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Mie resonance in dielectric droplets with internal disorder
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We consider the influence of refractive index fluctuations~due to randomly distributed inclusions inside a
dielectric spherical droplet! on the line shapes of scattering Mie resonances. The significant difference in the
spatial distributions of the mode functions participating in the process does not allow one to employ the
standard statistical ensembles used in random matrix theory. We propose to model the system by a simplified
random ensemble which gives a very good agreement with the available experimental data, and we predict a
type of line shape for narrow scattering resonances.
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I. INTRODUCTION

The scattering cross section of light by spherical homo
neous droplets depends on a single size parameter 2pa/l,
given by the ratio of the droplet radiusa and the light wave-
length l. At certain values of this parameter, one obser
narrow scattering resonances, so-called Mie resonances@1#,
that correspond to long-living whispering gallery modes.
resonance with such a long-living mode, even for a low
moderate intensities of the incident light, the field stren
inside the droplet becomes so large that highly nonlin
optical processes can occur with high rates. This propert
of significant applied interest in the context of nonline
quantum optics@2,3#, laser physics@4#, and nonlinear spec
troscopy of weakly absorbing impurities@5,6#.

In this paper we consider the effect of the refractive ind
disorder on the optical properties of such droplets. The in
mogeneity of the medium in the presence of randomly d
tributed inclusions increases the extinction inside the dro
and results in a decrease of the quality factors of the lo
living modes, thus limiting the performances that are m
interesting for applications.

Effects of large disorder have been widely studied
nuclear@7# and solid-state physics@8,9#. The description of
universal phenomena in disordered media is usually d
with the help of random matrix theory for Gaussia
distributed orthogonal, unitary, or simplectic ensemb
@7,9#. However the regime of interest for the optics of dro
lets differs significantly due to the fact that the random p
turbation is rather small, since the mean free path of a pho
inside the droplet considerably exceeds the droplet size
other words, the perturbation does not completely destroy
Mie resonances, and the properties of such an object are
universal—they depend not only on the disorder correlat
properties, but also on particular parameters of the dro
such as its radius and mean refractive index and the
quency of the incident light. This situation has much in co
mon with the description of metallic clusters@10#, where the
effects of the electron-phonon interaction have also b
considered with the help of random matrix theory.

There is, however, an important difference between M
scattering by dielectric droplets and the electronic proper
of metallic clusters. For Mie scattering the random coupl
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of long-living resonances to other modes differs from t
coupling of short-living modes among themselves, since
long- and short-living modes have very different and wea
overlapping mode functions. Therefore, they cannot be c
sidered by standard random matrix theory with identical s
tistics of all the matrix elements of the perturbation. In oth
words, the perturbation matrix belongs neither to a Gauss
orthogonal nor a Gaussian unitary ensemble.

Here we develop an approach to the description of s
tems perturbed by a Gaussian random matrix, in which
ferent matrix elements do not have the same dispersion
turns out that perturbation by such a matrix results in
interesting type of line shape, that is different from the us
broadening of resonances known as Wigner semicircles@7#.

In Sec. II, we recall some known relations for light sca
tering by spherical homogeneous droplets. In Sec. III,
present a standard general approach to randomly pertu
systems. In Sec. IV, we apply this to our particular case a
introduce a model for the statistics of matrix elements.
Sec. V, we establish a relation between the mean squar
the perturbation and the correlation function of the disord
In Sec. VI, we discuss the results of the calculations a
predict an interesting effect: a splitting of long-living Mi
resonances into doublets. In Sec. VII we compare the res
obtained for the quality factor with the experimental data
Ref. @11#. In Sec. VIII, we conclude by summarizing th
main results obtained and a short discussion.

II. LIGHT SCATTERING OFF SPHERICAL DROPLETS

Light scattering by a sphere was considered in Re
@12,13#. Here we present the main results of this theory. L
us consider the scalar wave equation

¹2c1k2m2c50, ~1!

wherek5v/c is the wave number in vacuum,m is the com-
plex refractive index of the medium which depends on
frequencyv, andc is a scalar wave function.

In spherical coordinates, two linearly independent so
tions of this equation read
©2001 The American Physical Society14-1
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cnl5
mk

p
A~2n11!

~n2 l !!

~n1 l !! H cos~ lw!

sin~ lw! J
3Pn

l
„cos~u!…zn~mkr!, ~2!

where l and n are angular indices 0< l<n, Pn
l
„cos(u)… are

the associated Legendre polynomials, andzn(mkr) is either
of the two kinds of linearly independent spherical Bes
functions. The general solution of Eq.~1! is a linear combi-
nation of these two solutions.

The electric and magnetic fields are vectors satisfying
Maxwell equations

¹W 3EW 52 ikHW and ¹W 3HW 5 ikm2EW , ~3!

and hence bothEW andHW satisfy the vector wave equation

~¹21k2m2!VW50W , ~4!

which is equivalent to three scalar equations of the type
Eq. ~1!. The general gauge-invariant solution of Eq.~4! can
be written as a linear combination of two solutionsf andc
of Eq. ~1! and their first and second derivatives. For t
electric and magnetic fields, these solutions can be writte
the form

EW 5~MW c1 iNW f! and HW 5m~ iNW c2MW f!, ~5!

which implies that the electric and the magnetic fields
superposition of two modes: transverse electric~first term in
parentheses! and transverse magnetic~second term!. Here we
concentrate only on the transverse electric mode@14# and
take @15#

EW 5MW c and HW 5 imNW c , ~6!

where the components ofMW andNW in spherical coordinates
read

Mc
r 50, Nc

r 5
1

mk

]2~rc!

]r 2 1mkrc

Mc
u 5

1

r sin~u!

]~rc!

]w
, Nc

u 5
1

mkr

]2~rc!

]r ]u

Mc
w52

1

r

]~rc!

]u
, Nc

w5
1

mkr sin~u!

]2~rc!

]r ]w
. ~7!

For droplets in vacuum we cast the incidentc inc , scat-
tered csca, and internalc int waves in term of spherica
Bessel functionsj n andhn

(1) , and associated Legendre pol
nomialsPn

l :

c inc5eivt (
n50

`

~2 i !n
2n11

n~n11!
j n~kr !

3Pn
1
„cos~u!…sin~w!,
03381
l
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csca5eivt (
n50

`

~2 i !n
2n11

n~n11!
bn~k!hn

(1)~kr !

3Pn
1
„cos~u!…sin~w!, ~8!

c int5eivt (
n50

`

~2 i !n
2n11

n~n11!
an~k! j n~mkr!

3Pn
1
„cos~u!…sin~w!.

To find the coefficientsan(k) andbn(k), we make use of
boundary conditions at the droplet surfacer 5a and arrive at

j n~ka!1bn~k!hn
(1)~ka!5an~k! j n~mka!,

~9!
j n8~ka!1bn~k!hn

(1)8~ka!5man~k! j n8~mka!,

where j n8 andhn
(1)8 are j n andhn

(1) first derivatives with the
argument of the function, andm is the refractive index of the
droplet. This yields

an~k!5
hn

(1)~ka! j n8~ka!2 j n~ka!hn
(1)8~ka!

mhn
(1)~ka! j n8~mka!2 j n~mka!hn

(1)8~ka!
,

~10!

bn~k!5
j n~mka! j n8~ka!2m jn~ka! j n8~mka!

mhn
(1)~ka! j n8~mka!2 j n~mka!hn

(1)8~ka!
.

Coefficients of Eq.~10! together with Eqs.~6!—~8! deter-
mine fieldsEW andBW for a uniform dielectric droplet in trans
verse electric mode. Therefore, with the allowance for E
~10! the functionszn of Eq. ~2! take the form

zn5H an~k! j n~mkr!, r ,a

j n~kr !1bn~k!hn
(1)~kr !, r .a.

~11!

The imaginary part of scattering coefficientb(k)
5(nbn(k), responsible for extinction in an ensemble
droplets, is shown in Fig. 1. It consists of a succession
narrow and broad resonances. Note that the dependenc
the coefficenta(k) has broad and narrow peaks in the sa
resonances position asb(k). In what follows we study the
deformation of this profile with the increase of random p
turbation of the refractive index caused by inclusions.

III. LIGHT SCATTERING PERTURBED BY INCLUSIONS

In order to consider the effect of inclusions, we assu
that they are randomly distributed inside the droplet. T
type of assumption is widely employed in different branch
of physics, and yields a general result valid for any types
randomly perturbed physical systems, which can be form
lated in terms of Green’s functions and their renormalizati

Green’s functions are solutions at pointrW of a linear dif-
ferential equation containing a source term at pointrW0. If a
linear perturbationV̂ is added to the differential operato
then Green’s functionĜ can be expanded in an all-orde
power series overV̂,
4-2
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Ĝ5Ĝ01Ĝ0V̂Ĝ01Ĝ0V̂Ĝ0V̂Ĝ0

1Ĝ0V̂Ĝ0V̂Ĝ0V̂Ĝ01•••, ~12!

whereĜ0 is the unperturbed Green’s function.
For the case of a random perturbation with zero me

one finds a general relation for the averaged Green’s func

^Ĝ&, where only even orders ofV̂ are important. We assum
@16# that the averages of the different powers of the per
bation operatorV̂ are given by the sums of the differen
combinations of binary correlations, which for the four
correlation read, e.g.,

^V~r 1!V~r 2!V~r 3!V~r 4!&

5^V~r 1!V~r 2!&^V~r 3!V~r 4!&1^V~r 1!V~r 4!&

3^V~r 2!V~r 3!&1^V~r 1!V~r 3!&^V~r 2!V~r 4!&. ~13!

This assumption, being quite natural for noninteracting
clusions, allows one to find the sum of the perturbation se
@Eq. ~12!# to all orders. One can depict binary correlations
linking the differentV̂ with horizontal braces in the pertur
bation series:

~14!

FIG. 1. Scattering coefficient Im@b(k)# responsible for extinc-
tion in an ensemble of identical droplets. It is composed of a s
cession of narrow and broad resonances. The notationTEn

m repre-
sents the transverse electric resonance of mode numbern and of
mode orderm; see Ref.@11#. At a low size parameter, one see
resonances with a low mode number, whereas higher mode n
bers correspond to larger-size parameters.
03381
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The main contribution is known to come from the co
pling of ‘‘bubble’’ topology, or, in other words, only terms
with no crossing of coupling lines are important. In partic
lar the third and fourth terms on the right-hand side of E
~14! correspond to the first and second terms in Eq.~13!, and
the last shown term vanishes.

Terms of this series have a physical meaning. In our p
ticular problem,V̂ allows for inclusions into the droplet, an
^Ĝ& is the Green’s function averaged over all possible d
tributions of these inclusions. The first termĜ0 represents
the case where light encounters no inclusion by crossing
droplet. The second term corresponds to the case where
originally in a given field mode encounters an inclusion,
scattered to another mode, and then scatters back be
leaving the droplet. It is sketched by Fig. 2~a!.

The third and fourth terms correspond in two differe
ways to binary correlations of the perturbation in the sa
order of the expansion. For the third term light is scatte
successively at three inclusions and comes back, as show
Fig. 2~b!. For the fourth term it comes back to the first in
clusion before going to the third one Fig. 2~c!. The next
terms are represented in Figs. 2~d!, 2~e!, 2~f! and 2~g!. The
expansion can be regrouped in a different way: terms~a!, ~b!,
~d!, ~e!, all of which have the same shape at the origin, c
be summarized in Fig. 2~h! where the circle around the in
clusion means that from this inclusion, light undergoes
certain number of events before coming back. Thus term~h!
factorizes as

~15!

By continuing this reasoning, we can write the Green
function averaged over all inclusions distributions in the f
lowing form:

~16!

After factorizingĜ0 out, we can recognize a geometric
series. ThereforêĜ& reads

~17!

~18!

-

m-
4-3
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where

~19!

andcnl are given by Eq.~2!, with the corresponding Besse
functions replacing functionzn . Here we have also take
into account that, due to the spherical symmetry, ‘‘on av
age’’ the Green’s function̂ Ĝ& does not depend on th
‘‘magnetic’’ quantum numberl. The main contribution
comes from the diagonal matrix elements withrW5rW8, kW

5kW8, n5n8, l 5 l 8, kW95kW-, n95n-, and l 95 l-, and we
arrive at

~20!

where

Wnl
n8 l 8~kW ,kW8!5V2E ucnl~kW rW !u2ucn8 l 8~kW8rW !u2d3r . ~21!

We denote^Gnn(kW ,kW ,v)&5^Gn(kW ,v)&, and rewrite Eq.
~17! in the compact form@17#

Gn~kW ,v!

5S v2ck2(
n8 l 8

E Gn8~kW8,v!Wnl
n8 l 8~kW ,kW8!d3k8D 21

,

~22!

which determines Gn(kW ,v) implicitly. The kernel

Wnl
n8 l 8(kW ,kW8) has a physical meaning. It describes the aver

squared coupling between modes (kW ,n,l ) and (kW8,n8,l 8). It
is not a constant but depends on the wave numberk and on
the indicesn andl. This is the main difference from a syste
perturbed by a random matrix with a constant mean squ
@18#. The spherical symmetry on average allows one to p
form a further simplification of Eq.~22! by performing a

summation of Wnl
n8 l 8(kW ,kW8) over l 8, which results in an

l-independent kernelWn
n8(kW ,kW8)5( l 8Wnl

n8 l 8(kW ,kW8), and yields

Gn~kW ,v!5S v2ck2(
n8

E Gn8~kW8,v!Wn
n8~kW ,kW8!d3k8D 21

.

~23!

IV. COUPLING OF MODES

In order to find an explicit expression for the kern

Wn
n8(k,k8), we make use of expressions~2! and~11! for the

mode functions, and substitute them into Eq.~19!. This
yields an expression which contains the factorsuan(k)u2 and
the overlap integrals of the squares of the Bessel funct
and of the Legendre polynomials responsible for the ra
and angular parts of the mode function, respectively. Coe
03381
-
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cients an(k) change rapidly withk: they have sharp reso
nance structures atk corresponding to the whispering galler
modes. Conversely, the integral of Bessel functions is
smooth function ofk that we replace by its value atk5k8

5v/c. Moreover, it turns out that the overlap matrixŴ
given by the integrals of Legendre polynomials and Bes
functions has just one dominating eigenvalue, which giv
more than 80% of the overall contribution to the Schm
expansion. This corresponds to an eigenvector almost in

pendent ofn andn8. Therefore, in the dependence ofWn
n8 on

k, k8, n, and n8 we keep only the coefficients
uan(k)u2uan8(k8)u2, and replace the rest by a constant. F
simplicity we denote this byṼ2, which yields

Wn
n8~k,k8!5Ṽ2uan~k!u2uan8~k8!u2. ~24!

Then Eq.~23! takes the form

Gn~k,v!5S v2ck2Ṽ2uan~k!u2

3(
n8

E uan8~k8!u2Gn8~k8,v!k82dk8D 21

.

~25!

Equation~25! differs considerably from the case of a ra
dom matrix with a constant dispersion of the matrix e
ments, by the fact that the matrix elements have now diff
ent statistics, since the mean square of an elem
Wnn8(k,k8) depends on the productuan(k)u2uan8(k8)u2. Note
that this is not a general type of dependence, but a partic
one: its factorized form is the key assumption of our mod

This form allows one to reduce the operator equation~25!
to an algebraic one by introducing the function

M ~v!5(
n
E uan~k!u2Gn~k,v!k2dk. ~26!

After the substitution ofGn(k,v) we arrive at

M ~v!5(
n
E uan~k!u2k2dk

v2ck2Ṽ2uan~k!u2M ~v!
, ~27!

which is an algebraic equation with respect toM. We find
M (v) by an iterative numerical solution of Eq.~27!.

We determine the scattering coefficientb(v) from the
Kramers-Kronig relation where the standard 1/(v2ck) ker-
nel is replaced by the transformed Green’s functions@Eq.
~25!#

Re„b~v!…5
1

p (
n
E Im„bn~k!…

3ReS 1

v2ck2Ṽ2uan~k!u2M ~v!
D dk,

~28!
4-4
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Im„b~v!…5
1

p (
n
E Im„bn~k!…

3ImS 1

v2ck2Ṽ2uan~k!u2M ~v!
D dk ~29!

that we calculate numerically for a givenM (v).

V. RELATIONSHIP BETWEEN PERTURBATION
AND SIZE OF INCLUSIONS

The refractive indexm entering Eq.~4! is related to the
dielectric constant«5m2. In the droplet,« is not constant
because of the presence of randomly distributed inclusio
Therefore, Eq.~4! can be written in the form

„¹21k2m21k2d«~r !…EW 50, ~30!

whered«(rW)5«(rW)2m2. Considering the termk2d«(r ) as a
random perturbation, we can make use of the results of
III. Equation ~19! takes the form

~V̂^Ĝ&V̂!~rW,rW8,v!

5k4^d«~rW !d«~rW8!&

3 (
n9n-

(
l 9 l-

E cn9 l 9~kW9rW !

3^Gn9n-~kW9,kW-,v!&cn- l-
!

~kW-rW8!d3k9d3k-.

~31!

Let the variation of the dielectric constant be a super
sition of contributions ofN statistically independent sma
spherical inclusions, each with a radiusr 0. This corresponds
to the perturbation

FIG. 2. Representation of the first terms of the Green’s funct
expansion, and their factorization.
03381
s.

c.

-

d«~rW !5
4

3
pr 0

3d«(
i 51

N

d~rW2rW i !, ~32!

where the constant shift of the refractive index, which mak
^d«&50, and can be included inm, is omitted. Substitution
of Eqs.~31! and~32! into Eq.~18! yields Eq.~21! in the form

Wnl
n8 l 8~kW ,kW8!5k4S 4

3
pr 0

3D 2

d«2(
i 51

N

ucnl~kW rW i !u2ucn8 l 8~kW8rW i !u2.

~33!

Hered« is given by the difference of squares of the refra
tive indices of the droplet medium and the material of inc
sions (mdroplet

2 2minclusions
2 ), and cnl is given by Eq.~8!.

The sum in Eq.~33! can be interpreted as a contribution
the inclusions that are found at a position where both m
functions are nonvanishing. In other words, it depends on
overlap of the energy distribution in the mode functions. T
short-living mode functions of small quality factors occup
more or less uniformly, all the volume of the drople
whereas the whispering gallery modes are localized in a
row (;l) shell near the droplet surface, and the width of t
shell depends on the radial number of the mode. For T47

2

this amounts to 2l, and Eq.~33! yields

Wnn8~k,k8!5k4S 4

3
pr 0

3D 2

d«2N

3
4pa2~2l!

4

3
pa3

uan~k!u2uan8~k8!u2. ~34!

FIG. 3. Imaginary part of the scattering coefficient responsi

for the extinction of four different values of the perturbationṼ.
Narrow resonances (TE43

2 , TE44
2 , and TE45

2 ) broaden, split, and dis-
appear; however wide ones (TE39

3 , TE40
3 , and TE41

3 ) are less af-
fected, and only broaden.

n

4-5
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We make use of this expression in Sec. VI for comparison
the experimental and theoretical results.

VI. RESULTS

Transformation of the scattering cross section in the p
ence of a random perturbation, found with the help of E
~29!, is shown in Fig. 3. One sees that all narrow resonan
experience similar shape transformations and split into d
blets, whereas broad resonances do not manifest simila
haviors, and their shape remain of a ‘‘bell’’ type.

To be specific, here we concentrate on the resonance47
2

for which experimental data of Ref.@11# are available. In
Fig. 4 we show in detail the variation of the resonance c
tours with the increase of the random perturbation. One s
a gradual broadening of the resonance with an increas
Ṽ2. Moreover, the line shape changes, acquiring a dou
hump form, which is different from the semicircular sha
typical of a resonance broadened by a random perturba
@7,18#.

The origin of such a line shape can be traced by con
ering a model expression that takes into account the varia
of the damping rate of a resonance as a function of
quency. Let us consider a profile

f ~v!5
1

v2 i
g

v21g2 2 ig8

, ~35!

with the widthG5@g/(v21g2)#1g8 depending on the fre
quencyv. Hereg and g8 are two parameters. For largeg,
the imaginary part off (v) exhibits only one peak. Wheng
decreases, we can observe that the function splits into
peaks~Fig. 5!.

FIG. 4. Broadening and splitting of the transverse electric re

nance TE47
2 for six different values of perturbationṼ. With increas-

ing Ṽ, the resonance broadens and its amplitude decreases, its

mit becomes flat (Ṽ51.431027), and its center grows hollow (Ṽ

51.831027), giving birth to two peaks (Ṽ5331027).
03381
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This means that the ratio of the frequency-dependent
-independent dampings determines the shape of the pro
For different Mie resonances this ratio, found in a se
consistent way with the help of Eq.~27!, is apparently dif-
ferent. This explains the different behaviors of the narr
and broad resonances.

VII. COMPARISON WITH EXPERIMENT

As we already mentioned at the beginning of this pap
resonances in the intensity of scattered light are function
a single variable, the size parameterx5ka, wherea is the
radius of the droplet andk is the wave number of the inciden
light. In the experiment of Ref.@11#, the wavelength of the
laser which illuminated the droplets was fixed, while t
droplets gradually evaporated, so that the radii~and hence
the size parameters! were changing. Although our calcula
tions are done for a fixed radius and a variety of frequenc
they apparently correspond to the same phenomenon.

-

m-

FIG. 5. Two regimes of the imaginary part of the functionf (v),
for g851023.

FIG. 6. Comparison of the experimental and theoretical bro
enings of TE47

2 .
4-6
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In the experiment of Ref.@11# a droplet of glycerol
m51.4746 was seeded by a microscopicr 0510–100 nm
powder of latexm51.41@19#. Unfortunately, the low signal-
to-noise ratio typical of experiments with a single obje
~without an ensemble average! does not allow us to state tha
the observed line shapes are identical to the calculated o
although some tendencies toward such a similarity can
traced. But the width of the resonances which manifests
self in the quality factors of the resonances, can be meas
as well as calculated. In Fig. 6 we present the experime
results of Ref.@11# along with the calculations of quality
factors performed for the profiles of TE47

2 resonance~Fig. 4!.
The correspondence between the mean-squared pert

tion Ṽ2 and the size of inclusions is established by Eqs.~24!
and ~34!. One sees a very good agreement between th
data.

VIII. CONCLUSION

We have demonstrated that transformation of the l
shapes and experimentally observed quality factors of s
tering resonances in dielectric droplets with internal disor
s

pt

ia

s

,

03381
t

es,
e

t-
ed
al

ba-

se

e
t-
r

can be described with the help of random matrix theo
However, such a description requires us to take into acco
the variation of the random coupling with the frequency
the incident light. We have proposed a model where

mean-square couplingWnn8(k
W ,kW8) of modes characterized b

wave vectorskW and kW8 has the factorized formWnn8(k,k8)

5Ṽ2uan(k)u2uan8(k8)u2. This allows us to take into accoun
the main features of the random ensemble, and explain
experimentally observed broadenings. It also predicts a s
cific two-hump shape of narrow resonances, which canno
obtained in the framework of a standard random-ma
model.

Apart from a practical interest for nonlinear and quantu
optics and high-resolution spectroscopy, this result seem
have general interest as an example of a type of profile
can exist in random media, not conforming to standard m
els ~Gaussian orthogonal ensemble or Gaussian unitary
semble! of Gaussian disorder. One may observe such a p
file, for instance, in the line shapes of light emitted
microdroplets of an active media.
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