
PHYSICAL REVIEW A, VOLUME 63, 033608
Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas

Tetsuro Nikuni and Allan Griffin
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 20 September 2000; published 13 February 2001!

Starting from the quantum kinetic equation for the noncondensate atoms and the generalized Gross–
Pitaevskii equation for the condensate, we derive the two-fluid hydrodynamic equations of a trapped Bose gas
at finite temperatures. We follow the standard Chapman–Enskog procedure, starting from a solution of the
kinetic equation corresponding to the complete local equilibrium between the condensate and the nonconden-
sate components. Our hydrodynamic equations are shown to reduce to a form identical to the well-known
Landau-Khalatnikov two-fluid equations, with hydrodynamic damping due to the deviation from local equi-
librium. The deviation from local equilibrium within the thermal cloud gives rise to dissipation associated with
shear viscosity and thermal conduction. In addition, we show that effects due to the deviation from the
diffusive local equilibrium between the condensate and the noncondensate~recently considered by Zaremba,
Nikuni, and Griffin! can be described by four frequency-dependent second viscosity transport coefficients. We
also derive explicit formulas for all the transport coefficients. These results are used to introduce two new
characteristic relaxation times associated with hydrodynamic damping. These relaxation times give the rate at
which local equilibrium is reached and hence determine whether one is in the two-fluid hydrodynamic region.

DOI: 10.1103/PhysRevA.63.033608 PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db
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I. INTRODUCTION

At very low temperatures, the dynamics of a trapped B
gas is described by the time-dependent Gross-Pitaevskii~GP!
equation for the macroscopic wave function of the cond
sate. As discussed in several recent reviews@1,2#, there is
excellent agreement~within a few percent! between experi-
mental observations of collective modes forT&0.4TBEC and
theoretical calculations based on theT50 GP equation. At
elevated temperatures where the condensate is apprec
depleted by thermal excitations, one must consider
coupled motion of the condensate and noncondensate
grees of freedom. In a recent paper, Zaremba, Griffin,
Nikuni ~ZGN8! @3# derived a generalized Gross-Pitaevs
equation for the condensate atoms and a quantum kin
equation for the noncondensate atoms, which can be use
discuss the coupled dynamics of the two components at fi
temperatures. These two components are coupled thro
mean-field interactions as well as collisions between the
oms.

Two limiting cases for the dynamics of the gas cor
spond to the collisionless and hydrodynamic regimes@2,4#.
Up to the present, most experiments on the collective mo
of Bose gases are thought to be in the low-density collisi
less limit. In this regime, the main effect of the nonconde
sate~thermal cloud! component is to damp the condensa
oscillations. In addition to Landau and Beliaev damping d
to the dynamic mean-field interaction between two com
nents, there is damping arising from the lack of diffusi
local equilibrium between the condensate and the nonc
densate@5#. The latter mechanism of damping has recen
been worked out in detail by Williams and Griffin@6#.

In contrast, in the regime where collisions between ato
are rapid enough to establish a state of dynamic local e
librium in the noncondensate gas, the dynamics of the s
tem is described by hydrodynamic equations for a few lo
variables. This regime contains much new physics an
1050-2947/2001/63~3!/033608~20!/$15.00 63 0336
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should be accessible taking advantage of the larger dens
now available as well as the large scattering cross sect
close to a Feshbach resonance@7#. We have recently given a
detailed derivation and discussion of two-fluid hydrod
namic equations for trapped atomic gases at finite temp
tures @3,5,8–10#, starting from a generalized GP equatio
coupled with a kinetic equation. These equations were
rived under the assumption that the noncondensate atom
in local thermodynamic equilibrium among themselves b
are not in diffusive equilibrium with the condensate atom
The resulting ZGN8 hydrodynamic equations@9,3# involve a
new characteristic relaxation timetm , which is the time
scale on which local diffusive equilibrium is establishe
This equilibration process leads to a novel damping mec
nism which is associated with the collisional exchange
atoms between the two components. This ZGN8 hydrody-
namics is briefly reviewed in Sec. II. In Ref.@10#, we gen-
eralized the ZGN8 equations to include the effect of devia
tions from local equilibrium, and worked out hydrodynam
damping associated with the collisions among the n
condensate atoms. At finite temperatures of interest, this
viation from local equilibrium within the thermal cloud give
rise to damping associated with thermal conductivity and
shear viscosity. Such a generalization was first discusse
Sec. V of Ref.@11# starting from the ZGN8 hydrodynamic
equations. We also note that the thermal conductivity a
shear viscosity were first derived for a uniform Bos
condensed gas at finite temperatures in pioneering paper
Kirkpatrick and Dorfman@12#.

In the present paper, building on our recent work w
Zaremba, we present a more complete derivation of two-fl
hydrodynamic equations, including dissipation. In Sec.
we solve the kinetic equation by expanding the distribut
function f (r ,p,t) around f (0)(r ,p,t), the latter describing
complete local equilibrium between the condensate and
noncondensate. We follow the standard Chapman–Ens
method used to derive hydrodynamic damping in the kine
©2001 The American Physical Society08-1
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theory of classical gases. In this treatment, the lowest o
hydrodynamic equations involve no dissipative terms.
hydrodynamic damping effects are included by taking in
account deviations from the local equilibrium distributio
f (0). In Sec. IV, we prove that, with appropriate definitio
of various thermodynamic variables, our two-fluid hydrod
namic equations with damping have precisely the struc
of those first derived by Landau and Khalatnikov@13,14#. In
particular, the damping associated with the collisional
change of atoms between the two components, which
been discussed at length in our previous work@3,9,10#, is
now expressed in terms of frequency-dependent second
cosity coefficients. This type of damping is in addition to t
usual kind of hydrodynamic damping associated with sh
viscosity and thermal conductivity@10,11#.

In Sec. V, we also derive explicit expressions for all t
transport coefficients that appear in the dissipative term
our two-fluid hydrodynamic equations. For the purpose
illustration, we evaluate the temperature dependence o
the transport coefficients for the case of a uniform Bose g
The case of a trapped Bose gas is quite different. Becaus
condensate density is always much larger than the non
densate density in the central regions of a trapped Bose
we find that the collisions between the condensate and n
condensate atoms are the dominant contribution to all tra
port coefficients.

The lengthy analysis in Secs. III, IV, and V is, of nece
sity, very complex and conceptionally quite subtle. Mo
readers will only be interested in the final conclusions, wh
we now summarize. We prove that the two-fluid hydrod
namic equations of a trapped Bose gas can be written
cisely in the well-known Landau-Khalatnikov form, as sum
marized in Eq.~86!. The new feature which arises in
trapped Bose gas~as compared to superfluid4He! is that, as
noted above, the four second viscosity coefficients can
frequency dependent, as given by Eq.~106!. Finally, explicit
expressions for all the transport coefficients are given in E
~115!, ~130!, and ~139!. An important final result of our
analysis~see Sec. V! is a precise definition of three relax
ation times@see Eqs.~24!, ~B1!, and ~B5!# associated with
the transport coefficients. Moreover, we show that the co
sions between the condensate and noncondensate atom
ways play the dominant role in the hydrodynamic damp
of trapped Bose gases.

The present paper brings to a natural conclusion our se
of papers~with Zaremba! on the two-fluid hydrodynamics o
trapped Bose gases@3,9–11#. Much remains to be done solv
ing these hydrodynamic equations and experimentally che
ing the predictions.

II. ZGN 8 HYDRODYNAMIC EQUATIONS

In this section, we derive the most general form of hyd
dynamic equations for the condensate and noncondensa
finite temperatures, and then briefly review the ZGN8 two-
fluid hydrodynamics. We start with the underlying coupl
dynamical equations for the noncondensate and the con
sate, as derived in Ref.@3# and recently reviewed in Ref.@5#.
The noncondensate atoms are described by the distribu
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function f (r ,p,t), which obeys the quantum kinetic equatio

] f ~r ,p,t !

]t
1

p

m
•“ r f ~r ,p,t !2“ rU•“pf ~r ,p,t !

5C12@ f ,F#1C22@ f #. ~1!

Here the effective potentialU(r ,t)[Uext(r )12g@nc(r ,t)
1ñ(r ,t)# includes the self-consistent Hartree-Fock~HF!
mean field, and as usual, we treat the interatomic interac
in the s-wave approximation withg54p\2a/m. The con-
densate density isnc(r ,t)[uF(r ,t)u2 and the noncondensat
densityñ(r ,t) is given by

ñ~r ,t !5E dp

~2p\!3
f ~r ,p,t !. ~2!

The two collision terms in Eq.~1! are given by

C22@ f #[
2g2

~2p!5\7E dp2E dp3E dp4

3d~p1p22p32p4!d~ «̃p1 «̃p2
2 «̃p3

2 «̃p4
!

3@~11 f !~11 f 2! f 3f 42 f f 2~11 f 3!~11 f 4!#,

~3!

C12@ f ,F#[
2g2nc

~2p!2\4E dp1E dp2E dp3

3d~mvc1p12p22p3!d~«c1 «̃p1
2 «̃p2

2 «̃p3
!

3@d~p2p1!2d~p2p2!2d~p2p3!#

3@~11 f 1! f 2f 32 f 1~11 f 2!~11 f 3!#, ~4!

with f [ f (r,p,t), f i[ f (r,p i ,t). The expression in Eq.~4!
takes into account the fact that a condensate atom locally
energy«c(r ,t)5mc(r ,t)1 1

2 mvc
2(r ,t) and momentummvc ,

where the condensate chemical potentialmc and velocityvc
will be defined shortly. On the other hand, in our finit
temperature model, a noncondensate atom locally has the
energy «̃p(r ,t)5p2/2m1U(r ,t). This particle-like disper-
sion relation limits our entire analysis to finite temperatur

The equation of motion for the condensate is given b
generalized Gross–Pitaevskii equation@3# for the macro-
scopic wave functionF(r ,t) ~see also Ref.@15#!

i\
]F~r ,t !

]t
5F2

\2¹2

2m
1Uext~r !1gnc~r ,t !12gñ~r ,t !

2 iR~r ,t !GF~r ,t !, ~5!

where

R~r ,t !5
\G12~r ,t !

2nc~r ,t !
, ~6!
8-2
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with

G12[E dp

~2p\!3
C12@ f ~r ,p,t !,F~r ,t !#. ~7!

The dissipative termR in Eq. ~5! is associated with the ex
change of atoms between the condensate and nonconde
as described by the collision integralC12@ f ,F# in Eq. ~4!.
We see that Eqs.~1! and~5! must be solved self-consistently
It is customary to rewrite the GP equation~5! in terms of the
amplitude and phase ofF(r ,t)5Anc(r ,t)eiu(r ,t), which
leads to@vc[\“u(r ,t)/m#

]nc

]t
1“•~ncvc!52G12@ f ,F#, ~8a!

mS ]

]t
1vc•“ D vc52“mc , ~8b!

where the condensate chemical potential is given by

mc~r ,t !52
\2¹2Anc~r ,t !

2mAnc~r ,t !
1Uext~r !1gnc~r ,t !12gñ~r ,t !.

~9!

One sees thatG12 in Eq. ~8! plays the role of a ‘‘source
function’’ in the continuity equation for the condensate, ar
ing from the fact thatC12 collisions do not conserve th
number of condensate atoms@3#.

We note that the set of equations~1!–~7! has also been
derived using the elegant Kadanoff-Baym formulation@16–
18#. More recently, this KB derivation has been extended
cover low temperatures as well@19#, by working with a Bo-
goliubov quasiparticle spectrum instead of the simpler
spectrum used in the present paper. One could use this
tension as the basis for generalizing the present paper.

Following the standard procedure in the classical kine
theory of gases@20#, we take moments of the kinetic equ
tion ~1! with respect to 1,p, and p2 to derive the most
general form of ‘‘hydrodynamic equations’’ for the nonco
densate. These moment equations take the form (m andn are
Cartesian components!:

]ñ

]t
1“•~ ñvn!5G12@ f ,F#, ~10a!

mñS ]

]t
1vn•“ D vnm52

]Pmn

]xn
2ñ

]U

]xm

2m~vnm2vcm!G12@ f ,F#, ~10b!

]ẽ

]t
1¹•~ ẽvn!52“•Q2DmnPmn

1F1

2
m~vn2vc!

21mc2UGG12@ f ,F#.

~10c!
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The noncondensate density was defined earlier in Eq.~2!,
while the noncondensate local velocity is defined by

ñ~r ,t !vn~r ,t ![E dp

~2p\!3

p

m
f ~r,p,t !. ~11!

In addition, we have introduced the following quantities:

Pmn~r ,t ![mE dp

~2p\!3 S pm

m
2vnmD S pn

m
2vnnD f ~r,p,t !,

~12a!

Q~r ,t ![E dp

~2p\!3

1

2m
~p2mvn!2S p

m
2vnD f ~r,p,t !,

~12b!

ẽ~r ,t ![E dp

~2p\!3

1

2m
~p2mvn!2f ~r ,p,t !. ~12c!

Finally, the symmetric rate-of-strain tensor appearing in E
~10! is defined as

Dmn~r ,t ![
1

2 S ]vnm

]xn
1

]vnn

]xm
D . ~13!

The hydrodynamic equations in Eq.~10! are formally ex-
act, but obviously are not closed. To proceed, we m
specify the conditions under which the dynamics of the s
tem are to be determined. In the ZGN8 hydrodynamics, we
consider the situation in which theC22 collisions are suffi-
ciently rapid to establish local equilibrium among the no
condensate atoms. This situation is described by the lo
equilibrium Bose distribution for the thermal cloud,

f̃ ~r ,p,t !5
1

eb[(1/2m)(p2mvn)21U2m̃]21
. ~14!

Here the temperature parameterb, normal fluid velocityvn ,
chemical potentialm̃, and mean fieldU are all functions ofr
and t. One may immediately verify thatf̃ has precisely the
form such that it satisfies the conditionC22@ f̃ #50, indepen-
dent of the value ofm̃. In contrast, one finds thatC12@ f̃ ,F#
does not vanish in general, namely,

C12@ f̃ #5
2g2nc

~2p!2\4
$12e2b[ m̃2~1/2!m(vn2vc)22mc]%

3E dp1E dp2E dp3d~mvc1p12p22p3!

3d~«̃11«c2 «̃22 «̃3!

3@d~p2p1!2d~p2p2!2d~p2p3!#~11 f̃ 1! f̃ 2 f̃ 3 .

~15!
8-3



t

ive

ve

ic
e

n

-
r

ed
. It is

ac-

n-

the

ics

TETSURO NIKUNI AND ALLAN GRIFFIN PHYSICAL REVIEW A 63 033608
Using the local distribution function~14! to evaluate the mo-
ments in Eqs.~2! and ~12!, we find that the heat curren
Q(r ,t)50, and that

ñ~r ,t !5E dp

~2p\!3
f̃ ~r,p,t !5

1

L3 g3/2~z!, ~16!

Pmn~r ,t !5dmnP̃~r ,t ![dmnE dp

~2p\!3

~p2mvn!2

3m
f̃ ~r,p,t !

5dmn

1

bL3
g5/2~z!. ~17!

Here z(r ,t)[eb[ m̃(r ,t)2U(r ,t)] is the local fugacity,L(r ,t)
[@2p\2/mkBT(r ,t)#1/2 is the local thermal de Broglie
wavelength, andgn(z)5( l 51

` zl / l n are the Bose-Einstein

functions. The kinetic energy density is given byẽ(r ,t)
5 3

2 P̃(r ,t).
To summarize, usingf . f̃ , we obtain the ZGN8 lowest-

order hydrodynamic equations for the noncondensate g
in Refs.@3,5,9#. In the linearized version of these ZGN8 hy-
drodynamic equations, the condensate is described by

]dnc

]t
1“•~nc0dvc!52dG12, ~18a!

m
]dvc

]t
52“dmc , ~18b!

and the noncondensate variables satisfy

]dñ

]t
1“•~ ñ0dvn!5dG12, ~19a!

mñ0

]dvn

]t
52“d P̃2dñ“U022gñ0“~dñ1dnc!,

~19b!

]d P̃

]t
52

5

3
¹•~ P̃0dvn!1

2

3
vn•“ P̃02

2

3
gnc0dG12.

~19c!

The fluctuation of the condensate chemical potential is gi
by

dmc5gdnc12gdñ. ~20!

This assumes the Thomas-Fermi approximation, wh
means that the first term in Eq.~9!, the quantum pressur
term, is neglected. The source functiondG12 can be usefully
expressed@3# in terms of the difference between the conde
sate and noncondensate chemical potentials, namely

dG1252
b0nc0

t12
~dm̃2dmc![2

b0nc0

t12
dmdiff , ~21!
03360
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wheremdiff[m̃2mc andt12 is the mean collision time@3,9#
associated withC12:

1

t12
[

2g2

~2p!5\7E dp1E dp2E dp3

3d~p12p22p3!d~mc01 «̃12 «̃22 «̃3!

3~11 f 10! f 20f 30, ~22!

where f i05@eb0( «̃ i2mc0)21#21 is the static equilibrium dis-
tribution function and«̃ i5p2/2m1U0.

Since one can show@3,10# that dmdiff can be written as a
linear combination ofdñ andd P̃, the above coupled hydro
dynamic equations in Eqs.~18! and~19! are a closed set fo
the variablesdnc ,dvc ,dñ,dvn, andd P̃. However, it will be
useful later to have an equation of motion fordmdiff . This is
given by @see Eq.~86! of Ref. @3##

]dmdiff

]t
52g“•@nc0~dvc2dvn!#2

1

3
gnc0“•dvn2

dmdiff

tm
.

~23!

Here tm is a new relaxation time governing howdmdiff re-
laxes to zero, i.e., how fast diffusive equilibrium is reach
between the condensate and noncondensate components
related to the collision timet12 in Eq. ~22! by the expression

1

tm~r !
5

b0gnc0

sHt12
, ~24!

where the dimensionless hydrodynamic renormalization f
tor sH is given by

sH~r !5F 5

2
P̃012gñ0nc01

2

3
gg̃0nc0

2

5

2
P̃0g̃02

3

2
gñ0

2

21G 21

, ~25!

whereg̃[(g/kBTL3)g1/2(z).
We can now look for normal mode solutions of the li

earized ZGN8 equations in Eqs.~18! and~19!. Assuming that
these fluctuations have a time dependencee2 ivt, one can
solve Eq.~23! for dmdiff to give

dmdiff52
tm

12 ivtm
H g“•@nc0~dvc2dvn!#

1
1

3
gnc0“•dvnJ . ~26!

In the limit vtm→0, one sees thatdmdiff→0. This situation
corresponds to the complete local equilibrium between
condensate and noncondensate components, withm̃(r ,t)
5mc(r ,t). In this limit, one can prove that our ZGN8 hydro-
dynamics reduces to the Landau two-fluid hydrodynam
without dissipation terms, as discussed in detail in Ref.@3#. It
is clear that fluctuation ofdmdiff described by Eq.~23! @or
8-4
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equivalently Eq.~26!# gives rise to a new relaxational mod
in addition to usual collective oscillations of the condens
and noncondensate~for a uniform superfluid, these are th
first and second sound modes!. For a uniform Bose gas, th
frequency of this new mode is given byvR52 i /tm @9#.
Thus, in general, our ZGN8 equations predict the existenc
of a new relaxational mode, associated with the equilibrat
of the condensate and noncondensate collective variable

In Ref. @10#, we have extended the theory to include sm
deviations from the local equilibrium distributionf̃ in Eq.
~14!. These give rise to new dissipative terms in the no
condensate equations associated with the shear viscosityh)
and the thermal conductivity (k) of the thermal cloud. The
damping of first sound, second sound, and the relaxatio
mode due to the effect of normal fluid transport coefficie
was calculated in Ref.@10#. In particular, we showed ther
that the relaxational mode was strongly coupled to~and
renormalized by! fluctuations in the local temperature an
hence the thermal conductivity.

In summary, the ZGN8 hydrodynamics exhibit the phys
ics of the coupled dynamics of the condensate and non
densate atoms in a clear fashion. However, the appro
used in the ZGN8 theory has a disadvantage in that it is n
based on a small expansion parameter, in contrast to
more systematic Chapman-Enskog procedure used her
Ref. @10#, we only included the effect ofC22 collisions to
discussing the deviation from local equilibrium. This negle
of C12 collisions in this connection is only justified when th
condensate density is very small compared to the nonc
densate density@since theC12 term in Eq.~4! is proportional
to nc]. However, in a trapped gas, theC12 collision integral
is always significant since the condensate is strongly pea
at the trap center, with a density much larger than the n
condensate even at temperatures close toTBEC. Thus we
must treat bothC12 and C22 when considering deviation
from local equilibrium.

In the following section, we present a more systema
derivation of the two-fluid hydrodynamics, by following th
standard Chapman-Enskog procedure. This derivation
similar to the work by Kirkpatrick and Dorfman@12# for a
uniform Bose gas. As we discuss in Sec. IV, this new
proach allows us to show that the extended ZGN8 theory can
be written in a form completely equivalent to the Landa
Khalatnikov two-fluid hydrodynamics@14# when we include
hydrodynamic damping. This set of equations involves
thermal conductivity, shear viscosity and four frequenc
dependent second viscosity coefficients. The latter are sh
to arise from the fact that the condensate and nonconden
are not in diffusive equilibrium (mcÞm̃), as discussed by
ZGN8 @3,9#.

III. CHAPMAN –ENSKOG EXPANSION FOR A BOSE-
CONDENSED GAS

A. Lowest-order hydrodynamic equations

Following the standard procedure of the Chapm
Enskog expansion@21#, we introduce a small expansion p
rametera and rewrite the kinetic equation~1! as
03360
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] f ~r ,p,t !

]t
1

p

m
•“ r f ~r ,p,t !2“ rU•“pf ~r ,p,t !

5
1

a
~C12@ f ,F#1C22@ f # !. ~27!

This expansion parametera will be eventually taken to be 1
but allows one to develop a perturbative solution of Eq.~27!.
In order to solve the quantum kinetic equation, we forma
expand the distribution functionf (r ,p,t) in powers ofa:

f 5 f (0)1a f (1)1•••. ~28!

Using this expansion~28!, we can also expand the variou
hydrodynamic variables in Eq.~10!

ñ5ñ(0)1añ(1)1•••, Pmn5Pmn
(0)1aPmn

(1)1•••,

Q5Q(0)1aQ(1)1•••, ~29!

ẽ5 ẽ (0)1aẽ (1)1•••.

The superscript~0! denotes the local equilibrium solutio
~see below! which is determined by the collision integra
~formally whena→0). We also redefine the source functio
G12 in Eq. ~7! as

G12[
1

aE dp

~2p\!3
C12@ f ,F#

5
1

a
~G12

(0)1aG12
(1)1a2G12

~2!
••• !. ~30!

We also have an expansion for the condensate wave func

F5F (0)1aF (1)1•••. ~31!

In this expansion, however, we assume that the total lo
densityn([nc1ñ) is not altered by the higher order corre
tion termsf ( i ) ( i>1) in Eq. ~28!. That is, we have

nc5nc
(0)1anc

(1)1•••, ~32!

but

n5nc
(0)1ñ(0), nc

( i )1ñ( i )50 ~ i>1!. ~33!

We also assume that nonlocal correction termsf ( i ) make no
contribution to the noncondensate velocity fieldsvn or to the
phaseu of the condensate wave function~and hence to the
condensate velocityvc). Finally, the condensate chemic
potential in Eq.~9! ~we work within the Thomas-Fermi ap
proximation! is given in the expansion

mc~r ,t !5Uext~r !1g@n~r ,t !1ñ~r ,t !#

5mc
(0)~r ,t !1amc

(1)~r ,t !1•••, ~34!

with

mc
(0)[Uext1g~n1ñ(0)!, mc

(1)5gñ(1). ~35!
8-5
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Using the expansion~28! in the kinetic equation~27!, we
find that the lowest order solutionf (0) is determined from

C12@ f (0),F (0)#1C22@ f (0)#50. ~36!

The unique solution of Eq.~36! is given by the ‘‘diffusive
local equilibrium’’ Bose distribution function, namely

f (0)~r ,p,t !5
1

eb(r ,t)[(1/2m)„p2mvn(r ,t)…21U(r ,t)2m̃(0)(r ,t)]21
.

~37!

Here the local equilibrium noncondensate chemical poten
m̃ (0) is given by the condition thatC12@ f (0),F (0)#50, which
gives

m̃ (0)5mc
(0)1

m

2
~vn2vc!

2. ~38!

Using Eq.~35!, this is equivalent to

m̃ (0)5mc
(0)1

m

2
~vn2vc!

2

5Uext1gn1gñ(0)1
m

2
~vn2vc!

2, ~39!

in conjunction with

ñ(0)~r ,t !5E dp

~2p\!3
f (0)~r,p,t !

5
1

L3 g3/2~z(0)!. ~40!

Herez(0)(r ,t)[eb[ m̃(0)(r ,t)2U(r ,t)] is the local fugacity in dif-
fusive local equilibrium.

It is important to appreciate that diffusive equilibrium
not defined by the distribution functionf (0) alone, but is
determined self-consistently with the noncondensate che
cal potential as given by Eq.~38!. One may immediately
verify that f (0) satisfiesC22@ f (0)#50, independent of the
value ofm̃ (0). In contrast,C12@ f (0),F (0)#50 only if the local
chemical potential of the thermal cloud is given by Eq.~38!
and the condensate and noncondensate densities are
mined self-consistently. Of course, it immediately follow
that sinceC12@ f (0),F (0)#50, we haveG12

(0)5G12@ f (0),F (0)#
50 and hence Eq.~30! reduces to

G125G12
(1)1aG12

(2)1•••. ~41!

Using the local distribution function~37! to evaluate the
moments in Eq. ~12b!, we find that the heat curren
Q(0)(r ,t)50, and
03360
al

i-

ter-

Pmn
(0)~r ,t !5dmnP̃(0)~r ,t !

[dmnE dp

~2p\!3

~p2mvn!2

3m
f (0)~r,p,t !

5dmn

1

bL3
g5/2~z(0)!. ~42!

The local kinetic energy density is given byẽ (0)(r ,t)
5 3

2 P̃(0)(r ,t).
To summarize, the lowest-order hydrodynamic equatio

for the noncondensate are given by

]ñ

]t
1“•~ ñvn!5G12

(1), ~43a!

mñS ]

]t
1vn•“ D vn52“ P̃2ñ“U2m~vn2vc!G12

(1) ,

~43b!

] P̃

]t
1¹•~ P̃vn!52

2

3
P̃“•vn

1
2

3 F1

2
m~vn2vc!

21mc2UGG12
(1) ,

~43c!

where ñ5ñ(0), P̃5 P̃(0), and mc5mc
(0) are given by Eqs.

~40!, ~42!, and~38!, respectively. It should be noted that th
above equations involve the source termG12

(1) . Even though
C12@ f (0)#50, one sees from Eq.~41! that the lowest-order
contribution is in fact given byG12

(1) , which involves the
contribution from the next order correctionf (1). Later we
will derive an explicit expression forG12 when we include
the effect of deviations from the local equilibrium distribu
tion and transport processes. Here we only display the re
for the lowest-order contribution which enter into Eq.~43!
@see also Eq.~78!#:

G12
(1)~r ,t !5sHH“•@nc~vc2vn!#1

1

3
nc“•vnJ , ~44!

wheresH is defined by Eq.~25!.
It is important to note that even thoughG12

(1) involves an
integral over the collision integralC12 @see Eq.~30!#, the
expression in Eq.~44! does not involve any collision time
The expression forG12

(1) in Eq. ~44! is consistent with the
ZGN8 result for dmdiff given in Eq. ~26! in the limit vtm
→0 @using Eqs.~21! and ~25!#. We recall that in this limit,
one hasdmdiff→0 and thusf̃ in Eq. ~14! reduces tof (0) in
Eq. ~37!. Therefore the hydrodynamic equations given in E
~43! are equivalent, in thevtm→0 limit, to those given by
the ZGN8 theory. As noted in Ref.@3#, these coupled lowest
order hydrodynamic equations in Eqs.~43! and ~8! can be
combined and also shown to be precisely equivalent to
Landau two-fluid equations without dissipation due to t
8-6
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transport processes. In Sec. IV we prove this equivalenc
the more general case when dissipation is included.

B. Two-fluid equations with hydrodynamic dissipation

We next consider the deviation~28! from the local equi-
librium distribution function f (0) to first order in the
Chapman-Enskog expansion. This deviationf (0) gives rise to
additional dissipative terms in the hydrodynamic equatio
As usual, in determining the dissipative terms, we rest
ourselves to terms of first order in the velocity fieldsvn and
vc . Following Refs.@12,11, and 10#, we write the first cor-
rection term in Eq.~28! in the form

f (1)5 f (0)~r ,p,t !@11 f (0)~r ,p,t !#c~r ,p,t !, ~45!

and work withc(r ,p,t). To first order ina, theC22 andC12
collision terms in Eq.~2! reduce to (f 5 f (0)1a f (1)).

1

a
C22@ f #.C22@ f (1)#.

2g2

~2p!5\7E dp2E dp3E dp4

3d~p1p22p32p4!d~ «̃p1
1 «̃p2

2 «̃p3
2 «̃p4

!

3 f (0)f 2
(0)~11 f 3

(0)!~11 f 4
(0)!~c31c42c22c!

[L̂22@c#. ~46!

1

a
C12@ f ,F#.

2g2nc

~2p!2\4E dp1E dp2E dp3

3d~mvc1p12p22p3!

3d~«c
(0)1 «̃p1

2 «̃p2
2 «̃p3

!

3@d~p2p1!2d~p2p2!2d~p2p3!#

3~11 f 1
(0)! f 2

(0)f 3
(0)~2bmc

(1)1c21c32c1!

[2bgñ(1)L̂12@1#1L̂12@c#, ~47!

where«c
(0)5mc

(0)1 1
2 mvc

2 andmc
(0) is given by Eq.~35!. The

linearizedL̂12 operator is defined by

L̂12@c#[
2g2nc

~2p!2\4E dp1E dp2E dp3

3d~mvc1p12p22p3!d~«c
(0)1 «̃p1

2 «̃p2
2 «̃p3

!

3@d~p2p1!2d~p2p2!2d~p2p3!#

3~11 f 1
(0)! f 2

(0)f 3
(0)~c21c32c1!. ~48!

Using Eqs.~46!–~48! and expanding the kinetic equatio
~27! to first order ina, we find that the first nonlocal correc
tion f (1) is determined by the equation
03360
in

s.
t

]0f (0)~r ,p,t !

]t
1

p

m
•“ r f

(0)~r ,p,t !2“ rU•“pf (0)~r ,p,t !

52bgñ(1)L̂12@1#1L̂12@c#1L̂22@c#. ~49!

Here ]0/]t means that we use the lowest-order hydrod
namic equations given by~43! in evaluating time derivatives
of vn , m̃, T, andU. The resulting linearized equation whic
determines the functionc is ~for details, see Appendix A!

H u•“T

T F mu2

2kBT
2

5g5/2~z!

2g3/2~z!G1
m

kBT
DmnS umun2

1

3
dmnu2D

1S s21
mu2

3kBT
s1DG12

(1)

ñ(0)J f (0)~11 f (0)!

1bgñ(1)L̂12@1#5L̂12@c#1L̂22@c#[L̂@c#, ~50!

where the thermal velocityu is defined bymu[p2mvn and
z5z(0). The dimensionless thermodynamic functionss1 , s2
in Eq. ~50! are defined by

s1~r ,t ![

g (0)ñ(0)@m̃ (0)2U#2
3

2
@ ñ(0)#2

5

2
P̃(0)g (0)2

3

2
@ ñ(0)#2

,

s2~r ,t ![b

5

2
P̃(0)ñ(0)2@ ñ(0)#2@m̃ (0)2U#

5

2
P̃(0)g (0)2

3

2
@ ñ(0)#2

, ~51!

where g (0)(r ,t)[(b/L3)g1/2„z
(0)(r ,t)…5g̃ (0)/g. We note

that C12 enters in three separate places in Eq.~50!.
The linearized collision operatorsL̂12 and L̂22 satisfy the

conditions

L̂12@p2mvc#50, L̂12@ «̃p2«c
(0)#50,

L̂22@1#50, L̂22@p#50, L̂22@ «̃p#50. ~52!

In order to have a unique solution of Eq.~50! for c, we
impose the following additional constraints:

E dp u f (0)~11 f (0)!c50, ~53a!

E dpS m

2
u21U2m̃ (0)D f (0)~11 f (0)!c

5
1

bE dp ln~11 f (0)21
! f (1)50. ~53b!

Physically, the constraint~53a! means that the deviation
from local equilibrium make no contribution to the local v
locity field vn defined in Eq.~11!. As we discuss in more
detail in Sec. IV, the constraint~53b! means that the tota
8-7
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energy density and the local entropy density are not alte
by the deviationf (1). They have the the same value as giv
by f (0).

Since Eq.~50! is a linear integral equation forc, one may
write the most general solution in the following form@21#:

c~r ,p,t !5
“T•u

T
A~u!1DmnS umun2

1

3
u2dmnDB~u!

1G12
(1)D~u!, ~54!

where the dependence on (r ,t) is left implicit and um is a
component of the thermal velocity. Here the functio
A(u),B(u), andD(u) are given by the solutions to the fo
lowing three linearized integral equations:

uF mu2

2kBT
2

5g5/2~z!

2g3/2~z!G f (0)~11 f (0)!5L̂@uA~u!#, ~55a!

m

kBT S umun2
1

3
dmnu2D f (0)~11 f (0)!

5L̂F S umun2
1

3
dmnu2DB~u!G , ~55b!

S s21
mu2

3kBT
s1D 1

ñ(0)
f (0)~11 f (0)!1

bgñ(1)

G12
(1)

L̂12@1#

5L̂@D~u!#. ~55c!

For the constraints~53! to be satisfied, we also need to r
quire that

E dp

~2p\!3
f (0)~11 f (0)!u2A~u!50, ~56a!

E dp

~2p\!3
f (0)~11 f (0)!S mu2

2
1U2m̃ (0)DD~u!50.

~56b!

Using the solution forc given in Eq.~54!, one finds that
the corrections due tof (1) in Eq. ~45! to the various hydro-
dynamic variables are given by

ñ(1)5E dp

~2p\!3
f (0)~11 f (0)!D~u!G12

(1)~r ,t ![2tG12
(1) ,

~57!

Pmn
(1)5dmnP̃(1)22hFDmn2

1

3
Tr DdmnG , ~58!

Q(1)52k“T, ~59!

with

P̃(1)5t
2

3
~U2m̃ (0)!G12

(1).t
2

3
gnc

(0)G12
(1) , ~60!
03360
d
ẽ (1)5

3

2
P̃(1). ~61!

We note thatñ andP̃ are both altered by an amount propo
tional to G12

(1) . The transport coefficientsh andk are asso-
ciated with the functionsA(u) andB(u),

h52
m

15E dp

~2p\!3
u4B~u! f (0)~11 f (0)!, ~62a!

k52
m

6TE dp

~2p\!3
u4A~u! f (0)~11 f (0)!. ~62b!

The relaxation timet defined in Eq.~57!, namely,

t52E dp

~2p\!3
f (0)~11 f (0)!D~u!, ~63!

plays a crucial role in the subsequent analysis. Using
~57! in Eq. ~55c!, one can rewrite the integral equation fo
D(u) in the form

S s21
mu2

3kBT
s1D 1

ñ(0)
f (0)~11 f (0)!2tbgL̂12@1#5L̂@D~u!#.

~64!

In Sec. V we solve the three linearized equations listed in
~55!. It will be shown there that the solution for the functio
D(u) is

D~u!52
tm

ñ(0) S s21
mu2

3kBT
s1D . ~65!

Using this, one finds thatt can be identified with the relax
ation timetm defined in Eq.~24!. In the present discussion
the physical meaning of the relaxation timetm can be clearly
seen by writing the source functionG12

(1) in the form@see Eqs.
~57! and ~29!#

G12
(1)52

ñ(1)

t
52

ñ2ñ(0)

tm
. ~66!

This kind of relaxation term in the two-fluid hydrodynam
equations such as Eqs.~8a! and~43a! was also discussed in
pioneering paper by Miyake and Yamada@22# in discussing
the liquid 4He near the superfluid transition~where a phe-
nomenological relaxation time equivalent totm was intro-
duced!.

In summary, we have obtained the following hydrod
namic equations for the noncondensate including the nor
fluid transport coefficients~we now set the expansion param
etera51):

]ñ

]t
1“•~ ñvn!5G12, ~67a!
8-8
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mñS ]

]t
1vn•“ D vnm1

] P̃

]xm
1ñ

]U

]xm

52m~vnm2vcm!G121
]

]xn
H 2hFDmn2

1

3
~Tr D !dmnG J ,

~67b!

]ẽ

]t
1“•~ ẽvn!1~“•vn!P̃

5F1

2
m~vn2vc!

21mc2UGG121“•~k“T!

12hFDmn2
1

3
~Tr D !dmnG2

, ~67c!

whereñ and P̃ are given by

ñ5ñ(0)2tmG12
(1) , ~68!

P̃5 P̃(0)1tm

2

3
gnc

(0)G12
(1) , ~69!

and ẽ5 3
2 P̃. Here ñ(0) and P̃(0) are given by Eqs.~40! and

~42!, respectively. The equivalent ‘‘quantum’’ hydrodynam
equations for the condensate are given in Eq.~8!, where the
condensate chemical potential is given by

mc5mc
(0)2gtmG12

(1) . ~70!

We now derive an equation for the functionG12. Using
Eqs.~68! and ~67a!, one obtains

]ñ

]t
5

]ñ(0)

]t
2tm

]G12

]t
52“•~ ñvn!1G12. ~71!

Using the explicit expression forñ(0) given in Eq.~40!, one
obtains

]ñ(0)

]t
5S 3

2
ñ1ggncD 1

T

]T

]t
1ggS ]ñ(0)

]t
2

]n

]t
D . ~72!

Using the continuity equation for the total densityn, one
finds that Eq.~72! reduces to

]ñ(0)

]t
5

1

12gg F S 3

2
ñ1ggncD 1

T

]T

]t
1“•~ ñvn1ncvc!G .

~73!

Using Eq.~73! in Eq. ~71!, one finds

tm

]G12

]t
1G125

1

12gg F S 3

2
ñ1ggncD 1

T

]T

]t

1“•~ ñvn1ncvc!G1“•~ ñvn!. ~74!
03360
We next use Eq.~69! in the equation forP̃ @given by Eq.
~67c!#:

] P̃

]t
5

] P̃(0)

]t
1tm

2

3
gnc

]G12

]t

52“ P̃•vn2
5

3
P̃“•vn2

2

3
gncG121

2

3
“•~k“T!.

~75!

Using the expression forP̃(0) given in Eq.~42!, one finds

] P̃(0)

]t
5S 5

2
P̃1gñncD 1

T

]T

]t
1gñ

]ñ(0)

]t
1gñ“•~ ñvn1ncvc!.

~76!

Substituting this into Eq.~75! in conjunction with Eq.~71!,
we obtain

2S 2

3
gnc1gñD S tm

]G12

]t
1G12D5S 5

2
P̃1gñncD 1

T

]T

]t

1gñ“•~ncvc!1“ P̃•vn1
5

3
P̃“•vn2

2

3
“•~k“T!.

~77!

One may now combine Eq.~74! and~77! to eliminate]T/]t
from these two equations. After a certain amount of re
rangement, we finally obtain our desired equation of mot
for G12:

tm

]G12

]t
1G125sHH“•@nc~vc2vn!#1

1

3
nc“•vnJ

2
2

3

sHs1

g
“•~k“T!. ~78!

If we keep the expansion parametera and expandG12 as in
Eq. ~41!, namely G125G12

(1)1aG12
(2) ~we recall that G12

(0)

50), we findG12
(1) is given by Eq.~44! and

G12
(2)52tm

]

]t
G12

(1)2
2

3

sHs1

gñ
“•~k“T!. ~79!

In closing this section, we discuss the relation between
analysis given in this section and the ZGN8 theory @3# re-
viewed in Sec. II. In this section, we started with the co
plete local equilibrium distribution given by Eq.~37!. We
then included the deviation from local equilibrium, as giv
by Eq. ~45! with Eq. ~54!. We showed that the deviatio
from f (0) associated withD(u) in Eq. ~54! gives rise to the
corrections to the local thermodynamic quantitiesñ, P̃, and
ẽ. Such corrections did not arise when we included the
viation from f̃ in the ZGN8 hydrodynamics@10#. However,
one can show that the type of contribution associated w
D(u) is, in fact, already contained in the lowest-order ZGN8

distribution function f̃ given by Eq.~14!. To see this, it is
8-9
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convenient to linearize the distribution function around sta
equilibrium, usingf . f 01d f . In the ZGN8 theory @3#, one
can show that

d f 5b0f 0~11 f 0!FdT̃

T0
S p2

2m
1U02mc0D

1p•vn22gdn1dm̃G . ~80!

Here we have denoted the temperature fluctuation asdT̃ to
make a distinction from the temperature defined in the dif
sive local equilibrium distribution function~37!~we will find
that dT̃ÞdT). In the present theory, in contrast, one fin
@ignoring the terms in Eq.~54! associated with the function
A andB]

d f 5b0f 0~11 f 0!FdT

T0
S p2

2m
1U02mc0D

1p•vn22gdn1dmc
(0)G1 f 0~11 f 0!D~u!dG12.

~81!

The first term in Eq.~81! represents the deviation fromf 0
included in f (0) while the second term is due tof (1). Using
the explicit solution forD(u) given by Eq.~65! ~derived in
Sec. V!, we find that Eq.~81! can be written as

d f 5b0f 0~11 f 0!F S dT

T0
2

2s1tm

3ñ0

dG12D S p2

2m
1U02mc0D

1p•vn22gdn1dmc
(0)2g~sH

2111!tmdG12G . ~82!

We note that this linearized distribution function has t
same form as the ZGN8 distribution function in Eq.~80!, but
with a renormalized local temperature

dT̃[dT2
2

3
T0

s1tm

ñ0

dG12, ~83!

and a renormalized local chemical potential

dm̃[dmc
(0)2g~sH

2111!tmdG12. ~84!

Using dmc5dmc
(0)2gtmdG12 @see Eq.~70!# and dm̃ from

Eq. ~84!, we obtain

dmdiff[dm̃2dmc5dm̃2@dmc
(0)2gtmdG12#

52gsH
21tmdG12. ~85!

This relation betweendmdiff anddG12 is precisely that given
by Eqs.~21! and ~24!, as derived in the ZGN8 theory. The
physical significance of the renormalized thermodynam
quantities, as given by Eqs.~83! and~84!, will become clear
in Sec. IV.
03360
c

-

c

IV. EQUIVALENCE TO LANDAU –KHALATNIKOV TWO-
FLUID EQUATIONS WITH DISSIPATION

In this section we prove that our hydrodynamic equatio
in Eqs.~8! and~67! can be written in the form of the Landau
Khalatnikov two-fluid equations. We first display the com
plete Landau-Khalatnikov two-fluid equations involving di
sipative terms@14#:

]n

]t
1“• j50, ~86a!

m
] j m

]t
1

]

]xn
~dmnP1mñvnmvnn1mncvcmvcn!1n

]Uext

]xm

5
]

]xn
H 2hFDmn2

1

3
dmn~Tr D !G

1dmn„z1“•@mnc~vc2vn!#1z2“•vn…J , ~86b!

]vc

]t
52“H m

m
1

vc
2

2
2z3“•@mnc~vc2vn!#2z4“•vnJ ,

~86c!

]s

]t
1“•S svn2

k“T

T D5
Rs

T
. ~86d!

The total current is given byj5ncvc1ñvn and the dissipa-
tive function describing the entropy production rate is giv
by @14#

Rs5z2~“•vn!212z1“•vn“•@mnc~vc2vn!#

1z3„“•@mnc~vc2vn!#…212hFDmn2
1

3
dmn~Tr D !G2

1
k

T
~“T!2. ~87!

As we have discussed in Ref.@3#, the normal fluid and the
superfluid densities that appear in the standard Landau
fluid theory can be identified with the corresponding no
condensate and condensate densities, within the conte
our finite temperature model based on the HF approxima
for single-particle excitations. We have explicitly made u
of this correspondence in writing Eq.~86!. We also note that
in Eqs. ~86! and ~87!, one can writenc(vc2vn) in the
equivalent form (j2nvn), which is often used.

The thermodynamic functions that appear in the
Landau–Khalatnikov~LK ! two-fluid equations satisfy the
following superfluid local thermodynamic relations:

P1e5mn1sT1mñ~vn2vc!
2, ~88a!

dP5ndm1sdT2mñ~vn2vc!•d~vn2vc!, ~88b!

de5mdn1Tds1~vn2vc!•d@mñ~vn2vc!#. ~88c!
8-10
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The various local thermodynamic functions which appea
the LK theory have to be carefully defined so that they s
isfy the relations in Eq.~88!. The local entropy is defined b
~as in Ref.@3#!

s5E dp

~2p\!3
@~11 f !ln~11 f !2 f ln f #. ~89!

Using f 5 f (0)1 f (1) and working to first order inf (1), one
finds

s5E dp

~2p\!3
@~11 f (0)!ln~11 f (0)!2 f (0)ln f (0)

1 ln~11 f (0)21
! f (1)#. ~90!

From the constraint onf (1) given by Eq.~53b!, one sees tha
the last term, which arises fromf (1), makes no contribution
to the local entropy. One thus obtains

s5
1

T F5

2
P̃(0)2ñ(0)~m̃ (0)2U !G

.
1

T
F5

2
P̃(0)2ñ(0)~mc

(0)2U !2
mñ

2
~vn2vc!

2G , ~91!

where we have usedñ(0)5ñ1O(vn ,vc).
The local energy densitye in the Landau–Khalatnikov

theory is defined in the local frame wherevc50 @23#. In the
context of the present theory, this is given by

e5 ẽ1nUext1
g

2
~n212nñ2ñ2!1

m

2
ñ~vn2vc!

2, ~92!

while the local energy density in the original lab frame
given by

e lab5e1mñ~vn2vc!•vc1
mn

2
vc

2 . ~93!

Using Eqs.~68! and~69! in Eq. ~92!, one finds that the first-
order corrections fromG12 cancel out, leaving

e5 ẽ (0)1nUext1
g

2
~n212nñ(0)2@ ñ(0)#2!1

1

2
mñ~vn2vc!

2.

~94!

We conclude that both the local entropy density and the lo
energy density are determined by the diffusive local equi
rium distribution functionf (0) alone, and are not altered b
the deviationf (1).

In contrast, as we now show, the total pressure and
chemical potential must be carefully defined so that th
satisfy the superfluid thermodynamic relations in Eq.~88!.
We first define the nonequilibrium pressure by

P8[ P̃1
g

2
~n212nñ2ñ2!. ~95!
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Using Eqs.~68! and~69! and working to first order inG12
(1) ,

one obtains

P85P2tm

gnc

3
G12

(1) , ~96!

whereP is the~diffusive! local equilibrium pressure define
as

P[ P̃(0)1
g

2
~n212nñ(0)2@ ñ(0)#2!. ~97!

We find that the LK thermodynamic relations given in E
~88! are not satisfied if we assume thatP8 is the pressure~P!
and mc is the chemical potential (m). Extra terms appea
which are associated withG12. This means that the abov
identification of the thermodynamic variables is only valid
the lowest-order hydrodynamic equations, where there is
dissipation~see Sec. III A!.

We recall that in deriving the Landau equations from t
ZGN8 equations in Ref.@3#, we defined the total pressure b
Eq. ~95! andm5mc , and also found extra terms in the the
modynamic relations proportional todmdiff ~see Eq.~71! of
Ref. @3#!. Therefore the precise equivalence between
ZGN8 hydrodynamics and the Landau theory shown in R
@3# was restricted in the limitvtm→0, i.e., whendmdiff
→0. In contrast, if the pressureP is defined to be Eq.~97!
and m5mc

(0) , we can show that the superfluid thermod
namic relations in Eq.~88! are satisfied. Therefore we con
clude that the local equilibrium pressure defined in Eq.~97!
and the local equilibrium chemical potentialmc

(0) given by
Eq. ~35! are, in fact, the correct variables to be used in
Landau–Khalatnikov equations. We will show later that t
corrections to the total pressure and the chemical poten
actually give rise to the additional damping terms associa
with the four second viscosity coefficientsz i in Eq. ~86!.

We now proceed to derive the LK equations from o
microscopic theory, one by one. Our continuity equations
nc andñ are given by Eqs.~8a! and~67a!. Adding them, we
obtain the continuity equation for the total density~86a!. To
derive the equation~86b! for the total currentj , we combine
our two continuity equations and the two velocity equatio
~8b! and ~67b! to give

m
] j m

]t
1

]

]xn
~dmnP81mñvnmvnn1mncvcmvcn!1n

]Uext

]xm

5
]

]xn
H 2hFDmn2

1

3
dmn~Tr D !G J . ~98!

Using Eq.~96!, we find

m
] j m

]t
1

]

]xn
~dmnP1mñvnmvnn1mncvcmvcn!1n

]Uext

]xm

5
]

]xn
H 2hFDmn2

1

3
dmn~Tr D !G1dmnt

gnc

3
G12

(1)J .

~99!
8-11
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To consistently include damping due to the first-order c
rection term in the Chapman-Enskog expansion, we
G125G12

(1) as given in Eq.~44!. We then find that Eq.~99! is
identical with the LK equation~86b! with the second viscos
ity coefficientsz1 andz2 given by

z15
gnc

3m
tmsH , z25

gnc
2

9
tmsH . ~100!

Using mc5mc
(0)1gñ(1)5m2gtmG12

(1) @see Eq.~35!# and the
expression forG12

(1) in our equation for the condensate velo
ity given in Eq. ~8b!, we find the latter can be written pre
cisely in the LK form ~86c!. Comparison between the tw
equations shows that the second viscosity coefficientsz3 and
z4 are given by

z35
g

m2
tmsH , z45

gnc

3m
tmsH . ~101!

We note that our results for the second viscosities satisfy
Onsager reciprocal relationz15z4 ~this equality follows
quite generally, as shown by Eq.~4.28! of Ref. @23#!.

Finally, we derive the equation for the local entropy. U
ing Eq. ~88c!, we have

T
]s

]t
5

]e

]t
2m

]n

]t
2m~vn2vc!

]

]t
@ ñ~vn2vc!#. ~102!

With the expression for the local energy densitye given in
Eq. ~92!, we find Eq.~102! reduces to

]s

]t
5

]ẽ

]t
1@Uext2m1g~n1ñ!#

]n

]t
1gnc

]ñ

]t

2
]n

]t

m

2
~vn2vc!

2

5
]ẽ

]t
1gñ(1)

]n

]t
1gnc

]ñ

]t
. ~103!

Here we have neglected the last term in the first line, sinc
is of third order in the local velocities. Using our hydrod
namic equations~67!, we find Eq.~103! reduces to the form
~86d!, assuming the entropy production rateRs is given by

Rs5tmgG12H g“•@nc~vc2vn!#1
1

3
nc“•vnJ

12hFDmn2
1

3
dmn~Tr D !G2

1
k

T
~“T!2. ~104!

Using Eq.~44! and the expression in Eqs.~100! and ~101!,
we see that Eq.~104! is equivalent to the Landau
Khalatnikov @14# expression given in Eq.~87!.

We have thus shown that our equations based on a m
scopic theory built on Bose condensation can be written
form precisely identical to the phenomenological Landa
Khalatnikov two-fluid equations including the damping ass
ciated with the shear viscosity, thermal conductivity, a
03360
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four second viscosity coefficients. An analogous derivat
of the Landau-Khalatnikov equations for a uniform Bose g
was first given by Kirkpatrick and Dorfman@12#. However,
at finite temperatures, where the dominant excitations
particle-like Hartree-Fock excitations, Kirkpatrick and Dor
man did not obtain the second viscosities since they
glected the source termG12 associated with deviation from
local equilibrium produced by theC12 collisions. We have
shown that the second viscosity coefficients are directly
lated to theG12 term first discussed in Ref.@3#, which repre-
sents the collisional exchange of atoms between the con
sate and noncondensate.

In the above derivation of the second viscosity terms,
usedG125G12

(1) . This restricts the validity of the results t
the casevtm!1 when we consider collective fluctuation
with frequencyv. However, our discussion can be eas
extended to the situation whenvtm is not small, by using
@see Eq.~26!#

G12~v!5
sH

12 ivtm
H“•@nc~vc2vn!#1

1

3
nc“•vnJ .

~105!

Using this expression, we can still write our equations in
Landau-Khalatnikov form, but now with the frequenc
dependent second viscosity coefficients

z i~v!5
z i

12 ivtm
. ~106!

Everything else in our derivation goes through.
The expression~106! for the frequency-dependent secon

viscosity coefficients has in fact the expected form, as
rived from general considerations@24#. The second viscosity
such as associated with compression and expansion, a
when a gas is coupled to an internal relaxation process~for
example, the transfer of energy from the translational
grees of freedom of a molecule to the vibrational degrees
freedom!. If the relaxation time of the internal process
denoted bytR, the frequency-dependent second viscos
coefficient is given byz(v)5z0 /(12 ivtR), where z0
}tR. In a Bose-condensed gas at finite temperatures,
noncondensate atoms are coupled to the condensate d
of freedom, and we have shown that the characteristic re
ation time for the equilibration between the two compone
is given bytm . In this connection, we might recall that in th
superfluid4He, the second viscosities are due to the fact t
the total number of phonons and rotons is not conser
@14#. Above TBEC ~when nc50), all the second viscosity
coefficientsz i in Eqs.~100! and~101! vanish, as expected in
a normal dilute single-component gas.

We finally note that the Landau-Khalatnikov equatio
could have been derived from the ZGN8 hydrodynamic
equations if we simply identified the total pressureP with
that by Eqs.~95! and~96!, and took the chemical potential t
be m5mc1gtmdG12 @see Eq.~70!#. This leads more natu
rally to frequency-dependent second viscosities. On the o
hand, the physical meaning of this choice of the local eq
librium pressure and chemical potential is not made clea
8-12
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V. CALCULATION OF TRANSPORT COEFFICIENTS

In this section, we solve the linearized equation for fun
tions A, B, andD in Eq. ~55! which determine the deviation
from local equilibrium as described byc in Eqs. ~45! and
~54!. We can then calculate the transport coefficientsh and
k as given in Eq.~62!. We follow the standard procedure i
the Chapman-Enskog method, as reviewed in@21#. In this
approach, one solves the linearized equation by expandinc
in a basis set of polynomial functions. These polynom
functions are chosen to satisfy the constraints such as
~53! which the solutionc must satisfy. In a classical gas, on
uses Sonine polynomials@21#. One can also define analogou
polynomials for a degenerate Bose gas@25#. As usual, we
calculate the transport coefficients using the lowest-or
polynomial approximation, which usually gives very acc
rate results for the transport coefficients. For a more deta
mathematical discussion which is easily generalized to B
condensed gases, we refer to Refs.@21,25#.

A. The thermal conductivity

In evaluating the thermal conductivity, it is convenient
rewrite Eq.~62b! as

k52
1

3
kBE dp

~2p\!3
uA~u!•uF mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G f 0

3~11 f 0!52
1

3
kBE dp

~2p\!3
uA~u!•L̂@uA~u!#.

~107!

Here we explicitly use the static equilibrium distributio
function f 0 to evaluate the transport coefficients. To sol
the linear integral equation~55a! for A(u), we introduce a
simple ansatz of the form@11,25#:

A~u!5AF mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G . ~108!

This is the lowest-order polynomial function that satisfies
constraint given by Eq.~56a!. The constantA in Eq. ~108! is
determined by multiplying Eq.~55a! by u@mu2/2kBT
25g5/2(z0)/2g3/2(z0)# and integrating overp, giving

A5E dp

~2p\!3
u2F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G
2

f 0~11 f 0!

3HE dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!Gu•L̂

3F H mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!J uGJ21

. ~109!

Using Eqs.~108! and ~109! in Eq. ~107!, we find
03360
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k52
kB

3 H E dp

~2p\!3
u2F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G
2

f 0~11 f 0!J 2

3HE dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!Gu•L̂

3F H mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!J uGJ21

. ~110!

To evaluate thep integrals in Eq.~110!, it is convenient to
introduce the dimensionless velocity variable by

x[S m

2kBT0
D 1/2

u5S 1

2mkBT0
D 1/2

p. ~111!

With this new variable, we can rewrite the linearized col
sion operator as

L̂@c#5
8m~kBT0!2a2

p3\3
~ L̂228 @c#1p3/2nc0L0

3L̂128 @c#!,

~112!

where the dimensionless collision operatorsL̂228 and L̂128 are
defined by

L̂228 @c#[E dx2E dx3E dx4d~x1x22x32x4!

3d~x21x2
22x3

22x4
2! f 10f 20~11 f 30!~11 f 40!

3~c31c42c22c!, ~113!

L̂128 @c#[E dx1E dx2E dx3d~x2x22x3!

3d~x1
22b0gnc02x2

22x3
2!@d~x2x1!2d~x2x2!

2d~x2x3!#~11 f 10! f 20f 30~c21c32c!, ~114!

where f i05(z0
21exi

2
21)21. Carrying out thep ~or u) inte-

grals in Eq.~110!, one finds

k5
75kB

64a2m
S mkBT

p D 1/2 p1/2

I 22
k ~z0!1L0

3nc0I 12
k ~z0!

F7

2
g7/2~z0!

2
5g5/2

2 ~z0!

2g3/2~z0!
G2

, ~115!

where the functionsI 22
k (z0) and I 12

k (z0) are defined by

I 22
k [2E dx xx2

•L̂228 @xx2#, ~116!

I 12
k [2p3/2E dx xx2

•L̂228 @xx2#. ~117!

In Ref. @11#, we derived a convenient formula for th
integral I 22

k , namely
8-13
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I 22
k ~z0!5A2p35E

0

`

dx0E
0

`

dxrE
21

1

dy

3E
21

1

dy8F22~x0 ,xr ,y,y8;z0!

3x0
4xr

7~y21y8222y2y82!, ~118!

where

F22~x0 ,xr ,y,y8;z0!

5
z0

2e2x0
2
2xr

2

~12z0e2x1
2
!~12z0e2x2

2
!~12z0e2x3

2
!~12z0e2x4

2
!
,

~119!

with

x1
25 1

2 ~x0
212x0xry1xr

2!, x2
25 1

2 ~x0
222x0xry1xr

2!,

x3
25 1

2 ~x0
212x0xry81xr

2!, x4
25 1

2 ~x0
222x0xry81xr

2!.
~120!

We note thatI 22
k (z0) is a universal function of the equilib

rium fugacityz0, wherez05e2bgnc0(r ). To derive a similar
expression forI 12

k , we introduce the transformation

x25 1
2 ~x01xr !, x35 1

2 ~x02xr !. ~121!

We then expressxr in the polar coordinate (xr ,u,f) whereu
is the azimuthal angle with respect to the vectorx0, i.e., xr
•x05xrx0 cosu. With these new variables, one obtains t
following expression forI 12

k :

I 12
k ~z0!58p7/2E

0

`

dxrE
21

1

dyF12~xr ,y;z0!xr
2~xr

21b0gnc0!3/2

3Fxr
2~xr

213b0gnc0!~12y2!1
9

4
~b0gnc0!2G ,

~122!

wherey5cosu and

F12~xr ,y;z0!5
z0e2x1

2

~12z0e2x1
2
!~12z0e2x2

2
!~12z0e2x3

2
!
,

~123!

with

x1
252~xr

21b0gnc0!,

x2
25xr

21xryAxr
21b0gnc01 1

2 b0gnc0 , ~124!

x3
25xr

22xryAxr
21b0gnc01 1

2 b0gnc0 .

The formula in Eq.~115! gives the thermal conductivityk as
a universal function ofgnc0(r ) or equivalently in terms of
the local fugacityz0(r )5e2b0gnc0(r ). If we ignore the con-
03360
tribution from C12 collisions, i.e., setI 12
k to zero, Eq.~115!

reduces to the expression fork derived in our earlier work
@11,10#.

One can also write the expression fork in Eq. ~115! in the
following useful form:

k5
5A2

p3
S tk

ñ0kB
2T0

m
D H 7g7/2~z0!

2g5/2~z0!
2F5g5/2~z0!

2g3/2~z0!G
2J ,

~125!

wheretk is the ‘‘thermal relaxation time’’ associated wit
the thermal conductivity, as defined in Appendix B. In tur
one can also write the reciprocal of this relaxation timetk as
the sum of contributions fromC12 andC22 collisions,

1

tk
5

1

tk,12
1

1

tk,22
, ~126!

where these relaxation times are given explicitly in Appe
dix B. The physical meaning of thistk relaxation time is
discussed in Appendix B, using a simple relaxation time
proximation for the collision integrals in Eq.~1!.

B. The shear viscosity

In evaluating the shear viscosityh, it is convenient to
rewrite Eq.~62a! as

h52
m

10E dp

~2p\!3 S umun2
1

3
dmnu2DB~u!

3S umun2
1

3
dmnu2D f 0~11 f 0!

52
kBT0

10 E dp

~2p\!3
B~u!S umun2

1

3
dmnu2D

3L̂FB~u!S umun2
1

3
dmnu2D G . ~127!

To solve Eq.~127!, the simplest consistent ansatz@11,25# is
to useB(u)[B. The constantB can be determined by mul
tiplying Eq. ~55b! by (umun2dmnu2/3) and integrating over
p to give

B5
m

kBT0
H E dp

~2p\!3 S umun2
1

3
dmnu2D 2

f 0~11 f 0!J
3H E dp

~2p\!3 S umun2
1

3
dmnu2D

3L̂Fumun2
1

3
dmnu2G J 21

. ~128!

Using this in Eq.~127! we obtain
8-14
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h52
m2

10kBT0
H E dp

~2p\!3 S umun2
1

3
dmnu2D 2

f 0

3~11 f 0!J 2H E dp

~2p\!3 S umun2
1

3
dmnu2D

3L̂Fumun2
1

3
dmnu2G J 21

. ~129!

With the dimensionless variable defined in Eq.~111!, this
expression for the shear viscosityh can be rewritten as

h5
5p3

32A2a2
~mkBT0!1/2

g5/2
2 ~z0!

I 22
h ~z0!1L0

3nc0I 12
h ~z0!

,

~130!

where

I 22
h [2E dxS xmxn2

1

3
dmnx2D L̂228 Fxmxn2

1

3
dmnx2G

5
p3

A2
E

0

`

dx0E
0

`

dxrE
21

1

dyE
21

1

dy8F12~x0 ,xr ,y,y8;z0!

3x0
2xr

7~11y21y8223y2y82!, ~131!

and

I 12
h [2p3/2E dxS xmxn2

1

3
dmnx2D L̂128 Fxmxn2

1

3
dmnx2G

58p7/2E
0

`

dxrE
21

1

dyF12~xr ,y;z0!

3xr
2Axr

21b0gnc0Fxr
2~xr

21b0gnc0!~12y2!

1
1

3
~b0gnc0!2G . ~132!

These expressions involve the same functionsF22 and F12
defined earlier in Eqs.~119! and ~123!.

Analogous to Eq.~125! for the thermal conductivity, one
can also write the expression forh in Eq. ~130! in the fol-
lowing form:

h5thñ0kBT0Fg5/2~z0!

g3/2~z0!G , ~133!

where the viscous relaxation timeth is defined in Appendix
B. Again one can write the reciprocal of the relaxation tim
th as

1

th
5

1

th,12
1

1

th,22
, ~134!

where theseC12 and C22 relaxation times are given in Ap
pendix B. As withtk , the relaxation timeth can be under-
03360
stood in terms of a simple relaxation time approximation
the collision term in the kinetic equation.

C. The second viscosity coefficients

To find the expression fort as defined in Eq.~63!, we use
the simple ansatz for the form of the solution forD(u) of Eq.
~55c!,

D~u!5DS s21
mu2

3kBT0
s1D , ~135!

wheres1 ands2 are defined in Eq.~51!. As usual, we leave
the dependence on (r ,t) implicit. One easily verifies that Eq
~135! satisfies the constraint~56b!. The constantD can be
determined by integrating Eq.~55c! over p:

DE dp

~2p\!3
L̂12Fs21

mu2

3kBT0
s1G

5
1

ñ(0)E dp

~2p\!3 S s21
mu2

3kBT0
D

3 f 0~11 f 0!2b0gtE dp

~2p\!3
L̂12@1#. ~136!

Using L̂12@mu2/2#5b0gnc0L̂12@1# and

E dp

~2p\!3
L̂12@1#52

nc0

t12
,

wheret12 is defined in Eq.~22!, Eq. ~136! gives finally

D52
~t121b0gnc0t!

nc0Fs21
2

3
s1b~mc02U0!G . ~137!

Using Eqs.~137! and~135! in the expression fort given by
Eq. ~63!, we can solve to give an explicit expression fort,
namely

1

t
5

1

t12
H nc0

ñ0
Fs21

2

3
s1b0~mc02U0!G2b0gnc0J

5
b0gnc0

sHt12
5

1

tm
. ~138!

We thus see thatt is precisely the relaxation timetm first
introduced in the ZGN8 two-fluid hydrodynamics. We can
now express the four second viscosity coefficients in E
~100! and ~101! in terms of thet12 collision time defined in
Eq. ~22!:

z15
kBT

3m
sH

2 t12, z25
nckBT

9
sH

2 t12, z35
kBT

m2nc

sH
2 t12,

z45z1 . ~139!
8-15
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D. Numerical results for a uniform Bose gas

For illustration, we calculate the transport coefficients
Eqs.~115! and ~130! for a uniform Bose gas (Uext50). As
in Ref. @10# we choosegn/kBTBEC50.2. In Figs. 1 and 2 we
plot the temperature dependence of the dimensionless tr
port coefficientsk̄ and h̄, defined by

k̄[k/nvcl
2t0kB , h̄[h/nvclmt0 . ~140!

Here vcl[(5kBTBEC/3m)1/2 is the hydrodynamic sound ve
locity of a classical gas at T5TBEC and t0

21

[A2(8pa2)n(8kBTBEC/pm)1/2 is the classical mean colli
sion time evaluated atT5TBEC. To see the separate effec
of the C22 collisions andC12 collisions, we also plot the
results obtained by taking eitherI 12

k,h50 or I 22
k,h50. In Ref.

@10# we neglectedC12. We see that bothk and h are re-
duced when we include theC12 collisions. At lower tempera-
turesT&0.5TBEC, both k and h are dominated by theC12
collision integral.

In Fig. 3 we plot the four second viscosity coefficien
given in Eq.~139! for a uniform Bose gas. We recall that i
Fig. 1 of Ref.@9# we gave the temperature dependence oftm
andt12 for gn/kBTBEC50.1. In Fig. 3 we use the dimension
less second viscosity coefficients, defined by

FIG. 1. Plot of the thermal conductivityk @in units defined in
Eq. ~140!# in a uniform gas forgn50.2kBTBEC as a function of
temperature. We also plot the results by takingI 12

k 50 ~dashed line!
and I 22

k 50 ~dot-dashed line!.

FIG. 2. Plot of the shear viscosity coefficient in a uniform g
for gn50.2kBTBEC as a function of temperatureh @in units defined
in Eq. ~140!#. We also plot the results by takingI 12

h 50 ~dashed line!
and I 22

h 50 ~dot-dashed line!.
03360
ns-

z̄1[z1 /vcl
2t0 , z̄2[z2m/nvcl

2t0 , z̄3[z2n/mvcl
2t0 .

~141!

The transport coefficients in a trapped Bose gas beh
quite differently from those of a uniform Bose gas. In pa
ticular, sincenc@ñ holds in the central region of the trap a
all temperatures, the contribution ofC12 collisions dominates
over the contribution of theC22 collisions at all temperature
below TBEC. We will discuss the implications of this at th
end of Sec. VI.

VI. CONCLUSIONS

In this paper we have derived two-fluid hydrodynam
equations starting from the quantum kinetic equation and
generalized GP equation derived in@3,9,17#. However, to
complement and extend our earlier work@3,9#, we started
from the complete local equilibrium single-particle distrib
tion f (0) as given by Eqs.~37! and ~38!. Using the
Chapman–Enskog approach, we then included the effec
a small deviation from this local equilibrium form. This de
viation from local equilibrium within the thermal cloud
brings in the usual kind of hydrodynamic damping due to
thermal conductivity and shear viscosity of the therm
cloud. A summary of our major results is given in the fin
paragraph of Sec. I.

In addition, we showed that there is additional dissipat
associated with the collisional exchange of atoms betw
the condensate and noncondensate components. Whe
write our hydrodynamic equations in the Landau
Khalatnikov@14,23# form given by Eq.~86!, this damping is
described in terms of the usual four second viscosity coe
cients for a Bose superfluid. The appearance of the sec
viscosity coefficients in the equations for the total currenj
in Eq. ~86b! and for the superfluid velocityvc in Eq. ~86c! is
due to the deviation of the total pressure and the chem
potential from their local equilibrium values. We might als
recall that Khalatnikov@14# discusses a specific model fo
the second viscosity coefficients in superfluid4He by intro-
ducing ‘‘local chemical potentials’’ for the phonons (mph)
and rotons (m r). These describe a situation where such ex
tations~describing the normal fluid! are out of local equilib-
rium with the superfluid component. Clearly this discussi

FIG. 3. Plot of the second viscosity coefficientsz i @in units
defined in Eq.~141!# in a uniform gas forgn50.2kBTBEC as a
function of temperature.
8-16



de
.

ef
ic
de
a

c
lic

de
w
he

s-

he
nd
w
om

r-

o-

e

d
th
lo

he

he
ni
as

-
e-

in
t

io
tio

o

a
ta
h

s in

and
ted

of

ic

e
-

LANDAU–KHALATNIKOV TWO-FLUID HYDRODYNAMIC S . . . PHYSICAL REVIEW A 63 033608
has connections with our calculations based on the con
sate and noncondensate not being in diffusive equilibrium

The frequency-dependence of the second viscosity co
cients is a result of the fact that our two-fluid hydrodynam
deals with the dynamics of the condensate and noncon
sate components as separate degrees of freedom. This fe
is made more explicit in our recent papers@3,9,10#. In par-
ticular, it gives rise to a new relaxational zero-frequen
mode. As mentioned at the end of Sec. II, and more exp
itly in Ref. @10#, this mode may be viewed as the~renormal-
ized! version of the zero-frequency thermal diffusion mo
@20# above TBEC. The presence of this new mode belo
TBEC is somewhat hidden in the formulation in terms of t
LK two-fluid equations given in Eq.~86!.

In Sec. V we derived explicit formulas for all the tran
port coefficients within our model. In Ref.@10# we only took
into account the deviations from local equilibrium due to t
C22 collision integral in calculating the shear viscosity a
the thermal conductivity coefficients. In the present paper
have also included the contribution to these quantities fr
theC12 collision integral. From Eqs.~125! and~133! we see
that bothk andh are given in a form proportional to cha
acteristic relaxation timestk5(tk,12

21 1tk,22
21 )21 and th

5(th,12
21 1th,22

21 )21, respectively, which are defined and m
tivated in Appendix B.

In a rough estimate we findtk,22,th,22;tcl;1/ñ and
tk,12,th,12;(ñ/nc)tcl;1/nc , wheretcl is the classical colli-
sion time defined in Eq.~B2!. We therefore observe that th
effect ofC12 collisions reduces the magnitude of bothk and
h by a factor;1/(11nc /ñ), a result also noted in Ref.@12#
for a uniform gas. The contribution of theC12 collisions is
always important in a trapped gas, since the condensate
sity at the central region of a trap is much larger than
density of the thermal cloud even at temperatures very c
to TBEC. In a trapped Bose gas we find the effect of theC12

collisions is enhanced by a large factornc /ñ@1. This means
thatk andh are always dominated by the contribution of t
C12 collisions. Since the effective relaxation timestk,12 and
th,12 are smaller than the classical collision timetcl by a
factor ñ/nc!1, this implies that in a trapped Bose gas, t
hydrodynamic region may be much easier to reach at fi
temperatures than expected from naive considerations b
on using the classical collision time~i.e.,vtcl!1). That is to
say, one might easily havevtk,12!1 andvth,12!1, even
thoughvtcl@1. This has very important implications in de
ciding if one is in the collisionless or the hydrodynamic r
gion.

One problem not dealt with in this paper is the fact that
a trapped Bose gas, the decreasing density in the tail of
thermal cloud means that the hydrodynamic descript
breakdowns eventually. This problem enters the evalua
of the expressions for theh and k transport coefficients
given in Sec. V. In recent papers dealing with the case ab
TBEC @26,11#, this problem was handled in anad hocmanner
by introducing a spatial cutoff in the thermal cloud. In
future paper we give an alternative approach based on s
ing with an improved solution of the kinetic equation, whic
03360
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naturally includes the crossover to the noninteracting ga
the thermal gas tail.
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APPENDIX A

We briefly sketch the derivation of the first-order kinet
equation given in Eq.~50!. Using Eq.~37! in Eq. ~49!, one
has

F]0

]t
1

p

m
•“ r2“ rU~r ,t !•“pG f (0)~r ,p,t !

5F1

z S ]0

]t
1

p

m
•“ D z1

mu2

2kBT2 S ]0

]t
1

p

m
•“ DT

1
mu

kBT
•S ]0

]t
1

p

m
•“ D vn1

“U~r ,t !

kBT
•uG f (0)~11 f (0)!.

~A1!

The notation]0/]t is explained below Eq.~49!. Using the
expressions for the densityñ(0) given by Eq.~40! and the
pressureP̃(0) in Eq. ~42!, one finds

]0ñ(0)

]t
5

3ñ(0)

2T

]0T

]t
1

gkBT

z

]0z

]t
,

~A2!

]0P̃(0)

]t
5

5P̃(0)

2T

]0T

]t
1

ñ(0)kBT

z

]0z

]t
,

where g is the variable introduced after Eq.~51! and z
5z(0) as defined below Eq.~40!. One may combine thes
equations with Eqs.~43a! and ~43c! to show that the equa
tions in Eq.~A2! reduce to

]0T

]t
52

2

3
T~“•vn!2vn•“T1

2T

3ñ(0)
s1G12,

~A3!

]0z

]t
52vn•“z1s2z

G12

ñ(0)
.

The analogous equation for]0vn /]t is given directly by Eq.
~43b!. Using these results in Eq.~A1!, one finds that it re-
duces to
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S ]0

]t
1

p

m
•“ r2“ rU•“pD f (0)

5H 1

T
u•“TS mu2

2kBT
2

5P̃(0)

2ñ(0)kBT
D

1
m

kBT Fu•~u•“ !vn2
u2

3
“•vnG

1Fs21
mu2

3kBT
s11

m

kBT
u•~vc2vn!G G12

ñ(0)J f (0)

3~11 f (0)!, ~A4!

where we recallu[p/m2vn . In calculating the dissipative
terms, we only consider terms to first order in the veloc
fields vn andvc . SinceG12 is proportional tovn andvc @see
Eq. ~44!#, we can neglect the last term~proportional tovc
2vn) in Eq. ~A4!. This linearized version of Eq.~A4! can be
rewritten in the form shown on the left-hand side of Eq.~50!.

APPENDIX B

The relaxation timetk in Eq. ~125! is defined by

tk[2H E dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G
2

u2f 0~11 f 0!J
3HE dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!Gu
3L̂F H mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!J uGJ21

5
15p9/2\3

8m~kBT0!2a2
F 7

2
g7/2~z0!2

5

2
g5/2

2 ~z0!/g3/2~z0!

I 22
k ~z0!1nc0L0

3I 12
k ~z0!

G
5

15A2p7/2

4
tclF 7

2
g7/2~z0!g3/2~z0!2

5

2
g5/2

2 ~z0!

I 22
k ~z0!1nc0L0

3I 12
k ~z0!

G . ~B1!

Here

tcl
21[A2~8pa2!ñ0~r !~8kBT0 /pm!1/2, ~B2!

is the collision time of a classical gas with densityñ0 and
quantum cross sections58pa2. In turn, the relaxation
times in Eq.~126! are defined by

tk,22[2H E dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G
2

u2f 0~11 f 0!J
3HE dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!Gu
3L̂22F H mu2

2
5g5/2~z0!J uGJ21
2kBT0 2g3/2~z0!

03360
5
15p9/2\3

8m~kBT0!2a2
F 7

2
g7/2~z0!2

5

2
g5/2

2 ~z0!/g3/2~z0!

I 22
k ~z0!

G
5

15A2p7/2

4
tclF 7

2
g7/2~z0!g3/2~z0!2

5

2
g5/2

2 ~z0!

I 22
k ~z0!

G , ~B3!

and

tk,12[2H E dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!G
2

u2f 0~11 f 0!J
3HE dp

~2p\!3 F mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!Gu
3L̂12F H mu2

2kBT0
2

5g5/2~z0!

2g3/2~z0!J uGJ21

5
15p9/2\3

8m~kBT0!2a2
F 7

2
g7/2~z0!2

5

2
g5/2

2 ~z0!/g3/2~z0!

nc0L0
3I 12

k ~z0!
G

5
15A2p7/2

4
tclF 7

2
g7/2~z0!g3/2~z0!2

5

2
g5/2

2 ~z0!

nc0L0
3I 12

k ~z0!
G . ~B4!

In an analogous way, the relaxation timeth in Eq. ~133!
is defined by

th[2F E dp

~2p\!3 S umun2
1

3
dmnu2D 2

f 0~11 f 0!G
3H E dp

~2p\!3 S umun2
1

3
dmnu2D

3L̂Fumun2
1

3
dmnu2G J 21

5
5p9/2\3

16m~kBT0!2a2 F g5/2~z0!

I 22
h ~z0!1nc0L0

3I 12
h ~z0!

G
5

5A2p7/2

2
tclF g5/2~z0!g3/2~z0!

I 22
h ~z0!1nc0L0

3I 12
h ~z0!

G . ~B5!

The relaxation times in Eq.~134! are defined by

th,22[2F E dp

~2p\!3 S umun2
1

3
dmnu2D 2

f 0~11 f 0!G
3H E dp

~2p\!3 S umun2
1

3
dmnu3D

3L̂22Fumun2
1

dmnu3G J 21
3
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5
5p9/2\3

16m~kBT0!2a2 Fg5/2~z0!

I 22
h ~z0!

G
5

5A2p7/2

2
tclFg5/2~z0!g3/2~z0!

I 22
h ~z0!

G , ~B6!

and

th,12[2F E dp

~2p\!3 S umun2
1

3
dmnu2D 2

f 0~11 f 0!G
3H E dp

~2p\!3 S umun2
1

3
dmnu2D

3L̂12Fumun2
1

3
dmnu2G J 21

5
5p9/2\3

16m~kBT0!2a2 F g5/2~z0!

nc0L0
3I 12

h ~z0!
G

5
5A2p7/2

2
tclFg5/2~z0!g3/2~z0!

nc0L0
3I 12

h ~z0!
G . ~B7!

We note that in a nondegenerate gas, these expres
simplify and we findtk5tk,225

15
8 tcl„n0(r )… and th5th,22

5 5
4 tcl„n0(r )…. The latter expression forth agrees with the

result for the shear viscosity given in Eq.~11! by Kavoulakis
et al. @27#.

The physical meaning of these new relaxation times
comes clear when we compare our Chapman–Enskog an
sis in the text with a simple relaxation time approximati
@20#. In the relaxation time approximation, one simply r
places the collision term in Eq.~1! with 2@ f 2 f (0)#/t rel ,
wheret rel is a phenomenological relaxation time charact
izing how fast the system relaxes to local equilibrium. W
this approximation, the solutions of the linearized equatio
in Eqs.~55a! and~55b! for the functionsA(u) andB(u) are
found to be simply given by

A~u!52t relF mu2

2kBT
2

5g5/2~z!

2g3/2~z!G , B~u!52t rel

m

kBT
.

~B8!

In contrast, our Chapman–Enskog solution forA(u) is given
by Eq.~108! with the coefficientA given by Eq.~109!, while
one hasB(u)5B with the constantB given by Eq.~128!. In
terms of the relaxation timestk and th defined above, we
find Eqs.~108! and ~128! can be written as

A~u!52tkF mu2

2kBT
2

5g5/2~z!

2g3/2~z!G , B~u!52th

m

kBT
.

~B9!

Comparing Eq.~B9! with Eq. ~B8!, we see that bothtk and
th can be identified with the relaxation timet rel . That is, in
the simple relaxation time approximation,k and h are still
given by the formulas~125! and ~133!, but with tk5th
03360
ns

-
ly-

-

s

5trel . We also note that Eq.~7! of Ref. @27# gives a general
expression for various collisional relaxation times abo
TBEC, which is given by a formula analogous to Eqs.~B1!
and ~B5!.

It is these effective relaxation times that determi
whether one is in the hydrodynamic two-fluid domain,vtk
&1, vth&1 ~see discussion in Sec. VI!. They should be
used in place of the classical collision timetcl in Eq. ~B2!.

APPENDIX C

Hohenberg and Martin@23# worked out the dispersion re
lation of the hydrodynamic modes in a uniform Bose sup
fluid using the Landau–Khalatnikov two-fluid equations. T
frequencies of the first and second sound modes are give

v25ui
2k22 iD ik

2v, ~C1!

where the sound velocitiesui are determined by the couple
equations

u1
21u2

25
Trss̄

2

rnc̄v

1
]P

] s̄
U

s̄

, ~C2!

u1
2u2

25
Trss̄

2

rnc̄v

]P

]r U
T

. ~C3!

Here s̄[s/mn is the entropy per unit mass andc̄v is the
specific heat per unit mass. The damping coefficientsDi are
determined by the coupled equations

D11D25
4h

3rn
1

z2

rn
2

rs

rn
~z11z4!1

z3rs

rn
r1

k

r c̄v

,

~C4!

u1
2D11u2

2D25
]P

]r
1

z214h/3

r

rs

rn
S Ts̄2

c̄v

2
2Ts̄

r c̄v

]P

]T U
r

1
]P

]r U
s̄
D 1z3

rs

rn

]P

]rU
s̄

r ~C5!

2~z11z4!
rs

rn
S 2

Ts̄

c̄vr

]P

]T U
r

1
]P

]rU
s̄
D . ~C6!

We note that the above general expressions are valid
both liquid 4He and Bose gases. For the liquid4He these
formulas can be simplified by usingc̄v' c̄p . One has

u1
2'

]P

]r
, ~C7!

u2
2'2

rs

rn

]T

]~1/s̄!
, ~C8!
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D1'
z214h/3

r
, ~C9!

D2'
1

r H k

T~] s̄/]T!
1

rs

rn
Fz3r22r~z11z4!1z21

4

3
hG J .

~C10!

However, these are not valid for a dilute Bose gas. Calcu
ing the various thermodynamic derivatives with the Hartre
Fock single-particle spectrum used in this paper@28#, the
sound velocities and damping coefficients for a unifo
Bose gas are given by

u1
2'

5P̃0

3mñ0

1
2gñ0

m S 12
2nc0

2

9ñ0
2

sHD , ~C11!
v.

y

s.

s

s
s

n

-

J

03360
t-
–

u2
2'

gnc0

m
~12sH!, ~C12!

D1'
4h

3rn
1

z2

rn
2

rs

rn
~z11z4!1

z3rs
2

rn
1

4

9

kT0

rnu1
2

3S 11
2nc0

3ñ0

s1sHD 2

, ~C13!

D2'rsz31
4

9

rs

rn
2u2

2 ~s1sH!2kT0 . ~C14!

Here sH is defined in Eq.~25!, while rn5mñ0 and rs
5mnc0.
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