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Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas
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Starting from the quantum kinetic equation for the noncondensate atoms and the generalized Gross—
Pitaevskii equation for the condensate, we derive the two-fluid hydrodynamic equations of a trapped Bose gas
at finite temperatures. We follow the standard Chapman—Enskog procedure, starting from a solution of the
kinetic equation corresponding to the complete local equilibrium between the condensate and the nonconden-
sate components. Our hydrodynamic equations are shown to reduce to a form identical to the well-known
Landau-Khalatnikov two-fluid equations, with hydrodynamic damping due to the deviation from local equi-
librium. The deviation from local equilibrium within the thermal cloud gives rise to dissipation associated with
shear viscosity and thermal conduction. In addition, we show that effects due to the deviation from the
diffusive local equilibrium between the condensate and the noncondensegatly considered by Zaremba,
Nikuni, and Griffin can be described by four frequency-dependent second viscosity transport coefficients. We
also derive explicit formulas for all the transport coefficients. These results are used to introduce two new
characteristic relaxation times associated with hydrodynamic damping. These relaxation times give the rate at
which local equilibrium is reached and hence determine whether one is in the two-fluid hydrodynamic region.
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[. INTRODUCTION should be accessible taking advantage of the larger densities
now available as well as the large scattering cross sections
At very low temperatures, the dynamics of a trapped Bose&lose to a Feshbach resonafég We have recently given a
gas is described by the time-dependent Gross-Pitae¥3R)i  detailed derivation and discussion of two-fluid hydrody-
equation for the macroscopic wave function of the condennamic equations for trapped atomic gases at finite tempera-
sate. As discussed in several recent revig¢tyg], there is  tures[3,5,8—1Q, starting from a generalized GP equation
excellent agreementvithin a few percentbetween experi- coupled with a kinetic equation. These equations were de-
mental observations of collective modes To£0.4Tgec and  rived under the assumption that the noncondensate atoms are
theoretical calculations based on fiee0 GP equation. At in local thermodynamic equilibrium among themselves but
elevated temperatures where the condensate is apprecialslge not in diffusive equilibrium with the condensate atoms.
depleted by thermal excitations, one must consider thdhe resulting ZGN hydrodynamic equation®,3] involve a
coupled motion of the condensate and noncondensate deew characteristic relaxation time,, which is the time
grees of freedom. In a recent paper, Zaremba, Griffin, andcale on which local diffusive equilibrium is established.
Nikuni (ZGN’') [3] derived a generalized Gross-Pitaevskii This equilibration process leads to a novel damping mecha-
equation for the condensate atoms and a quantum kinetiism which is associated with the collisional exchange of
equation for the noncondensate atoms, which can be used aoms between the two components. This ZGiydrody-
discuss the coupled dynamics of the two components at finiteamics is briefly reviewed in Sec. Il. In R€fL0], we gen-
temperatures. These two components are coupled throughalized the ZGN equations to include the effect of devia-
mean-field interactions as well as collisions between the ations from local equilibrium, and worked out hydrodynamic
oms. damping associated with the collisions among the non-
Two limiting cases for the dynamics of the gas corre-condensate atoms. At finite temperatures of interest, this de-
spond to the collisionless and hydrodynamic regirffgd].  viation from local equilibrium within the thermal cloud gives
Up to the present, most experiments on the collective modesse to damping associated with thermal conductivity and the
of Bose gases are thought to be in the low-density collisionshear viscosity. Such a generalization was first discussed in
less limit. In this regime, the main effect of the nonconden-Sec. V of Ref.[11] starting from the ZGN hydrodynamic
sate (thermal clougl component is to damp the condensateequations. We also note that the thermal conductivity and
oscillations. In addition to Landau and Beliaev damping dueshear viscosity were first derived for a uniform Bose-
to the dynamic mean-field interaction between two compo<ondensed gas at finite temperatures in pioneering papers by
nents, there is damping arising from the lack of diffusiveKirkpatrick and Dorfmar{12].
local equilibrium between the condensate and the noncon- In the present paper, building on our recent work with
densatd5]. The latter mechanism of damping has recentlyZaremba, we present a more complete derivation of two-fluid
been worked out in detail by Williams and Griffj6]. hydrodynamic equations, including dissipation. In Sec. lll,
In contrast, in the regime where collisions between atomsve solve the kinetic equation by expanding the distribution
are rapid enough to establish a state of dynamic local equiunction f(r,p,t) around f©©(r,p,t), the latter describing
librium in the noncondensate gas, the dynamics of the syszomplete local equilibrium between the condensate and the
tem is described by hydrodynamic equations for a few locahoncondensate. We follow the standard Chapman—Enskog
variables. This regime contains much new physics and itnethod used to derive hydrodynamic damping in the kinetic
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theory of classical gases. In this treatment, the lowest ordefnction f(r,p,t), which obeys the quantum kinetic equation
hydrodynamic equations involve no dissipative terms. All

hydrodynamic damping effects are included by taking into af(r,p,t) p

account deviations from the local equilibrium distribution o T VAR )= VUVt

(). In Sec. IV, we prove that, with appropriate definitions

of various thermodynamic variables, our two-fluid hydrody- =Cf, @]+ Coff]. 1)

namic equations with damping have precisely the structure , ,
of those first derived by Landau and Khalatnikaa,14. In ~ Here the effective potentiall (r,t)=Uex(r) +2g[ne(r,t)
particular, the damping associated with the collisional ex-+n(r,t)] includes the self-consistent Hartree-FoGHF)
change of atoms between the two components, which ha®ean field, and as usual, we treat the interatomic interaction
been discussed at length in our previous wplo,1Q, is in the swave approximation witlg=4=%%a/m. The con-
now expressed in terms of frequency-dependent second vigensate density is.(r,t)=|®(r,t)|* and the noncondensate
cosity coefficients. This type of damping is in addition to thedensityn(r,t) is given by
usual kind of hydrodynamic damping associated with shear
viscosity and thermal conductivifyi0,11. ) f
n(r,t)=

In Sec. V, we also derive explicit expressions for all the f(r,p,t). ()

transport coefficients that appear in the dissipative terms in

our twq-fluid hydrodynamic equations. For the purpose OfThe two collision terms in Eq(1) are given by

illustration, we evaluate the temperature dependence of all

the transport coefficients for the case of a uniform Bose gas. 292

The case of a trapped Bose gas is quite different. Because the ¢, [ f]= LJ dpzf dpsf dp.,

condensate density is always much larger than the noncon- (2m)°h’

densate density in the central regions of a trapped Bose gas, - - -

we find that the collisions between the condensate and non- X 8(p+P2—P3—Pa)S(eptep,—&p,—&p,)

condensate atoms are the dominant contribution to all trans-

port coefficients. XL+ 1+ 1) faf g (14 F3)(1+F4) ],
The lengthy analysis in Secs. lll, IV, and V is, of neces- 3

sity, very complex and conceptionally quite subtle. Most

readers will only be interested in the final conclusions, which 2g?n
—°f dplf dsz dps
(27)%ht

(27h)°

we now summarize. We prove that the two-fluid hydrody- C,Jf,®]=

namic equations of a trapped Bose gas can be written pre-

cisely in the well-known Landau-Khalatnikov form, as sum- ~ o~ o~

marized in Eq.(86). The new feature W|I;1di_?h arises in a X O(MVe+Py—P2—P3)d(ectep, —ep,~&p,)

trapped Bose ga@s compared to superfluitHe) is that, as

not%% above, ?he four sgcond viscgsity coefficients can be XLo(p=pr) = (P~ P2) = S(p~ps)]

frequency dependent, as given by Et06). Finally, explicit X[(L+f)ffa—f(1+F,)(1+13)], 4

expressions for all the transport coefficients are given in Egs.

(115, (130, and (139. An important final result of our with f=f(r,p,t), f;="f(r,p;,t). The expression in Eq4)

analysis(see Sec. Yis a precise definition of three relax- takes into account the fact that a condensate atom locally has

ation times[see Eqgs(24), (B1), and (B5)] associated with energye(r,t) = u(r,t)+ 2mvZ(r,t) and momentummv,,

the transport coefficients. Moreover, we show that the colliwhere the condensate chemical potentialand velocityv,

sions between the condensate and noncondensate atomswill be defined shortly. On the other hand, in our finite-

ways play the dominant role in the hydrodynamic dampingtemperature model, a noncondensate atom locally has the HF

of trapped Bose gases. _ _energy &,(r,t)=p%2m+U(r,t). This particle-like disper-
The present paper brings to a natural conclusion our seriesion, relation limits our entire analysis to finite temperatures.

of papers(with Zaremba on the two-fluid hydrodynamics of = The equation of motion for the condensate is given by a

trapped Bose gas¢8,9—11. Much remains to be done solv- generalized Gross—Pitaevskii equatifd] for the macro-

ing these hydrodynamic equations and experimentally Checks‘copic wave functiorb(r,t) (see also Ref15])
ing the predictions.

aP(r,t) h2v2 ~
h =|- +Ug(r)+gne(r,t)+2gn(r,t)
Il. ZGN ' HYDRODYNAMIC EQUATIONS ot 2m
In this section, we derive the most general form of hydro- CiR(r, 0 |D(r 1) )
dynamic equations for the condensate and noncondensate at ' o

finite temperatures, and then briefly review the ZGWo-

fluid hydrodynamics. We start with the underlying coupledwhere

dynamical equations for the noncondensate and the conden-

sate, as derived in R3] and recently reviewed in Reff5]. R(r t)= Al o(r,1) ©6)
The noncondensate atoms are described by the distribution ' 2ng(r,t) "’
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with

ClZ[f(r!pvt)vq)(rvt)]- (7)

I'= J'

The dissipative ternR in Eq. (5) is associated with the ex-

(2mh)3
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The noncondensate density was defined earlier in (Exg.
while the noncondensate local velocity is defined by

dp P
(27h)3 M

ﬁ(r,t)vn(r,t)zf f(r,p,t). (12)

change of atoms between the condensate and noncondensgfea qgition, we have introduced the following quantities:

as described by the collision integr@l [ f,®] in Eq. (4).
We see that Eq$1) and(5) must be solved self-consistently.
It is customary to rewrite the GP equati@) in terms of the
amplitude and phase ofb(r,t)=/n.(r,t)e'?"Y  which
leads to[v,;=AV 6(r,t)/m]

ang

—e T V-(nve)=—Tf @], (83
d

m ﬁ+vc~V)vC=—V,uc, (8b)

where the condensate chemical potential is given by

= h2V2\ng(r,t)
o1 D)= 2myng(r,t)

+ U1 +gnge(r,t) +2gn(r,t).
9)

One sees thal';, in Eq. (8) plays the role of a “source

function” in the continuity equation for the condensate, aris-

ing from the fact thatC,, collisions do not conserve the
number of condensate atorf.

We note that the set of equatiofi®—(7) has also been
derived using the elegant Kadanoff-Baym formulat[d6—

&—vn,,)f(l’,p,t),

m
(123

Pu_
m

o

p
(p_mvn)2<a_vn

p
Pﬂy(r,t)EmJ (277}1)3(

J

dp 1
(27h)% 2m

J

Finally, the symmetric rate-of-strain tensor appearing in Eq.
(10) is defined as

Q(r,t) f(r.p.t),

(12b

dp 1
(27h)% 2m

e(r,t) (p—mv,)?f(r,p,t). (120

1({dv,,
D“V(r’t)zi X,

(13

+%)_
Ix,,

The hydrodynamic equations in EG.0) are formally ex-
act, but obviously are not closed. To proceed, we must
specify the conditions under which the dynamics of the sys-
tem are to be determined. In the ZGRydrodynamics, we

18]. More recently, this KB derivation has been extended toconsider the situation in which th@,, collisions are suffi-

cover low temperatures as wéll9], by working with a Bo-

ciently rapid to establish local equilibrium among the non-

goliubov quasiparticle spectrum instead of the simpler HFcondensate atoms. This situation is described by the local
spectrum used in the present paper. One could use this egguilibrium Bose distribution for the thermal cloud,

tension as the basis for generalizing the present paper.

Following the standard procedure in the classical kinetic

theory of gase$20], we take moments of the kinetic equa-
tion (1) with respect to 1,p, and p? to derive the most
general form of “hydrodynamic equations” for the noncon-
densate. These moment equations take the fourrar(dv are
Cartesian components

an ~
SV (v =Tyl 0], (10a
~[ 0 v _ (?Pl“, ~Jdu
mn E+Vn~ Unu= ox, I’]E
—M(vp,—ve) A, P, (10b)

Je ~
E+V-(evn)=—V~Q—DWPW

1
+ Em(vn_vc)2+ﬂc_ Uil Jf,®].

(109

1

eBl2m)(p—mvp)*+U—p] _ 1 ° (14

Trpt)=

Here the temperature paramefgrnormal fluid velocityv,,,
chemical potential, and mean field are all functions of
andt. One may immediately verify that has precisely the
form such that it satisfies the conditi@y,[f]=0, indepen-

dent of the value ofe. In contrast, one finds th&t,f,®]
does not vanish in general, namely,

29°n,
(27)%h4

ClZ[?]: {1—e_ﬁ[;«—(1/2)m(vn_vc)2_ﬂc]}

Xf dplf dpzf dpsd(mve+p;—pa—Ps3)
X(‘)‘(El-i-sc—gz—;g)

X[ 8(p—p1)— (p—p2)— S(p—p3)](1+T1)T,f 5.
(15
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Using the local distribution functiofiL4) to evaluate the mo-
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where ugig=— . and 71, is the mean collision timg3,9]

ments in Eqs.(2) and (12), we find that the heat current zssociated witlCy,:

Q(r,t)=0, and that

~ B dp -~ 1
n(rlt)_fmf(r!p!t)_Pgii/Z(z)l (16)
- dp  (p—mvy)%
PM,,(r,t)zéwP(r,t):&Wf (2a)?  3m f(r,p,t)
= 5/.LV_95/2(Z)' (17)

BA®

Here z(r,t)=eflkn0-U0D] s the local fugacity,A(r,t)
=[27h2%/mkgT(r,t)]¥? is the local thermal de Broglie

wavelength, andg,(z)=2",Z/I" are the Bose-Einstein

functions. The kinetic energy density is given E{(r,t)
=2P(r,t). _
To summarize, using=f, we obtain the ZGN lowest-

order hydrodynamic equations for the noncondensate given

in Refs.[3,5,9]. In the linearized version of these ZGNMy-
drodynamic equations, the condensate is described by

aon,

ot + V. (ngdvey)=— 08T 15, (1839
IVe _ Ve 18b
(9t - /-Lc1 ( )
and the noncondensate variables satisfy
aon -
o TV (Nodvy) =6y, (193
~ 6V, ~ o~ ~ ~
mny—— =~V &P —8nVUg—2gneV (dn+ dno),
(19b
9P 5_ 2 . 2
T §V~(P05\/n)+ 3Vn° VPy— §9nco5F12-
(190

The fluctuation of the condensate chemical potential is given

by

Sue=gdn.+2gan. (20)

= CILIE
T2 (2m)hT Pr] dpz2 | dps

X 8(p1—P2—Pa) O oot €1~ 82— €3)

X (1410 f20f 30, (22

wheref,o=[efolti~#c0) —1]71 is the static equilibrium dis-
tribution function ande; = p?/2m+U,.

Since one can shoyB,10] that Su4i can be written as a
linear combination ofsn and 8P, the above coupled hydro-
dynamic equations in Eq$18) and(19) are a closed set for
the variablessn,, dv.,dn, dv,,, andSP. However, it will be
useful later to have an equation of motion @y . This is
given by[see Eq(86) of Ref. [3]]

1 O ift
=gV [Neol Vo= V)= 39NV - V= ———.

‘23

9O i _
at

Here 7, is a new relaxation time governing hodq re-

laxes to zero, i.e., how fast diffusive equilibrium is reached
between the condensate and noncondensate components. It is
related to the collision time, in Eq. (22) by the expression

1 _ ,309 Nco
7,(1)

, (24)
OHT12

where the dimensionless hydrodynamic renormalization fac-
tor oy is given by

-1
5. . 2.,
§P0+29n0nc0+ 39%0Mco

oy(r)= 5 3 -1 , (29

EPO'VO_EgnS

wherey=(g/kgTA%)gy(2).

We can now look for normal mode solutions of the lin-
earized ZGN equations in Eq918) and(19). Assuming that
these fluctuations have a time dependemc&”!, one can
solve Eq.(23) for Sugy; to give

r
Ophift = — ﬁ(gv'[nco(é\/c_ V)]
"

1
+ §gnC0V- b\/n}. (26)

This assumes the Thomas-Fermi approximation, which

means that the first term in E@9), the quantum pressure |n the limit wr

term, is neglected. The source functiéh;, can be usefully

.— 0, one sees thaluq— 0. This situation
corresponds to the complete local equilibrium between the

expressed3] in terms of the difference between the conden-.,nqensate and noncondensate components, witht)

sate and noncondensate chemical potentials, namely

BoNeo . ~ BoNco
= (S Su)=———

5F 12: -
T12 T12

Opaire, (21

= uo(r,t). In this limit, one can prove that our ZGNhydro-
dynamics reduces to the Landau two-fluid hydrodynamics
without dissipation terms, as discussed in detail in R3f. It
is clear that fluctuation obuy described by Eq(23) [or
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equivalently Eq(26)] gives rise to a new relaxational mode af(r,p,t) p
in addition to usual collective oscillations of the condensate o T VAR O= VUVt
and noncondensatdor a uniform superfluid, these are the
first and second sound modeBFor a uniform Bose gas, the 1
frequency of this new mode is given hyg=—i/7, [9]. = (Cd T, ]+ CA f]). (27)
Thus, in general, our ZGNequations predict the existence
of a new relaxational mode, associated with the equilibratiomhis expansion parameterwill be eventually taken to be 1,
of the condensate and noncondensate collective variables. put allows one to develop a perturbative solution of &7).
In Ref.[10], we have extended the theory to include smallin order to solve the quantum kinetic equation, we formally
deviations from the local equilibrium distributioh in Eq.  expand the distribution functiof(r,p,t) in powers ofa:
(14). These give rise to new dissipative terms in the non- _£0) o
condensate equations associated with the shear viscagity ( f=f4aft .. (28)

and the thermal conductivity«{) of the thermal cloud. The qtfsing this expansioli28), we can also expand the various

damping of first sound, second sound, and the relaxation ydrodynamic variables in Eq10)

mode due to the effect of normal fluid transport coefficients

was calculated in Ref.10]. In particular, we showed there =Rt ghW ... p =pOy 4 pW ...
that the relaxational mode was strongly coupled(amd e ry '
renormalized by fluctuations in the local temperature and 0=0@+aQW+... (29)

hence the thermal conductivity.

In summary, the ZGN hydrodynamics exhibit the phys-
ics of the coupled dynamics of the condensate and noncon-
densate atoms in a clear fashion. However, the approacthe superscrip(0) denotes the local equilibrium solution
used in the ZGN theory has a disadvantage in that it is not (see below which is determined by the collision integrals

based on a small expansion parameter, in contrast to thgormally whena— 0). We also redefine the source function
more systematic Chapman-Enskog procedure used here. in, in Eq. (7) as

Ref. [10], we only included the effect of,, collisions to
discussing the deviation from local equilibrium. This neglect 1 dp
of C, collisions in this connection is only justified when the I'= ;j 7012[“1’]

condensate density is very small compared to the noncon- (2h)

densate densitjsince theC,, term in Eq.(4) is proportional 1

to n.]. However, in a trapped gas, i@, collision integral = ;(F(lg)Jr al P +aTH ). (30)

is always significant since the condensate is strongly peaked

at the trap center, with a density much larger than the nonyye also have an expansion for the condensate wave function
condensate even at temperatures clos@ gg:. Thus we

must treat bothC;, and C,, when considering deviations O=0O+4pM®+.. .. (31

from local equilibrium. ) )

In the following section, we present a more systematic N this expansion, however, we assume that the total local
derivation of the two-fluid hydrodynamics, by following the densityn(=n.+n) is not altered by the higher order correc-
standard Chapman-Enskog procedure. This derivation igon termsf() (i=1) in Eq.(28). That is, we have
similar to the work by Kirkpatrick and Dorfmafi2] for a ©) )
uniform Bose gas. As we discuss in Sec. IV, this new ap- Ne=n¢ +ang’+---, (32
proach allows us to show that the extended ZGMory can but
be written in a form completely equivalent to the Landau— u
Khalatnikov two-fluid hydrodynamickl4] when we include
hydrodynamic damping. This set of equations involves the

thermal conductivity, shear viscosity and four frequency-yye also assume that nonlocal correction tefifismake no

dependent second viscosity coefficients. The latter are showgyntribution to the noncondensate velocity fieldsor to the

to arise from the fact that the condensate and noncondensaﬁﬁasee of the condensate wave functigand hence to the

are not in diffusive equilibrium g.# u), as discussed by condensate velocity,). Finally, the condensate chemical

ZGN' [3,9]. potential in Eq.(9) (we work within the Thomas-Fermi ap-
proximation is given in the expansion

e () WSS ¢ ) IR

n=n{P+n@®, nO+nO=0 (i=1). (33

I1l. CHAPMAN —ENSKOG EXPANSION FOR A BOSE- =
r,t)=Ug(r)+g[n(r,t)+n(r,t
CONDENSED GAS He(F 1) =Uey(r)+g[n(r,t) +n(r,t)]
=, (1) o
A. Lowest-order hydrodynamic equations pe (1) Fape(r,0) + ! (34)
Following the standard procedure of the Chapmanwith
Enskog expansiof21], we introduce a small expansion pa- © ~00 W~
rametera and rewrite the kinetic equatiofl) as pP=Ugtg(n+n©®), u=gn®. (39
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Using the expansiof28) in the kinetic equatiori27), we
find that the lowest order solutiofi®) is determined from

C @ 0O+, f(O]=0. (36)

The unique solution of Eq(36) is given by the “diffusive
local equilibrium” Bose distribution function, namely

1
A DI(L2m) (p—mvy(r,)?+U(r, )~ wO(rn] _q °

37

fO(r,p,t)=

Here the local equilibrium noncondensate chemical potential

19 is given by the condition that, f(®,&(®]=0, which
gives

~ m
pO=u+ = (Vo= Vo). (38)
Using Eq.(35), this is equivalent to
~ m
wO=p+ = (vg=ve)?
~ m
:Uext+gn+gn(o)+ E(Vn_vc)zy (39
in conjunction with
") :j (0)
n'9(r,t f(rp,t
(0= ] G e
1 (0)
= 3393427 (40)

Herez(O)(r,t)=efl+ .0V D] s the local fugacity in dif-
fusive local equilibrium.

It is important to appreciate that diffusive equilibrium is

not defined by the distribution functiof®® alone, but is

determined self-consistently with the noncondensate chemi-
cal potential as given by Eq38). One may immediately
verify that f(©) satisfiesC,/ f(9)]=0, independent of the

value of (9. In contrastC, (), ®(®]=0 only if the local
chemical potential of the thermal cloud is given by E8p)

and the condensate and noncondensate densities are de
mined self-consistently. Of course, it immediately follows

that sinceC,4 f(?,®©]=0, we havel'(Q=T, (@ &)
=0 and hence Eq30) reduces to

Fp=TH+al@+. ... (42)

PHYSICAL REVIEW A 63 033608
0 _ D0
PO(r.t)=5,,POr,1)

dp  (p—mvy)?
=5 ”j fO(rp,t
) (2mn)® 3m (rp.0

95 20). (42)

zgwl[W
The local kinetic energy density is given bg%(r,t)
=3PO(r,1).

To summarize, the lowest-order hydrodynamic equations
for the noncondensate are given by

an ~
—+V-(nv,) =T,

pn (433

mn

(9 ~ ~
EﬂLVn'V)Vn: —VP-nVU-m(v,—vo)T$,
(43b)

i V. (Byy) = BV
E"' ( Vn)__§ Vi

1
+ 3| 3MVa— Vo) P+ = U T,

(430

wheren=n®, P=PO, and u.=un are given by Egs.
(40), (42), and(38), respectively. It should be noted that the
above equations involve the source teff}) . Even though
C,ff@]=0, one sees from Ed41) that the lowest-order
contribution is in fact given byl'{Y, which involves the
contribution from the next order correctioit®). Later we
will derive an explicit expression foF';, when we include
the effect of deviations from the local equilibrium distribu-
tion and transport processes. Here we only display the result
for the lowest-order contribution which enter into E¢23)
[see also Eq(79)]:

1
TR0 =04 V-[Ne(Ve= V) ]+ 3NV Vol (44)

where oy, is defined by Eq(25).

It is important to note that even thoudH?) involves an
integral over the collision integraC,, [see Eq.(30)], the
expression in Eq(44) does not involve any collision time.

e expression fol'(}) in Eq. (44) is consistent with the
ZGN' result for Sugi given in Eq.(26) in the limit o7,
—0 [using Egs.(21) and(25)]. We recall that in this limit,
one hasduqs—0 and thusf in Eq. (14) reduces taf(® in
Eq. (37). Therefore the hydrodynamic equations given in Eq.
(43) are equivalent, in thex7,—0 limit, to those given by
the ZGN theory. As noted in Ref3], these coupled lowest-

Using the local distribution functio37) to evaluate the order hydrodynamic equations in Egg3) and (8) can be
moments in Eq.(12b, we find that the heat current combined and also shown to be precisely equivalent to the

Q(r,t)=0, and

Landau two-fluid equations without dissipation due to the
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transport processes. In Sec. IV we prove this equivalence in 59ty p t)

p
the more general case when dissipation is included. P + E'Vrf(o)(hpvt)_vru VofO(r,p.t)

— T i i
B. Two-fluid equations with hydrodynamic dissipation == BgnWLF 1]+ Laof 9]+ Lo ¥]. (49

We next consider the deviatid28) from the local equi- Here ¢°/9t means that we use the lowest-order hydrody-
librium distribution function f(®) to first order in the namic equations given b3) in evaluating time derivatives
Chapman-Enskog expansion. This deviatiH gives rise to  of v, %, T, andU. The resulting linearized equation which

additional dissipative terms in the hydrodynamic equationsgetermines the functiow is (for details, see Appendix A
As usual, in determining the dissipative terms, we restrict

ourselves to terms of first order in the velocity fielgsand u-VT
v . Following Refs.[12,11, and 10 we write the first cor- -
rection term in Eq(28) in the form

m

mu?  50g4(2) 1
kB_TD’“’( u,u,— §5Wu

_ 2
2KgT 209322

(1)=£(0) (0) me  \TW
3kgT /{0
and work withy(r,p,t). To first order ina, theC,, andC;» ~ )7 s N _a
collision terms in Eq(2) reduce to {=f©+ afD). +Bgn U Lad ] =Lad ]+ Lod y1=LL Y], (50)
where the thermal velocity is defined bymu=p—mv, and
1 " 2g? z=7(9. The dimensionless thermodynamic functiens o,
—Cy f]=C, [ fH]= fd Jd jd in Eq. (50) are defined b
P 2] f]=Co f*] (2m)5h7 P2 | OGPz | OPs g. (50) y
~ o~~~ oy~ 3 .
><5(p+pZ_p3_p4)5(8p1+8,:)2_((3,:)3_8,:)4) Y(O)n(O)[M(O)_U]_E[n(O)]Z
aq(r,t)= ,
X FOFO(1+ )1+ F) (gt thg— ho— ) ! 5[3(0) ©_ 3 =02
) 2Pl
=Ly ¥]. (46)

B
SPORO—[ROP[RO)-U]

iclz[f,d>]=—zgzzc4f dplf dpzf dps oarH=p—5 3
a 2m)%h 2B(0) 0 _ Z[R0)72
(27) SPy =5[]

. (51

X 8(MVe+py—p2—Ps3) 5
where YO(r,t)=(BIA%) gy (2 O(r,1))=%/g. We note

X 5(8£0)+Ep1_5p2_5p3) that C,, enters in three separate places in Exf).
X[8(p—py)— 8(p—p,)— 8(p—pa)] Cor']rc?igol:]nsearlzed collision operatots;, andL,, satisfy the

X (L+ FOYV QO (= BulD + o+ ghg— 1)

o R Lidp—mve]=0, Lyfe,—eP]=0,
=—pgnML 1]+ Ly, (47

L41]=0, Lyfpl=0, I:Zigp]zo- (52

In order to have a unique solution of E(0) for ¢, we
impose the following additional constraints:

wheree (9= u O+ imv? and 1) is given by Eq(35). The
linearizedL ;, operator is defined by

. 2g2nCJ' f f fdp u fO@+f@)y=0, (53a
Lidg]=———| dp; | dp,| d
14 ¥] (2m2h P1| dpz [ dps
~ ~ ~ m ~
X 8(MV+ Py —Pa—pa) (e + 2, —2p,— 2p) Jdp<5u2+U—u<°>>f<°>(1+f<°>>¢
X[8(p—p1)— d(p—p2) — 8(p—p3)] _ if dpIn(1+ O =g (53
XL+ IO T ot 3= ). 48 g |

Physically, the constraint53g means that the deviation
Using Eqgs.(46)—(48) and expanding the kinetic equation from local equilibrium make no contribution to the local ve-
(27) to first order ina, we find that the first nonlocal correc- locity field v, defined in Eq.(11). As we discuss in more
tion f) is determined by the equation detail in Sec. IV, the constraif63h) means that the total

033608-7



TETSURO NIKUNI AND ALLAN GRIFFIN

energy density and the local entropy density are not altered
by the deviatiorf(*). They have the the same value as given

by (.
Since Eq(50) is a linear integral equation fa¥, one may
write the most general solution in the following forf@1]:

VT-u 1
Y(rp,t)= ——A(u)+ DW< u,u,— §u25,w) B(u)

+T3D(w), (54)

where the dependence on,t) is left implicit andu,, is a

component of the thermal velocity. Here the functions

A(u),B(u), andD(u) are given by the solutions to the fol-
lowing three linearized integral equations:

MW 50s(2)

= (0) ()
U[ZkBT 293/2(Z)f (1+f%)=L[uA(u)], (553

m 1
_ - 2| £(0) (0)
kBT(u"u” 36,“,u )f (14 %)
=L (u#uy—§5MVu2>B(u) , (55b)
mu? 1 Bgn®
- _— £(0) (0)
=L[D(u)]. (550)

For the constraint$53) to be satisfied, we also need to re-
quire that

dp
(27h)3

dp

2 h)gf(o)(1+f(°))u2A(u)=0,
r

(56a

mu? ~
fO1+ f<°>)(—2 +U —M<°>) D(u)=0.
(56h)

J

Using the solution fory given in Eq.(54), one finds that
the corrections due t6*) in Eq. (45) to the various hydro-
dynamic variables are given by

ﬁ(l):f

dp
(27h)°

O+ DU, n=—F,

(57)
- 1
1) _ 1
p=s,PM-27D,,- 3TrDd,., (58
QW= — VT, (59
with

512 ~ O\ (D — -2 O (D)

P :T§(U_,U~ )F12ZT§gnc I, (60)

PHYSICAL REVIEW A 63 033608

3

E<1>:§f><1>. (61)

We note thah andP are both altered by an amount propor-
tional toT'{}). The transport coefficients and « are asso-
ciated with the functiong&\(u) andB(u),

m dp
=—— u*B(u)fO(1+ £, 62
T 2mh)? (u)F=( ), (623
__m[_ AU FOL+1@).  (62h
6TJ) (27h)3

The relaxation timer defined in Eq.(57), namely,

plays a crucial role in the subsequent analysis. Using Eq.

(57) in Eqg. (550, one can rewrite the integral equation for
D(u) in the form

dp
(27h)3

= fOL+fOYD(u), (63)

1
T

muz)

3T 5 FOLH ) = rpglif 1]=L[D(w)].
B

(64)

O'2+

In Sec. V we solve the three linearized equations listed in Eq.
(55). It will be shown there that the solution for the function
D(u) is

mu?
0'2+ mal .

D(u)=-— (65

_r
no
Using this, one finds that can be identified with the relax-
ation time 7, defined in Eq.(24). In the present discussion,
the physical meaning of the relaxation timg can be clearly

seen by writing the source functidi} in the form[see Egs.
(57) and (29)]

GO

(66)

This kind of relaxation term in the two-fluid hydrodynamic
equations such as Eq8a) and(433 was also discussed in a
pioneering paper by Miyake and Yamad@?] in discussing
the liquid “He near the superfluid transitidwhere a phe-
nomenological relaxation time equivalent tg was intro-
duced.

In summary, we have obtained the following hydrody-
namic equations for the noncondensate including the normal
fluid transport coefficientéve now set the expansion param-
etera=1):

an ~
E+V-(nvn)=f‘12, (672
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-0 v oP P, ~ U
mn E Vi vn,u (9X HW
m(UnM Ucﬂ)rlz‘}' 277 ——(TI’D)5 ]

(67b)

Jde ~ -
E+V-(evn)+(V-vn)P

1
={§m(vn—vc)2+,uc—U [t V- (kVT)

2

+29D ——(TrD)5 (670
wheren andP are given by

n=n@—7 1, (69

P=p0O 2 (O (1)
P=P +7-M§gnc iy, (69

ande=3:P. Heren® and P are given by Eqs(40) and
(42), respectively. The equivalent “quantum” hydrodynamic
equations for the condensate are given in @j. where the
condensate chemical potential is given by
pe=p{—gr, I3 (70
We now derive an equation for the functidh,. Using
Egs.(68) and (674, one obtains
gn_on®
ot ot

al'y,

7 V (nVn)+F12

— Ty (71

Using the explicit expression far®) given in Eq.(40), one
obtains
o

Using the continuity equation for the total density one
finds that Eq(72) reduces to

on©
ot

on®
a

19T
T at

an

_E> . (72

o
—n+gync

on(®
. 1-gy

3. 10T
§n+gynC Tt —+V-(nv,+neve) |.

(73
Using Eq.(73) in Eq. (71), one finds
<9F12+ 1 3. ) 19T
TuTgr T2 gy (29 T
+V-(nv,+nve) |[+V-(nv,). (79

PHYSICAL REVIEW A 63 033608

We next use Eq(69) in the equation fo® [given by Eq.
(6701:

P aﬁ(°)+ 2 'y
gt ot e39Ty
5.

~ VPV, 2PV v, 3gn Tirt 5 2y (V).
(79
Using the expression fdP(®) given in Eq.(42), one finds

_on®
+gn— +gnV-(nv,+ NneVe).

(76)

PO
ot

5.
§P+ gnng

10T
T at

Substituting this into Eq(75) in conjunction with Eq.(71),

we obtain
~ al" 1o 5.
( T'“_&t +F12) (2

2 1T
~|39nc+gn

T at

P+gﬁnc)

2
=V («kVT).

~ ~ 5_
+gnV-(ngv,)+VP-v,+ §PV-Vn— 3

(77)

One may now combine E@74) and(77) to eliminatedT/adt
from these two equations. After a certain amount of rear-
rangement, we finally obtain our desired equation of motion
for I'q5:

T +T=0ni V-[ne(ve vn)]+§nCV.vn
2 OHOq
3 V- («kVT). (79

If we keep the expansion parameterand expand’;, as in
Eq. (41), namely [';,=T{)+al'® (we recall thatl'Q
=0), we findT'{}) is given by Eq.(44) and

20—Hl

r=- T—r -3

“ ot

V- («VT). (79

gn

In closing this section, we discuss the relation between the
analysis given in this section and the ZGkheory[3] re-
viewed in Sec. Il. In this section, we started with the com-
plete local equilibrium distribution given by E¢37). We
then included the deviation from local equilibrium, as given
by Eqg. (45 with Eq. (54). We showed that the deviation
from f(©) associated wittD (u) in Eq. (54) gives rise to the

corrections to the local thermodynamic quantitiesP, and

‘e. Such corrections did not arise when we included the de-

viation fromf in the ZGN hydrodynamicg10]. However,
one can show that the type of contribution associated with
D(u) is, in fact, already contained in the lowest-order ZGN

distribution functionf given by Eq.(14). To see this, it is
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convenient to linearize the distribution function around staticlV. EQUIVALENCE TO LANDAU —-KHALATNIKOV TWO-
equilibrium, usingf=f,+ &f. In the ZGN theory[3], one FLUID EQUATIONS WITH DISSIPATION

can show that In this section we prove that our hydrodynamic equations

in Egs.(8) and(67) can be written in the form of the Landau-
p—+Uo—Mco> Khalatnikov two-fluid equations. We first display the com-
2m plete Landau-Khalatnikov two-fluid equations involving dis-
sipative termg14]:

5T
5f = ﬂofo(l"’ fo) T_

+p-V,—29n+Su|. (80) n
i —+V-j=0 (86a
Here we have denoted the temperature fluctuatioaTaso
make a distinction from the temperature defined in the diffu- JU
sive local equilibrium distribution functio(87)(we will find m—~ Ju (5 P+m~flvnﬂvny+mncvcﬂch)+n ext
that 5T# 8T). In the present theory, in contrast, one finds ﬁt Xy
[ignoring the terms in Eq.54) associated with the functions 9
A andB] = [277 w3 W(TFD)}
p2
of =Bofo(1+Tfo)| = ( +Ug— MCO) +5#V(§1V.[mnc(vc—vn)]+£zv.Vn)], (86b)
+p-Va—2g8n+6u |+ fo(1+f)D(u) 8T 5. N w vl
St Vimt 2 GV Imne(Vem V) ] = LV vy,
(81 (860
The first term in Eq(81) represents the deviation frofg VT R
included inf(® while the second term is due 6Y. Using S .v.ls K_) =S (860)
the explicit solution forD(u) given by Eq.(65) (derived in at T T

Sec. Vj, we find that Eq(81) can be written as _
The total current is given by=n.v.+nv, and the dissipa-
2 tive function describing the entropy production rate is given

20T p
2m Yo~ Heo by [14]

5f:B0f0(1+f0)

"
or
To  3n, 12)

Rs={2(V -Vn)2+2§1V Vp Ve [mng(ve—vy)]
(82 2

+p-Vo—2gn+oul—g(opt+1)7,6T 1| 1
+£3(V‘[mnc(VC_Vn)])2+277 D,lLV_ §5MV(TrD)

We note that this linearized distribution function has the
same form as the ZGNdistribution function in Eq(80), but

K
- 2
with a renormalized local temperature + T(VT) ' (87)

~ 2 Ty As we have discussed in Rg8], the normal fluid and the
oT=0oT- §T° ?‘o 12, (83 superfluid densities that appear in the standard Landau two-
fluid theory can be identified with the corresponding non-
and a renormalized local chemical potential condensate and condensate densities, within the context of
our finite temperature model based on the HF approximation
su=0oul—g(oqt+1)7,0T 5. (84)  for single-particle excitations. We have explicitly made use

of this correspondence in writing E(86). We also note that
Using duc=oul”—gr,oT 1, [see Eq.(70)] and 6 from  in Egs. (86) and (87), one can writen,(ve—vy) in the

Eq. (84), we obtam equivalent form [—nv,), which is often used.
The thermodynamic functions that appear in these
St =Om— Spe= O — [5M(0)_gq-#5rlﬂ Landau—Khalatnikov(LK) two-fluid equations satisfy the
following superfluid local thermodynamic relations:
=—goﬂ TM(SFlz. (85)
— - 2
This relation betweedu g and ol 4, is precisely that given P+e=untsTHmn(v, =) (889
by Egs.(21) and(24), as derived in the ZGNtheory. The ~
physical significance of the renormalized thermodynamic dP=ndu+sdT—mn(v,—Vc)-d(va—Ve), (88D
quantities, as given by Eq&33) and(84), will become clear 5
in Sec. IV. de=pudn+Tds+ (v,—Ve)-d[mn(v,—V.)]. (880
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The various local thermodynamic functions which appear inUsing Eqgs.(68) and(69) and working to first order il

PHYSICAL REVIEW A 63 033608

(1)
12

the LK theory have to be carefully defined so that they satone obtains

isfy the relations in Eq(88). The local entropy is defined by
(as in Ref[3])

J

Using f=©+ ™) and working to first order irf"), one

finds
f (27h)

+In(1+FO HFD,

dp
(27h)3

= [(1+f)In(1+f)—fInf]. (89

S[(1+ ) In(1+ @) — fOn £ ©)

(90

From the constraint oft® given by Eq.(53b), one sees that
the last term, which arises frof"), makes no contribution
to the local entropy. One thus obtains

1[5 00~ ~
s=%§P(°)—n(°)(M(°>—U)}

5. ~ mn
PO =N = U) = = (v = ve)?

XY

where we have used®=n+0(v,,v.).

The local energy density in the Landau—Khalatnikov
theory is defined in the local frame wherg=0 [23]. In the
context of the present theory, this is given by

_~ g 2 12 _ITL. _ 2
€ e+nUext+2(n +2nn—n°)+ 2n(vn ve)e, (92

while the local energy density in the original lab frame is
given by

~ mn ,
€lap= €+ MN(V,— V) - Ve + —-vg.

5 (93

Using Egs.(68) and(69) in Eqg. (92), one finds that the first-
order corrections froni’;, cancel out, leaving

~ ~ ~ 1 -
e= €D+ nUgt g(n2+ 2nn©—[n(®]2) + Emn(vn—vc)z.
(94)

We conclude that both the local entropy density and the local
energy density are determined by the diffusive local equilib-

rium distribution functionf(®) alone, and are not altered by
the deviationf(%),

In contrast, as we now show, the total pressure and the
chemical potential must be carefully defined so that they m]_t"+
J

satisfy the superfluid thermodynamic relations in E8g).
We first define the nonequilibrium pressure by

P =P+ g(n2+ 2nn—n?). (95

gnc

P’:P—T# 3

ey, (96)
whereP is the (diffusive) local equilibrium pressure defined
as

P=PO+ g(n2+ 2nn©—[n(®72), (97)

We find that the LK thermodynamic relations given in Eq.
(88) are not satisfied if we assume thit is the pressuréP)

and u. is the chemical potentialy(). Extra terms appear
which are associated with;,. This means that the above
identification of the thermodynamic variables is only valid in
the lowest-order hydrodynamic equations, where there is no
dissipation(see Sec. Il A.

We recall that in deriving the Landau equations from the
ZGN' equations in Refl3], we defined the total pressure by
Eq. (95 andu= u., and also found extra terms in the ther-
modynamic relations proportional ®uq;; (see Eq.(71) of
Ref. [3]). Therefore the precise equivalence between the
ZGN'’ hydrodynamics and the Landau theory shown in Ref.
[3] was restricted in the limiwr,—0, i.e., whendugs
—0. In contrast, if the pressui is defined to be Eq(97)
and ,u=,u£°), we can show that the superfluid thermody-
namic relations in Eq(88) are satisfied. Therefore we con-
clude that the local equilibrium pressure defined in &)
and the local equilibrium chemical potentiat”) given by
Eq. (35 are, in fact, the correct variables to be used in the
Landau—Khalatnikov equations. We will show later that the
corrections to the total pressure and the chemical potential
actually give rise to the additional damping terms associated
with the four second viscosity coefficien{sin Eq. (86).

We now proceed to derive the LK equations from our
microscopic theory, one by one. Our continuity equations for
n. andn are given by Eqs(8a and(67a. Adding them, we
obtain the continuity equation for the total densi86a. To
derive the equatio86b) for the total currenf, we combine
our two continuity equations and the two velocity equations
(8b) and (67b) to give

(9U ext

X,y

urm

m
at

d ~
W(éﬂvpr+mnvn,LLUnV+mnCUC/.LUCV)+n
v
J 2
X 7 '

14
J ~
&7(5WP+mnunMvn,,+mnchMch)+n
14

o

(98)

1
D~ §5,uv(Tr D)

Using Eq.(96), we find

U ext

X

(l)]
12 (-

"
J
X,

gne
3

(TrD)|+6,,7

1
_§5ILV

D,y

(99
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To consistently include damping due to the first-order corfour second viscosity coefficients. An analogous derivation
rection term in the Chapman-Enskog expansion, we usef the Landau-Khalatnikov equations for a uniform Bose gas
I'1,=T) as given in Eq(44). We then find that Eq99) is  was first given by Kirkpatrick and Dorfmaii2]. However,

identical with the LK equatiori86b) with the second viscos- at finite temperatures, where the dominant excitations are

ity coefficients; and, given by particle-like Hartree-Fock excitations, Kirkpatrick and Dorf-
) man did not obtain the second viscosities since they ne-
gnc gng glected the source termi;, associated with deviation from
153m TOHy (2579 TuOH- (100 |ocal equilibrium produced by the;, collisions. We have

shown that the second viscosity coefficients are directly re-
Using o= p{V+gnM=n—g7,I'{} [see Eq(35)] and the lated to thel';, term first discussed in Reff3], which repre-
expression fol{}) in our equation for the condensate veloc- Sents the collisional exchange of atoms between the conden-
ity given in Eq.(8b), we find the latter can be written pre- Saté and noncondensate. S
cisely in the LK form(86¢. Comparison between the two !N the above derivation of the second viscosity terms, we
equations shows that the second viscosity coefficignand ~ usedI';,=T'{3). This restricts the validity of the results to

{4 are given by the casewr,<1 when we consider collective fluctuations
with frequencyw. However, our discussion can be easily
g gn, extended to the situation whenr, is not small, by using
§3=E7MUH, 4= 3 Tu0H- (10D [see Eq(26)]
We note that our results for the second viscosities satisfy the ()= _ 9"y, [Ne(Ve— V) ]+ EnCV-vn] _
Onsager reciprocal relatiog,={, (this equality follows 1-iwT, 3

quite generally, as shown by E@.28 of Ref.[23]). (105
Finally, we derive the equation for the local entropy. Us-

ing Eq. (880, we have Using this expression, we can still write our equations in the

Landau-Khalatnikov form, but now with the frequency-
Js Jde an J - dependent second viscosity coefficients
__/-LE_m(Vn_Vc)E[n(Vn_Vc)]- (102
gi
{i(w)=

ot
With the expression for the local energy densitgiven in l1-iwTt,’
Eqg. (92), we find Eq.(102) reduces to

(106)

Everything else in our derivation goes through.

Js  de . an an ' Thg expresgiqr(\los) for t'he frequency-dependent second
— = —+t[Ugq—pt+g(n+n)]—+gn.— viscosity coefficients has in fact the expected form, as de-
Jat ot at at . . . . .
rived from general consideratiofid4]. The second viscosity,
Jnm 5 such as associated with compression and expansion, arises
Ty E(Vn_vc) when a gas is coupled to an internal relaxation pro¢tss
example, the transfer of energy from the translational de-
Je  _ . .an an grees of freedom of a molecule to the vibrational degrees of
=E+gn(1)ﬁ+gncﬁ. (103  freedom. If the relaxation time of the internal process is

denoted byrg, the frequency-dependent second viscosity

Here we have neglected the last term in the first line, since igoefficient is given by{(w)={o/(1-iw7g), where {y
is of third order in the local velocities. Using our hydrody- *7r- In @& Bose-condensed gas at finite temperatures, the
namic equation$67), we find Eq.(103 reduces to the form Nnoncondensate atoms are coupled to the condensate degree
(86d), assuming the entropy production ragis given by ~ Of freedom, and we have shown that the characteristic relax-
ation time for the equilibration between the two components
1 is given by, . In this connection, we might recall that in the
Rs= T;LgFlz{ gV [ne(ve—vp) ]+ §”cV'Vn] superfluid*He, the second viscosities are due to the fact that

the total number of phonons and rotons is not conserved
2

1 K ) [14]. Above Tgge (Wwhenn.=0), all the second viscosity
+27| Dy §6W(TrD) + T(VT) . (109 coefficients/; in Egs.(100) and(101) vanish, as expected in
a normal dilute single-component gas.
Using Eqg.(44) and the expression in EqELO0) and (101), We finally note that the Landau-Khalatnikov equations
we see that EQ.(104) is equivalent to the Landau- could have been derived from the ZGMNydrodynamic
Khalatnikov[14] expression given in Eq87). equations if we simply identified the total pressuftewith

We have thus shown that our equations based on a micrdhat by Eqs(95) and(96), and took the chemical potential to
scopic theory built on Bose condensation can be written in e u=u.+97,6l'1, [see Eq.(70)]. This leads more natu-
form precisely identical to the phenomenological Landau-rally to frequency-dependent second viscosities. On the other
Khalatnikov two-fluid equations including the damping asso-hand, the physical meaning of this choice of the local equi-
ciated with the shear viscosity, thermal conductivity, andlibrium pressure and chemical potential is not made clear.
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V. CALCULATION OF TRANSPORT COEFFICIENTS 2 2 2
_ ke dp | mu"  50s(20) fo(1+fo)
~ In this section, we solve the linearized equation for func- =73 (2wh)3u 2keTo  203AZ0) o 0
tions A, B, andD in Eq. (55) which determine the deviation
from local equilibrium as described by in Egs. (45 and U dp muw  5095420)] -
o X - u
(54). We can then calculate the transport coefficiemtand _ (2mh)°|2Ke o 203 20)
x as given in Eq(62). We follow the standard procedure in
the Chapman-Enskog method, as reviewed2h]. In this P -1
S : . m 59s5/2(Z0)
approach, one solves the linearized equation by expangling X — u . (110
in a basis set of polynomial functions. These polynomial 2kgTo  2932(20)

functions are chosen to satisfy the constraints such as Eq. ) ) o )

(53) which the solutions must satisfy. In a classical gas, one 10 évaluate thg integrals in Eq(110), it is convenient to
uses Sonine polynomial&1]. One can also define analogous iNtroduce the dimensionless velocity variable by
polynomials for a degenerate Bose das]. As usual, we mo\12 1

calculate the transport coefficients using the lowest-order = _) S
polynomial approximation, which usually gives very accu- 2kgTo 2mkgTy
rate results for the transport coefficients. For a more detailed ) _ ) ) . i
mathematical discussion which is easily generalized to Bos¥//th this new variable, we can rewrite the linearized colli-
condensed gases, we refer to RERL,25]. sion operator as

1/2
p. (11D

. 8m(kgTo)%a® ., s 30
A. The thermal conductivity LL¥]= T(Lzz[ ]+ NooAglid ¥),

In evaluating the thermal conductivity, it is convenient to (112
rewrite Eq.(62b) as

where the dimensionless collision operathfs and i}, are
M 50s/(Zo) defined by

2kgTy - 2932 20) 0

1kf dp AC)
=— kg | ———UA(u)-u
T3] 2mn)?

1 d EéZ[lJI]Ef dXQJ ngf dX46(X+X2_X3_X4)
P ~
><(1+f0)=—§k3f (—uA(u)~L[uA(u)].

27h)3 X 8(X2+ x5—x5—X2) f 10f oo 1+ F30) (1 + T 40)
(107 X (g + b= h— ), (113

Here we explicitly use the static equilibrium distribution .,
function f, to evaluate the transport coefficients. To solve le[%”]EJ XmJ dXzJ dX36(X— Xz~ X3)

the linear integral equatiofb59 for A(u), we introduce a

simple ansatz of the forffiL1,25: X 8(X5— BoGNeo—X5— X5)[ S(X—X1) = 8(X—Xp)

) — O(X=X3) [(1+f1o)foof o hot+ ths— ), (114
mu 505/2(20)

2ksTo 20320

A(u)=A (108

Wherefioz(zglexiz— 1)~ 1. Carrying out thep (or u) inte-
grals in Eq.(110), one finds

This is the lowest-order polynomial function that satisfies the 12

constraint gi i i 75kg (MksT) " . I
given by Eq564a. The constanA in Eq. (108 is o= ( ) — g7l Z0)
determined by multiplying Eq.(558 by u[mu?/2kgT 64a’m| T 520) + Adngol §x(zo) L 2
—505/2(29)/203/2(20) ] and integrating ovep, giving ) )
B 505/2o) (115
2 2093A20) |

mu? 50952 2p)

dp
A= f u? - fo(1+f
(2mh)® | 2kgTo  203/22o) ol1+to) where the functions$’,(zo) andl4,(zo) are defined by
dp M 50520)| - f 2.7 2
X - u 5o=— | dx xx=- Lo xx“], (116
[j (27h)%12keTo  293/2(20) 2 A
-1
mu 595/2(20)] ” K _ 3/2f 2 T Fyy2
X - u ) 109 |f,=— dx xx“- Lo xx]. (117
H 2kgTo  293/2(20) (109

In Ref. [11], we derived a convenient formula for the
Using Eqs.(108) and (109 in Eq. (107), we find integrall 3,, namely
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o o0 1
1520~ \am= [ "o [ ay
0 0 -1

1
% f—ldy/ FooXo:Xr,Y,Y':20)

XXX (y2+y'2—2y%y'?), (118

where
F oo X0, Xr,Y,Y'120)
de—xg—xf
(1— 20 *1)(1— 248 72) (1— 20 3)(1— g *¢)

(119

with
2 2 2y L2 2 2
XT=3 (Xg+ 2XoX, Y+ XF), X5=3 (Xg— 2XoX, Y+ X),

X53=3% (X3+2xXy' +X2), X5=13 (X5—2XoX,y' +x2).
(120

We note thatl 5,(zp) is a universal function of the equilib-
rium fugacity zo, wherezy=e #9"%0(") To derive a similar
expression folf,, we introduce the transformation

(121

We then express, in the polar coordinatex; , 8, ¢) whered
is the azimuthal angle with respect to the vectgr i.e., X,

XZZ%(XO—’—Xr)a X3:%(XO_Xr)-

-Xo=X;Xq COSH. With these new variables, one obtains the

following expression fol 7,:

@ 1
115(20) = 8777/2J'0 dx fﬁldyFlz(Xr ,y;zo)sz(sz-FBog nco)a/2

2.2 N 2
Xy (X +3Bo9Nco) (1 -y )"’Z(ﬂognco) ,

X
(122
wherey=cosf and
2
F1aX,Y;20) = 2 2e 2 7
(1—zpe ") (1—2z0e "2)(1~20€ "3
(123
with
X§=2(X¢ + BogNco),
X5=XE + X YX; + BodNco+ 5 BoGNeo (124

2_2 1
X3= X, =X Y VX + Bo@Ncot 3 BoGNeo -

The formula in Eq(115) gives the thermal conductivity as
a universal function ofyn.y(r) or equivalently in terms of
the local fugacityzo(r) =e #09"%o(")_|f we ignore the con-
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tribution from C4, collisions, i.e., setj, to zero, Eq.(115
reduces to the expression farderived in our earlier work
[11,10Q.
One can also write the expression fomn Eq.(115) in the
following useful form:
]

where 7, is the “thermal relaxation time” associated with
the thermal conductivity, as defined in Appendix B. In turn,
one can also write the reciprocal of this relaxation timeas
the sum of contributions front, and C,, collisions,

K

_ 5\/5( . ﬁokéTo) [ 797/A20) [595/2(20)

'l m 20s:20) | 293A20)

(125

1 1 1
R +
K Tk 12

) (126
Ty,22

where these relaxation times are given explicitly in Appen-
dix B. The physical meaning of this, relaxation time is
discussed in Appendix B, using a simple relaxation time ap-
proximation for the collision integrals in Eq1).

B. The shear viscosity
In evaluating the shear viscosity, it is convenient to
rewrite Eq.(629 as

~om dp 15 2\g
=" 1o (qu—ﬁ)3 U, = 36,,u (u)

X

1 2
u,u,— §5Wu fo(1+1g)

kgTo dp 1 )
_ 10 me(U)(UMUV_géﬂVU

x L

. (127

1 2
B(u)(uﬂu,,— §5M,,u )
To solve Eq.(127), the simplest consistent ans&iz,25 is
to useB(u)=B. The constanB can be determined by mul-
tiplying Eq. (55b) by (u,u,— 5Wu2/3) and integrating over
p to give

B= 0 J dp ( 15 Z)Zf (1+fo)
- u,u,— 5 6,,u
keTo| ) (2mn)3\ #77 37# R

dp ( 1 )
X u,u,— =8,,u?
{f(zﬂﬁ)3 s
1 -1
x L uﬂu,,—géwu2 } . (129

Using this in Eq.(127) we obtain
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m? J' dp 15
10kgT, (27h)3 u#u,,—g wrt

2
d 1
><(1+f0)] [ f (272)3(%””_ §5Wu2)

I

With the dimensionless variable defined in Ef11), this
expression for the shear viscosifycan be rewritten as

/A

R 1 5
XLju,u,— gﬁwu (129

578 12 gg/z( Zp)
= 52 (MkgTo) " — 3
32\2a 1 7:(20) + Agneol 1 Z0)
(130
where
7 ! ! ! 2
17=—] dx| x,x,— §5WX L oo X, X0~ 3 OuX

w3 (= % 1 1
=7 wo ax [ ay ] ay Pt vy

XXX (1+y?+y'2=3y%y'?), (131
and
n__ 3/ L 2
| 1= T dX X/LXV_ 3 5/,LVX L12 X, = 3 6MVX
o0 1
:8777lzf dxrf dyFi(X,,Y;20)
0 -1
X sz VXr + BodNeo sz(xr2+ Bo9Neo)(1— y2)
1
5(309 Neo)? (132

These expressions involve the same functiéns and F,
defined earlier in Eq9119 and(123).

Analogous to Eq(125) for the thermal conductivity, one
can also write the expression farin Eq. (130 in the fol-
lowing form:

n=7,NokgTo (133

93A20) )’

where the viscous relaxation time, is defined in Appendix

B. Again one can write the reciprocal of the relaxation time

T, as

1 1 1
= +
T.” 7'7]‘12

(134

L
75,22

where theseC;, and C,, relaxation times are given in Ap-
pendix B. As with7,, the relaxation timer, can be under-
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stood in terms of a simple relaxation time approximation for
the collision term in the kinetic equation.

C. The second viscosity coefficients

To find the expression for as defined in Eq(63), we use
the simple ansatz for the form of the solution d¢u) of Eq.
(550,

(135

D(u)=D m
(W=D oot 55 o

whereo, ando, are defined in Eq(51). As usual, we leave
the dependence om,t) implicit. One easily verifies that Eq.
(135 satisfies the constrairid6b). The constanD can be
determined by integrating E455¢) over p:

dp . mu?
Df (2wﬁ)3L12[02+

3kgTo '
f
700

dp
Xfo(1+fo)—ﬁog7'f(2 e L. 1], (136

dp ( . muz)
(2mt)31 72" 3kaTo

Using L1 mu?/2]= Bogneol 14 1] and

[ Piun=-"2
(27 h)31 12

where 74, is defined in Eq(22), Eq. (136) gives finally

(7121 BoGNco7)

D=— (137

Neo

2
oot 501,3(,%0_ Uo)

Using Egs.(137) and(135) in the expression for given by
Eq. (63), we can solve to give an explicit expression for
namely

1 1 Neo 2
;2— oyt 30'1,30(,U~c0 Uo) | = Bo9Nco
n0
_ B9 1 (138)
OHT12 TM

We thus see that is precisely the relaxation time, first
introduced in the ZGN two-fluid hydrodynamics. We can

now express the four second viscosity coefficients in Egs.

(100 and(101) in terms of ther;, collision time defined in
Eq. (22):

kgT

173m

nkgT

kgT
— 2 B
gz_ 9

OnTi2, §3=—5—
m?n,,

2
OHT12, OHT12s

{a={1. (139
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3 . . . . / 0.06
2.5¢ ' 0.051
2t 0.04 1
s L
"y 1.5L by 0.03
1L 0.02+
05l 0.011L
0 0
0 0

T/ Tgee

FIG. 3. Plot of the second viscosity coefficients [in units
defined in EQ.(142)] in a uniform gas forgn=0.&KgzTgec as a
function of temperature.

FIG. 1. Plot of the thermal conductivity [in units defined in
Eqg. (140] in a uniform gas forgn=0.&zTgec as a function of
temperature. We also plot the results by takifig=0 (dashed ling
andl3,=0 (dot-dashed ling . . o

L=01v5m0, L=0mInvimy, {s={n/mojm.
D. Numerical results for a uniform Bose gas (141

For illustration, we calculate the transport coefficients in The t ; ficients i ¢ 4B beh
Egs. (115 and (130 for a uniform Bose gasUe,=0). As € transport coetlicients In a trapped bose gas behave

in Ref. [10] we choos@n/ksTgec=0.2. In Figs. 1 and 2 we quite differently Erom those of a uniform Bose gas. In par-
plot the temperature dependence of the dimensionless tran‘éﬁmar, smcenc>nhholds m'bthe' Ceg;flfm rﬁ_g|_on o:;the_ trap at
T ' all temperatures, the contribution collisions dominates
ort coefficientsk and », defined b N 12
P 7 Y over the contribution of th€,, collisions at all temperatures
(140 below Tgec. We will discuss the implications of this at the

k=klInvoks, 7= n/nvgmm.
7ok, 7= 7NV MTo end of Sec. VI.

Here v 4= (5kg Tged/3m) Y2 is the hydrodynamic sound ve-
locity of a classical gas atT=Tggc and 751

=2(8ma®)n(8KgTgec/ mm) ' is the classical mean colli- | this paper we have derived two-fluid hydrodynamic
sion time evaluated ak=Tgec. To see the separate effects equations starting from the quantum kinetic equation and the
of the Cy; collisions andC,, collisions, we also plot the generalized GP equation derived [i8,9,17. However, to
results obtained by taking eithéf,’=0 or 15,7=0. In Ref.  complement and extend our earlier wdi®,9], we started
[10] we neglectedC;,. We see that both and 7 are re-  from the complete local equilibrium single-particle distribu-
duced when we include th@,, collisions. At lower tempera- tion f(®) as given by Egs.(37) and (38). Using the
turesT=0.5Tgec, both x and  are dominated by th€,,  Chapman—Enskog approach, we then included the effects of
collision integral. a small deviation from this local equilibrium form. This de-
In Fig. 3 we plot the four second viscosity coefficients viation from local equilibrium within the thermal cloud
given in Eq.(139 for a uniform Bose gas. We recall that in brings in the usual kind of hydrodynamic damping due to the
Fig. 1 of Ref.[9] we gave the temperature dependence,of thermal conductivity and shear viscosity of the thermal
and 7, for gn/kgTgec=0.1. In Fig. 3 we use the dimension- cloud. A summary of our major results is given in the final

VI. CONCLUSIONS

less second viscosity coefficients, defined by paragraph of Sec. I.
In addition, we showed that there is additional dissipation
0.8 . , , , associated with the collisional exchange of atoms between
0.7k i the condensate and noncondensate components. When we
0.6l ool /] write  our hydrodynamic equations in the Landau—
05l 12 y,' | Khalatnikov[14,23 form given by Eq.86), this damping is
= 04| C,, only /] described in terms of the usual four second viscosity coeffi-
0l 7 c!ents _for a Bc_)s_e superflwd. The_appearance of the s_econd
) v viscosity coefficients in the equations for the total curfent
021 .~ e 1 in Eq. (86b) and for the superfluid velocity, in Eq. (860 is
0.1r = Cpand Gy ] due to the deviation of the total pressure and the chemical
00 02 04 06 03 1 potential from their local equilibrium values. We might also

recall that Khalatniko\[14] discusses a specific model for

the second viscosity coefficients in superfldide by intro-
FIG. 2. Plot of the shear viscosity coefficient in a uniform gasducing “local chemical potentials” for the phonongg,)

for gn=0.ZgTgec as a function of temperature[in units defined ~ and rotons f,). These describe a situation where such exci-

in Eq. (140]. We also plot the results by takirig,=0 (dashed ling  tations(describing the normal flujdare out of local equilib-

and!%,=0 (dot-dashed ling rium with the superfluid component. Clearly this discussion

T/ Tpee
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has connections with our calculations based on the condematurally includes the crossover to the noninteracting gas in
sate and noncondensate not being in diffusive equilibrium. the thermal gas tail.

The frequency-dependence of the second viscosity coeffi-
cients is a result of the fact that our two-fluid hydrodynamics
deals with the dynamics of the condensate and nonconden-
sate components as separate degrees of freedom. This featureywe thank E. Zaremba for his interest and comments and
is made more explicit in our recent pap§89,10. In par-  G. Shlyapnikov for a useful discussion. T. N. was supported
ticular, it gives rise to a new relaxational zero-frequencyby JSPS of Japan, while A. G. was supported by NSERC of
mode. As mentioned at the end of Sec. Il, and more explicCanada.
itly in Ref. [10], this mode may be viewed as tlrenormal-
ized version of the zero-frequency thermal diffusion mode
[20] above Tgee. The presence of this new mode below
Tgec is somewhat hidden in the formulation in terms of the  We briefly sketch the derivation of the first-order kinetic
LK two-fluid equations given in E((86). equation given in Eq(50). Using Eq.(37) in Eq. (49), one

In Sec. V we derived explicit formulas for all the trans- has
port coefficients within our model. In Rgf10] we only took
into account the deviations from local equilibrium due to the
C,, collision integral in calculating the shear viscosity and
the thermal conductivity coefficients. In the present paper we
have also included the contribution to these quantities from 1/ p me (P p
the C,, collision integral. From Eq9125 and(133 we see = _(_+_ . V)z+ (_+_ . V)T
that both«x and » are given in a forrln proplortional to char- z\ot m 2kgT?1 9t M
acteristic relaxation timesr,=(7,1,+7.3) * and 7, 0
=(7,127 7,39 ', respectively, which are defined and mo- L (‘9_+B . V)Vn+ vuey
tivated in Appendix B. kgT \dt m kgT

In a rough estimate we find, ,,7, 20~ r4~1/ and (A1)
The12: Ty12™ (n/ng) 74~ 1/n., wherer, is the classical colli-
sion time defined in Eq.B2). We therefore observe that the
effect of C, collisions reduces the magnitude of battand
7 by a factor~1/(1+n./n), a result also noted in Ref12] 200 : )
for a uniform gas. The contribution of th@,, collisions is ~ Pressure”™™ in Eq. (42), one finds
always important in a trapped gas, since the condensate den-
sity at the central region of a trap is much larger than the RO 3RO BT kT 02
density of the thermal cloud even at temperatures very close —
to Tgee. In a trapped Bose gas we find the effect of @

collisions is enhanced by a large factg/n>1. This means
that x a_nqn are _always dominqted by the_cont_ribution of the PO 5PO 0T FOKT 4%
Cy, collisions. Since the effective relaxation times;, and = —
7,12 are smaller than the classical collision timg by a
factorn/n,<1, this implies that in a trapped Bose gas, the
hydrodynamic region may be much easier to reach at finitavhere y is the variable introduced after E¢51) and z
temperatures than expected from naive considerations basedz(®) as defined below Eq40). One may combine these
on using the classical collision tinfee., w7y<1). Thatisto  equations with Eqs(43g and (43¢) to show that the equa-
say, one might easily haver, ;<1 andwr, ,<1, even tions in Eq.(A2) reduce to

thoughw7>1. This has very important implications in de-
ciding if one is in the collisionless or the hydrodynamic re-

ACKNOWLEDGMENTS

APPENDIX A

0
p
=+ E.Vr—VrU(r,t)'Vp}f(o)(r,p-t)

-u]f(°>(1+f<0>).

The notationd®/ gt is explained below Eq(49). Using the
expressions for the density® given by Eq.(40) and the

H 2T Tz o
(A2)

n 2T oz o

gion. LN S TRV & T
One problem not dealt with in this paper is the fact that in ot 3 neeon 3p) 2
a trapped Bose gas, the decreasing density in the tail of the (A3)
thermal cloud means that the hydrodynamic description
breakdowns eventually. This problem enters the evaluation 3z '
of the expressions for they and « transport coefficients W:_Vn'vz"'UZZﬁ-

given in Sec. V. In recent papers dealing with the case above

Tgec [26,11], this problem was handled in @d hocmanner

by introducing a spatial cutoff in the thermal cloud. In a The analogous equation féPv, /4t is given directly by Eq.
future paper we give an alternative approach based on start43b). Using these results in E¢AL), one finds that it re-
ing with an improved solution of the kinetic equation, which duces to
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‘90 p (0) 7 S 2
st ‘V,=V,U.V,I|f 1579243 597/2(20)—595/2(20)/93/2(20)
1 m#Z 5P 8m(kgTo)?a? 15420)
=gy VT 2ksT  2nOk,T 7 PR 5, -
= z Z)— = z
- . B 15\/5777/27 2 972020)831220) —5 9512 Z0 -
T[4V gV A 15420 |
d
mu? m I an
+|opt 5= —Uu- (Ve— V) |= ]f(o)
3ks 7 k T n© _ dp MU  50sx(2o)]? 5
Tk 12= "~ 3 ufo(1+fo)
X (14O, (A4) (27h) 2ksTo  293A20)
where we recaIUEp/'m—vn. In calqulating thg dissipativg x“ dp mu? 3 505/2(2p) U
terms, we only consider terms to first order in the velocity (271)% 2KsTo 2034 Z0)
fieldsv, andv,. Sincel';, is proportional tov, andv, [see
Eq. (44)], we can n_egl_ect the last tgrmroportional tov, . MW@ 50su(Z0) -1
—v,) in Eq. (A4). This linearized version of EqA4) can be XL T, 2 u
rewritten in the form shown on the left-hand side of Egp). sTo  2032(20)
7 5
APPENDIX B 157923 597/2(20)—Egg/z(zo)/gs/z(zo)
The relaxation timer, in Eq. (125 is defined b =
«In 0. (129 Y 8m(ksTo)%a? NeoA 3114 20)
dp MU 5gs(2)]? 5 7 5
TKZ_[ f (27771)3[2'(51-0 " 203420) fo(1+ o) 1527712 2 9712(20) 931 Z0) — Egg/z(zo)
= Tel . (B4)
X[f dp mU2 595/2(20) ¢ nCOAO (ZO)
(27h)®[2KeTo  2G372lZo) In an analogous way, the relaxation timg in Eq. (133
5 1 is defined by
. { mu _595/2(20)]UH
2kgTo 203z d 1 2
sTo 203 Z) Ty= f P 3<uMuV—§5ﬂvu2) fo(1+1fp)
7 5, (27h)
15,9273 | 597420~ 5952(20)/ 9312 Zo) f dp ( 1 ) 2)
= >< - =
8m(kgTo)%a’ 155(20) + NeoA 3l 1 Zo) (2mh)® Huth g ot
7 5 2 1 -1
15277 597/2(20)93/2(20) - 595/2(20) XL u,u,— = 8,,u?
= (BY) °
|22(ZO)+nc0Ao 12(Z0) y
H B 573 9s/2(Z0) l
ere =
5 16m(ksTo)?a?| 1742o) + NcoAdl 12(20)

-1_ 2\ 1/2

74 =+2(8ma“)ng(r)(8kgTy/7m)~', (B2)

o 0 B0 _ 5\27""2 I5/2(Z0) 9312 Zo) 85
is the collision time of a classizcal gas with density and 2 175(20) + NeoA Sl 7(20) |
guantum cross sectior=8ma“. In turn, the relaxation
times in Eq.(126) are defined by The relaxation times in Eq134) are defined by

dp M 5gs(20)]? j dp ( 1 )2
T o= u?fo(1+f =— u,—=38,,u?| fo(1+f
22 [f(quﬁ)3 2kgTo  203(20) ol o T2 (27h)° 3 ol1+10)
d mu’  5¢g(z d 1
X{f p [ _ 5051420) y y J p (UMUV——%VUs)
(27h)32ksTo  203/2(2o) (27h)3 3
-1 -1
~ MU 5gs2o) S 1 3
. 2kgTo - 293/2(2o) ! e R §5WU
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57923 9ol Zo) =7. We also note that Eq7) of Ref.[27] gives a general
= 55 expression for various collisional relaxation times above
16m(kgTo)“a| 1742o) Tgec, Which is given by a formula analogous to E@B1)
and(B5).
712
_ 5V2m . 9s/2(Z0) 93/2(Z0) (B6) It is these effective relaxation times that determine
2 o 1 7(2o) ' whether one is in the hydrodynamic two-fluid domadnz,
=1, o7,<1 (see discussion in Sec. VIThey should be
and used in place of the classical collision timg in Eq. (B2).
d 1 2
Tpl=— J . ; S(U#uy—géﬂyuz) fo(1+1fp) APPENDIX C
(2mh) Hohenberg and Martif23] worked out the dispersion re-
dp 1 lation of the hydrodynamic modes in a uniform Bose super-
X f 3 ( u,u,— §5Wu2> fluid using the Landau—Khalatnikov two-fluid equations. The
(2mh) frequencies of the first and second sound modes are given by
-1
A 1 2,212 2
XL12 UMUV_§5MVU2 ] (O] —Uik _|Dik w, (Cl)
where the sound velocitiag are determined by the coupled
5798 512 Zo) ] equations
16m(kgTo)%a?| neoA 3l 72o) -
5 o TpsS” P
5\27"% | 98420931l 20) Uptup=——=— . (€2
= 2 Tel 3 . (B?) PnCy Js s
NeoA ol 7(20)
2
We note that in a nondegenerate gas, these expressions uzuzzTPS_S E (C3)
simplify and we findr,= 7, ;0= 5 7(Ng(r)) and 7,= 7, 5 2, 9P .

=27,4(ny(r)). The latter expression for, agrees with the
result for the shear viscosity given in E4.1) by Kavoulakis
et al. [27].

The physical meaning of these new relaxation times be
comes clear when we compare our Chapman—Enskog anal
sis in the text with a simple relaxation time approximation
[20]. In the relaxation time approximation, one simply re-

places the collision term in Eq1) with —[f—f(®]/7,,

where 7, is @ phenomenological relaxation time character-
izing how fast the system relaxes to local equilibrium. With
this approximation, the solutions of the linearized equations

in Egs.(558 and(55b) for the functionsA(u) andB(u) are
found to be simply given by

m
(u)y=- 7'reIkB_-I—-

(B8)

MW 50s/(2)

A== Trel ok T~ 2050(2)

o)

~ Trel

In contrast, our Chapman—Enskog solutionAgu) is given
by Eqg.(108) with the coefficientA given by Eq.(109), while
one hasB(u) =B with the constanB given by Eq.(128). In
terms of the relaxation times, and 7, defined above, we
find Egs.(108 and (128 can be written as

mu? ~ 59s2(2)
2KgT  203A2)

m
Tt
(B9)

A(U): Tk

, B(u)=

Comparing Eq(B9) with Eq. (B8), we see that both, and
7, can be identified with the relaxation timg,. That is, in
the simple relaxation time approximatior,and » are still

given by the formulag125 and (133, but with 7,=7,

Here s=s/mn is the entropy per unit mass am is the
specific heat per unit mass. The damping coefficiEntare

g_etermined by the coupled equations

dn L ps {3ps K
Dy+Dy=o—+ 24+ 20+ +—,
! 2 3pn Pn Pn(é/1 La Pn P pC,
(CH
o, T30 (T 27570
ug 1+u2D2—& + — — T
P P plc, pc, IT|
+c?P i ps P 5
ap <] "2 apl L
Gt ib Ts oP +aP o
1re, c,p 9T , aplg)

We note that the above general expressions are valid for
both liquid “He and Bose gases. For the liquftile these

formulas can be simplified by usirg~c,. One has

P
Ulm %1 (C7)
JT
w~- (%)
Pn d(1/s)
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+47/3 n
p,~ 27478 (C9) TIL (C12
p m
1]« ps[ 4 4n L ps Laps 4 KTo
Dy~ — f+—§p2—p(§+g>+z+—n} : Dy~ gt = ({H )Tt
2 P|T(r7$/(7T) pnl”® LeaeTs 1 3p F o oSOt " g poU2
(C10 )
n
However, these are not valid for a dilute Bose gas. Calculat- x| 1+ Tcoolo-H \ (C13
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