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Spontaneous emission from a quasi-two-dimensional Wigner crystal in a multilayer configuration
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Spontaneous emissidBE) from electrons forming a quasi-two-dimensional Wigner crystal in a dielectric
cavity is discussed for a multilayer configuration. All layers in the system are considered as dielectrics with
real dielectric constants. Within such a model, we treat SE completely from the quantum-mect@ngal
point of view, i.e., we use the quantized electromagnetic field in dielectrics and calculate its interaction with
electrons in the Wigner crystal. The full QM approach enables us to go beyond the standard dipole approxi-
mation and take into account, e.g., the vibration of electrons around their regular positions inside the crystal
and the change of electron positions during the deexcitation process. We analyze only the perpendicular
transitions, which involve quantum states determined mainly by the image potential. Since this potential is
relatively weak for a typical configuration of a Wigner lattice, the corresponding electromagnetic lifetsme
estimated to be very large€10 % s). We derive a simple expression for the angular distribution of the SE
radiation and analyze its possible deviation from the dipole radiatioR ¢3ispectrum. For a typical Wigner
crystal formed above a liquid He layer we have found no significant corrections to the spectrum obtained in the
dipole approximation. We also consider the case of a Wigner crystalnmao)cavity between two metallic
plates, discuss the effect of the cavity selection rules on the SE rate, and examine the corresponding discrete SE
spectrum.
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[. INTRODUCTION cally as a mirror, so we shall also discuss the case of a
Wigner crystal between two metallic plates that behave as a

Spontaneous emissidBE), which describes the decay of planar optical cavity10].
an excited electronic state due to the electron-photon inter- The Wigner crystal is obviouslyot a typical electronic
action, is obviously a typical quantum-mechani¢&M) system, so the calculation of the SE spectrum within the
problem. The full QM treatment includes the quantization ofpoint-dipole approximation may be inadequate. This ap-
an electronic systerte.g., discrete electronic states in mol- proximation holds when the electron deexcitation is localized
ecules or atomsas well as the quantization of the photon within a single molecule, but it becomes questionable in a
field in the surrounding media. In real systems this may be &Vigner crystal in which the mean position of the electron in
very difficult task so that one usually describes the excitedhe perpendicular excited state is significantly different from
molecule by a point dipole and calculates its interaction withthat in the ground statg8]. In order to take into account
the electromagnetic field, determined from the Maxwelldelocalization effects, which also include the oscillations of
equations. Such calculations, performed with the help of th&Vigner electrons around their regular lattice positions, we
Fermi golden rule, then lead to the SE decay rate in thehall extend the QM approach beyond the standard dipole
dipole approximation. Interestingly enough, it follows from theory. The extension requires the quantization of the elec-
the fluctuation-dissipation theorem that the same result camomagnetic field, which could be performed in a standard
be derived within classical electrodynami&E) theory[1].  way only for dielectrics with a real dielectric constdafl].

In this paper we wish to discuss the SE from a WignerHowever, this is a good assumption in our model because the
crystal. This crystal is formed by electrons at low electronHe layer(which supports the Wigner crysjdias no optical
densities (=102 cm™?) and at very low temperatured (  transitions within the Wigner SE spectrum. Moreover, it also
=<2 K). Theoretically predicted more than 60 years ago byrepresents a potential barrier-( eV) that efficiently pre-
Wigner [2] and experimentally verified more than 20 yearsvents Wigner electrons from penetrating the metallic sub-
ago by Greems and Adam3], this crystal has not yet been strate. Besides the photon field, we shall also quantize the
completely investigated, mainly because of experimental diffateral vibrations of Wigner electrons and describe them as
ficulties in preparing such a peculiar electronic configurationphonons. This will enable us to discuss a possible tempera-
In the usual theoretical model, which tries to simulate theture dependence of the SE decay rate.
experimental setufB,4], electrons are deposited on a dielec- In order to draw some general conclusions regarding the
tric layer (liquid He) with a metallic substrate. Such elec- SE spectrum, in this paper we shall first develop a theory
trons are delocalized in the perpendicular direction, thugssentially appropriate for any electron system confined in a
forming a quasi-two-dimension&2D) crystal along the di- planar multilayer geometry. The specific results for the per-
electric surface. The parallgb,6] as well as the perpendicu- pendicular SE decay rate from the quasi-2D Wigner crystal
lar excitations[7,8] of a Wigner crystal have already been are then obtained with the help of one-particle “hydrogenic”
investigated and here we wish to analyze the electromagnetigave functiong12]. In that sense, this paper is organized as
SE decay ratgl,9] from the first excited perpendicular state. follows. In Sec. Il we define the Hamiltonian of our system
Note that the metallic substrate below the crystal acts optiand represent it in a quantized form appropriate for the de-
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Here we use the notatiof, =E(r;,t),B;=B(r;,t) . We in-
€ z troduce the vectoA(r,t) and the scala(r,t) potential in
the standard way
€ B(r,t)=VXA(r,t), E(r,t)=—-Vd(r,t L ALY
1 e d1 (r1 )_ (rv )1 (rv )_ (rv ) E ot
¢ o $ ¢ ¢ 1’ o | With the help of the generalized “transverse gauge”
Zz J=
0
V[e(r)A(r,t)]=0, ()]
0
82 d2 we can derive constitutive equatiois) and (2) from the
Lagrangian11]
€ 1 5 f dr
n _Z , el 2_R2
L=3 ZI mof+ | g—[e(r)E*~B?]
FIG. 1. Geometry of the model. Wigner electraiidack dots 1
are placed in a dielectrip=1. +Ej drJA —J drpd. (4)

rate within both CE and QM theory and, in the latter case¢opjugate momenta,

we particularly analyze the extension to the standard dipole

approximation. In Sec. IV we give the general results for 1

some typical planar geometries, and in Sec. V we discuss 1A:PA= - HGE]’ {®;PP=0},
them for two possible configurations of a Wigner lattice.
Section VI contains the conclusions. e
[ri;pi:mvi'l'EAi]’ )
Il. MODEL HAMILTONIAN

We analyze a system of quasi-2D electrons, which form é/vhlch_enable us to write the Hamiltonihof our system in
a familiar form,

Wigner crystal. The electrons are well localized in the per-
pendicular(z) direction and are embedded into a dielectric
layer which is surrounded by other planar dielectric layers
(Fig. 1. All layers are assumed translationally invariant
along the parallelg) direction and their dielectric properties
are described by a dielectric constair) which is taken as

H=HA+He+HeA- (6)

Here H. describes the kinetic energy of electrons in the
Wigner crystal together with their Coulomb interaction in the
presence of dielectric media,

real.
The electrons of a Wigner crystal interact with a photon p2 1
field and here we briefly describe the Hamiltonian appropri- Hezz $+ > E ed;, (7)
I

ate for such an interaction. We start by writing the Maxwell !
equations for the electric field and the magnetic induction

B in the medium described by a dielectric constafr) H, represents the photon field energy in a medium with a

dielectric constang(r),

1 9B(r,t) )
V[e(DE(rH]=4mp(r,t), VXE(rt+-——=0, HA=f dr% e((:;) (%) LTxA2]. ®
VB(r,t)=0, VX B(r,t)=4—77j(r,t)+ l dLe(nE(r, D] _ a_nd the interaction between the photon and the crystal field is
c c at given by
(1)
1 e 1 e
The N electrons of our system, at positionswith mass Hea=— 2 m E[piAi+Aipi]+2i m gAiAi C)

m, electric charge, and velocityv; , form the electric charge
densityp(r,t)==;e8(r —r;) and the electric current density

i(r,)=S.ev;8(r—r;), and obey the Lorentz force equation: In our model, the dielectric constant is not changed inside a

dielectric layer. Thus, for all Wigner electronsrait follows
q . from Eq(3) that V;A;=0, which gives

V.
m—— = eE; + SViXB. )
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A. Quantization of the crystal field

— L img -, e
The HamiltonianH, [Eq. (7)] of the quasi-2D electron He(z)—Ei [Ki +W™M(z)]+W5(2) (14

system, which polanzes the surrounding dielectric layers,

takes the standard forf] andH(p) ==; K”+ WE%(Ap) . Clearly,u(z) andv(p) in Eq.
(12) are now determined as the eigenfunctiongigfz) and
H :2 (KHJFK.LH} Z E Wee(pii 2 ,2) H(p), respectively. In the harmonic approximatidtg(p)
¢ 4 25 &= Pij 24002 describes the phonons of a 2D Wigner cry$tab],
) 1
+2i WiM(z), (11) Ho(p)=2 X ho,. b/mb#,ﬁ— (15)
m K

whereK! andK' denote a parallel and a perpendicular ki-whereb’, (b,,) are standard creatiofnnihilation phonon
netic energy of an electron) respectivelyWe® denotes the operators of the crystal mode with the polarizatipn
interaction between electrons in the presence of a dielectries(L,T), the wave vectow, and the frequencw ,,.. Here
media at the parallel distangg;=(p;—p;) and at the per- (L, T) stands for the longitudinal and transverse mode, re-
pendicular positionsZ ,z;), andW'™ describes the interac- spectively, ande belongs to the first Brillouin zone.
tion of each electron with dielectric layefisnage potential

The assumed localization in the perpendicular direction B. Quantization of the photon field
enables us to factorize the electron wave functibp into

the lateraly (p) and the perpendicular(z) componen(6], Let us now quantize the photon field. We must find the

eigenmodedy (r) appropriate for our systefiil],

Ve(p.2)=v(p)U(2). (12 )
_ _ _ VXV Xfy (1) == wgfk(r), (16)
In the 2D Wigner crystal, the excited perpendicular states c
correspond to a temperature above 8§ while the crystal . N
exists typically below 2 K. Therefore, we can assume that afvhich obey the “transversality” conditions

electron, possibly excited in the first=1) perpendicular _ _ .

state, is surrounded by other electrons in the groumd0() VIe(nik(r)]=0,  Vxfg(r)=continuous . (17)

perpendicular state. Within the Hartree approximation, Werhe indexk denotes all linearly independent solutions of the

can write eigenequatior{16) with eigenfrequenciesy . The Hermic-
ity of Eq. (16) leads to the orthonormality condition

“(Z):Bl uo<zi>i:Hl ui(z),  Np+N=N,N;>N,

(13) f dl’e(r (I’ fKr(r) 5K K’ - (18)

whereu,(z,) are the one-particle variational wave functions. Tpe vector potential is then expanded in terms of the creation
Let us divide the ternWe® (which contains both the par- @ and annihilatiora operators for photons as

allel and the perpendicular coordingtésto the staticwg®

and the dynamicalV;® part[6]. The static part describes the A(r,t)= CE sK[aK(t)fK(r)+aK(t)f (r]. (19

average interaction between electrons at their regular lattice

sitesp The quantization requirement

1 A/t i Y
WES( =§2 2 Wee(P.,,ZuZ,) [ALr, ), Pa(r’ ,t)]=i%d, go(r—r")

leads to the standard commutation relations
and the rest of th&Ve® interaction is addressed to the dy- + B _
namical part. This term is obviously not sensitive to the par- [ax(),ax, (D]= k- [ak(t),ac (D]=0,
ticular wave functions of a few possibly excited electrons, SQuith s Jhlwx. The HamiltonianH, (8) of the photon
we can calculate it assuming that all electrons are in theik ngw takesKthe second- quantlzeé form
ground perpendicular states,

HA:E h(l)K a:%aK‘F_ . (20)
Wﬁe(AP)— 2 2 <u0 UO(Z )l[Wee(p” 4 aZ]) K 2
—Wee(p” .Z,Z))1|ug(Z))ug(z)). Il. SPONTANEOUS-EMISSION DECAY RATE
Now we can divideH,, into thez and p dependent part, The spontaneous-emissig8E) rate is defined as the in-
=H(2) +Ha(p), where verse lifetime of an excited electronic state which decays
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exponentially owing to the interaction with the photon field. with the energyE,, while, simultaneously, a photdt with

As already pointed out, although a typical quantum-the energy:wy is created. The Fermi Golden Rule gives for
mechanical problem, this process can also be treated withifhe SE rate,

the framework of classical electrodynamics. In order to give

a clear comparison between the results of the two ap- 2

proaches, we first briefly describe the classical calculation of y=—5 2 KW20{|He A IKTYPS( w10~ w),  (23)
the SE rate. A= K

whereh w,0=(E1— Ep) is the excitation energy of the crys-
A. Classical electrodynamics approach tal.

We assume that the crystal wave functions are given by
Egs. (12 and(13) and that only one electron is in the first
excited perpendicular statg(z). This gives for the matrix

eelement

In classical electrodynamic€CE), an excited molecule
with the transition energyi o is described by an oscillating
point dipoled(t) =dy exp(—iwt) at the molecule position.
Then, from Maxwell equations one determines the dipol
electric fieldE4(r,t) =Eq4(r)exp(—iwt) and calculates the SE e h
rate as the power lost by the dipole in supporting its own (\Iféof|HeA|1K\If2>=—\/—TK,
field, normalized to the corresponding photon energy, m ¥ g

1 where, from Eqs(9), (10), and(19), the transition amplitude

7CE=% 5 IM[Eq(ro)-dg J. (21) Tk is given by
Te=(v(p)us(z)|fk(ri)-pilug(z)v(p)). (24

Note that in this model the perpendicular transitions are com-
pletely decoupled from the parallel electron lattice excita-
tions (phonong, so that in Eq.(24) the same “parallel”
wave functiorw (p) appears in both thﬂ'g and\Ifé quantum
states.

The field of a dipoleE4(r) in simple layered systenj43]
as well as for a general multilayer configuratidm] can be
obtained from the corresponding 2D Fourier transform
Eq(k,2z) by integration over the parallel wave vectér
=(ky,ky). Considering a perpendicular transitiondy(
=d02), this leads to the following result for the SE rate of
the molecule located &, in a jth layer[13,14]: Dipole approximation

. In the case of SE from a moleculer an atom the posi-
CE._  CEnCE CE_ 0] 2 tion of the transition electron is localized inside a molecule,
VYR YT ‘/6—J3ﬁcs |dol*, so that the dipole approximatidiDA) usually applies. If the
changeAz of the electron position during the transition is
much smaller than the wavelengthof the emitted photon,

; - . +
FCE—§ =[ dkk k_2 (1+rP;e*Fi%0)(1+15 67 Fi%0) we can make the same approximation for the Wigner crystal
i T2 o \kiBj/ K2 (1—rP rP e2iBid) ' as well. Thus, assuming, as the average electron position,
' R (22 We havef(r;)=fg(ro), so that
.m
where ¥ is the SE rate in the infinite mediu) with a TUP=j 5 @1dfi(ro) - do, (25)

dielectric constant;. Herek;= \/e—jwlc and gj= \/ka— k?

are the total and perpendicular photon wave vectors in thevhere

jth layer, respectivelyd; is the layer thicknesg, =z, and e

zy =(d;—2,) are the distances of the dipole from the layer's dPo=—i ——(V]|p;| Y (26)
boundaries, whiler®;=rP and rf;=rf , are the M®10

standard Fresnel reflection coefficients of the surrounding effectively the dipole moment of the crystal. ClearlyWit

stacks of layers(see Fig. 1 Note that onlyp-polarized 5,4y 0 are the exact eigenfunctions of the Hamiltonkg,
modes are involved in perpendicular transitions. In the firsg, asing the identitp, =i (m/#)[H.,r,], this dipole mo-
! | eslily

approximation, we can adopt this.simple. approach to Calcur’nent reduces to the standard transition dipole moment:
late the SE rate of a weakly excited Wigner crystal by re-

placing the crystal with a single dipole at the position diog=e(Wlr,|wY). (27)
where the assume(ibcal) excitation takes place.

However, since in this work the exact wave functions are not
known andu,(z) are to be determined using the variational
method, we retaiml?, rather thand,, as the relevant transi-
To calculate the quantum-mechani¢@IM) SE rate, we tion dipole matrix element.
assume the electron crystal to be initially in the excited state As in the case of SE from molecules, the SE rate from a
Wl with the energyE,, and the photon field to be in the Wigner crystal in the dipole approximation is given by the
vacuum statg0;). Owing to the interaction with the field, classical resuli(22), provided that we setr=w;, and let
the crystal undergoes the transition to the ground siage do— 2dY,. We can easily check this on the example of SE in

B. Quantum-mechanical approach
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an infinite medium with the dielectric constant ¢;. From 1
Egs. (16) and (18), the appropriate vector-potential eigen- f(r)=—e'k ﬁg(z), (29)
functions are K=kv) VA

whereA is the normalization area and the quantum nunkber
- ()= _eiE-rqzw comprises the _2D parallel wave vector the perpendi_cula_lr
\/V_e]- wave vectorg in a suitably chosen layer, the polarization
index v=(p,s) (see Appendix A and the index denoting
where V is the normalization V0|ume]2 is the three- the Wpe of the mode. We shall be concerned mainly with the
dimensional photon wave vector, aeg, are the two or- radiation (propagating modes with the dispersion relation

thogonal polarization unit vectors perpendicularktoWith

these eigenfunctions in EQ5), from Egs.(23) and(25) we _ :i K2+ g2)112 30

have Wy wkﬁ \/E( B ) ’ ( )
i (27)? wio so from now on we shall omit the index. The dispersion

Vjolcp:m > — |6, APy 8( w10~ @i, relation (30) defines the perpendicular wave vectBy in

I kv Oy each dielectric layer with a dielectric constan; : 3,(w)

_ - _ _ =[wi/c?—k?]Y2
Converting the sum ovek into the integral in Te standard Inserting Eq.(29) into Eq. (24) and decompositing the
way and using the dispersion relationg,=kc/\e; o momentum operator according p=p: +pl, we haveT,

change to frequency as the integration variable, we find =Tf<+T” . where
. 4o 1
dip__ 10 " .
Vb= Ve ldi, @ T @) piuo@)Xo (e Mlo(p),
which is the familiar QM result for the SE rate in a lossless _
medium. , Th=—=(us(z)|fis(2)|Uo(z)) - (v(p)|€" Ppi[u(p)).
In deriving this result we have neglected the difference VA

between the macroscopic fiel and the local fieldEy ) o . ]
actually acting on electrons. In consideration of moleculardn the dipole approximationr(—ro), the transition ampli-
(atomid SE, the local field is usually macroscopically calcu- tude Tk remains finite while both terms ifiy tend to zero.
lated assuming a small refdl1] or virtual [15] cavity around ~ Therefore, we assume tha@k generally dominated} . In-
the excited molecule, whereas most microscopic considetroducing the parallel displacements from the equilibrium
ations of a dielectric medium agree with the virtual cavity positions of the lattice electrons,:(pi—pio), we obtain

result for the local field16—18. The effect of the local field

on the SE rate in a nonabsorbing isotropic medium can then 1 " N ik o0~ (12D (K)
formally be taken into accounfn both the CE and QM TK~TK:\/_K<UI(Zi)|fIEB(Zi)pi luo(zi))e'™ e ,
approachesby rescaling the corresponding dipole moment: (31)
d—Ld [16]. This gives|L|? as the local-field correction fac-

tor to the SE rate, where=3¢;/(2¢;+1) in the real cavity \yhere

[11] andL =(¢j+2)/3 in thevirtual cavity [15-1§ model

for the local field. It is expected that the same local-field D(K) =(v(p)|(k-u)?v(p))
correction factor should apply to the SE rates of molecules in

an inhomogeneous system, supposing they are not too clogefines the standard Debye-Waller factor. Here it describes
to an interface. As concerns SE from a Wigner crystal, it isthe suppression of the “perpendicular” spontaneous emis-
natural to consider systems with Wigner electrons immersedjon due to the parallel oscillations of electrons in the
in vacuum, as in our calculations performed in Sec. V. Thes&vigner crystal. Using the standard expansion of the electron

electrons are well separated from the supporting He léyer displacement; in terms of the phonon operatoris,f,,b',),
dielectric constant which is also close to @nso that we e have[5,19]

shall neglect local-field effects in further considerations.

h 2 2
Beyond the dipole approximation D=2 X 5N k?lcos® ,(k,x)[*(2n,,,+1),
L K Mw ;e

Let us now discuss the general case in which the average (32
position of a spontaneously emitting electron differs mark-
edly in the ground and first excited state, so that the dipolevhere® ,(k, «) is the angle between the wave veckoand

approximation could be unsatisfactory. the polarization vector of the i{,«) mode, andn,,
Owing to the planar geometry of the system we can inz[exprm),L,(/kT)—1]*1 gives the average number of ex-
general write cited phonons at temperatufe
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Note that, since only the perpendicular compor‘f@gtof IV. RESULTS FOR DIFFERENT GEOMETRIES
the eigenfunctiorf,, appears inTx , only the p-polarized
photon modes are involved in the SE process in this approxi
mation. The eigenfunctionﬁjﬁ(z) in a jth layer are of the
general form

Further examination of thénormalized SE rate(34) is
possible only for a given geometry, from which one has to
determine the plane-wave factosP(f?,gP). Let us discuss
in more detail three simple but qualitatively different cases.

pL — EPK(fPa—iBz PaiBiz
ka(z) F k(fle rrgren ): (33 A. Two semi-infinite dielectrics
where the normalization factdP(k,3) and the functions We assume that two dielectrics, divided by the 0
fP(k,3) andgf(k, ) are determined from the boundaty7) ~ Plane, occupy the whole spacel;(-,d,—x>) and the
and normalization(18) conditions(see Appendix A Since  Wigner crystal lies in the upper layej £ 1) (Fig. 1). The

only p-polarized modes are relevant, we can use in(g ~ Pboundary conditions allow two types of mod@ppendix A
that contribute to the SE rate.

Soyy oy A fz”dqﬁf“dkk 1. Type-1 modegk=k; = e;(w10/0)]
0 0

X 2
: p £ (2m) Type-l modes are defined f(;@i>0, so we shall trans-
dform the summation ovep values and accordingly thé

This gives for the QM SE rate of the Wigner crystal locate function in Eq.(34) as

in the jth layer

i L
_ dip — —
’y'_’y'ool—‘-! - __fd ’
J J ] % ;1 2 Bl
w |3
r-:§w5-2 f dkk—|Fp|2v10(ﬁ)e‘D(k)5(w10—wk) €1 @10
P27 o k? e 5(w10_wﬁlk):E?5(B1_,81(w10))- (38)

(39
dip i ) ) _ With the appropriate plane-wave functiofiggs. (A4) and
where yj.;” is given by Eq.(28), with the perpendicular di- (Ag)], the contribution from the type-1 modes to the normal-

pole moment26) ized SE rate becomes
e 1 3 (ki dkk\k?
d? = —i— —(uy(2)|p,|us(2)). 35 [ B kbl B -D(K)
10 mw10< 1(2)[p|Uo(2)) (35 r; 4.[0 k1,31>k§v10('81)e . (39

We have introduced the dimensionless factor 2. Type-Il mode§ k<k,=\e3(e10/C)]

oo ipz, paipz O 2 Type-Il modes are defined f@5>0. In that case, instead
(uy(2)[(fPe'Fi*+ gPe'”i )5|Uo(2)> of transformations(38), it is more appropriate to use the
transformations

010(13]): 9
(Us(2)][ == [ue(2))
0z L

2 =2 =5—| dB,,
(36 B 27 ’
which, through the electron wave functiongz), implicitly

takes into account the perpendicular delocalization of the 8wy~ wgzk)=2 &?’5[52_'32(0)10)]_ (40)
electron during the (4 0) transition. B2 ¢

The SE rate in the dipole approximatigii'’® is obtained
P PP o,{ﬁ The corresponding plane-wave functiopggs. (A6) and

- e imi
?r)ér::;fgpr%;—’(zg.;"?gtgl_’f’l in Eq. (34). The z—z, limit (A7)] now define the contribution from the type-1l modes to
10 Fj the normalized SE rate,

dkk) k2

vl Boe PO ()

o . kaB2) kika
which is independent of the electron wave functian&z).
The limit p;—p; gives D(k)—0, so the influence of the  The total normalized SE rat¢34) contains the contribu-
electron delocalization on the SE rate is completely netjon from both types of modes:
glected. Notice that in our model one can still allow the
dipole atz, to oscillate in the parallel direction. In this case F1=F'1+ 1“'1' . (42
D(k) does not vanish, and E@34) describes the SE rate
from the strictly 2D Wigner crystal, configured in the plane  The calculation ofv}((3;) or vi«(8:) from Eq. (36) re-
Z=2,. quires the knowledge of perpendicular wave functions. How-

vao(By)=|fPe Fiz+gPe'hi??, (37) 3 sz
n_>
4

0
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ever, in the dipole approximatiofDA), the corresponding In thed,— 0 limit, the present geometry describes a semi-
matrix elements ,, (37) do not depend upon(z), so we infinite dielectric(with a Wigner crystalatz>0 on a semi-
obtain infinite metal atz< 0, and this limit could not be obtained in
_ the preceding section. In thdy,— oo limit, one obtains two
vyo(B1)=(1+[rP)%) +2Re rfe* %), semi-infinite dielectric layers. Formally, one can set
exp(2B,d,)—0, which givesg)—r?!, and Eq.(43) leads to
vho(B1) = (ex/€1)?|1—rP|?|e? P10, Eq. (39), i.e., it reproduces the contribution only from type-I
modes because it still takes into account the influence of the
The corresponding CE result follows from E&2): metallic plate in the infinity which suppresses the type-ll
modes. To obtain the contributions from both modes as in
ce 3 kv dkk\ k2 o o the preceding sectiofi.e., without an influence of a metallic
I'y :ERGJO klﬂl)P(l"'rlze 1%0), plate, one has to be rather careful and make a cledr
1

though  inconsistent replacement:  exp{B.d,)—0,
|exp(48,d,)[>—1. This means that, in calculatingy3;) or
v,0(B1) in order to determine the SE ratd3), one has to
takeff=1, gf—rb,, |gf*—1.

A qualitatively different situation is obtained if one puts a
gner crystal in the lower dielectricj €2), i.e., at—d,
<z<0. As before, one can take the appropriate plane-wave
functions[Egs.(A8) and(A10) from Appendix Al and insert
c;[hem into Eq.(34) to calculate the SE rate. However, an
Ybvious problem arises if one tries to use the “hydrogenic”
wave functions, appropriate for a semi-infinite space, so as to
describe a Wigner crystal embedded in a dielectric layer with
B. Two dielectrics on a metallic plate a finite thickness. This problem will be discussed in more

We discuss a system in which an infinite dielectrit; ( detail in the next section.
—o) at z>0 is separated by a dielectric plate ad,<z
<0 from an infinite metallic substrate at —d, (Fig. 1). A
metallic plate is described by an infinite dielectric constant
so that the boundary conditions allow only type-l modes Here we discuss a model of a “dielectric cavity,” in
(Appendix A). This means that in the calculation of the nor- which two dielectric layers are bounded by two semi-infinite
malized SE raté34) we can use the transformatio(88). metallic plates. The dielectrics wite=¢; and e=¢, are

Let us assume that a Wigner crystal lies in the uppekonfined at 6<z<d, and—d,<z<0, respectively, and me-
dielectric layer {=1). Inserting the appropriate plane-wave tallic plates withe= occupy the rest of the spacgig. 1).

where the upper integration limit ls, = max{, ,k,). This is
exactly the same resul#?2) as derived in the DA, although it
is rather difficult to prove it analytically.

If the whole space is occupied by the same dielectriciN.
(e,=¢€,), we obtain the obvious resultd?=TIE=1. No- :
tice that thee,— €, limit has no physical sense in the QM
case ifvo(B41) are determined by the wave functiongz),
because in our model these wave functions should vanish f
z<0.

C. Two dielectrics between two metallic plates

functions[Egs. (A8) and (A9)] into Eq. (34) we find Since there is no electromagnetic field in that space, the
boundary conditions allow neither type-I nor type-Il modes.
3 (kaf dkk|k? bk Instead, from Appendix A it follows that only discrete values
Fl_Zfo k181 k?vm(ﬂl)e : (43 of parameterg are allowed, which we enumerate by index
(n):

In the DA, we obtain

€ W1o
. = = Sw9— wamp) = — S(k—kM).
vz0(B)=2[1+Re(gle?/170)]. = % 5 o ogmi =g ok
(45

Exactly the same result follow&@ven analytically from
Eq. (22) in the corresponding CE approach.

From Eq.(43) one can easily derive the angular distribu- The allowed wave vectors are defined for both valugs (
tion of SE radiation. Lettindk=k; sin¢ we can write the =1 2) in the same Wa3k(”)=~/kj2—ﬁj(“52. The solutions ex-
space angle(averaged over the polar anglé) as d€); st if either 82=0 or B2=0, i.e., because of the perfect
= sin0d¢=(dkkk,3,). Therefore the SE radiation emitted in screening of the metallic plates there are no true surface
the upper half-space in the direction (Fig. 1) is given as modes with wave vectors that satissf<0,83<0.

3 To be specific, let us assume that the crystal lies in the
- _ —~D(k upper dielectric {=1). Using the transformation@5), the
I 0)—d1“1/d01—4sm2 boid Bre . “4 ngfmalized SE rIatcé:SZl) beco?nes 9

HereB,;=Kk, cosé, while 8, remains real only fok<k,. For

e,<e€q, it becomes purely imaginary in the regidg<k 3 k(M2 o
<k, and for thosek values the radiation is totally reflected Flzi’ﬂflklz —|FP|20{Pe P, (46)
from the dielectric(2). no ki
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Herev{? is determined by Eq(36) with 8;=p8{" and the %
normalization factorFP is given in Appendix A withk Jl) dzd* (Dun(2)=6im, {I.mi={1,2, (49
=k,

In the DA, we sev () —v', andv{y=v,4(8") is cal-  we obtain the coefficients
culated from Eq(37),

. . (n+1) 37°
U§8)= |e—'ﬁ(1 )ZO+ e_'ﬁ(l )(2d1_20)|2_ b( 7])2 3 s Bz( 7]): m

In the CE approach, which should be equivalent to the h ational d ined b -
DA result, one has obvious numerical difficulties in calculat- | '€ variational parametersy() are determined by mini-

ing I'CE from Eq. (22). Namely, exactly ak=k(™ the de- mizing the energy of the Wigner lattice in the Hartree ap-

nominator in the integral vanishes. The integral can be CalprOX|mat|on[6,8]. . .
culated by using mathematical expansion methods, which With the above wave functions we can easily calculate the

finally lead to Eq.(46) with v{?— (| relevant matrix elements,

. 1
Quantum cavity (Ug|Z|ug) = H| 5(1),
The situation becomes much more transparent indthe

—0 limit, in which case a single dielectrig € 1) is placed B
between two metallic plates, thus forming a typical quantum (uq|zJuyy=—
cavity. The eigenvalueA13), g{V=n=/d;,n=0,1,2. .., 4a
are obviously chosen to satisfy the boundary conditions for B
the electromagnetic field, which must vanishzatO andz (Us|zlugy= —
=d,. With theseB{" values, the normalization factdt da
takes a particular simple foritA14) and the normalized SE

b2
|3D(7/)—b|5(77)+zlg(77)} (50

b
15(s0)— 512(50)

J
rate (46) becomes (] 5|Uo>= aBL(sy), (51)
3 7\ X m \?
el B _n2l (M a—D(kM)
rl 4(k1d1>r120 t=n (kldl> Cnvloe ' Pa—iBqz PaiB1z J
(47) <u1|(fle ! +gle ! )E|UO>

wherecy=1/2 (c,=1,n=1,2,3...) and thehighest sum- =aB[f)SP(s;)+g"SP(s.)]. (52
mation index follows froma{"?>0: ny=[k,#/d,]. Particu-
larly, in the DA we find Here we have introduced the dimensionless parameter

=2ad;, whered; denotes the finite thickness of a dielectric

v =2{1+ co§2nm(1—2z/d;)]}, layer (with a Wigner crystal, Fig. 1 Obviously, the use of

o _ . the wave functiona(z) [Eg. (48)] is not appropriate for
which, inserted into Eq47) and withD(k) =0, leads to the  finite d, values because they do not vanish Zord;. How-
well-known result for the SE rate of a dipole in an ideal ever, if we assume that the Wigner electrons are localized

quantum cavity with perfect mirrofsL0]. above thez=0 plane, in the first approximation we can still
use these wave functions if the contribution to the matrix
V. DISCUSSION elements, appearing in;o(81) [Eq. (36)] from the region

In order to calculate the SE rate from a Wigner crystalzh di, is negllglb_le Thls will be the cased; is muqh larger
. ) ) . . .__than the delocalization parameterswfz), that is, if
using the results derived in the preceding section, we f|rstt

must dgtermine_the approprigteirgne—electron wave funct_ions d; =10/ and d;=10/a7. (53
u;(2). Since the image potentisV'™(z) represents the domi-

nant interaction in the Hamiltoniaf¢(z) [Eq. (14)], we take  The other dimensionless parameters in H§6)—(52) are
as the variational functions|(z) the “hydrogenic” wave

functions which are theexactwave functions for the ¥/ 1 1 B
potential. Taking the origin at the bottom of thieemi— So=5(1+7), se=5{1+n=i—], (54
infinite) layer in which the electron crystal resides, we have
for >0 [8] while SP(s) denotes the sum of three integrals,
_ b\ _ n
Uo(2)=ate 2 uy(2)= JZB(( 1= Eg) e 7%, SP(s)=12(s)— a > il I?(s)+gl 5(s),
(48)
andu;(z)=0 for z<0. Here{=2az is the normalized per- 10(s)= JDdxx”e*SX. (55)
pendicular coordinate. From the orthonormality requirement " 0
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FIG. 2. The SE ratey, as a function of the lattice parametgy;
shown for different thicknesses, of the He substrate. The dotted ~ FIG. 3. The transition dipole moment, andd,, as functions
lines represent the dipole approximation. of a delocalization parameter. The dipole moments are given in
units eay (ay is the Bohr radius The dotted lines denote the
Note that, in thed; o= limit, 19(s) simplifies to17(s) %oy oPUMIZect co and the dipole-optimizediag values, for
=nl/s"*1, fo= e '

We first consider the usual system geometry, here termegver with the(perpendicular dipole moment
two dielectrics on a metallic platén which the electrons are '
located above a dielectric layer on a metallic substrate. The
SE ratey, for a Wigner crystal in the vacuume{=1) sepa- d10=&(U1(2)[2]uo(2)
rated by a thin liquid heliumd,=1.0572) layer from a me- o
tallic (e5==) substrate is shown by full curves in Fig. 2. in place ofdj, (26). As already stressedy, andd, coincide
Obviously, with increasing, or d,, the interaction between If Ui(z) are theexact eigenfunctions of the Hamiltonian
Wigner electrons and their interaction with the image potenHe(2) [Eq. (14)]. For thevariational wave functions, how-
tial becomes weaker. As a consequence, Wigner electroryer, these two dipole moments diffesee Eq.(51)] and
become more delocalized, which leads to the smaller valugave opposite behavior with respect to the delocalization pa-
of the transition-matrix element and, finally, to the smallerrametera, i.e., dig~a while dig~1/a. This is also illus-
SE rates. For the typical values of a Wigner latticg trated in Fig. 3, where we have plotted the dependence of
=1000 A andd,=100 A, we find «=0.0417 A%, 5  these transition dipole moments an As seen in this figure,
=0.765, andw;,=0.010% V. This gives a very large elec- the crossing poiniyy, defined bydiyaq)=d;o(ag), does
tromagnetic lifetime of the first excited perpendicular statenot necessarily coincide with the optimal variational value
r=1/y;~0.71x 10 3 s, as well as a significant change in the ao. Since the SE rate is proportional to the square of the
average electron position during the transitieae Eq(50)]: dipole moment anddfyd,,]>~ «*, even a small deviation
Az=(uy]zu;) —(uo|z|ug)~53 A. Note, however, that the of ay from a4 leads to a significant difference between the
wavelength of the emitted photon=27c/w,y~1.18x10°  SE ratesy$"? for the two definitions of the dipole moment, as
A'is still much larger than the average electron displacemengan be observed in Fig. 2. The same discrepancy was pointed
Az. out in Ref[20], but here we have given a rigorous explana-

Since Az/A<1 for the typical values of, andd,, the tion.
dipole approximation holds perfectly well and one cannot The angular distributionof the (normalized SE rate as
distinguish betweer, and y‘l"p in Fig. 2. Ultimately, thisis given by Eq.(44) is shown in Fig.(4) for several values of
due to the low-electron density in the Wigner crystal leadingthe parametet. It is determined by the standard dipole ra-
to a weak electron interaction and, accordingly, to the lowdiation factor siAé modified by the factor,o(81) [EQ.
transition frequencies. If one increases the electron density36)], which involves the matrix elements given by E§2).
the emitted photon wavelength decreases, but the electrorhe corrections due to the electron delocalization, which en-
delocalization also decreases simultaneo(i§lg]. We find  ter explicitly into the terms.. [Eq. (54)], become important
aN>100 typically at all electron densities implyireg. =s,  for 8;/a=1, i.e., in the case when the electron delocaliza-
in Eq. (52, i.e., the validity of the dipole approximation. tion (~1/a) becomes comparable with tiperpendicular

The dotted curves in Fig. 2 represepft? defined, how- wavelength ¢ 1/8;) of the emitted photon. We see from the

(56)
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FIG. 4. The angular distribution of the normalized SE rate FIG. 5. The angular distribution of the normalized SE rate
I'1(6), shown for different delocalization parametersThe chosen  T';(6(™). The arrows indicate modes wif?<0. The dotted line
values arer,=300 A, d,=100 A, A=3.9x10° A. Note that the represents the continuum functié#d) I';(6) in arbitrary units.

influence of a delocalization parametg(here,»=0.73) on the SE ) ) )
rate is of much less importance. Wigner electrons from electrons in a metallic substrate, so

we expect that other mechanisms are not of great importance.

figure that fora=100A (which is the case of SE from a  We have also considered the geometry, here tertwed
Wigner crystal, the spectrum approaches that obtained in thedielectric layers between two metallic platés which the
dipole approximation ¢— =), while for lower values ofv it ~ Wigner crystal is embedded at<@z<d, in the dielectric
markedly differs from the standard $i6iform and becomes (vacuum layer of finite thickness, and the spaced, being
much sharper around th&=90° angle. occupied by another metéFig. 1), i.e., effectively in a pla-

The temperature dependenad the SE rate is given by nar cavity formed by two metalli¢perfect mirrors. The
the Debye-Waller factorD(k). From Eq. (32) follows  €lectron localization, besides the image potential, can be also
D(k)~k? and for a reciprocal-lattice vectay, one finds supported by the external pressing field, in which case the
D(go)~1 at low temperaturesT(<2 K) [5,19] at which the =~ metallic plates obviously represent electrodes in the usual
Wigner crystal exists. Since we obtaky/go<1 for the  €Xxperimental configuratiof8,4]. As discussed in R¢B], the
highest allowed wave vectok&k;), we findD(k)<1 for  influence of the pressing field on the delocalization param-
all k<k, wave vectors. This means that we can neglect th&tersa, » is not significant. This means that we can still use
influence of parallel oscillations of Wigner electrons, as wellthe wave functionsi (z) (48) in the present situation, pro-
as temperature effects, on the perpendicular SE rate. viding that the electrons are localized above ##€0 plane

As a by-product, we can easily calculate the electromagin such a way as to satisfy Eq&3).
netic SE rate froma single electron above a metallic surface ~ The normalized ratd ,(6") [Eq. (46)] for SE at a dis-
[21]. The electron is trapped by the image poteridP(z)  crete angled™=arcsink™/k;) is shown in Fig. 5. For the
— —e%/4z, so the wave functions,(z) are nowexact Let-  chosen system parameteits=100 A andr,=300 A, we
ting d,—0 and ro—«, we find a=1/4a,,7=0.5/e find the delocalization parameters=0.0778 A™* and 7
=0.63&V,\ =1944A Az=9.5A , so the dipole approxima- =0.732. Therefore, our wave functions give correct results
tion obviously holds. From Eq€35) and (56) we find the for d;=100 A. At the wavelength of the emitted photan
dipole momentl?,=d;o=2.23%a,, and the electromagnetic =3.890x10° A (w,,=0.03182V), according to the dis-
SE rate(34) is y=2.755<1¢f s 1. persion relation(A11), for d;=1CA there exists only one

It is well known that much larger SE rates for an electronmode neag!™=76.5°. Owing to SE into only one mode, we
above a metallic surface are derived when other decayingPtain an enhanced rate, namely, at such upper layer thick-
mechanisms are taken into account. Besides the electroma@esses the system acts as a microcavity. We note that for this
netic coupling, the image states couple with the metallic submode B5<0 and g5>0 and, accordingly, it represents a
strate through the penetration of the image state wave funguided mode of the He layer. This mode was nonexistent in
tionsu,(z) into the metal and through the evanescent tails othe previously considered casd;=« owing to the
bulk and surface states outside the mégdl]. However, in  asymptotic conditions a— . The number of higher-order,
the case of a Wigner crystal on a dielectric layer, this layer‘ordinary” (,8§>0 andﬂ§> 0) modes depends on the layer
(liquid He) provides a potential barrier which separatesthicknesses and, since,=e;=1, it can be roughly esti-
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Wigner electron could significantly change its positions dur-
ing the deexcitation process, we have treated this problem
very carefully. The calculations of the SE spectrum are per-
formed within(i) the CE theory(ii) standard dipole approxi-
mation (DA), and (iii) QM theory beyond the DA. The first
two approaches, although from quite different points of
view, lead to the same result. The corresponding SE spec-
trum, normalized to the SE rate in an infinite medium, shows
an angular distribution typical of the point dipole, and this
distribution is not influenced by the shape of the wave func-
tions of the deexcited electron. However, these wave func-
tions explicitly enter into the definition of the SE spectrum in
the third approach. Particularly, in the case when the perpen-
dicular delocalizatior\ z of the deexcited electron is compa-
rable with the emitted photon wavelength we have found
a much narrower angular distribution than in the DA. How-
ever, for a Wigner crystal, we have typically obtainkd
> Az, so the angular distribution remains close to the DA
result.
d, (A) The calculations of the total SE ratésn the DA and
) _ above the DA can lead to different values as a consequence
FIG. 6. The SE ratey, as a function of the thicknesh of the  f the different definitions of the transition dipole moments,
vacuum layer, shown for dlﬁerept thl.cknesadags.of the He sub- i.e.,dﬁo [Eq. (35)] andd,, [Eq. (56)]. While those two dipole
strate. Note that both axes are given in a logarithmic scale. moments would take the same value for thactelectron
wave functions, they are usually not known and here we
have used the standard variational wave functigg) [Eg.
(48)], optimized to give the best possible energies of the
perpendicular Wigner states. We have demonstrated how the
n A L . .
cog My~ - —— electron delocalization, defined by those wave functions, can
2 (dytdp) lead to different values fod}, andd,, and therefore to dif-
ferent values for the corresponding total SE rajedHow-
wheren is an integer. This giVeS the critical Vallui%*)\/Z ever, the normalized SE ratds do not depend upon the
=1.945< 10> A for the appearance of the next mode, which dipole moment, so the quantitative difference between them
is practically the exact result. Accordingly, fa;=2.0  has no physical consequences on the understanding of the SE
X 10> A, in Fig. 5 we have SE into two modes with the spectrum of the Wigner crystal. In fact, it can eventually
smaller rates. With increasirdy, the number of modes rap- serve as a warning for calculations of the total SE rate in
idly increases and atl;=10" A the normalized SE rate similar systems.
I'1(6™M) becomes almost a continuous function. We have also analyzed the influence of the lateral delo-
The total SE ratey; [Eq. (34)], summed over all modes, calization of Wigner electrons on thgerpendicular SE
is shown in Fig. 6 as a function of dielectric layer thick- rate. The lateral electron oscillations have been described in
nesses. In the regiom{,d,)=<10° A the only allowed mode the harmonic approximation as phonons, and the contribu-
is the above-mentioned guided mode and the relatively larggéon to the SE spectrum has been given by the Debye-Waller
v1 is due to the SE into this mode. Owing to the gradualfactor. It turns out that at low temperatures, at which the
disappearance of this mode with increasihg the SE rate  Wigner lattice can exist only, the Debye-Waller factor has
decreases significantly up to the upper layer thickress almost no influence on the perpendicular SE rate. In this
~10° A. With further increase ofl;, SE into the second- sense, the possible corrections to the harmonic approxima-
and higher-ordefordinary modes becomes allowed and  tion [22] or the effects of the electron-ripplon couplifig9]
saturates to a value close to its asymptotig—{) limit. are obviously not important.
Ford,>10° A, SE into higher-order modes is possible even We have found that the typical values of the SE rate give
for smalld, values and the total SE rate becomes close to itéong electromagnetic lifetimes{10 2 s) of the first excited
“continuum” (d,—c0) limit, which is not very sensitive to perpendicular state of the Wigner crystal. This is due to the
the particulard, value. weak coupling of Wigner electrons to the surrounding media
and, accordingly, relatively small transition frequencies. Ow-
ing to the corresponding large photon wavelengths, possible
nondipole behavior of the SE spectrum does not show up.
We have analyzed the SE spectrum from a quasi-2DNVe have also discussed characteristic properties of the SE
Wigner crystal in order to give more detailed insight into this spectrum from a Wigner crystal in a microcavity formed by
intriguing system as well as to suggest a possible spectradwo metallic plates. Such a configuration is experimentally
scopic tool for the Wigner crystal detection. Knowing that arealized, e.g., when using an electric field to additionally

107—*:

106—:

Y, (s7)

105—:

102 103 10 10° 108

mated from the mode condition for a planar cavifyg.
(A13) with d;—(d;+d>)],

VI. CONCLUSION

033815-11



Z. LENAC PHYSICAL REVIEW A 63 033815

press Wigner electrons towards a liquid-He layer on one of +o0 T

the plates. In this case, Wigner electrons interact with a small f dze(2)f5 (2)fy 5 (2) = S - = 9B=B").
number of the cavity modes, and spontaneously emitted pho- o (A3)
tons can therefore be detected only at discrete angffds

determined by the cavity selection rules, i.e., one has tqhe last relation holds only for a continuous parameser
match the effective cavity thicknesicosé™ with the wave-  with L as a normalization length. Notice that the paramgter
length of the SE photons. For a typical density of a Wignercan be either real or imaginary, and we should always re-
crystal (o~10° A) this “microcavity” SE spectrum is ob- quire Rg8=0, Img=0.

served up tal<10° A as even at these cavity thicknesses the  Erom Egs.(A2) and (A3) one can easily determine the
angleso™ remain clearly separated. Since the perpendiculagoefficientsF*,g; ,f; for each medium(j) in a multilayer.

excitation energies of a 2D electron gas and a 2D electrohe corresponding Fresnel reflectivities between the two di-
crystal are significantly different for electron densities  electric platesi(j) are defined a§13,14

=10 cm ? (ro=10* A) [8], the corresponding emission
channels for the SE radiatiofi™ are also different. There- o_ Bi€i— €B, s Bi— B
fore the determination of the allowed channels at a chosen ] _,Bi €+ &b BT _Bi+ﬂj .

electron density could serve as an optical detector for the o .
existence of the Wigner crystal. Here we need the coefficients only fpipolarized modes.
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modes with the incoming wave exp{B,2) from the upper
APPENDIX A: EIGENFUNCTIONS FOR A MULTILAYER half-space and type-ll modes with the incoming wave
exp(B,2) from the lower half-space.
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The eigenfunction$s(r) of a photon field are defined by
Egs.(16)—(18). In the case of a multilayer with a translation
invariance along the parallel direction, one has to determine

only the zdependent functiofi 5(z) (29). Herek is a two- ||:p|2:i — K= \/6—1% (A4)
dimensional(paralle) wave vector, which together with a ki €L c
(perpendicular wave vectorB, satisfies the wave equation
(30): B?+k?>=wzc? e, inside a dielectric layer with a di- j=1z>0): fi=1, gi=ri, (AS5)
electric constant. . _ b b o

The eigenfunctiory 4(z) can be naturally divided into the j=2(z<0):  fr=(er/er)(1+r7), 0;=0.
perplendiAcuIarH L)A ang‘ paAraIIeI 0 .components:.fkﬁgz) Type-Il modei,8§>0):
=fis(2)z+ fRp(2)k+ fRa(2)n. It contains two polarlzaflqns:
the v= olarization with the component into the, wg
plane aFr)ldpthe/=s polarization with §1e component ine)the |Fp|2:§ L’ ko= ‘/G—ZT (AB)
n=k x z direction. 2

Inside a dielectric layer, Eq$16), (17), and(29) lead to j=1(z>0): f{=0, gi=(ex/e)(1+r8), (A7)
(a/az)fﬁg(z)ﬂkf,ﬁ’%(z):o and B2+ 9% 9z°)f4(2)=0, so
fup(2) =1Rs(2) + 13 5(2) takes a simple form for both polar- j=2(z<0): f3=rb, g5=1.
izations,

2. Two dielectrics on a metallic plate
fRs(z) =FP[(Bk+k2)fP(k)e™'#*+ (— Bk+kz)gP(k)e'P”], A semi-infinite dielectric withe= ¢, lies above al,-thick
(A1) dielectric layer withe= €5, which is supported by a semi-
infinite metallic plate withe=o0 (Fig. 1). Only type-l modes

Fa(2)=FS(m)[fS(k)e 2+ g3(k)e'#?]. are possible because the incoming wave solution exists only
for the upper half-space.
The boundary condition€lL7) require the continuity of Type-1 modeg85>0):
e(fPe™'F2+gPe'f?),  p(fPe 'F7—gPe'f?), 11
[FPI2=— —-, (A8)
Sa—1BZ ySai BZ ki €L
B(fre 'Fexg’e'™) (A2)
p .
along the perpendicular direction, while the orthonormality j=1(z>0): fP=1, gP= Mot exp2if2d2)
equation(18), together with Eq(29), requires for each po- e ! 1+rh,exp(2i B,d,) '

larization (A9)
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for any 81, so we can find the solutions f@™ in the same
way as ini).

(i) B2<0,85<0: In this case we find|gP|<1,
o . b |lexp(—2iB;d;)|>1, so Eq.(A11) has no solution.
9= exp(2i Bdo) f3. (A10) Yet, we have to determine the normalization consght
From Eg.(A3) it follows

1+rh,

j=2(—-d,<z<0): fP=—
j=2(=d; b 1+rP,exp(2i 8,ds)

€2

3. Two dielectrics between two metallic plates
|FPI?=[ e, MPihP(By) + 15| 2epe 2MP2%2hP(55)] 2,

A dj-thick dielectric layer with e=¢; lies above a (A12)

d,-thick dielectric layer withe=¢€,. Both dielectrics are
bounded by two semi-infinite metallic plates wit+ <, so

there are no solutions with incoming waves from either an hp(ﬁ-)=(|,8-|2+k2)smr(2 Im B;d;)

upper or a lower half-spad€ig. 1). Therefore, we obtain the ' ! Im g,

same form for the coefficients’,gP as in the case of two sin(2 ReB;d)

dielectrics on a semi-infinite plaf&gs.(A9) and(A10)], but —(IBj]*=K?) Rep =
j

the additional boundary condition at=d; now requires

_ A particularly simple result follows if only one dielectric,
=e ?A%1  (A11) e.g., the dielectrig=1, is present. Lettingl,=0, we obtain
g5=1 and the solutions of EqA11) are[9]

ri,+ exp(2i Body)
1+rh,exp(2i B,dy)

95(1,2=

This equation has solutions only for discre.‘I{E“) values @

(My=23(Nd. = =
=0,1,2,...). Wedistinguish the following three cases. P(FT)=2p17dy=2mn, n=012,... [kyw/dy]

(i) B2=0: In this case we finth?(1,2)| =1 for anyB,, so (AL3)
we can seg?(1,2)exp(28,d))= exdi®(B)] and the solution  \ith the normalization coefficient
of Eq. (A11) is given implicitly as ®(B8M)=2xn, n
=0,1,2.... 1
(i) B3<0,85=0: In this case we can transform Eq. |FP|2= 5 [—,n:o; 1,n>0]. (A14)
. o . 2
(A11) into gf(2,1)=e2'P2%2, Now we obtain|gf(2,1)|=1 2€,kid;
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