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Effects of x „3… nonlinearities in second-harmonic generation
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We investigate the effects of higher-order,x (3), nonlinearities on the process of second-harmonic genera-
tion. In the traveling-wave case we find substantive differences in the macroscopic behavior of the fields when
thex (3) components are present. In the intracavity case, which has been investigated before using a linearized
analysis, we investigate regions where these analyses may not be valid, comparing and contrasting the full
quantum simulations with previous results.
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I. INTRODUCTION

It has long been known that nonlinear parametric p
cesses such as second-harmonic generation~SHG!, optical
parametric oscillation~OPO!, and amplification~OPA! can
produce nonclassical states of the electromagnetic field@1#.
Much theoretical and experimental work has been done
these cases, in both of which electromagnetic fields at dif
ing frequencies are coupled by a second-order,x (2) nonlin-
earity.

There have also been a number of theoretical analyse
systems in which bothx (2) and higher-order nonlinearitie
are present. Gerry and Rodrigues@2# investigated a system o
traveling-wave down-conversion with an addedx (3) anhar-
monic term. Making the approximation that the pump fie
was classical and undepleted during the interaction with
nonlinear medium, they predicted squeezing and antibun
ing effects for short interaction times. Tombesi@3# analyzed
a system with two external pumping fields andx (2), x (3),
and x (4) nonlinearities. He predicted enhanced quadrat
squeezing via reduced interaction length, although he
assumed classical, undepleted pumping. Garcı´a Ferna´ndez
et al. @4# analyzed the degenerate parametric amplifier w
added fourth-order interaction and undepleted class
pumping, using a linearized fluctuation approach.

Cabrillo and Bermejo@5# dropped the undepleted pum
approximation to analyze the optical parametric oscilla
with a x (3) interaction in the low frequency mode only. U
ing a linearized analysis, they found that even though
quadrature noise in the total field tended to increase, th
was a spectral redistribution so that they actually found b
ter squeezing at some frequencies. Cabrilloet al. @6# studied
the quadrature squeezing and mean fields for an OPA
addedx (3), using a linearization of Wigner representatio
stochastic differential equations, again using the undeple
pump approximation. Kryuchkyan and Kheruntsyan@7# used
the complexP representation to perform an analysis of
driven OPO with third-order nonlinearity, calculating the e
fects of the quantum noise on the nonlinear dynamics
quantum statistics of the signal field. They again used a c
sical pump approximation. Kheruntsyanet al. @8# used the
complex P representation to calculate the Wigner functi
for a similar system, but with a quantum treatment of bo
high and low frequency modes, although only the degene
low frequency mode was subject to thex (3) interaction.
1050-2947/2001/63~3!/033801~9!/$15.00 63 0338
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The process of intracavity second-harmonic genera
with an addedx (3) nonlinearity which affects the fundamen
tal mode only has been analyzed by Cabrilloet al. @9#. The
authors, using a linearized analysis, calculate that the H
bifurcation normally found in SHG can be shifted towar
higher photon numbers and that, for a high enough value
x (3), the system can be completely stabilized. Calculat
the quadrature noise spectra, the authors also find a su
sion of the excess noise in the antisqueezed quadra
caused by the Kerr nonlinearity. The authors calculate t
for the appropriate combination of parameters, perf
quadrature squeezing can be found at the critical opera
point, although a linearized fluctuation analysis is not e
pected to be fully valid at this point.

Our aim in this work is to perform a fully quantum inves
tigation of the system of SHG with competingx (2) andx (3)

nonlinearities in both modes, using the positiveP represen-
tation @10# and a linearized fluctuation analysis where app
priate. We wish to calculate how the inclusion of the Ke
nonlinearities may affect the mean fields and the quan
statistics in both the traveling-wave and cavity configuratio
of second-harmonic generation. In the traveling-wave c
we use numerical stochastic integration as it has been sh
previously that linearization in the case of pure SHG h
limited validity, not even giving the correct solutions for th
mean fields@11–13#. In the intracavity case, we use bo
numerical stochastic integration and, where we can dem
strate its validity, a semianalytical linearization method.

II. TRAVELING-WAVE CASE

We consider a nonlinearx (2) andx (3) crystal, in which a
pump field at frequencyv produces a harmonic field at fre
quency 2v. We consider here only the case of perfect pha
matching between the two fields, with both fields conside
as plane waves. In the traveling-wave regime we can w
an interaction Hamiltonian, with the trivialv dependence of
the fields removed, as

H5
i\k

2
@ â† 2b̂2â2b̂†#1\x@ â† 2â21b̂† 2b̂2#

12\xabâ
†âb̂†b̂, ~1!

whereâ and b̂ are the annihilation operators for photons
frequenciesv and 2v, respectively, at positionz inside the
©2001 The American Physical Society01-1
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nonlinear crystal,k represents the effective strength of t
nonlinear interaction between the two modes,x represents
the effective strength of the self-phase modulationx (3) non-
linearity, andxab represents the strength of the cross-ph
modulation x (3) nonlinearity. We consider here the ca
where the Kerr type interaction has equal effective streng
for each mode. The cross phase modulation strength
depend on such things as the mode overlap and can typi
vary up to the maximum of the self-interaction strength. T
operator equations of motion for the system are found a

dâ

dz
5kâ†b̂22ixâ†â222ixabâb̂†b̂,

~2!

db̂

dz
52

k

2
â222ixb̂†b̂222ixabâ

†âb̂,

for which no analytical solution is known.
The first level of approximation often used in solving o

erator equations is linearization, or assuming that the op
tors can be directly replaced by complex numbers to give
mean values of the fields. In the case of traveling-wave SH
this method has been shown to have limited validity@12#, but
in the present case we find an analytical solution for
photon number which more closely follows the full quantu
solutions, at least when we set the cross-phase modula
term xab to zero. Making the substitutionsâ→a5^â& and
b̂→b5^b̂& gives the following classical equations:

da

dz
522ixuau2a22ixabubu2a1ka* b,

~3!
db

dz
522ixubu2b22ixabuau2b2

k

2
a2.

Note that we have not bothered with the normal method
calculating fluctuations around the classical solutions, as
perience with the pure SHG system has shown the resul
be highly inaccurate after a short interaction length and
would expect this to be the case here also.

In this situation, as opposed to the situation of pu
traveling-wave SHG, we can find a reasonably accurate a
lytical solution for the field intensities. After much manipu
lation ~see the Appendix!, and settingxab to zero, we find an
equation of motion for the new variablex52x@5ub(z)u2
22ua(0)u2#,

dx

dz
56Aa01a1x1a2x21a3x31a4x4, ~4!

where a052E, the pseudoenergy obtained by treati
d2x/dz2 as a pseudoacceleration resulting from a pseudo
tential

U~x!52
1

2
~a1x1a2x21a3x31a4x4!, ~5!
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so that (dx/dz)212U(x)52E is a constant of the motion
In the above equations, definingC158x2ua(0)u4, we also
have

a152
14k2x

5
C0

2 ,

a25
4

5
k2C01C1 ,

~6!

a35
2k2

5x
,

a452
1

4
.

We can now rearrange and integrate Eq.~2! to give

z56E
x(0)

x(z) dx

Aa01a1x1a2x21a3x31a4x4
, ~7!

wherex(0)524xua(0)u2. Using energy conservation, it i
clear that any solution forx(z) also implies a solution for
ua(z)u2. We find that there are three cases where Eq.~7! has
periodic solutions. Defining

f ~x!5 (
k50

4

akx
k,

52l2)
k51

4

~x2xk!, ~8!

where a452l2 and l.0, we examine the roots off (x)
50.

In the first two cases, there are four real roots:x1.x2
.x3.x4 and the solution can be written as

x~z!5M1
N

D1sn2~Vz1f,k!
, ~9!

where sn is the Jacobi sine amplitude of modulusk @14# and

V5
l

2
A~x12x3!~x22x4!,

~10!

k5A~x12x2!~x32x4!

~x22x4!~x12x3!
,

and the constantf is determined from the initial condition
by

f5sn21SAN2D@x~0!2M #

@x~0!2M #
,kD . ~11!

The functionx(z) is periodic, with the period given by
1-2
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T5
2

VE
0

1 dt

A~12t2!~12k2t2!
5

2

V
K~k!, ~12!

where K(k) is the full elliptic integral. It is clear that the
period ofx(z) is the same as that ofua(z)u2.

We find that there are two separate cases for the solu
given by Eq.~9!. The first of these cases, which is that e
countered for the parameters we have used in this inves
tion, is where ~i! x3>x>x4 : In this caseM5x1 , N5
2(x12x4)(x12x3)/(x32x4), and D5(x12x3)/(x32x4);
~ii ! x1>x>x2 : In this case, M5x4 , N5(x12x4)(x2
2x4)/(x12x2), and D5(x22x4)/(x12x2). These two
cases correspond to motion of a pseudoparticle in the
different branches of a quartic pseudpopotential.

The other type of periodic solution arises when we fi
two real roots,x1 and x2 , with x1.x2 , and two complex
roots for f (x). Writing

f ~x!52l2~x2x1!~x2x2!~x222mx1n!, ~13!

the solution has the form, forx1>x>x2 ,

x~z!5M01
N0

D02cn~V0z1f0 ,k0!
, ~14!

where cn signifies the Jacobi cosine amplitude. Defining

y15Ax1
222mx11n,

~15!
y25Ax2

222mx21n,

we have

M05
y1x22y2x1

y12y2
,

N05
2y1y2~x12x2!

~y12y2!2
,

D05
y11y2

y12y2
,

V05lAy1y2,

k05Ay1y22x1x21m~x11x2!2n

2y1y2
,

f05cn21S D0@x~0!2M0#2N0

x~0!2M0
,k0D . ~16!

In this case the period ofx(z) has the form

T05
4

V0
E

0

1 dt

A~12t2!~12k0
2t2!

5
4

V0
K~k0!. ~17!

Solving the classical equations numerically using a fou
and fifth order Runge-Kutta method also shows that
mean-field intensities undergo periodic revivals, as show
03380
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Fig. 1. The horizontal axis is a normalized interaction d
tance,j5kzua(0)u/A2. Note that there is no visible differ
ence in these solutions whether we ignore the effects of
cross-phase modulation or set it to its maximum value,xab
5x. Although interesting in itself when compared with th
classical solution for traveling-wave SHG, which does n
exhibit any periodicity@15#, neither the analytical or numeri
cal solutions of the classical equations allow us to relia
calculate any of the quantum statistics of the two fields.
do this we turn to one of the phase space representation
quantum optics.

Using the usual methods@16#, this system can be mappe
exactly onto positive-P equations, via the master an
Fokker-Planck equations. For purposes of comparison,
first give the equations withxab set to zero, which allows a
particularly simple factorization of the diagonal diffusio
matrix, giving

da

dz
5ka†b22ixa2a†1Akb22ixa2h1~z!,

da†

dz
5kab†12ixa† 2a1Akb†12ixa† 2h2~z!,

~18!
db

dz
52

k

2
a222ixb2b†1A22ixb2h3~z!,

db†

dz
52

k

2
a† 212ixb† 2b1A2ixb† 2h4~z!.

In the above system of equations, there is a correspond
between@ â,â†,b̂,b̂†# and @a,a†,b,b†#, although the latter
arec-number variables that are not complex conjugate exc
in the mean of a large number of stochastic trajectories. T
is due to the independence of the real noise terms, wh

FIG. 1. The classically calculated intensities of the fundamen
and harmonic as functions of the normalized interaction distancej,
for ua(0)u25106, k50.01, andx51027.
1-3
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have the propertiesh j (z)50 and h i(z)h j (z8)5d i j d(z
2z8). The positiveP equations can then be numerically i
tegrated to calculate not only the mean-field behavior,
also the quantum statistics of the fields. The mean-field
tensities, calculated using 105 stochastic trajectories, ar
shown in Fig. 2 for an initial photon number in the fund
mental of ^â†â&5106 and nonlinearities ofk50.01 andx
51027, a ratio which is realistic for many materials. We c
readily see that, unlike the case of pure SHG, the behavio
close to that found classically.

In this case we are also interested in the quadrature v
ances, as unusual behavior has previously been found in
purex (2) case. Defining the quadratures by

Xu5ae2 iu1a†eiu, ~19!

we see that the coherent state value for any quadrature
ance is equal to 1. TheX0 quadrature variances for the fun
damental and harmonic are shown in Fig. 3, with the sa
quantities for pure SHG shown by dotted lines. It can imm
diately be seen that the maximum obtainable squeezin
less when thex (3) interaction is included, with the squeezin
being available over a smaller interaction length. T
change in the statistics of the fields, from squeezed to hig
antisqueezed, is explained by the spontaneous nature o
downconversion process as energy is transferred back
the harmonic to the fundamental.

One interesting question with the present system
whether other quadratures at differentu may exhibit better
squeezing for different interaction lengths. After all, thex (3)

term essentially operates on the phase of the fields and c
well produce a quadrature rotation effect. This quadrat
rotation effect is apparent in simulations, with the varianc
for different u actually crossing at different interactio
lengths, but is such a small effect for the parameters tha

FIG. 2. The intensities of the fundamental and harmonic
functions of the normalized interaction distance,j, for ua(0)u2

5106, k50.01, andx51027, calculated using the positiveP rep-
resentation. The dotted lines are forx50, the case of pure second
harmonic generation.
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have used that it only happens well after the squeezing
essentially disappeared. This means that even though
minimum noise is found in a different quadrature, th
quadrature never exhibits better squeezing thanX0 around
j'2→3. The variances in the fundamental are shown
various quadratures in Fig. 4.

Effect of cross-phase modulation

Although the inclusion of what we would expect to be t
maximum value of the cross-phase term made no vis
difference to the mean fields, it is still of interest to inves
gate what effect it may have on the quantum statistics of
two fields. Proceeding as above, we find that the positiveP

s FIG. 3. TheX quadrature variances for the traveling-wave ca
in the fundamental and harmonic, calculated using 105 stochastic
trajectories. The parameters are the same as in Fig. 2. The varia
for pure SHG are shown by the dotted lines.

FIG. 4. TheXu quadrature variances for the traveling-wave ca
in the fundamental, calculated using 105 stochastic trajectories. The
u values are equally spaced from 0 top/2. It can be seen that the
maximum squeezing is found foru50.
1-4
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EFFECTS OFx (3) NONLINEARITIES IN SECOND- . . . PHYSICAL REVIEW A 63 033801
Fokker-Planck equation for the system no longer has a d
onal diffusion matrix, which means that no simple and ob
ous factorization resulting in the stochastic differential eq
tions suggests itself. However, the factorization we ha
chosen~which is by no means unique!, leads to the following
system of stochastic equations:

da

dz
5ka†b22ixa2a†22ixabab†b1A22i

x
xabah1~z!

1Akb22ia2~x2xab
2 /x!h3~z!,

da†

dz
5kab†12ixa† 2a12ixaba

†b†b1A2i

x
xaba

†h2~z!

1Akb†12ia† 2~x2xab
2 /x!h4~z!, ~20!

db

dz
52

k

2
a222ixb2b†22ixaba

†ab1A22ixb2h1~z!,

db†

dz
52

k

2
a† 212ixb† 2b12ixaba

†ab†

1A2ixb† 2h2~z!,

where all variables and noises are defined as in Eq.~18!.
From numerical integration of these equations we fi

that the intensities of the two fields are not noticea
changed, whetherxab50 or is equal tox. In parameter re-
gions where quadrature noise reduction is found with
cross-phase modulation present, the addition of the m
mum xab value does not perceptibly change the squeez
found. However, for the quadrature angles and regim
which exhibit excess noise, the maximum cross-phase mo
lation can increase this noise by a factor of approximat
10%.

III. INTRACAVITY CASE

The case of intracavity SHG with addedx (3) interaction
has been previously examined in the case where this inte
tion affects only the fundamental mode@9#. This analysis
also used a linearized fluctuation analysis about the ste
state values of the fields. Here we wish to include the hig
order nonlinearity in both the modes and calculate the fi
statistics without necessarily using the linearization
proach. We also compare noise spectra calculated in the
earized approach with those obtained by stochastic inte
tion of the full quantum equations. We will first investiga
the case without cross-phase modulation, wherexab50.

With a cavity, the positiveP-representation equations a

da

dt
5e2g1a1ka†b22ixa2a†1Akb22ixa2h1~ t !,

da†

dt
5e* 2g1a†1kab†12ixa† 2a

1Akb†12ixa† 2h t~z!, ~21!
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db

dt
52g2b2

k

2
a222ixb2b†1A22ixb2h3~ t !,

db†

dt
52g2b†2

k

2
a† 212ixb† 2b1A2ixb† 2h4~ t !.

In the above, we have assumed phase matching withou
x (3) terms and theg j are the cavity loss rates at each fr
quency, whilee represents the classical pumping field at t
lower frequency. The noise terms are as before, except
they are nowd correlated in time rather than in space. In o
calculations we will always setg15g251.

In normal SHG, it is well known that a Hopf bifurcatio
exists at a critical pumping strength,ec5(1/k)(g2

12g1)A2g2(g11g2) @17,18#. It is normally assumed that a
linearized fluctuation analysis can be performed below t
critical point, which is found by writing operators as the su
of a classical, mean value part and a fluctuations opera
e.g., â5a1dâ, where it is assumed thatdâ is somehow
small compared toa. This allows equations to be written fo
the fluctuation operators in the form of an Ornste
Uhlenbeck process, allowing easy calculation of the no
spectra. The critical point is actually found by examining t
eigenvalues of the drift matrix in the equation for the flu
tuations. As long as these do not have a positive real part
solutions will be stable, although this process in itself sa
nothing about the size of the fluctuations, nor does it say h
accurately equations thus solved will give the quantum s
tistics of the fields.

Crucial to this stability analysis is the ability to obta
classical steady state solutions to the system obtained
dropping the noise terms in Eq.~21!. With standard SHG,
this process is trivial and with thex (3) interacting only with
the fundamental, it is also easy. In our case, however, we
a perturbation expansion, writing

ass5a01xa11x2a21•••,
~22!

bss5b01xb11x2b21•••,

wherea0 andb0 are the steady state solutions to the clas
cal equations withx50. With phase matching,g15g25g
and a real pump, we find thata0 is the real solution of

k2

2g
a0

31ga01e50, ~23!

and b052ka0
2/2g. As x much smaller than the other pa

rameters we will only take our perturbation expansion to fi
order. This leads to the solutions

bss5b02
2ixA

ka01
g2

ka0
1g

b0

a0

, ~24!

where
1-5
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A5
b0

4

a0
2a0

31
gb0

3

ka0
~25!

and

ass5a02
x

ka0
~gb112ib0

3!. ~26!

It can be seen from the above expressions that, to first or
the effect of the Kerr nonlinearity is to add an imagina
component to the two field amplitudes.

The steady state solutions thus obtained are then use
perform a numerical stability analysis of the system. We fi
that, for the values we use here, there is still a Hopf bifur
tion so that above a certain critical pumping amplitude,
expect self-pulsing behavior analogous to that found in p
SHG. Our approach here is slightly different from that
Cabrillo et al. @9#, who define the critical point in terms of
normalized photon number in the fundamental mode.
feel that a definition in terms of pump amplitude should
more experimentally useful. For small values ofx, we find
that the critical pumping parameter found from our fir
order expansion is little changed from that found for pu
SHG.

A. Below the critical point

Below the critical point is where linearization should b
most valid, enabling us to calculate steady state noise spe
by treating our system as an Ornstein-Uhlenbeck proc
@19#, using our first-order perturbative solutions as the ste
states. We find that, as shown in Fig. 5, thatS(v) for theX0
quadrature is effectively unchanged ate50.4ec for our pa-
rameters ofk50.01 andx51027, the plotted spectra bein
indistinguishable on the scale we use.

FIG. 5. TheX0 fundamental quadrature variances for the cav
case withe50.4ec . The dash-dotted line is the linearized varian
and the full line is the result of stochastic integration, both forx
51027. For these parameters there is no visible difference for p
SHG.
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For purposes of comparison and verification of the line
ized spectra, we have also calculatedS(v) stochastically, as
the Fourier transform of the mean value of the normally
dered two-time covariance of theX0 quadrature, taken ove
105 trajectories of the positiveP equations,

S~v!511FT^:X0~ t !,X0~ t1t!:&. ~27!

As we can only numerically integrate the equations ove
finite time interval, we would expect our numerical solutio
to be most accurate for higher frequencies, as is show
Fig. 5. We also find that achieving a smooth noise spectr
by stochastic integration requires more trajectories tha
smooth mean forV(X0) in the time domain. What we can
see here, however, is that the two methods are in reason
agreement, with no new features of the spectrum appea
in the stochastic result.

B. At the critical point

When the cavity is pumped at the critical rate we wou
expect any linearized analysis to have lost validity, wher
stochastic integration remains valid, given the factors of
nite integration time and finite number of trajectories me
tioned above. We have again used both methods of calcu
ing the spectra, with all parameters unchanged except for
pump amplitude. In Fig. 6, we show the linearized and s
chastic results with thex (3) component present. We ca
readily see that the stochastically calculated spectrum
two large spikes of excess noise, atv'A3 andv'3. The
lower frequency spike is hinted at in the linearized result,
is much smaller and at a slightly higher frequency. Th
spike is at the frequency of the purely imaginary eigenval
of the linearized fluctuations matrix@18#, v'A3 for our pa-
rameters. This lower frequency spike is a signature of
x (3) component, not being present in the pure SHG result
the critical point, as we can see in Fig. 7. This figure sho

e

FIG. 6. TheX0 fundamental quadrature variances for the cav
case at the critical point. The full line is the result of 105 stochastic
trajectories and the dash-dotted line is the linearized variance,
with x51027.
1-6
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a narrower spike at the higher frequency, but absolutely
new structure in the linearized spectrum. The spikes at
higher frequency seem to be related to an oscillation in
quadrature variance which is not actually visible in the tim
plots until a higher pump power is used. This is typical
soft-mode oscillations, which will show up in the two-tim
correlation function in the frequency domain before they
visible in the time domain.

What is of interest in both these figures is that the posit
P spectra and the linearized spectra are still in broad ag
ment, despite being at the critical point. However, from tim
domain integrations we saw that the variances at any o
quadrature angle tended to increase with time, with only
X0 quadrature showing steady state squeezing. This is
other feature that is not found in a linearized analysis.
should note here that our calculations do not use the par
eters that others have used to predict nearly perfect qua
ture squeezing at the critical point, with one cavity loss r
much larger than the other@20#, as we are more interested
looking for signatures and effects of thex (3) component than
in perfecting the squeezing.

C. Above the critical point

As expected, above the critical point we find self-pulsi
behavior, as shown in Fig. 8, calculated fore51.2ec . Again
the semiclassical solutions for the mean fields are alm
indistinguishable from those obtained using the positiveP.
The pulsing behavior is different to that of pure SHG, w
the oscillations beginning earlier and having a greater am
tude and lower frequency, although the time-averaged va
for the intensities are almost identical. Withx (3) we also see
oscillations with two different amplitudes, another featu
not seen in pure SHG.

When we examine the quadrature variances, we see
the X0 quadrature displays transient squeezing as show
Fig. 9, but soon develops excess noise, as shown in Fig

FIG. 7. TheX0 fundamental quadrature variances for pure i
racavity SHG at the critical point. The full line is the result
105 stochastic trajectories and the dash-dotted line is the linear
variance.
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This excess noise is actually less than that found with p
SHG, showing that thex (3) component has to some exte
stabilized the fields by comparison. The other quadrat
angles also all display excess noise as the time increa
This tells us that, as there are no steady state squeezin
fects, we would not expect to see very much quadrat
squeezing in the frequency domain.

Previously published analytical calculations@21#, ob-
tained by a linearization around the periodic solutions
pure SHG in the self-pulsing regime, suggest that inten
squeezing may be found in this regime. These results
show a huge first-order correction to the amplitude spectr
hinting that amplitude quadrature squeezing is possibly
observable above the critical point.

-

ed

FIG. 8. The mean fields fore51.2ec , showing the self-pulsing
behavior. This is the stochastic solution for 105 trajectories
x51027. The classical solution is not visibly different at this sca

FIG. 9. Short time behavior of the variance in theX0 quadrature
of the fundamental, fore51.2ec and x51027. We can see that
squeezing is only a transient effect in this situation.
1-7
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D. Cross-phase modulation in the cavity

Well below the critical point we do not find any notice
able differences in the behavior of the system when we
clude our maximum value ofxab , either in the positiveP
simulations or in linearized results, again performed usin
perturbation expansion to first order. However, as we
crease the pump power so as to approach the usual cr
point ~with x (2) only!, we find that the low frequency spik
in theXa quadrature noise spectrum begins to appear ear
When we use the normal critical pumping, the spike is mu
more pronounced, but at the same frequency. Stochasti
tegration also shows this spike as more pronounced and
pearing at a lower pump power than with self-phase mo
lation only. This is a strong indication that the critical poi
has moved, although a linearized fluctuation analysis to
order inx does not show any significant change. This in
cates that linearization is not as trustworthy with the cro
phase terms included and we must resort to stochastic
gration at lower pumping than for purex (2), or with just the
inclusion of the self-phase modulation. We plan to furth
investigate both the noise properties and the effects of
cross-phase modulation near and above the critical poin
part of a more general study into the limits and applicabi
of linearization.

IV. CONCLUSION

We have analyzed second-harmonic generation in
case where the nonlinear crystal has addedx (3) nonlineari-
ties. In the traveling-wave case we find marked differen
between the dynamic behavior of the fields with and with
the x (3) components. As far as the quantum statistics of
fields are concerned, we find that less squeezing is ach
able in thex (3) case. The behavior of the fields is not si
nificantly changed by the inclusion of cross-phase modu
tion terms.

When we investigate the intracavity situation, we find th
the behaviors are essentially the same below the crit

FIG. 10. Longer time behavior of the variance in theX0 quadra-
ture of the fundamental, fore51.2ec andx51027. The noise in-
creases and becomes periodic as the self-pulsing begins. It is e
seen that there will be no steady state squeezing in this quadra
03380
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point. The amount by which the critical point is chang
depends on whether cross-phase modulation is include
not. At and above the critical point, however, we find obv
ous signatures of thex (3) components. Although the Hop
bifurcation is not moved very much, the self-pulsing beha
ior is quite different. A new oscillation with two distinc
amplitudes emerges, with a period significantly larger th
that found for pure SHG.

As all materials have somex (3) component, and the ratio
of x (3)/x (2) that we have used is rather small, but typical
nonlinear media, it is of interest to know what the signatu
of this component are. We have found several signatures
should be accessible to experimental observation.
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APPENDIX: DERIVATION OF
ANALYTICAL SOLUTION

Using the fact thatua(z)u212ub(z)u25C0 is constant in
the propagation, in our case being equal toua(0)u2 and de-
fining a(z)5ua(z)u2, b(z)5ub(z)u2 ~note that these are no
the operatorsâ and b̂), we find that

da

dz
5kV,

~A1!
db

dz
52

k

2
V,

where V5a* 2b1a2b* . Defining also W(z)5 i (a* 2b
2a2b* ), we find

dV

dz
5ka~4b2a!12x~2a2b!W,

~A2!
dW

dz
52x~b22a!V.

We now introduce the variable

x52x@5ub~z!u222ua~0!u2#, ~A3!

so that we can write

dx

dz
52gV,

dW

dz
5Vx, ~A4!

dV

dz
5a02a1x2a2x22Wx,

sily
re.
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where g55kx, a057kC0
2/25, a154kC0/25x, and a2

53k/25x2. We now define another constant of the motio

C15
1

2
x2~z!1gW~z!58x2ua~0!u4, ~A5!

so that we can now write

d2x

dz2
52a0g1~C11a1g!x1a2gx22

1

2
x3. ~A6!

Treating d2x/dz2 as a pseudoacceleration andU(x) as a
pseudopotential, we can write

d2x

dz2
52

]U~x!

]x
, ~A7!
d

n.

03380
,
which leads to

dx

dz
•

d2x

dz2
52

dx

dz

]U~x!

]x
, ~A8!

or

d

dzF1

2 S dx

dzD
2G52

dU

dz
. ~A9!

From the above equation we can see that1
2 (dx/dz)2

1U(x) is a constant, which leads immediately to Eq.~4!.
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