such a way as to satisfy Eqs.~53!.

The normalized rateG1(u (n)) @Eq. ~46!# for SE at a dis-
crete angleu (n)5arcsin(k(n)/k1) is shown in Fig. 5. For the
chosen system parametersd25100 Å andr 05300 Å, we
find the delocalization parametersa50.0778 Å21 and h
50.732. Therefore, our wave functions give correct resu
for d1*100 Å. At the wavelength of the emitted photonl
53.8903105 Å (v1050.03187eV), according to the dis-
persion relation~A11!, for d15105Å there exists only one
mode nearu (1)576.5°. Owing to SE into only one mode, w
obtain an enhanced rate, namely, at such upper layer th
nesses the system acts as a microcavity. We note that for
mode b1

2,0 and b2
2.0 and, accordingly, it represents

guided mode of the He layer. This mode was nonexisten
the previously considered cased15` owing to the
asymptotic conditions atz→`. The number of higher-order
‘‘ordinary’’ ( b1

2.0 andb2
2.0) modes depends on the lay

thicknesses and, sincee2.e151, it can be roughly esti-

FIG. 5. The angular distribution of the normalized SE ra
G1(u (n)). The arrows indicate modes withb1

2,0. The dotted line
represents the continuum function~44! G1(u) in arbitrary units.
5-10
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mated from the mode condition for a planar cavity@Eq.
~A13! with d1→(d11d2)],

cos~u (n)!.
n

2

l

~d11d2!
,

wheren is an integer. This gives the critical valued1
c'l/2

51.9453105 Å for the appearance of the next mode, whi
is practically the exact result. Accordingly, ford152.0
3105 Å, in Fig. 5 we have SE into two modes with th
smaller rates. With increasingd1, the number of modes rap
idly increases and atd15107 Å the normalized SE rate
G1(u (n)) becomes almost a continuous function.

The total SE rateg1 @Eq. ~34!#, summed over all modes
is shown in Fig. 6 as a function of dielectric layer thic
nesses. In the region (d1 ,d2)&105 Å the only allowed mode
is the above-mentioned guided mode and the relatively la
g1 is due to the SE into this mode. Owing to the gradu
disappearance of this mode with increasingd1, the SE rate
decreases significantly up to the upper layer thicknessd1
'105 Å. With further increase ofd1, SE into the second
and higher-order~ordinary! modes becomes allowed andg1
saturates to a value close to its asymptotic (d1→`) limit.
For d2.105 Å, SE into higher-order modes is possible ev
for smalld1 values and the total SE rate becomes close to
‘‘continuum’’ ( d2→`) limit, which is not very sensitive to
the particulard1 value.

VI. CONCLUSION

We have analyzed the SE spectrum from a quasi
Wigner crystal in order to give more detailed insight into th
intriguing system as well as to suggest a possible spec
scopic tool for the Wigner crystal detection. Knowing tha

FIG. 6. The SE rateg1 as a function of the thicknessd1 of the
vacuum layer, shown for different thicknessesd2 of the He sub-
strate. Note that both axes are given in a logarithmic scale.
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Wigner electron could significantly change its positions d
ing the deexcitation process, we have treated this prob
very carefully. The calculations of the SE spectrum are p
formed within~i! the CE theory,~ii ! standard dipole approxi
mation ~DA!, and~iii ! QM theory beyond the DA. The firs
two approaches, although from quite different points
view, lead to the same result. The corresponding SE sp
trum, normalized to the SE rate in an infinite medium, sho
an angular distribution typical of the point dipole, and th
distribution is not influenced by the shape of the wave fu
tions of the deexcited electron. However, these wave fu
tions explicitly enter into the definition of the SE spectrum
the third approach. Particularly, in the case when the perp
dicular delocalizationDz of the deexcited electron is compa
rable with the emitted photon wavelengthl, we have found
a much narrower angular distribution than in the DA. Ho
ever, for a Wigner crystal, we have typically obtainedl
@Dz, so the angular distribution remains close to the D
result.

The calculations of the total SE rates~ in the DA and
above the DA! can lead to different values as a conseque
of the different definitions of the transition dipole momen
i.e.,d10

p @Eq. ~35!# andd10 @Eq. ~56!#. While those two dipole
moments would take the same value for theexactelectron
wave functions, they are usually not known and here
have used the standard variational wave functionsul(z) @Eq.
~48!#, optimized to give the best possible energies of
perpendicular Wigner states. We have demonstrated how
electron delocalization, defined by those wave functions,
lead to different values ford10

p andd10 and therefore to dif-
ferent values for the corresponding total SE ratesg. How-
ever, the normalized SE ratesG do not depend upon the
dipole moment, so the quantitative difference between th
has no physical consequences on the understanding of th
spectrum of the Wigner crystal. In fact, it can eventua
serve as a warning for calculations of the total SE rate
similar systems.

We have also analyzed the influence of the lateral de
calization of Wigner electrons on the~perpendicular! SE
rate. The lateral electron oscillations have been describe
the harmonic approximation as phonons, and the contr
tion to the SE spectrum has been given by the Debye-Wa
factor. It turns out that at low temperatures, at which t
Wigner lattice can exist only, the Debye-Waller factor h
almost no influence on the perpendicular SE rate. In t
sense, the possible corrections to the harmonic approxi
tion @22# or the effects of the electron-ripplon coupling@19#
are obviously not important.

We have found that the typical values of the SE rate g
long electromagnetic lifetimes (&1023 s! of the first excited
perpendicular state of the Wigner crystal. This is due to
weak coupling of Wigner electrons to the surrounding me
and, accordingly, relatively small transition frequencies. O
ing to the corresponding large photon wavelengths, poss
nondipole behavior of the SE spectrum does not show
We have also discussed characteristic properties of the
spectrum from a Wigner crystal in a microcavity formed
two metallic plates. Such a configuration is experimenta
realized, e.g., when using an electric field to additiona
5-11
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press Wigner electrons towards a liquid-He layer on one
the plates. In this case, Wigner electrons interact with a sm
number of the cavity modes, and spontaneously emitted p
tons can therefore be detected only at discrete anglesu (n)

determined by the cavity selection rules, i.e., one has
match the effective cavity thicknessd cosu(n) with the wave-
length of the SE photons. For a typical density of a Wign
crystal (r 0;103 Å! this ‘‘microcavity’’ SE spectrum is ob-
served up tod&106 Å as even at these cavity thicknesses
anglesu (n) remain clearly separated. Since the perpendicu
excitation energies of a 2D electron gas and a 2D elec
crystal are significantly different for electron densitiesn
*108 cm22 (r 0&104 Å! @8#, the corresponding emissio
channels for the SE radiationu (n) are also different. There
fore the determination of the allowed channels at a cho
electron density could serve as an optical detector for
existence of the Wigner crystal.
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APPENDIX A: EIGENFUNCTIONS FOR A MULTILAYER

The eigenfunctionsfK(r ) of a photon field are defined b
Eqs.~16!–~18!. In the case of a multilayer with a translatio
invariance along the parallel direction, one has to determ
only thez-dependent functionfkb(z) ~29!. Herek is a two-
dimensional~parallel! wave vector, which together with
~perpendicular! wave vectorb, satisfies the wave equatio
~30!: b21k25vK

2 c2/e, inside a dielectric layer with a di
electric constante.

The eigenfunctionfkb(z) can be naturally divided into the
perpendicular (') and parallel (i) components: fkb(z)
5 f kb

p'(z) ẑ1 f kb
pi (z) k̂1 f kb

si (z)n̂. It contains two polarizations

the n5p polarization with the component into the (k̂,ẑ)
plane and then5s polarization with the component in th
n̂5 k̂3 ẑ direction.

Inside a dielectric layer, Eqs.~16!, ~17!, and~29! lead to
(]/]z) f kb

p'(z)1 ik f kb
pi (z)50 and (b21]2/]z2)fkb(z)50, so

fkb(z)5fkb
p (z)1fkb

s (z) takes a simple form for both polar
izations,

fkb
p ~z!5Fp@~b k̂1kẑ! f p~k!e2 ibz1~2b k̂1kẑ!gp~k!eibz#,

~A1!

fkb
s ~z!5Fs~ n̂!@ f s~k!e2 ibz1gs~k!eibz#.

The boundary conditions~17! require the continuity of

e~ f pe2 ibz1gpeibz!, b~ f pe2 ibz2gpeibz!,

b~ f se2 ibz6gseibz! ~A2!

along the perpendicular direction, while the orthonorma
equation~18!, together with Eq.~29!, requires for each po
larization
03381
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to

r

e
r
n

n
e

e

E
2`

1`

dze~z!fkb
n* ~z!fkb8

n
~z!5db,b85

2p

L
d~b2b8!.

~A3!

The last relation holds only for a continuous parameterb,
with L as a normalization length. Notice that the parameteb
can be either real or imaginary, and we should always
quire Reb>0, Imb>0.

From Eqs.~A2! and ~A3! one can easily determine th
coefficientsFn,gj

n , f j
n for each medium~j! in a multilayer.

The corresponding Fresnel reflectivities between the two
electric plates (i , j ) are defined as@13,14#

r i j
p 5

b ie j2e ib j

b ie j1e ib j
, r i j

s 5
b i2b j

b i1b j
.

Here we need the coefficients only forp-polarized modes.

1. Two semi-infinite dielectrics

Two semi-infinite dielectrics withe5e1 and e5e2 oc-
cupy an upper and a lower half-space, respectively~Fig. 1!.
From Eqs.~A2! and~A3! we find two types of modes: type-
modes with the incoming wave exp(2ib1z) from the upper
half-space and type-II modes with the incoming wa
exp(ib2z) from the lower half-space.

Type-I modes(b1
2.0):

uFpu25
1

k1
2

1

e1L
, k15Ae1

vK

c
, ~A4!

j 51~z.0!: f 1
p51, g1

p5r 12
p , ~A5!

j 52~z,0!: f 2
p5~e1 /e2!~11r 12

p !, g2
p50.

Type-II modes(b2
2.0):

uFpu25
1

k2
2

1

e2L
, k25Ae2

vK

c
, ~A6!

j 51~z.0!: f 1
p50, g1

p5~e2 /e1!~11r 21
p !, ~A7!

j 52~z,0!: f 2
p5r 21

p , g2
p51.

2. Two dielectrics on a metallic plate

A semi-infinite dielectric withe5e1 lies above ad2-thick
dielectric layer withe5e2, which is supported by a semi
infinite metallic plate withe5` ~Fig. 1!. Only type-I modes
are possible because the incoming wave solution exists
for the upper half-space.

Type-I modes(b1
2.0):

uFpu25
1

k1
2

1

e1L
, ~A8!

j 51~z.0!: f 1
p51, g1

p5S r 12
p 1 exp~2ib2d2!

11r 12
p exp~2ib2d2!

D ,

~A9!
5-12
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j 52~2d2,z,0!: f 2
p5

e1

e2
S 11r 12

p

11r 12
p exp~2ib2d2!

D ,

g2
p5 exp~2ib2d2! f 2

p . ~A10!

3. Two dielectrics between two metallic plates

A d1-thick dielectric layer with e5e1 lies above a
d2-thick dielectric layer withe5e2. Both dielectrics are
bounded by two semi-infinite metallic plates withe5`, so
there are no solutions with incoming waves from either
upper or a lower half-space~Fig. 1!. Therefore, we obtain the
same form for the coefficientsf j

p ,gj
p as in the case of two

dielectrics on a semi-infinite plate@Eqs.~A9! and~A10!#, but
the additional boundary condition atz5d1 now requires

g1
p~1,2![S r 12

p 1 exp~2ib2d2!

11r 12
p exp~2ib2d2!

D 5e22ib1d1. ~A11!

This equation has solutions only for discreteb j
(n) values (n

50,1,2,. . . ). Wedistinguish the following three cases.
~i! b1

2>0: In this case we findug1
p(1,2)u51 for anyb2, so

we can setg1
p(1,2)exp(2ib1d1)5 exp@iF(b)# and the solution

of Eq. ~A11! is given implicitly as F(b (n))52pn, n
50,1,2, . . . .

~ii ! b1
2,0,b2

2>0: In this case we can transform E
~A11! into g1

p(2,1)5e22ib2d2. Now we obtainug1
p(2,1)u51
. B

,

.

03381
n

for anyb1, so we can find the solutions forb (n) in the same
way as ini ).

~iii ! b1
2,0,b2

2,0: In this case we find ug1
pu,1,

uexp(22ibjdj)u.1, so Eq.~A11! has no solution.
Yet, we have to determine the normalization constantFp.

From Eq.~A3! it follows

uFpu25@e1e2Imb1d1hp~b1!1u f 2
pu2e2e22Imb2d2hp~b2!#21,

~A12!

hp~b j !5~ ub j u21k2!
sinh~2 Imb jdj !

Im b j

2~ ub j u22k2!
sin~2 Reb jdj !

Reb j
.

A particularly simple result follows if only one dielectric
e.g., the dielectricj 51, is present. Lettingd250, we obtain
g1

p51 and the solutions of Eq.~A11! are @9#

F~b (n)!52b1
(n)d152pn, n50,1,2,. . . ,@k1p/d1#

~A13!

with the normalization coefficient

uFpu25
1

2e1k1
2d1

H 1

2
,n50; 1,n.0J . ~A14!
.
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@8# Z. Lenac and M. Sˇunjić, Phys. Rev. B48, 14 496~1993!.
@9# G. Barton, Proc. R. Soc. London, Ser. A320, 251 ~1970!; F.

De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R
Loudon, Phys. Rev. A43, 2480~1991!.

@10# P. W. Milonni and P. L. Knight, Opt. Commun.9, 119~1973!;
H. Rigneault and S. Monneret, Phys. Rev. A54, 2356~1996!.
@11# R. J. Glauber and M. Lewenstein, Phys. Rev. A43, 467

~1991!.
@12# N. M. Fujiki and D. J. W. Geldart, Phys. Rev. B46, 9634

~1992!.
@13# G. W. Ford and W. H. Weber, Phys. Rep.113, 195 ~1984!.
@14# M. S. Tomasˇ, Phys. Rev. A51, 2545~1995!.
@15# S. M. Barnett, B. Huttner, and R. Loudon, Phys. Rev. Lett.68,

3698 ~1992!; S. M. Barnett, B. Huttner, R. Loudon, and R
Matloob, J. Phys. B29, 3763~1996!.

@16# J. Knoester and S. Mukamel, Phys. Rev. A40, 7065~1989!.
@17# S. T. Ho and P. Kumar, J. Opt. Soc. Am. B10, 1620~1993!.
@18# G. Juzeliunas, Chem. Phys.198, 145~1995!; Phys. Rev. A55,

R4015~1997!.
@19# D.S. Fisher, B. I. Halperin, and P. M. Platzman, Phys. R

Lett. 42, 798 ~1979!; D. Marty and J. Poitrenaud, J. Phy
~Paris! 45, 1243~1984!.

@20# Z. Lenac and M. S. Tomasˇ, Surf. Sci.454À456, 1085~2000!.
@21# P. M. Echenique, J. M. Pitarke, E. V. Chulkov, and A. Rub

Chem. Phys.251, 1 ~2000!.
@22# V. Tozzini and M. P. Tosi, J. Phys.: Condens. Matter8, 8121

~1996!.
5-13


