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Three-level laser dynamics with squeezed light

K. Fesseha
Department of Physics, Addis Ababa University, P.O. Box 33761, Addis Ababa, Ethiopia

~Received 28 February 2000; published 13 February 2001!

We seek to analyze, employing stochastic differential equations, the squeezing and statistical properties of
the light generated by a three-level laser whose cavity contains a parametric amplifier. It is found that the effect
of the parametric amplifier is to increase the intracavity squeezing by a maximum of 50%.
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I. INTRODUCTION

It is well known that a degenerate parametric oscillato
a typical source of squeezed light, with a maximum of 50
intracavity noise reduction@1–5#. It has also been establishe
that a three-level laser under certain conditions gener
squeezed light@6,7#. We define a three-level laser as a qua
tum optical system in which three-level atoms in a casc
configuration and initially prepared in a coherent superpo
tion of the top and bottom levels are injected at a certain
into a cavity coupled to a vacuum reservoir via a single-p
mirror. The squeezing in such a laser is due to the cohe
superposition of the top and bottom levels.

It now appears that a highly squeezed light could be g
erated by a combination of these two quantum optical s
tems. In view of this, the main objective of this paper is
analyze the squeezing and statistical properties of the l
generated by a three-level laser whose cavity contains a
generate parametric amplifier~see Fig. 1!.

Imposing the requirement that thec-number equations o
evolution for the first- and second-order moments have
same forms as the corresponding operator equations@8#, we
obtain stochastic differential equations, associated with
normal ordering, for the dynamical variables of the cav
mode. The solutions of the resulting equations are then u
to calculate the quadrature variance and the squeezing s
trum. Applying the same solutions, we also determine
antinormally ordered characteristic function with the aid
which theQ function is obtained. Finally, theQ function is
used to calculate the mean photon number and the ph
number distribution.

II. THE MASTER EQUATION

A three-level laser consists of a cavity into which thre
level atoms in a cascade configuration are injected at a
stant rater a and removed from the cavity after a certain tim
t. We represent the top, middle, and bottom levels byua&, ub&,
anduc&, respectively. In addition, we assume the cavity mo
to be at resonance with the two transitionsua&→ub& and
ub&→uc&, with direct transition between levelsua& and uc& to
be dipole forbidden. The interaction of a three-level ato
with the cavity mode can be described in the interaction p
ture by the Hamiltonian

Ĥ5 ig@ â†~ ub&^au1uc&^bu!2â~ ua&^bu1ub&^cu!#, ~1!
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where g is the coupling constant andâ is the annihilation
operator for the cavity mode. We take the initial state o
three-level atom to be

ucA~0!&5Ca~0!ua&1Cc~0!uc& ~2!

and hence the initial density operator for a single atom
the form

r̂A~0!5raa
~0!ua&^au1rac

~0!ua&^cu1rca
~0!uc&^au1rcc

~0!uc&^cu,
~3!

where raa
(0)5uCau2, rac

(0)5CaCc* , rca
(0)5CcCa* , and rcc

(0)

5uCcu2. It can be readily established that the equation
evolution of the density operator for the cavity mode has
the linear approximation the form@9#

dr̂

dt
5 1

2 Araa
~0!~2â†r̂â2 r̂ââ†2ââ†r̂ !

1 1
2 ~Arcc

~0!1k!~2âr̂â†2 r̂â†â2â†âr̂ !

1 1
2 Arac

~0!~ r̂â†21â†2r̂22â†r̂â†!

1 1
2 Arca

~0!~ r̂â21â2r̂22âr̂â!, ~4!

where

A52r ag2/g2 ~5!

is the linear gain coefficient.
Moreover, with the pump mode treated classically, a

generate parametric amplifier is describable in the interac
picture by the Hamiltonian

FIG. 1. A three-level laser with a degenerate parametric am
fier ~DPA!.
©2001 The American Physical Society11-1
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K. FESSEHA PHYSICAL REVIEW A 63 033811
Ĥ5 1
2 i«~ â†22â2!, ~6!

where«, considered to be real and constant, is proportio
to the amplitude of the pump mode. The master equa
associated with this Hamiltonian has the form

dr̂

dt
5 1

2 «~r̂â22â2r̂1â†2r̂2 r̂â†2!. ~7!

Now taking into account Eqs.~4! and ~7!, the master equa
tion for the cavity mode of a three-level laser containing
parametric amplifier can be written as

dr̂

dt
5 1

2 «~r̂â22â2r̂1â†2r̂2 r̂â†2!

1 1
2 Araa

~0!~2â†r̂â2 r̂ââ†2ââ†r̂ !

1 1
2 ~Arcc

~0!1k!~2âr̂â†2 r̂â†â2â†âr̂ !

1 1
2 Arac

~0!~ r̂â†21â†2r̂22â†r̂â†!

1 1
2 Arca

~0!~ r̂â21â2r̂22âr̂â!. ~8!

III. STOCHASTIC DIFFERENTIAL EQUATIONS

We next seek to obtain stochastic differential equatio
for the cavity mode variables. To this end, applying Eq.~8!
we readily find

d

dt
^â&52 1

2 m^â&1«^â†&, ~9a!

d

dt
^â~ t !â~ t !&52m^â2~ t !&12«^â†~ t !â~ t !&1«1Arac

~0! ,

~9b!

d

dt
^â†~ t !â~ t !&52m^â†~ t !â~ t !&1«^â2~ t !&1«^â†2~ t !&

1Araa
~0! , ~9c!

in which

m5A~rcc
~0!2raa

~0!!1k. ~9d!

On the other hand, thec-number equation correspondin
to Eq. ~9a! can be written as

da

dt
52 1

2 ma1«a* 1 f ~ t !, ~10!

wheref (t) is a noise force, the properties of which remain
be determined. We see that Eq.~9a! and the expectation
value of Eq.~10! will have identical forms if

^ f ~ t !&50. ~11!

In addition, it can be easily verified using Eq.~10! that
03381
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dt
^a2~ t !&52m^a2~ t !&12«^a* ~ t !a~ t !&12^a~ t ! f ~ t !&,

~12a!

d

dt
^a* ~ t !a~ t !&52m^a* ~ t !a~ t !&1«^a2~ t !&1«^a* 2~ t !&

1^a~ t ! f * ~ t !&1^a* ~ t ! f ~ t !&. ~12b!

We note that Eqs.~9b! and ~12a! as well as Eqs.~9c! and
~12b! will have the same forms if

^a~ t ! f ~ t !&5 1
2 ~«1Arac

~0!!, ~13a!

^a~ t ! f * ~ t !&1^a* ~ t ! f ~ t !&5Araa
~0! . ~13b!

A formal solution of Eq.~10! can be written as

a~ t !5a~0!e2mt/21E
0

t

e2m~ t2t8!/2@«a* ~ t8!1 f ~ t8!#dt8.

~14!

We then see that

^a~ t ! f ~ t !&5^a~0! f ~ t !&e2mt/2

1E
0

t

e2m~ t2t8!/2@«^a* ~ t8! f ~ t !&

1^ f ~ t ! f ~ t8!&#dt8. ~15!

Assuming that the noise forcef at time t does not affect the
cavity mode variables at earlier times and taking into acco
Eq. ~13a!, we have

E
0

t

e2m~ t2t8!/2^ f ~ t ! f ~ t8!&dt85 1
2 ~«1Arac

~0!!. ~16!

One can then write on the basis of this result

^ f ~ t ! f ~ t8!&5~«1Arac
~0!!d~ t2t8!. ~17a!

It can also be established in a similar manner that

^ f * ~ t ! f ~ t8!&5Araa
~0!d~ t2t8!. ~17b!

It is worth mentioning that Eqs.~17a! and~17b! describe the
correlation properties of the noise forcef (t) associated with
the normal ordering.

Now introducing a new variable defined by

a6~ t !5a* ~ t !6a~ t !, ~18!

one easily gets with the aid of Eq.~10! that

da6

dt
52 1

2 l7a61 f * ~ t !6 f ~ t !, ~19a!

where

l75m72«. ~19b!
1-2
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The solution of Eq.~19a! can be written as

a6~ t !5a6~0!e2l7t/21E
0

t

e2l7~ t2t8!/2@ f * ~ t8!6 f ~ t8!#dt8.

~20!

It then follows that

a~ t !5A~ t !a~0!1B~ t !a* ~0!1F~ t !, ~21!

in which

A~ t !5 1
2 ~e2l2t/21e2l1t/2!, ~22a!

B~ t !5 1
2 ~e2l2t/22e2l1t/2!, ~22b!

and

F~ t !5F1~ t !1F2~ t !, ~23a!

with

F6~ t !5 1
2 E

0

t

e2l7~ t2t8!/2@ f ~ t8!6 f * ~ t8!#dt8. ~23b!

IV. QUADRATURE FLUCTUATIONS

We now proceed to calculate the quadrature variance
squeezing spectrum for the cavity mode under considera

A. Quadrature variance

The variance of the quadrature operators

â15â†1â ~24a!

and

â25 i ~ â†2â! ~24b!

is expressible in terms ofc-number variables associated wi
the normal ordering as

Da6
2 516^a6~ t !,a6~ t !&, ~25!

in which a6(t) is given by Eq.~18!. We consider here the
case for which the cavity mode is initially in a vacuum sta
Hence on account of Eq.~20! along with Eq.~11!, we see
that

^a6~ t !&50 ~26!

and expression~25! takes the form

Da6
2 516^a6

2 ~ t !&. ~27!

Furthermore, one easily gets with the aid of Eq.~19a! that

d

dt
^a6

2 ~ t !&52l7^a6
2 ~ t !&12^a6~ t ! f * ~ t !&

62^a6~ t ! f ~ t !&. ~28!

On account of Eq.~18! along with Eq.~13!, we note that
03381
nd
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^a6~ t ! f * ~ t !&5 1
2 @«1A~rca

~0!6raa
~0!!#, ~29a!

^a6~ t ! f ~ t !&5 1
2 @Araa

~0!6~«1Arac
~0!!#. ~29b!

Therefore, in view of this result, Eq.~28! can be rewritten as

d

dt
^a6

2 ~ t !&52l7^a6
2 ~ t !&12«1A~rac

~0!1rca
~0!62raa

~0!!.

~30!

With the cavity mode initially in a vacuum state, the solutio
of this equation has the form

^a6
2 ~ t !&5

2«1A~rac
~0!1rca

~0!62raa
~0!!

l7
@12e2l7t#.

~31!

It proves to be more convenient to introduce a new
rameter defined by

raa
~0!5

12h

2
, ~32a!

so that in view of the fact that

raa
~0!1rcc

~0!51 ~32b!

and

urac
~0!u25raa

~0!rcc
~0! , ~32c!

one easily finds

rcc
~0!5

11h

2
~33a!

and

urac
~0!u5 1

2 ~12h2!1/2. ~33b!

Upon setting

rac
~0!5urac

~0!ueiu ~34!

and taking into account Eq.~19b! along with Eq.~9d!, ex-
pression~31! can thus be put in the form

^a6
2 ~ t !&5

2«1A@~12h2!1/2cosu6~12h!#

Ah1k72«

3@12e2~Ah1k72«!t#. ~35!

Now a combination of Eqs.~27! and ~35! yields

Da6
2 516

2«1A@~12h2!1/2cosu6~12h!#

Ah1k72«

3@12e2~Ah1k72«!t#, ~36!

so that at steady state
1-3
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Da1
2 5

k1A@11~12h2!1/2cosu#

Ah1k22«
~37a!

and

Da2
2 5

k1A@12~12h2!1/2cosu#

Ah1k12«
. ~37b!

Since no well-behaved solution of Eq.~19a! exists for
(Ah1k),2«, we interpretAh1k52« as the threshold
condition. Hence the solution of this equation given by E
~20! is valid for 2«,(Ah1k). On the other hand, we not
from Eq. ~6! that « is the only parameter representing t
parametric amplifier. And inspection of Eq.~37b! shows that
the effect of this parameter is to decrease the value of
quadrature varianceDa2

2 . In addition, we see that expres
sions~37a! and ~37b! take at threshold the form

Da1
2 →` ~38a!

and

Da2
2 5

k1A@12~12h2!1/2cosu#

2~Ah1k!
. ~38b!

Now upon setting«50 in Eq. ~37b! and comparing the
resulting expression with Eq.~38b!, we observe that the ef
fect of the parametric amplifier is to increase the intracav
squeezing by a maximum of 50%. Moreover, Fig. 2 clea
shows that the degree of squeezing increases with the li
gain coefficient and it appears that almost perfect squee
can be achieved for sufficiently large values of the line
gain coefficient.

B. Squeezing spectrum

The squeezing spectrum of a single-mode light is expre
ible in terms ofc-number variables associated with the no
mal ordering as

FIG. 2. Plots of the quadrature varianceDa2
2 vs h @Eq. ~38b!#

for k50.8, u50, and for different values of the linear gain coef
cient.
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S6
out~v!5162 ReE

0

`

^a6
out~ t !,a6

out~ t1t!&sse
ivtdt,

~39a!

where the subscript ‘‘ss’’ stands for steady state and

a6
out~ t !5aout* ~ t !6aout~ t !. ~39b!

We note that for a cavity mode coupled to a vacuum res
voir, the output and intracavity variables are related by

a6
out~ t !5Aka6~ t !. ~40!

Therefore, in view of Eqs.~26! and~40!, the squeezing spec
trum can be put in the form

S6
out~v!5162k ReE

0

`

^a6~ t !a6~ t1t!&sse
ivtdt.

~41!

Furthermore, the solution of the expectation value of E
~19a! can be written as

^a6~ t1t!&5^a6~ t !&e2l7t/2, ~42!

so that on account of the quantum regression theorem,
have

^a6~ t !a6~ t1t!&5^a6
2 ~ t !&e2l7t/2. ~43!

Now with the aid of Eq.~43! together with Eq.~35!, the
squeezing spectrum is found to be

S6
out~v!516

2k«1kA@~12h2!1/2cosu6~12h!#

v21@ 1
2 ~Ah1k72«!#2

.

~44!

It is easy to see that at threshold

S1
out~v!5

v21k21kA@11~12h2!cosu#

v2 ~45a!

and

S2
out~v!5

v21A2h21kA@12~12h2!cosu#

v21@Ah1k#2 . ~45b!

Figure 3 shows that there is perfect squeezing at zero
quency for any value ofA and forh50.

V. PHOTON STATISTICS

We finally wish to calculate, using theQ function, the
mean photon number and the photon number distribution
the cavity mode. According to the derivation presented in
Appendix, theQ function for the cavity mode has the form

Q~a* ,a,t !5
@u22vv* #1/2

p
exp@2ua* a

1~va21v* a* 2!/2#, ~46!
1-4
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THREE-LEVEL LASER DYNAMICS WITH SQUEEZED LIGHT PHYSICAL REVIEW A63 033811
in which

u5
a

a22bb*
, ~47a!

v5
b

a22bb*
, ~47b!

with

a511
2«1A@12h1~12h2!1/2cosu#

4~Ah1k22«!
@12e2~Ah1k22«!t#

2
2«1A@h211~12h2!1/2cosu#

4~Ah1k12«!
@12e2~Ah1k12«!t#,

~48a!

b5
2«1A@12h1~12h2!1/2cosu#

4~Ah1k22«!
@12e2~Ah1k22«!t#

1
2«1A@h211~12h2!1/2cosu#

4~Ah1k12«!
@12e2~Ah1k12«!t#

1
iA~12h2!1/2sinu

2~Ah1k!
@12e2~Ah1k!t#. ~48b!

The mean photon number can be written employing thQ
function ~46! as

^â†â&52
1

p
@u22vv* #1/2

d

du E d2a exp@2ua* a

1~v* a* 21va2!/2#21, ~49!

so that on performing the integration, there follows

^â†â&52@u22vv* #1/2
d

du F 1

u22vv* G1/2

21. ~50!

Therefore, carrying out the differentiation and taking in
account Eq.~47! along with Eq.~48a!, one readily obtains

FIG. 3. Plots of the squeezing spectrumS2
out(0) vsh @Eq. ~45b!#

for k50.8, u50, and for different values of the linear gain coef
cient.
03381
^â†â&5
2«1A@12h1~12h2!1/2cosu#

4~Ah1k22«!

3@12e2~Ah1k22«!t#

2
2«1A@h211~12h2!1/2cosu#

4~Ah1k12«!

3@12e2~Ah1k12«!t#. ~51!

It is not hard to observe that the parametric amplifier co
tributes significantly to the mean photon number when
system is operating particularly near threshold.

Furthermore, the photon number distribution for a sing
mode light is expressible in terms of theQ function as@4,5#

P~n,t !5
p

n!

]2n

]a* n]an @Q~a* ,a,t !ea* a#a5a* 50 . ~52!

Thus with the aid of Eqs.~46! and ~52!, the photon number
distribution for the cavity mode can be written in the form

P~n,t !5
1

n!
@u22vv* #1/2

]2n

]a* n]an exp@~12u!a* a

1~v* a* 21va2!/2#a* 5a50 . ~53!

Now expanding the exponential functions in power seri
we have

P~n,t !5
1

n!
@u22vv* #1/2(

klm

~12u!kv* lvm

2l 1mk! l !m!

]2n

]a* n]an

3@~a* !k12lak12m#a* 5a50 , ~54!

so that on carrying out the differentiation and applying t
conditiona5a* 50, there follows

P~n,t !5
1

n!
@u22vv* #1/2(

klm

3
~12u!kv* lvm~k12l !! ~k12m!!

2l 1mk! l !m! ~k12l 2n!! ~k12m2n!!

3dk12l ,ndk12m,n . ~55!

Finally, on account of the result thatm5 l andk5n22l , the
photon number distribution can be written as

P~n,t !5@u22vv* #1/2(
l 50

@n#

n!
~12u!n22l~vv* ! l

22l l ! 2~n22l !!
, ~56!

where@n#5n/2 for evenn and @n#5(n21)/2 for oddn.
Figure 4 indicates that the probability of finding an ev

number of photons is greater than the probability of findi
an odd number of photons, whether the light is produced
a three-level laser with or without a parametric amplifie
This is because the photons are always generated in pairs
the existence of some finite probability to find an odd nu
ber of photons is due to damping of the cavity mode. W
1-5
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also see that the probability of findingn photons, with
n<4, is smaller for the light generated by the three-le
laser with a parametric amplifier than for that produced wi
out a parametric amplifier. And the opposite of this holds
n>5.

VI. CONCLUSION

We have obtained stochastic differential equations, by
manding that thec-number equations of evolution for th
first- and second-order moments have the same forms a
corresponding operator equations for the cavity mode o
three-level laser with a parametric amplifier. Applying t
solutions of these equations, we have calculated the qua
ture variance and the squeezing spectrum. We have also
tained, with the aid of the same solutions, the mean pho
number and the photon number distribution.

We have shown that the effect of the parametric ampli
is to increase the intracavity squeezing by a maximum
50%. We have also seen that the amount of squeezing
creases with the linear gain coefficientA and almost perfec
squeezing can be obtained for substantially large values oA.
Moreover, the squeezing spectrum of the output light in
cates that perfect squeezing can be achieved at zero
quency for any value ofA and forh50. Since the presenc
of the parametric amplifier also leads to a significant incre
in the mean photon number, the system under considera
can produce a bright and highly squeezed light.

APPENDIX: THE Q FUNCTION

In this appendix, we calculate theQ function for the cav-
ity mode under consideration. TheQ function is expressible
in the form

Q~a* ,a,t !5
1

p2 E d2z f~z* ,z,t !exp~z* a2za* !,

~A1!

FIG. 4. Plots of the steady-state photon number distribut
P(n) for A525,h50.2,k50.8,u50, and for«50 ~dotted curve!
and 2.5~solid curve!.
03381
l
-
r

e-

the
a

ra-
b-
n

r
f

in-

i-
re-

e
on

where the antinormally ordered characteristic functi
f(z* ,z,t) is defined in the Heisenberg picture by

f~z* ,z,t !5Tr„r̂~0!e2z* â~ t !ezâ†~ t !
…. ~A2!

Applying the identity

eÂeB̂5eB̂eÂe@Â,B̂#, ~A3!

the expression for the characteristic function can be writ
in terms of c-number variables associated with the norm
ordering as

f~z* ,z,t !5e2z* z^exp~za* 2z* a!&, ~A4!

so that employing Eq.~21! and assuming thata~0! is inde-
pendent of the noise forceF(t), we get

f~z* ,z,t !5e2z* z^exp@~zA2z* B!a* ~0!

1~zB2z* A!a~0!#&

3^exp~zF* 2z* F !&. ~A5!

Considering the cavity mode to be initially in a vacuum sta
we see that

^exp@~zA2z* B!a* ~0!1~zB2z* A!a~0!#&51 ~A6!

and hence

f~z* ,z,t !5e2z* z^exp~zF* 2z* F !&. ~A7!

On account of the fact thatF is a Gaussian random variable
one can express Eq.~A7! in the form @10#

f~z* ,z,t !5e2z* z exp~ 1
2 ^@zF* 2z* F#2&!. ~A8!

It then follows that

f~z* ,z,t !5e2z* z exp~ 1
2 ^@z2F* 21z* 2F222z* zF* F#&!.

~A9!

Furthermore, from Eq.~23! one easily gets

^F2&5^F1
2 &1^F2

2 &12^F1F2&, ~A10!

^F* F&5^F1
2 &2^F2

2 &. ~A11!

Applying Eq. ~23b! along with Eq. ~17!, it can be easily
established that

^F1
2 &5

2«1A~rac
~0!1rca

~0!12raa
~0!!

4l2
@12e2l2t#,

~A12!

^F2
2 &5

2«1A~rac
~0!1rca

~0!22raa
~0!!

4l1
@12e2l1t#,

~A13!

n

1-6
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^F1F2&5
A~rac

~0!2rca
~0!!

4m
@12e2mt#, ~A14!

so that in view of these results, there follows

^F2&5
2«1A~rac

~0!1rca
~0!12raa

~0!!

4l2
@12e2l2t#

1
2«1A~rac

~0!1rca
~0!22raa

~0!!

4l1
@12e2l1t#

1
A~rac

~0!2rca
~0!!

2m
@12e2mt#, ~A15!

^F* F&5
2«1A~rac

~0!1rca
~0!12raa

~0!!

4l2
@12e2l2t#

2
2«1A~rac

~0!1rca
~0!22raa

~0!!

4l1
@12e2l1t#.

~A16!

Now on account of Eqs.~A15! and ~A16!, the characteristic
function ~A9! can be written as

f~z* ,z,t !5exp@2az* z1~bz21b* z* 2!/2#, ~A17!

where the coefficients are expressible in terms of the par
eterh as
,

03381
-

a511
2«1A@12h1~12h2!1/2cosu#

4~Ah1k22«!

3@12e2~Ah1k22«!t#

2
2«1A@h211~12h2!1/2cosu#

4~Ah1k12«!

3@12e2~Ah1k12«!t#, ~A18!

b5
2«1A@12h1~12h2!1/2cosu#

4~Ah1k22«!
@12e2~Ah1k22«!t#

1
2«1A@h211~12h2!1/2cosu#

4~Ah1k12«!
@12e2~Ah1k12«!t#

1
iA~12h2!1/2sinu

2~Ah1k!
@12e2~Ah1k!t#. ~A19!

Finally, introducing Eq.~A17! into Eq.~A1! and carrying out
the integration, theQ function for the cavity mode is found
to be

Q~a* ,a,t !5
@u22vv* #1/2

p
exp@2ua* a

1~va21v* a* 2!/2#, ~A20!

in which

u5
a

a22bb*
, ~A21!

v5
b

a22bb*
. ~A22!
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