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Reconstruction of the state of the radiation field in a cavity through measurements
of the outgoing field
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We establish the relation between the Wigner function of a field emerging from a cavity, determined through
pulsed homodyne tomography, and the phase-space distribution of the original field in the cavity. We show that
the reconstructed Wigner function of the outgoing field is equivalent to generalized phase-space distributions
of the initial cavity field, the original Wigner distribution being obtained when there is perfect mode matching
between the outgoing field and the homodyning pulse.
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I. INTRODUCTION

The characterization of radiation has evolved in rec
years from the measurement of variances, spectra,
photon-number populations to the determination of the
quantum state of the field, as described either by the den
matrix in the photon-number basis, or by phase-space di
butions. These distributions allow the calculation of quant
averages of functions of field operators in a classical-l
way, as if the operators werec-numbers. Different distribu-
tions are obtained, depending on the operator orde
adopted for defining the quantum-classical corresponde
@1#. Of special interest is the Wigner distribution@2#, which,
as shown by Moyal@3#, corresponds to a symmetrical orde
ing of the field annihilation and creation operators. Inde
the proposal of the method of optical homodyne measu
ment by Yuen and Chan@4# and Abbaset al. @5# led to the
measurement of the probability distribution of field quad
tures of propagating radiation@6#, from which it is possible,
as shown by Vogel and Risken@7,8#, to reconstruct the
Wigner function of the field. The homodyning technique co
responds to combining, in a beam splitter, the field to
measured with an essentially classical field~‘‘local oscilla-
tor’’ !, which could be eventually a pulse@6,9#, and detecting
the difference in photon counting between two detect
placed at the two outgoing ports of the beam splitter. T
difference is proportional to a generalized quadrature of
field along a direction in phase space determined by the r
tive phase between the local oscillator and the field to
measured. The reconstruction is made by applying, to
probability distributions of generalized quadratures of
field for several directions in phase space, an integral tra
form introduced by Radon@10#, which is the basis of medica
tomography. This quantum reconstruction technique, kno
as quantum tomography, has been successfully demonst
in recent experiments@6,11#, which resulted in the mapping
of the Wigner functions of coherent states, squeezed st
as well as incoherent superpositions of coherent states,
as phase-diffused, amplitude-diffused, and chaotic light@12#.
The Wigner distribution can be thought as a joint distributi
for the field quadratures: when integrated with respect to
of the quadraturesxu , it yields the probability distribution of
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the orthogonal quadraturexu1p/2 . However, it cannot be in-
terpreted as a true probability distribution in phase spa
even though it is real and bounded, it may assume nega
values. This is not the case, however, for the distributio
measured so far by the technique of quantum tomograp
the Wigner functions of coherent and squeezed states
positive-definite, and therefore these fields can be unders
as classical fluctuating quantities.

On the other hand, recent experiments in cavity quant
electrodynamics have led to the realization of states of fie
in cavities which correspond to negative-valued Wign
functions, like coherent superpositions of two coherent sta
~‘‘Schrödinger-cat-like states’’! @13,15# and Fock states@14#.
No interpretation in terms of classical fluctuating fields
possible in this case. The measurement of the Wigner fu
tion of these states would then be a quite stringent test of
quantum nature of an electromagnetic field. Procedures
measuring the Wigner function of a field in a cavity by d
tecting the internal state of atoms which cross the cavity
interact with the field have been presented by many auth
@16–18#. As opposed to the optical homodyne method, a
propriate for running waves, these proposals do not req
the calculation of integral transforms, and yield in a mo
direct way the quantum state of the field. Recently, followi
the proposal in Ref.@17#, the Wigner function for a single-
photon field was measured at the origin of phase space@19#.
Its value is negative, thus exhibiting the nonclassical nat
of this state.

Measurements of quantum states of cavity fields mus
made in a time short compared with the decoherence ti
which in the case of Schro¨dinger-cat-like states is of the
order of the cavity dissipation time divided by the distan
between the two states in phase space~roughly of the order
of the average number of photons in the state!. As the field
leaks into the environment, the quantum characteristics
the state are washed out. While it is still possible to rec
struct the original state of the field in the cavity after it h
started to decay@20#, the requirements on the precision of th
measurement increase as dissipation has more time to a
the state. On the other hand, since coherence is leaked
the environment, it should be possible to reconstruct the s
of the field in the cavity by measurements made on the o
going field. In order to understand this process, it is usefu
©2001 The American Physical Society13-1
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M. FRANÇA SANTOS et al. PHYSICAL REVIEW A 63 033813
consider a simple model in which the losses correspon
the leaking of the intracavity field through a partially tran
mitting mirror. A special case, in which the environment w
replaced by a single harmonic oscillator~another cavity,
coupled to the first one through a waveguide!, was consid-
ered in Ref.@21#. In this paper we consider a continuum
field modes coupled to the cavity mode, and discuss the
termination of the Wigner function of the field inside th
cavity through homodyne measurements made on the ou
ing field. Of course, in a real experiment, the dissipation
the intracavity field cannot be attributed solely to the tra
mission of the field to the space outside the cavity. Furth
more, diffraction losses, by far the most important lo
mechanism, result in a wide distribution of very few outg
ing photons, which are therefore very difficult to detect, a
the process cannot be mimicked by a partially transmitt
mirror. A simple model helps, however, to answer so
questions of principle, motivated by the two different pos
bilities of measuring the quantum state of a field: eith
through homodyning, for running fields, or through atom
measurements, as proposed for cavity fields. How preci
can we determine the initial state inside the cavity by m
suring the Wigner function of the traveling pulse? How do
this distribution relate to the one corresponding to the fie
inside the cavity? What is the best choice for the homod
ing field? What happens when another choice is made?
the complete quantum state of the field inside the ca
always be recovered, independently of the form of the
modyning pulse?

In order to answer these questions, we relate in this pa
the Wigner function of the outgoing field, obtained throu
quantum tomography via pulsed homodyne detection, w
the Wigner distribution of the intracavity field. The spirit o
this work is the same as the one of the seminal paper
Collet and Gardiner@22#, which related the time and norma
ordered correlation functions of the outgoing field with t
analogous functions for the intracavity field, thus allowi
one to express the measured outside spectrum in term
correlation functions of cavity-mode operators. The mo
adopted here is actually closely related to the one in
reference. In this work, however, we establish the relat
between the full quantum state of the field inside the cav
and the information gathered on the outside field through
homodyning technique.

In the model here considered, the radiation field is
scribed by two kinds of field operators, corresponding
spectively to the intracavity mode under consideration a
the continuum of modes outside the cavity. The cavity mo
is coupled to the external modes through a phenomenol
cal linear interaction. The model is described in detail in S
II. The evolution of the field inside and outside the cavity
determined in Sec. III. In Sec. IV we show that a homody
detection of the outgoing field yields generalized distrib
tions for the initial field inside the cavity. Furthermore, for
proper choice of the homodyning field, the measured dis
bution may coincide exactly with the initial state of the fie
in the cavity. Two examples are discussed in Sec. V, and
conclusions are summarized in Sec. VI.
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II. THE MODEL

We consider a one-dimensional optical cavity of sizeL,
located in the region@2L,0# and such that, for fields in a
certain range of frequencies one of its mirrors, located ax
52L, is ideal ~perfect! with reflectivity r 151, while the
other, located atx50, is almost perfect, having a reflectivit
r 2.1. In the limit where both mirrors are perfect,r 15r 2
51, the normal modes of the cavity and of the extern
world are independent.

For a perfect cavity (r 15r 251) we may define a set o
discrete numerable modes inside the cavity and an inde
dent set of continuous outside modes that are independ
We consider, for simplicity, a one-dimensional model, w
fields characterized by a single wave number and single
larization, and propagating outside the cavity along a sin
direction. As a matter of fact, for the internal modes, t
wave number just characterizes the mode under consi
ation, which does not have to be one dimensional. On
other hand, one should note that, for the external modes
one-dimensional model can actually be justified in terms
the paraxial approximation, so long as the beam propag
primarily in one direction and has a bandwidth much le
than its central frequency@9#: the transverse contributions ar
integrated over the detector surface.

The internal modes are associated with discrete field
nihilation and creation operators$aj% and$ak

†% satisfying the
commutation relation@aj ,ak

†#5d jk , while the annihilation
and creation operators associated with the external mo
form a continuous set labeled by the corresponding frequ
cies V and obeying the commutation relation
@b(V),b†(V8)#5d(V2V8). The independence of the fiel
modes implies that@aj ,b(V)#5@ak ,b†(V)#50. The field
operators inside and outside the cavity should obey
proper boundary conditions and in the limit of a perfect ca
ity they are given, in the Schro¨dinger picture, by

Ecav~x!5(
j
A\v j

Le0
~aj1aj

†!sin~v j x/c!, ~1!

Eext~x!5EA \V

pe0c
@b~V!1b†~V!#sin~Vx/c!dV, ~2!

wherev j5 j pc/L, j 51 . . . , andc is the velocity of light.
We assume that the cavity finesse is high enough,

though finite~so that the mode width is much smaller tha
the mode separation!, and that the initial field is in one of the
internal modes, with frequencyvcav. The finite transmissiv-
ity of the mirror couples the modes inside and outside
cavity, allowing the creation of a photon outside through t
annihilation of one photon inside the cavity andvice versa.
The weakness of the coupling implies that the modes of
internal and external fields are still represented appro
mately by Eqs.~1! and ~2!. The corresponding Hamiltonian
is given by
3-2
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H5\vcava†a1E \Vb†~V!b~V!dV

1E \G~V!@a†b~V!1ab†~V!#dV, ~3!

where the first two terms represent the free-field Hami
nians for the internal and external fields, and the last
describes the interaction mediated by the mirror. The fo
factorG(V), taken to be real for simplicity, may be thoug
of as representing the frequency-dependent mirror trans
sion function.

As a matter of fact, when the mirror is not perfect, the tw
regions cannot be considered as independent anymore
the field modes should be defined for the whole space, ta
into consideration the boundary conditions associated w
the cavity mirror@23#. However, for high-Q cavities, such
that the mode linewidth is much smaller than the intermo
distance, it is a good approximation to define interacting
ternal and external modes, and to neglect the change in
spatial dependence of these modes.

We proceed to calculate now, from Eq.~3!, the time evo-
lution of the field operators.

III. EVOLUTION OF THE FIELD OPERATORS

In the Heisenberg picture, the time evolution of the fie
operatorsa(t) and b(V,t) is described by the differentia
equations

da~ t !

dt
52 ivcava~ t !2 i E G~V!b~V,t !dV, ~4!

db~V,t !

dt
52 iVb~V,t !2 iG~V!a~ t !, ~5!

with the initial conditionsa(0)5a0 and b(V,0)5b0(V).
Taking the Laplace transform of these equations we get

sã~s!2a052 ivcavã~s!2 i E dVG~V!b̃~V,s!, ~6!

sb̃~V,s!2b0~V!52 iVb̃~V,s!2 iG~V!ã~s!, ~7!

where ã(s) and b̃(V,s) are the Laplace transforms ofa(t)
andb(V,t). From Eqs.~6! and ~7! we have

ã~s!5
a0

s1G/21 i ~vcav1d!
2

i

s1G/21 i ~vcav1d!

3E dVG~V!
b0~V!

s1 iV
, ~8!

and

b̃~V,s!5
b0~V!

s1 iV
2 i

G~V!

s1 iV
ã~s!, ~9!

where
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G~s!/21 id~s!5E
0

`

dV
G2~V!

s1 iV
.

We assume thatG(V) is a broad function ofV, centered
aroundvcav. In this cased(s) andG(s) should be approxi-
mately independent ofs. For example, takingG(V) as a
Lorentzian,

G~V!5g
l2

~V2vcav!
21l2,

and extending the integration from2` to `, we have

G~s!/21 id~s!52
plg2

2

2l2 i ~vcav2 is!

@vcav2 i ~l1s!#2
. ~10!

Assuming thatG andd are constants and small compared
l and vcav, respectively, the largest contributions forã(s)
come from a pole close tos5 i (vcav)2G/2, resulting, con-
sistently, inG'2pg2 andd!vcav. These conditions corre
spond to the Markov approximation. The quantityd is a
small frequency shift that renormalizes the frequencyvcav to
v05vcav1d andG corresponds to the decay constant of t
field inside the cavity, as we will show below. Taking th
inverse Laplace transform ofã(s) we obtain

a~ t !5 f ~ t !a01E g~V,t !b0~V!dV, ~11!

where

f ~ t !5e2 iv0t2(G/2)t, ~12!

and

g~V,t !5G~V!
~e2 iv0t2G/2t2e2 iVt!

v02V2 iG/2
. ~13!

For the inverse Laplace transform ofb̃(V,s) we obtain

b~V,t !5g~V,t !a01E h~V,V8,t !b0~V8!dV8, ~14!

where

h~V,V8,t !5e2 iV8td~V2V8!1G~V!G~V8!

3H 1

~V82V!
F e2 iVt

~v02V2 iG/2!

2
e2 iV8t

~v02V82 iG/2!
G

1
e2 iv0t2 iG/2t

~V2v01 iG/2!~V82v01 iG/2!
J .

~15!
3-3
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An immediate application for these time-evolved ope
tors is the calculation of time-dependent normally orde
correlation functions for both internal and external operato
We recover then the relation established in@22#. In order to
compare our results with those of Ref.@22#, we define an
outgoing operatorbout(t), given by

bout~ t !5 iA2

pE b~V,t !dV. ~16!

Assuming that the initial state is a product of an arbitra
state inside the cavity and the vacuum outside it, one g
from Eqs.~11!, ~14!, and~16!,

^bout
† ~ t1!•••bout

† ~ tn!bout~ tn11!•••bout~ tn1m!&

5G (m1n)/2^T̃@a†~ t1!•••a†~ tn!#

3T@a~ tn11!•••a~ tn1m!#&, ~17!

whereT,T̃ are time-ordering and antiordering operators,
spectively. This relation is exactly the one found in@22#, as it
should be since the model so far is very similar to the o
developed there. However, as we have already stressed
will be interested in calculating more than just normally o
dered correlation functions. Our goal is to relate the Wig
function of the inside field with measurements done on
outside field.

More generally, Eqs.~11! and~14! yield the dynamics of
any field observable of the internal and external fields, re
ing its value att.0 to the corresponding initial value (t
50). In particular, they can be used to calculate, at any t
t, the characteristic functions for the internal and exter
fields @24#.

The normal-ordered characteristic function for the inter
field is given by

CN
cav~l,l* !5tr$rela†e2l* a%, ~18!

wherer is the density operator of the field. The functionCN
contains all information about the field inside the cavity a
provides mean values of cavity operators in the normal or
by simple derivatives overl andl* .

The Wigner function for the internal field is obtained b
Fourier transforming the symmetric characteristic funct
Ccav(l,l* )5CN

cav(l,l* )e2ulu2/2 @1#,

Wcav~h,h* !5E d2l

p
eh* l2hl* Ccav~l,l* !. ~19!

If the initial field is totally concentrated inside the cavit
that is the total density operator is initially given byr5r in
^ rext , with rext5u0&^0u being the vacuum state for all ex
ternal modes, we obtain, using Eq.~11! in Eq. ~18!,

CN
cav~l,l* ,t !5tr@rel f* (t)a0†e2l* f (t)a0#

5CN
cav@l f * ~ t !,l* f ~ t !,0#. ~20!
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This equation shows that the time evolution of the charac
istic function inside the cavity is equivalent to a change
scale on its parameters. Therefore, the time evolution of
normal-ordered product is given by

^a†man& t5 f * ~ t !mf ~ t !n^a†man&0

5eiv0(m2n)te2G(m1n)t/2^a†man&0 . ~21!

For the external modes, a more careful procedure
needed, since they are defined over a continuum. We
therefore to an operationally defined phase-space distr
tion, obtained through tomographic methods from homody
measurements of the outgoing field.

IV. THE WIGNER FUNCTION FOR THE FIELD OUTSIDE
THE CAVITY

We derive in this section the phase-space distribution
tained from homodyne measurements on the external fi
In doing so, one should take into account that any meas
ment deals not with a single frequency but with some f
quency band, defined both by the detectors and the field
ting them. We assume that the field which leaves the cav
resulting from the decay of the internal field, is homodyn
with an intense, classical pulse. The two fields are combi
in a beam splitter as shown in Fig. 1 and the two result
signals coming from the beam splitter, and detected by
tectorsD1 andD2 are subtracted. The result is proportion
to a quadrature of the quantum field. We consider here
anced homodyning (50% transmission of the beam splitt!,
photon flux-sensitive detectors that do not distinguish
photon energy, and a dc detection where the signals on
detector are integrated for a time long enough for the en
pulse to be detected@9#.

The external field operator in the Heisenberg picture
given by

Eext~x,t !5EA \V

pe0c
@b~V,t !1b†~V,t !#sin~Vx/c!dV,

FIG. 1. Homodyne scheme. The intracavity field leaks throu
the semitransparent mirror and is mixed with the local oscilla
field at the beam splitter. The signals detected atD1 andD2 are
subtracted.
3-4
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RECONSTRUCTION OF THE STATE OF THE . . . PHYSICAL REVIEW A 63 033813
while the pulse field of the local oscillator is taken as

EL~x,t !5EL
1~x,t !1EL

2~x,t !,

where EL
1(x,t) is the positive-frequency part of the loc

field,

EL
1~x,t !5E Ew~v!e2 iv(t2x/c)dv, ~22!

andEL
2(x,t)5EL

1(x,t)* . Ew(v) is analytic in the upper hal
plane so thatEL

1(x,t) is zero fort2x/c,0. We also assume
thatEw(v) has a peak, with widthg, at a frequencyvL close
to vcav, when its phase isw. For example, we may take it a
having a Lorentzian spectrum

E~v!5
1

2p

iE0e2 iw

~v2vL!1 ig/2
. ~23!

In this case we have

EL
1~x,t!5E0e2 ivL(t2x/c)2(g/2)t2 iwu~ t2x/c!.

Let l be the path length of both pulses to the detecto
The signal measured in each detector is proportional to
integral of the total normal-ordered intensityI ( l ,t)
5:uEL( l ,t)1Eext( l ,t)u2: over T, the time window of the de-
tector, assumed to be much larger than 1/G and 1/g. The
difference in the integrated intensities in detectorsD1 and
D2 is proportional to an average quadratureBw1Bw

† , defined
by

Bw5ZE
0

T

EL
2~0,t!dtE dVAVb~V,t!eiV l /c, ~24!

whereZ is chosen as a real and positive normalization c
stant such that@Bw ,Bw

† #51. Notice that in Eq.~24! there
appearseiV l /c, which corresponds to the part ofEext that
contributes to the detected fluxes. Substituting the value
b(V,t) given by Eq.~14! into Eq. ~24! we have

Bw5Fcav* a01E Fext* ~V8!b~V8,0!dVcav8 , ~25!

where

Fcav5ZE
l /c

T

dtEL
1~ l ,t !E dVAV f * ~V,t !sin~V l /c!,

~26!

and

Fext~V8!5ZE
l /c

T

dtEL
1~ l ,t !E dVAVh* ~V,V8,t !

3sin~V l /c!. ~27!

We takeT much larger than the inverse of the widths of bo
pulses, so that all their energy is absorbed by the detec
which allows us to safely extend the time integration fro
zero to infinity in Eqs.~26! and ~27!. We also approximate
03381
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AV'Av0 ~this amounts to replacing the intensity by th
photon flux@9,25#!. We get then

Fcav5
2AgGei (w2z)

A4D21~g1G!2
~28!

and

Fext~V!52 iA2p

G

D1
i

2
~g2G!

V2vL2 ig/2
Fcav, ~29!

whereD5vL2v0 andz5tan21(g1G)/2D.
At this point it is important to note that the measur

quadrature does not correspond to a single-frequency m
but to the operatorBw1Bw

† , which is a collective operato
involving modes with different frequencies. The direction
the quadrature depends on the relative phase between
local oscillator and the field which left the cavity, and th
Wigner function determined by the tomographic procedure
the one associated with the collective operatorsB[Bz and
B†[Bz

† . In our model this Wigner function is given by th
Fourier transform of the characteristic function,

Cext~l,l* !5e2ulu2/2tr$relB†
e2l* B%. ~30!

If the initial density matrix operatorr0 is a direct product

r05rcav,0̂ rext,0, ~31!

we have

Cext~l,l* !5e2ulu2/2tr$rcav,0e
lFcava0

†
e2l* Fcav* a0%

3tr$rext,0e
l*Fext~V8!b†~V8,0!dV8

3e2l* *Fext* (V8)b(V8,0)dV8%.

Furthermore, if the initial field is totally concentrated
the cavity, so that the initial state of the external field is t
vacuum, the trace over the external modes yields the iden
leaving us with the very simple formula

Cext~l,l* !5e(2ulu2/2)(12uFcavu
2)Ccav~lFcav,l* Fcav* ,0!,

~32!

which relates the symmetric characteristic functions cor
sponding to the external field and the initial field in the ca
ity.

The Wigner function determined by the tomographic p
cedure described above is given by the Fourier transform
Eq. ~32!

Wext~h,h* !5E eh* l2hl* e(2ulu2/2)(12uFcavu
2)

3Ccav~lFcav,l* Fcav* ,0!
d2l

p
, ~33!

which may also be written as
3-5
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Wext~h,h* !5E e[(h* /Fcav)z] 2[(h/Fcav* )z* ]

3es(uzu2/2)Ccav~z,z* !
d2z

puFcavu2
, ~34!

where

s512
1

uFcavu2
. ~35!

Cahill and Glauber@1# defined a generalized phase-spa
representation

W~a,a*, s!5E ea* z2az* es(uzu2/2)C~z,z* !
d2z

p
, ~36!

labeled by a continuous ordering parameters which can as-
sume any value in the complex plane. In the special ca
where s521,0,1, we recover the HusimiQ function, the
Wigner function, and the GlauberP function, respectively.
Knowledge of any of these representations over the ph
space gives a complete description of the field state.

Comparing Eqs.~36! and ~34! we have

Wext~aFcav* ,a* Fcav!5
1

uFcavu2
Wcav~a,a*, s!. ~37!

Equation~37! shows that, in principle, we may obtain com
plete information on the initial field inside the cavity from
measurements of the quadraturesB1B†, although what one
determines in this homodyne experiment is in general
phase-space functionWcav(a,a*, s), and not the usua
Wigner function. From Eqs.~28! and ~35! we see that
uFcavu<1 and that

s52
~g2G!214D2

4gG

is upper bounded by zero. Therefore the phase-space d
bution measured outside the cavity is usually smoother t
the Wigner function of the state originally inside the cavi
The smaller the detuning and the closer the widths of
local oscillator and the cavity mode, the closer one would
to the Wigner function of the internal field. The best result
obtained when the local oscillator field has the same
quency dependence as the cavity mode, which meansvL
5v0 andg5G. In this case,uFcavu is equal to one and the
measurement of the external Wigner function reproduces
actly the Wigner function of the initial state of the field in
side the cavity. Another interesting limit is obtained wh
D5g andg5G, in which cases521 and the measuremen
of the outside Wigner function reproduces exactly theQ
function of the initial state of the field inside the cavity.
this case the complete quantum information would still
there, but it would be harder to find, since the experimen
errors would play a more important role in view of th
smoothness of theQ function. The best possible choice,
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the sense of having maximum sensitivity to the quant
characteristics of the state, is thenuFcavu51. This result has a
simple physical interpretation: the best way to determine
outgoing field by homodyne detection is to probe it with
local oscillator field that reproduces exactly its mode sha
thus matching precisely the weights given to each freque
involved in the spread of the information contained in t
initial state. This behavior should be expected on the basi
the analysis of Ref.@9#, where it was shown that the releva
part of the field in pulsed quantum tomography was the o
mode-matched to the mode defined by the local oscilla
One should remark, however, that our aim here is quite
ferent from the one in Ref.@9#, where the authors were in
terested in analyzing the information which could be o
tained on a running field by using pulsed tomography. He
one is interested, along the lines of Ref.@22#, in relating the
information obtained on the field outside the cavity with t
phase-space distribution of the internal field. That is why
was actually necessary to solve the dynamical problem
Sec. III.

It would seem from the above relations that full inform
tion on the internal field is obtained even if the local osc
lator pulse does not match the outgoing field. The worst ca
s52`, corresponds to the two extreme cases of a sing
mode or a very narrow local oscillator field. However, t
above discussion has not taken into account the actual
cess of reconstructing the phase-space distribution of
field outside the cavity from homodyne measurements.
fact, the factoruFcavu2, which measures the matching b
tween the cavity mode and the local oscillator, plays here
role of a detection efficiencyh, so that the parameters may
be expressed ass5121/h @8,9#. The remarks made in Refs
@26,27# should then be applied to this case: as the param
s gets smaller, compensation of the ‘‘losses’’ gets more d
ficult, and may eventually become practically impossib
Quantum details become more and more smoothed out,
the retrieval of the original quantum information becom
harder. For example, ath51/2, corresponding tos521, we
get the HusimiQ function, from which we cannot retrieve in
practice the density matrix in the Fock basis due to the
vergence of statistical fluctuations of the corresponding m
trix elements@27#.

V. EXAMPLES

Figure 2 compares the Wigner functionWcav for an initial
catlike state of the field inside the cavity@15#,

uC&5
ua&1u2a&

A~212e22uau2!
, ~38!

with a53, with the Wigner functionWext corresponding to
the external field, for zero detuning (D50) andg5G or g
50.5G @Figs. 2~a! and 2~b!#, and also forD5g5G @Fig.
2~c!#, which corresponds to theQ function (s521). These
3-6
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figures clearly display the decrease in the fringe contrast
the width or the central frequency of the homodyning pu
become different from those of the measured field.

As a second example we consider the relation between
measurement of the squeezing@28# of the outside fieldB and
the squeezing of the initial field inside the cavity.

The squeezing in the quadratureXu
ext5(Beiu1B†e2 iu) of

the external field may be expressed through the parame

FIG. 2. Wigner function for the catlike state witha53 recon-
structed outside the cavity when~a! g5G andD50 ~in this case,
the Wigner function coincides with the original one!; ~b! g50.5G
andD50; ~c! g5G5D (Q function!.
03381
as
e

he

r

ku
ext5122DXu

ext,

where the varianceDXu5^Xu
2&2^Xu&

2 may be simply re-
lated to the symmetric characteristic functio
Cext(ulue2 iu,ulueiu) by

DXu
ext5

d2Cext~ ulue2 iu,ulueiu!

dulu2
2FdCext~ ulue2 iu,ulueiu!

dulu G2

,

~39!

calculated atulu50. Using Eq.~32! we obtain

ku
ext5uFcavu2ku1b

in , ~40!

whereFcav5uFcavueib, andku1b
in 511DXu1b

in is the squeez-
ing in the internal field quadratureXu1b

in 5(aei (u1b)

1a†e2 i (u1b)). Equation ~40! shows that the externa
squeezingku

ext associated to the quadratureXu
ext5(Beiu

1B†e2 iu) is proportional to the squeezingku1b
in in the

quadratureaei (u1b)1a†e2 i (u1b) of the initial internal field.
Also, ku

out<ku1b
in . Of course, we can always makeb50 by

suitably choosing the local field phasew.
Again, the best situation, for which there is no squeez

depletion, is reached whenD50 andg5G. One should note
that the above results coincide with those corresponding
the situation in which there is perfect mode matching bu
finite detector efficiencyh5uFcavu2, in agreement with the
discussion in@8,9#.

VI. CONCLUSION

We have shown, within the framework of a simple mod
that it is possible to retrieve complete information about
quantum state of a field that was originally inside a cavi
through a detailed analysis of a pulsed homodyne meas
ment. The Wigner function of the external field, defined
terms of collective field operators, corresponds to a gene
ized phase-space distribution for the original field in the c
ity. When the shape of the local-oscillator pulse coincid
with the shape of the emerging field, one obtains precis
the Wigner distribution for the original internal field. Othe
wise, smoother distributions are obtained. For equal wid
and a detuning equal to the common width, theQ function is
obtained. As examples we have discussed the measure
of a Schro¨dinger-cat-like state and of a squeezed field.

Previous work has derived relations between norm
ordered correlation functions of external~out! and internal
~in! operators@22#. Here we have considered the relatio
between the quantum states of the external and inte
fields. Crucial to our derivation was the operational defi
tion of the Wigner function of the external field in terms
collective operators, which arise naturally from the analy
3-7
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of the homodyning process. This standpoint allowed us
avoid the complications associated with the continuum
modes of this field. In fact, one could have defined the
ternal field Wigner function in terms of an infinite product
single-mode Wigner functions, which would be ill defined
the infinite-volume limit. We have shown, however, that t
relevant distribution which arises from a pulsed homody
measurement is much simpler, and remains well-define
the continuum limit.
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