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Three-level laser dynamics with squeezed light

K. Fesseha
Department of Physics, Addis Ababa University, P.O. Box 33761, Addis Ababa, Ethiopia
(Received 28 February 2000; published 13 February 001

We seek to analyze, employing stochastic differential equations, the squeezing and statistical properties of
the light generated by a three-level laser whose cavity contains a parametric amplifier. It is found that the effect
of the parametric amplifier is to increase the intracavity squeezing by a maximum of 50%.
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[. INTRODUCTION whereg is the coupling constant an@ is the annihilation
operator for the cavity mode. We take the initial state of a
It is well known that a degenerate parametric oscillator isthree-level atom to be
a typical source of squeezed light, with a maximum of 50%
intracavity noise reductiofL.—5]. It has also been established |#a(0))=C4(0)|a)+Cc(0)[c) 2
that a three-level laser under certain conditions generates - . .
: ) and hence the initial density operator for a single atom has
squeezed lightt6,7]. We define a three-level laser as a quan-
- . . . the form
tum optical system in which three-level atoms in a cascade
configuration and initially prepared in a coherent superposi- » 9y=,©a\(al+ o @a)(c|+ 0 ?|c)al + »?|c)(c
tion of the top and bottom levels are injected at a certain rate Pa(0)=pag|a)(a| + pacla)cl+ pealc) (@l +pecleXcl,
into a cavity coupled to a vacuum reservoir via a single-port
mirror. Thg squeezing in such a laser is due to the cohereryhere P§?=|Ca|2, P(aoc)ZCaCz , p(c%)=CcC§ . and pé%)
superposition of the top and bottom levels. =|C¢/?. It can be readily established that the equation of

It now appears that a highly squeezed light could be geneyolution of the density operator for the cavity mode has in
erated by a combination of these two quantum optical systhe linear approximation the forii9]
tems. In view of this, the main objective of this paper is to

analyze the squeezing and statistical properties of the light dp O/ matrn  ~ant aatn
generated by a three-level laser whose cavity contains a de- dat 2 Apya(2a’pa—paa’—aa'p)
generate parametric amplificsee Fig. L

Imposing the requirement that titenumber equations of +1(Ap 9+ k) (2apat—pata—a'ap)
evolution for the first- and second-order moments have the L A () ~at2y at2a  oataat
same forms as the corresponding operator equaf®hsve +3 Apac(pa’“+a“p—2apa’)

obtain stochastic differential equations, associated with the 1 0)/~a2, 825 _ 9874

normal ordering, for the dynamical variables of the cavity Tz Ap(ca)(pa +a%p—2apa), @

mode. The solutions of the resulting equations are then usggpare

to calculate the quadrature variance and the squeezing spec-

trum. Applying the same solutions, we also determine the A=2r 9% y? (5

antinormally ordered characteristic function with the aid of

which theQ function is obtained. Finally, th® function is s the linear gain coefficient.

used to calculate the mean photon number and the photon Moreover, with the pump mode treated classically, a de-

number distribution. generate parametric amplifier is describable in the interaction
picture by the Hamiltonian

Il. THE MASTER EQUATION lra
A three-level laser consists of a cavity into which three-
level atoms in a cascade configuration are injected at a con-
stant rate , and removed from the cavity after a certain time

7. We represent the top, middle, and bottom levelsaby|b),
and|c), respectively. In addition, we assume the cavity mode
to be at resonance with the two transitioja —|b) and
|b)—|c), with direct transition between levels) and|c) to

be dipole forbidden. The interaction of a three-level atom
with the cavity mode can be described in the interaction pic-
ture by the Hamiltonian

-y \b)

’
"

~ FIG. 1. A three-level laser with a degenerate parametric ampli-
H=ig[a'(|b)(al+|c)(b])—a([a)(b|+[b)(c)], (1) fier (OPA).
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H=3ie(a'?-2?), (6)

whereeg, considered to be real and constant, is proportional
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d
a<012(t)> = — u{a@®())+2e(a* () a(t))+2(a(t)f(1)),
(129

to the amplitude of the pump mode. The master equation

associated with this Hamiltonian has the form

p+a?p—pal?). ()

Now taking into account Eqg4) and(7), the master equa-
tion for the cavity mode of a three-level laser containing a

parametric amplifier can be written as
p+a'?p—par?)

+3 Api(2aTpa—paa’—aa'p)

+3 (AplY +x)(2apa’—pata—a'ap)
+3 AplY (pal?+al?p—2a'pa’)

+3 Apea(pa®+a%p—2apa). (8)

Ill. STOCHASTIC DIFFERENTIAL EQUATIONS

We next seek to obtain stochastic differential equations
for the cavity mode variables. To this end, applying ER).

we readily find

d
Fi(8=—1 w(@)+eah, 93

d A L 0
qrlamac)=—u(@(t)+2e(a'(ha(t) +e+Apl
(9b)
d
qi(a'ma)=—u@'(a)+e(@(n))+=(@"w)
+Ap, (99
in which

n=A(pg =Pl + . (9d)

On the other hand, thenumber equation corresponding

to Eqg. (9a) can be written as

da

a=—%,u,a+8a*+f(t), (10

wheref(t) is a noise force, the properties of which remain to
be determined. We see that E@a and the expectation

value of Eq.(10) will have identical forms if
(f(t))=0. (11

In addition, it can be easily verified using Ed.0) that

d
a(a* (Da(t))=—pu(a*(t)a(t))+ 8<a2(t)>+ e{a* 2('[))

Ha(Of* (1) + (™ (H(1)).

We note that Eqs(9b) and (123 as well as Eqs(9¢) and
(12b) will have the same forms if

(a(Of(1)=3 (e +ApY),

(a(O)F* () +(a* (OF(1)=ApY.

A formal solution of Eq.(10) can be written as

(12b

(133

(13b

t !
a(t)=a(0)e” #2+ f e MU g o* (1) + f(1")]dt’.
0

(14)
We then see that
(a(t)f(1)=(a(0)f(t))e "
t ’
+f e MU g (a* (1) (1))
0
+(f(O)f(t"))]dt". (15)

Assuming that the noise fordeat timet does not affect the
cavity mode variables at earlier times and taking into account
Eqg. (1339, we have

fte*#“*t')’2<f(t)f(t’)>dt’=%(8+AP§%))- (16
0

One can then write on the basis of this result

(FOF(t"))=(e+Apl2) d(t—t'). (173

It can also be established in a similar manner that
(F*()f(t))=ApQs(t—t"). (17b

It is worth mentioning that Eq$17a and(17b) describe the
correlation properties of the noise foré@) associated with
the normal ordering.

Now introducing a new variable defined by

as(t)=a*(t)*a(t), (18
one easily gets with the aid of E¢LO) that

da+
—=—INsa.+ (L),

at (199

where

(19b)

>
+
Il
RS
+1
N
)
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The solution of Eq(199 can be written as (as()F*(1))=L[e+A(p D+ pO], (299
t

ai(t)= ai(o)e—)\;t/2+f e_)\j'(t_tl)lz[f*(t,)i f(t')]dt,. (ai(t)f(t)> 3 [Ap(0)+(8+Ap(0))]. (ng)
0

(200 Therefore, in view of this result, E¢28) can be rewritten as

It then follows that
dt<a+(t)>——>\ (2 () +2e+A(p Y+ pQ+2p0).

a(t)=A(t)a(0)+B(t)a* (0)+F(t), (21) Pea 2
(30)
in which
With the cavity mode initially in a vacuum state, the solution
A(t)=3 (e -2+ 1), (228 of this equation has the form
B(1)=3 (e - 12—e M1?), (22b) +APQ+p 0+ 2,0)
<a§(t)>— Pac _Pea [1—e 1.
and A
(3D
F()=F.()+F_(1), (233 : :
It proves to be more convenient to introduce a new pa-
with rameter defined by
t ’ 1_ n
F.(t)=% f e MO E ()2 £* (1) ]dt’.  (23b) pgg;:T, (32a
0
IV. QUADRATURE FLUCTUATIONS so that in view of the fact that
We now proceed to calculate the quadrature variance and p 0+ pP=1 (32b)
squeezing spectrum for the cavity mode under consideration.
and
A. Quadrature variance
| Q PSP =piapee (329
The variance of the quadrature operators
a,-a'+4a (243 one easily finds
1+
and e ="5— (339
a_=i(a'-a (24b
. o . . ~and
is expressible in terms afnumber variables associated with
the normal ordering as IpQ|=1%(1— 7?2 (33b
Aa2:=1i<ai(t),ai(t)>, (25 Upon setting
in which a.(t) is given by Eq.(18). We consider here the Pgoc)— |p(0)|ei9 (34)

case for which the cavity mode is initially in a vacuum state.
Hence on account of Eq20) along with Eq.(11), we see

that and taking into account Eq19b) along with Eq.(9d), ex-

pression(31) can thus be put in the form

{a:(1))=0 (28 , . 2e+Al(1- 7)) ¥2c0sh= (1- )]
and expressiofi25) takes the form ax(1)= An+k¥F2¢
AaZ =1+(d?(1)). (27) X[1—e (Artwszeny, (35
Furthermore, one easily gets with the aid of EtPa that Now a combination of Eqg27) and(39) yields
%mi(t)):—xﬂm () +2(as (D) F* (1)) Aa%=1:28+A[(1;’:ff;°2586i(1_”)]
+2(a.(t)f(1)). (28 X[1—e~ (Artr=2e)ty (36)

On account of Eq(18) along with Eq.(13), we note that so that at steady state
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0.55

Sw)=1+2Re| (a®),a(t+)ee*dr,
O (393
where the subscript “ss” stands for steady state and
a2'(t) = agu{t) £ aoult). (390

We note that for a cavity mode coupled to a vacuum reser-
voir, the output and intracavity variables are related by

()= ka.(1). (40)

Therefore, in view of Eqs.26) and(40), the squeezing spec-
trum can be put in the form

St w) =12« Refm<ai<t)ai<t+r>>sse‘“"d7_
0

FIG. 2. Plots of the quadrature variand@? vs 7 [Eq. (38b)] (41)
for k=0.8, =0, and for different values of the linear gain coeffi-
cient. Furthermore, the solution of the expectation value of Eq.

(193 can be written as
2

Kk +A[L1+(1- 772 cosd]

+ An+k—2¢ (379 (a.(t+ T)>:<ai(t)>e_)\17/21 (42
and so that on account of the quantum regression theorem, we
have
k+A[1—(1— %) Y?cosd
a= == ] (37b) (a-(Dax(t+7)=(a4(t))e "+ (43)

- An+k+2¢e

Now with the aid of Eq.(43) together with Eq.(35), the

Since no well-behaved solution of E¢L9a exists for squeezing spectrum is found to be

(An+k)<2e, we interpretAn+k=2¢ as the threshold

cond.ition._Hence the solution of this equation given by Eq. t 2xe+ kA[(1— 7?)Y2cos= (1— 7)]

(20) is valid for 2e<(A#n+ k). On the other hand, we note SHMw)=1+ > — 5

from Eq. (6) that ¢ is the only parameter representing the 0+ [z (An+k+2e)]

parametric amplifier. And inspection of E@7b) shows that (44)

the effect of this parameter is to decrease the value of th
quadrature variancAa?. In addition, we see that expres-
sions(3739 and(37b) take at threshold the form w2+ K2+ kA[1+(1— ?)cos6]

As? e (389 S w)= 2 (459

Ft is easy to see that at threshold

and and

w?+A29?+ kA[1— (1— 7?)cosb]

,  K+A[1-(1-7*)"?cosd]
a w’+[An+k]?

a- 2(An+ k)

(380) SM(w)= . (45b)

Now upon settinge=0 in Eq. (37b and comparing the Figure 3 shows that there is perfect squeezing at zero fre-
resulting expression with Eq38b), we observe that the ef- quency for any value of and for »=0.
fect of the parametric amplifier is to increase the intracavity
squeezing by a maximum of 50%. Moreover, Fig. 2 clearly V. PHOTON STATISTICS
shows that the degree of squeezing increases with the linear _ ) ) ]
gain coefficient and it appears that almost perfect squeezing We finally wish to calculate, using th@ function, the

can be achieved for sufficiently large values of the linearM€an photon number and the photon number distribution for
gain coefficient. the cavity mode. According to the derivation presented in the

Appendix, theQ function for the cavity mode has the form

B. Squeezing spectrum [uz_vv*]l/z

The squeezing spectrum of a single-mode light is express- Q(a*,a,t)= L exg—ua*a
ible in terms ofc-number variables associated with the nor-
mal ordering as +(va?+v*a*?)/2], (46)

033811-4



THREE-LEVEL LASER DYNAMICS WITH SQUEEZED LIGHT PHYSICAL REVIEW A63 033811

2e +A[1— n+(1— 5?)Y?cos6]
A4(An+k—2¢)

(a'a)=

X [1_ e—(A77+ K—25)t]

2e+Al p— 1+ (1— 7*)Y2cosb]
A4(Anp+k+2¢)

X[l_e—(A7]+K+28)t]. (51)

It is not hard to observe that the parametric amplifier con-

tributes significantly to the mean photon number when the

system is operating particularly near threshold.
Furthermore, the photon number distribution for a single-

L n L L L ¢ L L L
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1

1 mode light is expressible in terms of tiifunction as[4,5]
FIG. 3. Plots of the squeezing spectr@i(0) vs 5 [Eq. (45b)] s g
for k=0.8, =0, and for different values of the linear gain coeffi- P(n,t)=— —+——=[Q(a* ,a,t)e“* Ve ar—0- (52)
cient. n! da™"da
in which Thus with the aid of Eqs(46) and(52), the photon number
distribution for the cavity mode can be written in the form
a
U= 75, (473 1 §2n
a“—hbb* T2 kL2 _ *
P(n,t) o [U—vv™] o I exd(1-u)a*«a
b
V= e (47b +(v*a*2+va?)2] px— g-o- (53)
with Now expanding the exponential functions in power series,
we have
2e+A[1— 9+ (1— 7*)Y2cos6
a=1+ &€ [4 : ( Z ) ][1_e7(A7I+K—25)t] 1 ) o (1_u)kv*lvm &Zn
(Antr—2e) P(n)=rlui=vo™] % 20Kl da "ga”
2e+ Al p—1+(1— 7*)Y2cos6]
_ _ A (Aptk+2e)t X *\k+2l _k+2m .
4(A77+K+28) [1 € ]1 [(a ) a ]a =a=01 (54)

(483 so that on carrying out the differentiation and applying the
condition = a* =0, there follows
28 +A[1- 7+ (1- ") cosd]

4(An+Kk—2¢)

[1_6—(A77+ K—ZS)t] 1
P(n,t)= —[u?—vo* 12>
n: kIm

_ L 2\12
2e +A[n—1+(1—7%n%) COSG][l_e_(An+K+2€)t]

(1—wko*'v™(k+21)! (k+2m)!

A4(An+ k+2¢) %
Mt mi (k421 —n)! (k+2m—n)!
iA(1— n?)V2sing ) 27 mE (k+ 21 —n)! (k+2m—n)
[1—e (A7t (48b)
2(Anp+k) X S+ 21,nOk+2mn - (59
The mean photon number can be written employingQhe Finally, on account of the result that=1 andk=n—2I, the
function (46) as photon number distribution can be written as
1 d [n] =2l %y
ATa\— _ T2, k02 2 ik (1-u) (vv™)
(@a)=-lu-vo?] dufdaexq vata PO =[u* =00 12 0tz (56)

+(v*a*?+va?)/2]-1, 49
v a vas)/2] “9) where[n]=n/2 for evenn and[n]=(n—1)/2 for oddn.

so that on performing the integration, there follows Figure 4 indicates that the probability of finding an even
number of photons is greater than the probability of finding

<a*a>= I 1/21 1 1’2_1 (50 an odd number of phc_Jtons, w_hether the light is _produce_z(_j by
duluZ—vo* ' a three-level laser with or without a parametric amplifier.

This is because the photons are always generated in pairs and
Therefore, carrying out the differentiation and taking intothe existence of some finite probability to find an odd num-
account Eq(47) along with Eq.(48a, one readily obtains  ber of photons is due to damping of the cavity mode. We

033811-5



K. FESSEHA PHYSICAL REVIEW A 63 033811

0.6 7 where the antinormally ordered characteristic function
1 ¢(z*,z,t) is defined in the Heisenberg picture by

(25, 2,)=Tr(p(0)e~ 7 aVegzd" V), (A2)

044 :
Applying the identity

P(n)

e eB=eBefelA Bl (A3)

the expression for the characteristic function can be written
in terms of c-number variables associated with the normal

ordering as
¢(z*,z,t)=e*2*z(exp(2a*—z* a)), (A4)
n so that employing Eq(21) and assuming thak(0) is inde-

endent of the noise forde(t), we get
FIG. 4. Plots of the steady-state photon number distributionp (1) 9

P(n) for A=25, »=0.2,x=0.8,6=0, and fore =0 (dotted curve %
and 2.5(solid curve. d(z*,z,t)=e" % ¥exd (zA—z*B)a*(0)

+(zB-z*A)a(0)])
also see that the probability of finding photons, with
n<4, is smaller for the light generated by the three-level X(exp(zF* —z*F)). (A5)
laser with a parametric amplifier than for that produced with-

out a parametric amplifier. And the opposite of this holds forConsidering the cavity mode to be initially in a vacuum state,
n=5. we see that

(exd (zA—z*B)a*(0)+(zB—z*A)a(0)])=1 (A6)
VI. CONCLUSION

We have obtained stochastic differential equations, by deand hence

manding that thec-number equations of evolution for the . ey R
first- and second-order moments have the same forms as the P(z*,zt)=e " exp(zF* —2*F)). (A7)
corresponding operator equations for the cavity mode of
three-level laser with a parametric amplifier. Applying the
solutions of these equations, we have calculated the quadr
ture variance and the squeezing spectrum. We have also ob- "
tained, with the aid of the same solutions, the mean photon b(z*.zt)=e " exp 5 ([zF* —2"F]?)).  (A8)
number and the photon number distribution.

We have shown that the effect of the parametric amplifiedt then follows that
is to increase the intracavity squeezing by a maximum of
50%. We have also seen that the amount of squeezing in-¢(z*,z,t)=e T Zexp( L ([22F* 2+ 2*2F2—27* ZF*F])).
creases with the linear gain coefficiehtand almost perfect (A9)
squeezing can be obtained for substantially large valués of
Moreover, the squeezing spectrum of the output light indi- Furthermore, from Eq(23) one easily gets
cates that perfect squeezing can be achieved at zero fre-

%‘)n account of the fact thdt is a Gaussian random variable,
gne can express E¢A7) in the form[10]

quency for any value of and for »=0. Since the presence (FA=(F2)+(F2)+2(F F_), (A10)
of the parametric amplifier also leads to a significant increase
in the mean photon number, the system under consideration (F*F)=(F2)—(F?). (Al11)

can produce a bright and highly squeezed light.
Applying Eg. (23b along with Eq.(17), it can be easily
APPENDIX: THE Q FUNCTION established that

In this appendix, we calculate ti@ function for the cav- 26+ AP+ p+2p2)

. ) ) o ; <|:2>= [1-e 1],
ity mode under consideration. Tl function is expressible + AN
in the form (A12)
1 2e+A( 0) (0) 2 )
Q(a*,a,t)= —zf d’z ¢(z* ,z,t)exp(z* a—za*), F2)= Pac Pas [ A,
T 4)\+
(A1) (A13)
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A(p D —pl) 2s+A[1— 7+ (1— 7?)Y?cosh)]

<F+F,>_T[1—e‘ﬂt], (A14) a=1+ A(Ap+K—28)

X [1_ e—(A77+ K—2£)t]

so that in view of these results, there follows o 12
2e +A[p—1+(1— 5°)*“cosd]

, 28+A(P(O)+pc )+2p(0)) N 4(An+ k+2¢)
<F > AN [1_9 *] X[l_e—(An+K+25)t], (A18)
©) 4 50 _ 5,0 2e +A[1— n+(1— p»)Y%cosh
+
2e+A(pae 2paa )[1—67)\#] b= [ y An ~ 727 ][ e*(ATIJrK*Zs)t]
4x+ (Ay+x—2¢)
2\1/2
A(p®—pl0) ) . 2e+ Al n—1+(1—5°)~“cosb] (At 260t
+T[1—e “, (A15) A(An+r+2¢) [1-e ]
iA(L—7%)Y?sin6
o o A=) [1—e~(Ar+0t), (A19)
28+A(p( )+ p! )+2p( )) ot 2(An+tk)
F*F)= l1-e -
< )= 4L [ 1 Finally, introducing Eq(A17) into Eq.(Al) and carrying out
the integration, the&) function for the cavity mode is found
28+A(P(O) (O) P(;;)) to be g « Y
ax [1=em)
+ . oo [UZ_UU*]l/Z .
(A16) Q(a™,a,t)= p- exd —ua* «
2 * x2
Now on account of EqSA15) and(A16), the characteristic +vattvtatiz], (A20)
function (A9) can be written as in which
a
o(z* ,z,t)=exd —az* z+ (bZ+b*z*?)/2], (A17) U= 2 pp (A21)
where the coefficients are expressible in terms of the param- _ b
V= g (A22)
eter  as a“—bb
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